1 /* 2 * Copyright (C) 2010 The Android Open Source Project 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * * Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * * Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in 12 * the documentation and/or other materials provided with the 13 * distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 /* ChangeLog for this library: 30 * 31 * NDK r8d: Add android_setCpu(). 32 * 33 * NDK r8c: Add new ARM CPU features: VFPv2, VFP_D32, VFP_FP16, 34 * VFP_FMA, NEON_FMA, IDIV_ARM, IDIV_THUMB2 and iWMMXt. 35 * 36 * Rewrite the code to parse /proc/self/auxv instead of 37 * the "Features" field in /proc/cpuinfo. 38 * 39 * Dynamically allocate the buffer that hold the content 40 * of /proc/cpuinfo to deal with newer hardware. 41 * 42 * NDK r7c: Fix CPU count computation. The old method only reported the 43 * number of _active_ CPUs when the library was initialized, 44 * which could be less than the real total. 45 * 46 * NDK r5: Handle buggy kernels which report a CPU Architecture number of 7 47 * for an ARMv6 CPU (see below). 48 * 49 * Handle kernels that only report 'neon', and not 'vfpv3' 50 * (VFPv3 is mandated by the ARM architecture is Neon is implemented) 51 * 52 * Handle kernels that only report 'vfpv3d16', and not 'vfpv3' 53 * 54 * Fix x86 compilation. Report ANDROID_CPU_FAMILY_X86 in 55 * android_getCpuFamily(). 56 * 57 * NDK r4: Initial release 58 */ 59 #include <sys/system_properties.h> 60 #ifdef __arm__ 61 #include <machine/cpu-features.h> 62 #endif 63 #include <pthread.h> 64 #include "cpu-features.h" 65 #include <stdio.h> 66 #include <stdlib.h> 67 #include <fcntl.h> 68 #include <errno.h> 69 70 static pthread_once_t g_once; 71 static int g_inited; 72 static AndroidCpuFamily g_cpuFamily; 73 static uint64_t g_cpuFeatures; 74 static int g_cpuCount; 75 76 static const int android_cpufeatures_debug = 0; 77 78 #ifdef __arm__ 79 # define DEFAULT_CPU_FAMILY ANDROID_CPU_FAMILY_ARM 80 #elif defined __i386__ 81 # define DEFAULT_CPU_FAMILY ANDROID_CPU_FAMILY_X86 82 #else 83 # define DEFAULT_CPU_FAMILY ANDROID_CPU_FAMILY_UNKNOWN 84 #endif 85 86 #define D(...) \ 87 do { \ 88 if (android_cpufeatures_debug) { \ 89 printf(__VA_ARGS__); fflush(stdout); \ 90 } \ 91 } while (0) 92 93 #ifdef __i386__ 94 static __inline__ void x86_cpuid(int func, int values[4]) 95 { 96 int a, b, c, d; 97 /* We need to preserve ebx since we're compiling PIC code */ 98 /* this means we can't use "=b" for the second output register */ 99 __asm__ __volatile__ ( \ 100 "push %%ebx\n" 101 "cpuid\n" \ 102 "mov %%ebx, %1\n" 103 "pop %%ebx\n" 104 : "=a" (a), "=r" (b), "=c" (c), "=d" (d) \ 105 : "a" (func) \ 106 ); 107 values[0] = a; 108 values[1] = b; 109 values[2] = c; 110 values[3] = d; 111 } 112 #endif 113 114 /* Get the size of a file by reading it until the end. This is needed 115 * because files under /proc do not always return a valid size when 116 * using fseek(0, SEEK_END) + ftell(). Nor can they be mmap()-ed. 117 */ 118 static int 119 get_file_size(const char* pathname) 120 { 121 int fd, ret, result = 0; 122 char buffer[256]; 123 124 fd = open(pathname, O_RDONLY); 125 if (fd < 0) { 126 D("Can't open %s: %s\n", pathname, strerror(errno)); 127 return -1; 128 } 129 130 for (;;) { 131 int ret = read(fd, buffer, sizeof buffer); 132 if (ret < 0) { 133 if (errno == EINTR) 134 continue; 135 D("Error while reading %s: %s\n", pathname, strerror(errno)); 136 break; 137 } 138 if (ret == 0) 139 break; 140 141 result += ret; 142 } 143 close(fd); 144 return result; 145 } 146 147 /* Read the content of /proc/cpuinfo into a user-provided buffer. 148 * Return the length of the data, or -1 on error. Does *not* 149 * zero-terminate the content. Will not read more 150 * than 'buffsize' bytes. 