Home | History | Annotate | Download | only in rtl
      1 //===-- tsan_fd.cc --------------------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file is a part of ThreadSanitizer (TSan), a race detector.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "tsan_fd.h"
     15 #include "tsan_rtl.h"
     16 #include <sanitizer_common/sanitizer_atomic.h>
     17 
     18 namespace __tsan {
     19 
     20 const int kTableSizeL1 = 1024;
     21 const int kTableSizeL2 = 1024;
     22 const int kTableSize = kTableSizeL1 * kTableSizeL2;
     23 
     24 struct FdSync {
     25   atomic_uint64_t rc;
     26 };
     27 
     28 struct FdDesc {
     29   FdSync *sync;
     30   int creation_tid;
     31   u32 creation_stack;
     32 };
     33 
     34 struct FdContext {
     35   atomic_uintptr_t tab[kTableSizeL1];
     36   // Addresses used for synchronization.
     37   FdSync globsync;
     38   FdSync filesync;
     39   FdSync socksync;
     40   u64 connectsync;
     41 };
     42 
     43 static FdContext fdctx;
     44 
     45 static FdSync *allocsync() {
     46   FdSync *s = (FdSync*)internal_alloc(MBlockFD, sizeof(FdSync));
     47   atomic_store(&s->rc, 1, memory_order_relaxed);
     48   return s;
     49 }
     50 
     51 static FdSync *ref(FdSync *s) {
     52   if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1)
     53     atomic_fetch_add(&s->rc, 1, memory_order_relaxed);
     54   return s;
     55 }
     56 
     57 static void unref(ThreadState *thr, uptr pc, FdSync *s) {
     58   if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1) {
     59     if (atomic_fetch_sub(&s->rc, 1, memory_order_acq_rel) == 1) {
     60       CHECK_NE(s, &fdctx.globsync);
     61       CHECK_NE(s, &fdctx.filesync);
     62       CHECK_NE(s, &fdctx.socksync);
     63       SyncVar *v = CTX()->synctab.GetAndRemove(thr, pc, (uptr)s);
     64       if (v)
     65         DestroyAndFree(v);
     66       internal_free(s);
     67     }
     68   }
     69 }
     70 
     71 static FdDesc *fddesc(ThreadState *thr, uptr pc, int fd) {
     72   CHECK_LT(fd, kTableSize);
     73   atomic_uintptr_t *pl1 = &fdctx.tab[fd / kTableSizeL2];
     74   uptr l1 = atomic_load(pl1, memory_order_consume);
     75   if (l1 == 0) {
     76     uptr size = kTableSizeL2 * sizeof(FdDesc);
     77     void *p = internal_alloc(MBlockFD, size);
     78     internal_memset(p, 0, size);
     79     MemoryResetRange(thr, (uptr)&fddesc, (uptr)p, size);
     80     if (atomic_compare_exchange_strong(pl1, &l1, (uptr)p, memory_order_acq_rel))
     81       l1 = (uptr)p;
     82     else
     83       internal_free(p);
     84   }
     85   return &((FdDesc*)l1)[fd % kTableSizeL2];  // NOLINT
     86 }
     87 
     88 // pd must be already ref'ed.
     89 static void init(ThreadState *thr, uptr pc, int fd, FdSync *s) {
     90   FdDesc *d = fddesc(thr, pc, fd);
     91   // As a matter of fact, we don't intercept all close calls.
     92   // See e.g. libc __res_iclose().
     93   if (d->sync) {
     94     unref(thr, pc, d->sync);
     95     d->sync = 0;
     96   }
     97   if (flags()->io_sync == 0) {
     98     unref(thr, pc, s);
     99   } else if (flags()->io_sync == 1) {
    100     d->sync = s;
    101   } else if (flags()->io_sync == 2) {
    102     unref(thr, pc, s);
    103     d->sync = &fdctx.globsync;
    104   }
    105   d->creation_tid = thr->tid;
    106   d->creation_stack = CurrentStackId(thr, pc);
    107   // To catch races between fd usage and open.