151 */ 152 static int 153 read_file(const char* pathname, char* buffer, size_t buffsize) 154 { 155 int fd, count; 156 157 fd = open(pathname, O_RDONLY); 158 if (fd < 0) { 159 D("Could not open %s: %s\n", pathname, strerror(errno)); 160 return -1; 161 } 162 count = 0; 163 while (count < (int)buffsize) { 164 int ret = read(fd, buffer + count, buffsize - count); 165 if (ret < 0) { 166 if (errno == EINTR) 167 continue; 168 D("Error while reading from %s: %s\n", pathname, strerror(errno)); 169 if (count == 0) 170 count = -1; 171 break; 172 } 173 if (ret == 0) 174 break; 175 count += ret; 176 } 177 close(fd); 178 return count; 179 } 180 181 /* Extract the content of a the first occurence of a given field in 182 * the content of /proc/cpuinfo and return it as a heap-allocated 183 * string that must be freed by the caller. 184 * 185 * Return NULL if not found 186 */ 187 static char* 188 extract_cpuinfo_field(const char* buffer, int buflen, const char* field) 189 { 190 int fieldlen = strlen(field); 191 const char* bufend = buffer + buflen; 192 char* result = NULL; 193 int len, ignore; 194 const char *p, *q; 195 196 /* Look for first field occurence, and ensures it starts the line. */ 197 p = buffer; 198 for (;;) { 199 p = memmem(p, bufend-p, field, fieldlen); 200 if (p == NULL) 201 goto EXIT; 202 203 if (p == buffer || p[-1] == '\n') 204 break; 205 206 p += fieldlen; 207 } 208 209 /* Skip to the first column followed by a space */ 210 p += fieldlen; 211 p = memchr(p, ':', bufend-p); 212 if (p == NULL || p[1] != ' ') 213 goto EXIT; 214 215 /* Find the end of the line */ 216 p += 2; 217 q = memchr(p, '\n', bufend-p); 218 if (q == NULL) 219 q = bufend; 220 221 /* Copy the line into a heap-allocated buffer */ 222 len = q-p; 223 result = malloc(len+1); 224 if (result == NULL) 225 goto EXIT; 226 227 memcpy(result, p, len); 228 result[len] = '\0'; 229 230 EXIT: 231 return result; 232 } 233 234 /* Like strlen(), but for constant string literals */ 235 #define STRLEN_CONST(x) ((sizeof(x)-1) 236 237 238 /* Checks that a space-separated list of items contains one given 'item'. 239 * Returns 1 if found, 0 otherwise. 240 */ 241 static int 242 has_list_item(const char* list, const char* item) 243 { 244 const char* p = list; 245 int itemlen = strlen(item); 246 247 if (list == NULL) 248 return 0; 249 250 while (*p) { 251 const char* q; 252 253 /* skip spaces */ 254 while (*p == ' ' || *p == '\t') 255 p++; 256 257 /* find end of current list item */ 258 q = p; 259 while (*q && *q != ' ' && *q != '\t') 260 q++; 261 262 if (itemlen == q-p && !memcmp(p, item, itemlen)) 263 return 1; 264 265 /* skip to next item */ 266 p = q; 267 } 268 return 0; 269 } 270 271 /* Parse an decimal integer starting from 'input', but not going further 272 * than 'limit'. Return the value into '*result'. 273 * 274 * NOTE: Does not skip over leading spaces, or deal with sign characters. 275 * NOTE: Ignores overflows. 276 * 277 * The function returns NULL in case of error (bad format), or the new 278 * position after the decimal number in case of success (which will always 279 * be <= 'limit'). 280 */ 281 static const char* 282 parse_decimal(const char* input, const char* limit, int* result) 283 { 284 const char* p = input; 285 int val = 0; 286 while (p < limit) { 287 int d = (*p - '0'); 288 if ((unsigned)d >= 10U) 289 break; 290 val = val*10 + d; 291 p++; 292 } 293 if (p == input) 294 return NULL; 295 296 *result = val; 297 return p; 298 } 299 300 /* This small data type is used to represent a CPU list / mask, as read 301 * from sysfs on Linux. See http://www.kernel.org/doc/Documentation/cputopology.txt 302 * 303 * For now, we don't expect more than 32 cores on mobile devices, so keep 304 * everything simple. 305 */ 306 typedef struct { 307 uint32_t mask; 308 } CpuList; 309 310 static __inline__ void 311 cpulist_init(CpuList* list) { 312 list->mask = 0; 313 } 314 315 static __inline__ void 316 cpulist_and(CpuList* list1, CpuList* list2) { 317 list1->mask &= list2->mask; 318 } 319 320 static __inline__ void 321 cpulist_set(CpuList* list, int index) { 322 if ((unsigned)index < 32) { 323 list->mask |= (uint32_t)(1U << index); 324 } 325 } 326 327 static __inline__ int 328 cpulist_count(CpuList* list) { 329 return __builtin_popcount(list->mask); 330 } 331 332 /* Parse a textual list of cpus and store the result inside a CpuList object. 333 * Input format is the following: 334 * - comma-separated list of items (no spaces) 335 * - each item is either a single decimal number (cpu index), or a range made 336 * of two numbers separated by a single dash (-). Ranges are inclusive. 337 * 338 * Examples: 0 339 * 2,4-127,128-143 340 * 0-1 341 */ 342 static void 343 cpulist_parse(CpuList* list, const char* line, int line_len) 344 { 345 const char* p = line; 346 const char* end = p + line_len; 347 const char* q; 348 349 /* NOTE: the input line coming from sysfs typically contains a 350 * trailing newline, so take care of it in the code below 351 */ 352 while (p < end && *p != '\n') 353 { 354 int val, start_value, end_value; 355 356 /* Find the end of current item, and put it into 'q' */ 357 q = memchr(p, ',', end-p); 358 if (q == NULL) { 359 q = end; 360 } 361 362 /* Get first value */ 363 p = parse_decimal(p, q, &start_value); 364 if (p == NULL) 365 goto BAD_FORMAT; 366 367 end_value = start_value; 368 369 /* If we're not at the end of the item, expect a dash and 370 * and integer; extract end value. 371 */ 372 if (p < q && *p == '-') { 373 p = parse_decimal(p+1, q, &end_value); 374 if (p == NULL) 375 goto BAD_FORMAT; 376 } 377 378 /* Set bits CPU list bits */ 379 for (val = start_value; val <= end_value; val++) { 380 cpulist_set(list, val); 381 } 382 383 /* Jump to next item */ 384 p = q; 385 if (p < end) 386 p++; 387 } 388 389 BAD_FORMAT: 390 ; 391 } 392 393 /* Read a CPU list from one sysfs file */ 394 static void 395 cpulist_read_from(CpuList* list, const char* filename) 396 { 397 char file[64]; 398 int filelen; 399 400 cpulist_init(list); 401 402 filelen = read_file(filename, file, sizeof file); 403 if (filelen < 0) { 404 D("Could not read %s: %s\n", filename, strerror(errno)); 405 return; 406 } 407 408 cpulist_parse(list, file, filelen); 409 } 410 411 // See <asm/hwcap.h> kernel header. 412 #define HWCAP_VFP (1 << 6) 413 #define HWCAP_IWMMXT (1 << 9) 414 #define HWCAP_NEON (1 << 12) 415 #define HWCAP_VFPv3 (1 << 13) 416 #define HWCAP_VFPv3D16 (1 << 14) 417 #define HWCAP_VFPv4 (1 << 16) 418 #define HWCAP_IDIVA (1 << 17) 419 #define HWCAP_IDIVT (1 << 18) 420 421 #define AT_HWCAP 16 422 423 #if defined(__arm__) 424 /* Compute the ELF HWCAP flags. 425 */ 426 static uint32_t 427 get_elf_hwcap(const char* cpuinfo, int cpuinfo_len) 428 { 429 /* IMPORTANT: 430 * Accessing /proc/self/auxv doesn't work anymore on all 431 * platform versions. More specifically, when running inside 432 * a regular application process, most of /proc/self/ will be 433 * non-readable, including /proc/self/auxv. This doesn't 434 * happen however if the application is debuggable, or when 435 * running under the "shell" UID, which is why this was not 436 * detected appropriately. 