    108   MemoryRangeImitateWrite(thr, pc, (uptr)d, 8);
    109 }
    110 
    111 void FdInit() {
    112   atomic_store(&fdctx.globsync.rc, (u64)-1, memory_order_relaxed);
    113   atomic_store(&fdctx.filesync.rc, (u64)-1, memory_order_relaxed);
    114   atomic_store(&fdctx.socksync.rc, (u64)-1, memory_order_relaxed);
    115 }
    116 
    117 void FdOnFork(ThreadState *thr, uptr pc) {
    118   // On fork() we need to reset all fd's, because the child is going
    119   // close all them, and that will cause races between previous read/write
    120   // and the close.
    121   for (int l1 = 0; l1 < kTableSizeL1; l1++) {
    122     FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed);
    123     if (tab == 0)
    124       break;
    125     for (int l2 = 0; l2 < kTableSizeL2; l2++) {
    126       FdDesc *d = &tab[l2];
    127       MemoryResetRange(thr, pc, (uptr)d, 8);
    128     }
    129   }
    130 }
    131 
    132 bool FdLocation(uptr addr, int *fd, int *tid, u32 *stack) {
    133   for (int l1 = 0; l1 < kTableSizeL1; l1++) {
    134     FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed);
    135     if (tab == 0)
    136       break;
    137     if (addr >= (uptr)tab && addr < (uptr)(tab + kTableSizeL2)) {
    138       int l2 = (addr - (uptr)tab) / sizeof(FdDesc);
    139       FdDesc *d = &tab[l2];
    140       *fd = l1 * kTableSizeL1 + l2;
    141       *tid = d->creation_tid;
    142       *stack = d->creation_stack;
    143       return true;
    144     }
    145   }
    146   return false;
    147 }
    148 
    149 void FdAcquire(ThreadState *thr, uptr pc, int fd) {
    150   FdDesc *d = fddesc(thr, pc, fd);
    151   FdSync *s = d->sync;
    152   DPrintf("#%d: FdAcquire(%d) -> %p\n", thr->tid, fd, s);
    153   MemoryRead(thr, pc, (uptr)d, kSizeLog8);
    154   if (s)
    155     Acquire(thr, pc, (uptr)s);
    156 }
    157 
    158 void FdRelease(ThreadState *thr, uptr pc, int fd) {
    159   FdDesc *d = fddesc(thr, pc, fd);
    160   FdSync *s = d->sync;
    161   DPrintf("#%d: FdRelease(%d) -> %p\n", thr->tid, fd, s);
    162   if (s)
    163     Release(thr, pc, (uptr)s);
    164   MemoryRead(thr, pc, (uptr)d, kSizeLog8);
    165 }
    166 
    167 void FdAccess(ThreadState *thr, uptr pc, int fd) {
    168   DPrintf("#%d: FdAccess(%d)\n", thr->tid, fd);
    169   FdDesc *d = fddesc(thr, pc, fd);
    170   MemoryRead(thr, pc, (uptr)d, kSizeLog8);
    171 }
    172 
    173 void FdClose(ThreadState *thr, uptr pc, int fd) {
    174   DPrintf("#%d: FdClose(%d)\n", thr->tid, fd);
    175   FdDesc *d = fddesc(thr, pc, fd);
    176   // To catch races between fd usage and close.
    177   MemoryWrite(thr, pc, (uptr)d, kSizeLog8);
    178   // We need to clear it, because if we do not intercept any call out there
    179   // that creates fd, we will hit false postives.