437 */ 438 #if 0 439 uint32_t result = 0; 440 const char filepath[] = "/proc/self/auxv"; 441 int fd = open(filepath, O_RDONLY); 442 if (fd < 0) { 443 D("Could not open %s: %s\n", filepath, strerror(errno)); 444 return 0; 445 } 446 447 struct { uint32_t tag; uint32_t value; } entry; 448 449 for (;;) { 450 int ret = read(fd, (char*)&entry, sizeof entry); 451 if (ret < 0) { 452 if (errno == EINTR) 453 continue; 454 D("Error while reading %s: %s\n", filepath, strerror(errno)); 455 break; 456 } 457 // Detect end of list. 458 if (ret == 0 || (entry.tag == 0 && entry.value == 0)) 459 break; 460 if (entry.tag == AT_HWCAP) { 461 result = entry.value; 462 break; 463 } 464 } 465 close(fd); 466 return result; 467 #else 468 // Recreate ELF hwcaps by parsing /proc/cpuinfo Features tag. 469 uint32_t hwcaps = 0; 470 471 char* cpuFeatures = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "Features"); 472 473 if (cpuFeatures != NULL) { 474 D("Found cpuFeatures = '%s'\n", cpuFeatures); 475 476 if (has_list_item(cpuFeatures, "vfp")) 477 hwcaps |= HWCAP_VFP; 478 if (has_list_item(cpuFeatures, "vfpv3")) 479 hwcaps |= HWCAP_VFPv3; 480 if (has_list_item(cpuFeatures, "vfpv3d16")) 481 hwcaps |= HWCAP_VFPv3D16; 482 if (has_list_item(cpuFeatures, "vfpv4")) 483 hwcaps |= HWCAP_VFPv4; 484 if (has_list_item(cpuFeatures, "neon")) 485 hwcaps |= HWCAP_NEON; 486 if (has_list_item(cpuFeatures, "idiva")) 487 hwcaps |= HWCAP_IDIVA; 488 if (has_list_item(cpuFeatures, "idivt")) 489 hwcaps |= HWCAP_IDIVT; 490 if (has_list_item(cpuFeatures, "idiv")) 491 hwcaps |= HWCAP_IDIVA | HWCAP_IDIVT; 492 if (has_list_item(cpuFeatures, "iwmmxt")) 493 hwcaps |= HWCAP_IWMMXT; 494 495 free(cpuFeatures); 496 } 497 return hwcaps; 498 #endif 499 } 500 #endif /* __arm__ */ 501 502 /* Return the number of cpus present on a given device. 503 * 504 * To handle all weird kernel configurations, we need to compute the 505 * intersection of the 'present' and 'possible' CPU lists and count 506 * the result. 507 */ 508 static int 509 get_cpu_count(void) 510 { 511 CpuList cpus_present[1]; 512 CpuList cpus_possible[1]; 513 514 cpulist_read_from(cpus_present, "/sys/devices/system/cpu/present"); 515 cpulist_read_from(cpus_possible, "/sys/devices/system/cpu/possible"); 516 517 /* Compute the intersection of both sets to get the actual number of 518 * CPU cores that can be used on this device by the kernel. 519 */ 520 cpulist_and(cpus_present, cpus_possible); 521 522 return cpulist_count(cpus_present); 523 } 524 525 static void 526 android_cpuInitFamily(void) 527 { 528 #if defined(__ARM_ARCH__) 529 g_cpuFamily = ANDROID_CPU_FAMILY_ARM; 530 #elif defined(__i386__) 531 g_cpuFamily = ANDROID_CPU_FAMILY_X86; 532 #elif defined(_MIPS_ARCH) 533 g_cpuFamily = ANDROID_CPU_FAMILY_MIPS; 534 #else 535 g_cpuFamily = ANDROID_CPU_FAMILY_UNKNOWN; 536 #endif 537 } 538 539 static void 540 android_cpuInit(void) 541 { 542 char* cpuinfo = NULL; 543 int cpuinfo_len; 544 545 android_cpuInitFamily(); 546 547 g_cpuFeatures = 0; 548 g_cpuCount = 1; 549 g_inited = 1; 550 551 cpuinfo_len = get_file_size("/proc/cpuinfo"); 552 if (cpuinfo_len < 0) { 553 D("cpuinfo_len cannot be computed!"); 554 return; 555 } 556 cpuinfo = malloc(cpuinfo_len); 557 if (cpuinfo == NULL) { 558 D("cpuinfo buffer could not be allocated"); 559 return; 560 } 561 cpuinfo_len = read_file("/proc/cpuinfo", cpuinfo, cpuinfo_len); 562 D("cpuinfo_len is (%d):\n%.*s\n", cpuinfo_len, 563 cpuinfo_len >= 0 ? cpuinfo_len : 0, cpuinfo); 564 565 if (cpuinfo_len < 0) /* should not happen */ { 566 free(cpuinfo); 567 return; 568 } 569 570 /* Count the CPU cores, the value may be 0 for single-core CPUs */ 571 g_cpuCount = get_cpu_count(); 572 if (g_cpuCount == 0) { 573 g_cpuCount = 1; 574 } 575 576 D("found cpuCount = %d\n", g_cpuCount); 577 578 #ifdef __ARM_ARCH__ 579 { 580 char* features = NULL; 581 char* architecture = NULL; 582 583 /* Extract architecture from the "CPU Architecture" field. 584 * The list is well-known, unlike the the output of 585 * the 'Processor' field which can vary greatly. 586 * 587 * See the definition of the 'proc_arch' array in 588 * $KERNEL/arch/arm/kernel/setup.c and the 'c_show' function in 589 * same file. 590 */ 591 char* cpuArch = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "CPU architecture"); 592 593 if (cpuArch != NULL) { 594 char* end; 595 long archNumber; 596 int hasARMv7 = 0; 597 598 D("found cpuArch = '%s'\n", cpuArch); 599 600 /* read the initial decimal number, ignore the rest */ 601 archNumber = strtol(cpuArch, &end, 10); 602 603 /* Here we assume that ARMv8 will be upwards compatible with v7 604 * in the future. Unfortunately, there is no 'Features' field to 605 * indicate that Thumb-2 is supported. 606 */ 607 if (end > cpuArch && archNumber >= 7) { 608 hasARMv7 = 1; 609 } 610 611 /* Unfortunately, it seems that certain ARMv6-based CPUs 612 * report an incorrect architecture number of 7! 613 * 614 * See http://code.google.com/p/android/issues/detail?id=10812 615 * 616 * We try to correct this by looking at the 'elf_format' 617 * field reported by the 'Processor' field, which is of the 618 * form of "(v7l)" for an ARMv7-based CPU, and "(v6l)" for 619 * an ARMv6-one. 620 */ 621 if (hasARMv7) { 622 char* cpuProc = extract_cpuinfo_field(cpuinfo, cpuinfo_len, 623 "Processor"); 624 if (cpuProc != NULL) { 625 D("found cpuProc = '%s'\n", cpuProc); 626 if (has_list_item(cpuProc, "(v6l)")) { 627 D("CPU processor and architecture mismatch!!\n"); 628 hasARMv7 = 0; 629 } 630 free(cpuProc); 631 } 632 } 633 634 if (hasARMv7) { 635 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_ARMv7; 636 } 637 638 /* The LDREX / STREX instructions are available from ARMv6 */ 639 if (archNumber >= 6) { 640 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_LDREX_STREX; 641 } 642 643 free(cpuArch); 644 } 645 646 /* Extract the list of CPU features from ELF hwcaps */ 647 uint32_t hwcaps = get_elf_hwcap(cpuinfo, cpuinfo_len); 648 649 if (hwcaps != 0) { 650 int has_vfp = (hwcaps & HWCAP_VFP); 651 int has_vfpv3 = (hwcaps & HWCAP_VFPv3); 652 int has_vfpv3d16 = (hwcaps & HWCAP_VFPv3D16); 653 int has_vfpv4 = (hwcaps & HWCAP_VFPv4); 654 int has_neon = (hwcaps & HWCAP_NEON); 655 int has_idiva = (hwcaps & HWCAP_IDIVA); 656 int has_idivt = (hwcaps & HWCAP_IDIVT); 657 int has_iwmmxt = (hwcaps & HWCAP_IWMMXT); 658 659 // The kernel does a poor job at ensuring consistency when 660 // describing CPU features. So lots of guessing is needed. 661 662 // 'vfpv4' implies VFPv3|VFP_FMA|FP16 663 if (has_vfpv4) 664 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3 | 665 ANDROID_CPU_ARM_FEATURE_VFP_FP16 | 666 ANDROID_CPU_ARM_FEATURE_VFP_FMA; 667 668 // 'vfpv3' or 'vfpv3d16' imply VFPv3. Note that unlike GCC, 669 // a value of 'vfpv3' doesn't necessarily mean that the D32 670 // feature is present, so be conservative. All CPUs in the 671 // field that support D32 also support NEON, so this should 672 // not be a problem in practice. 673 if (has_vfpv3 || has_vfpv3d16) 674 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3; 675 676 // 'vfp' is super ambiguous. Depending on the kernel, it can 677 // either mean VFPv2 or VFPv3. Make it depend on ARMv7. 