    180   MemoryResetRange(thr, pc, (uptr)d, 8);
    181   unref(thr, pc, d->sync);
    182   d->sync = 0;
    183   d->creation_tid = 0;
    184   d->creation_stack = 0;
    185 }
    186 
    187 void FdFileCreate(ThreadState *thr, uptr pc, int fd) {
    188   DPrintf("#%d: FdFileCreate(%d)\n", thr->tid, fd);
    189   init(thr, pc, fd, &fdctx.filesync);
    190 }
    191 
    192 void FdDup(ThreadState *thr, uptr pc, int oldfd, int newfd) {
    193   DPrintf("#%d: FdDup(%d, %d)\n", thr->tid, oldfd, newfd);
    194   // Ignore the case when user dups not yet connected socket.
    195   FdDesc *od = fddesc(thr, pc, oldfd);
    196   MemoryRead(thr, pc, (uptr)od, kSizeLog8);
    197   FdClose(thr, pc, newfd);
    198   init(thr, pc, newfd, ref(od->sync));
    199 }
    200 
    201 void FdPipeCreate(ThreadState *thr, uptr pc, int rfd, int wfd) {
    202   DPrintf("#%d: FdCreatePipe(%d, %d)\n", thr->tid, rfd, wfd);
    203   FdSync *s = allocsync();
    204   init(thr, pc, rfd, ref(s));
    205   init(thr, pc, wfd, ref(s));
    206   unref(thr, pc, s);
    207 }
    208 
    209 void FdEventCreate(ThreadState *thr, uptr pc, int fd) {
    210   DPrintf("#%d: FdEventCreate(%d)\n", thr->tid, fd);
    211   init(thr, pc, fd, allocsync());
    212 }
    213 
    214 void FdSignalCreate(ThreadState *thr, uptr pc, int fd) {
    215   DPrintf("#%d: FdSignalCreate(%d)\n", thr->tid, fd);
    216   init(thr, pc, fd, 0);
    217 }
    218 
    219 void FdInotifyCreate(ThreadState *thr, uptr pc, int fd) {
    220   DPrintf("#%d: FdInotifyCreate(%d)\n", thr->tid, fd);
    221   init(thr, pc, fd, 0);
    222 }
    223 
    224 void FdPollCreate(ThreadState *thr, uptr pc, int fd) {
    225   DPrintf("#%d: FdPollCreate(%d)\n", thr->tid, fd);
    226   init(thr, pc, fd, allocsync());
    227 }
    228 
    229 void FdSocketCreate(ThreadState *thr, uptr pc, int fd) {
    230   DPrintf("#%d: FdSocketCreate(%d)\n", thr->tid, fd);
    231   // It can be a UDP socket.
    232   init(thr, pc, fd, &fdctx.socksync);
    233 }
    234 
    235 void FdSocketAccept(ThreadState *thr, uptr pc, int fd, int newfd) {
    236   DPrintf("#%d: FdSocketAccept(%d, %d)\n", thr->tid, fd, newfd);
    237   // Synchronize connect->accept.
    238   Acquire(thr, pc, (uptr)&fdctx.connectsync);
    239   init(thr, pc, newfd, &fdctx.socksync);
    240 }
    241 
    242 void FdSocketConnecting(ThreadState *thr, uptr pc, int fd) {
    243   DPrintf("#%d: FdSocketConnecting(%d)\n", thr->tid, fd);
    244   // Synchronize connect->accept.
    245   Release(thr, pc, (uptr)&fdctx.connectsync);
    246 }
    247 
    248 void FdSocketConnect(ThreadState *thr, uptr pc, int fd) {
    249   DPrintf("#%d: FdSocketConnect(%d)\n", thr->tid, fd);
    250   init(thr, pc, fd, &fdctx.socksync);
    251 }
    252 
    253 uptr File2addr(char *path) {
    254   (void)path;
    255   static u64 addr;
    256   return (uptr)&addr;
    257 }
    258 
    259 uptr Dir2addr(char *path) {
    260   (void)path;
    261   static u64 addr;
    262   return (uptr)&addr;
    263 }
    264 
    265 }  //  namespace __tsan
    266