678 if (has_vfp) { 679 if (g_cpuFeatures & ANDROID_CPU_ARM_FEATURE_ARMv7) 680 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3; 681 else 682 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv2; 683 } 684 685 // Neon implies VFPv3|D32, and if vfpv4 is detected, NEON_FMA 686 if (has_neon) { 687 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3 | 688 ANDROID_CPU_ARM_FEATURE_NEON | 689 ANDROID_CPU_ARM_FEATURE_VFP_D32; 690 if (has_vfpv4) 691 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_NEON_FMA; 692 } 693 694 // VFPv3 implies VFPv2 and ARMv7 695 if (g_cpuFeatures & ANDROID_CPU_ARM_FEATURE_VFPv3) 696 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv2 | 697 ANDROID_CPU_ARM_FEATURE_ARMv7; 698 699 // Note that some buggy kernels do not report these even when 700 // the CPU actually support the division instructions. However, 701 // assume that if 'vfpv4' is detected, then the CPU supports 702 // sdiv/udiv properly. 703 if (has_idiva || has_vfpv4) 704 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_ARM; 705 if (has_idivt || has_vfpv4) 706 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_THUMB2; 707 708 if (has_iwmmxt) 709 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_iWMMXt; 710 } 711 } 712 #endif /* __ARM_ARCH__ */ 713 714 #ifdef __i386__ 715 int regs[4]; 716 717 /* According to http://en.wikipedia.org/wiki/CPUID */ 718 #define VENDOR_INTEL_b 0x756e6547 719 #define VENDOR_INTEL_c 0x6c65746e 720 #define VENDOR_INTEL_d 0x49656e69 721 722 x86_cpuid(0, regs); 723 int vendorIsIntel = (regs[1] == VENDOR_INTEL_b && 724 regs[2] == VENDOR_INTEL_c && 725 regs[3] == VENDOR_INTEL_d); 726 727 x86_cpuid(1, regs); 728 if ((regs[2] & (1 << 9)) != 0) { 729 g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_SSSE3; 730 } 731 if ((regs[2] & (1 << 23)) != 0) { 732 g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_POPCNT; 733 } 734 if (vendorIsIntel && (regs[2] & (1 << 22)) != 0) { 735 g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_MOVBE; 736 } 737 #endif 738 739 free(cpuinfo); 740 } 741 742 743 AndroidCpuFamily 744 android_getCpuFamily(void) 745 { 746 pthread_once(&g_once, android_cpuInit); 747 return g_cpuFamily; 748 } 749 750 751 uint64_t 752 android_getCpuFeatures(void) 753 { 754 pthread_once(&g_once, android_cpuInit); 755 return g_cpuFeatures; 756 } 757 758 759 int 760 android_getCpuCount(void) 761 { 762 pthread_once(&g_once, android_cpuInit); 763 return g_cpuCount; 764 } 765 766 static void 767 android_cpuInitDummy(void) 768 { 769 g_inited = 1; 770 } 771 772 int 773 android_setCpu(int cpu_count, uint64_t cpu_features) 774 { 775 /* Fail if the library was already initialized. */ 776 if (g_inited) 777 return 0; 778 779 android_cpuInitFamily(); 780 g_cpuCount = (cpu_count <= 0 ? 1 : cpu_count); 781 g_cpuFeatures = cpu_features; 782 pthread_once(&g_once, android_cpuInitDummy); 783 784 return 1; 785 } 786 787 /* 788 * Technical note: Making sense of ARM's FPU architecture versions. 789 * 790 * FPA was ARM's first attempt at an FPU architecture. There is no Android 791 * device that actually uses it since this technology was already obsolete 792 * when the project started. If you see references to FPA instructions 793 * somewhere, you can be sure that this doesn't apply to Android at all. 794 * 795 * FPA was followed by "VFP", soon renamed "VFPv1" due to the emergence of 796 * new versions / additions to it. ARM considers this obsolete right now, 797 * and no known Android device implements it either. 798 * 799 * VFPv2 added a few instructions to VFPv1, and is an *optional* extension 800 * supported by some ARMv5TE, ARMv6 and ARMv6T2 CPUs. Note that a device 801 * supporting the 'armeabi' ABI doesn't necessarily support these. 802 * 803 * VFPv3-D16 adds a few instructions on top of VFPv2 and is typically used 804 * on ARMv7-A CPUs which implement a FPU. Note that it is also mandated 805 * by the Android 'armeabi-v7a' ABI. The -D16 suffix in its name means 806 * that it provides 16 double-precision FPU registers (d0-d15) and 32 807 * single-precision ones (s0-s31) which happen to be mapped to the same 808 * register banks. 809 * 810 * VFPv3-D32 is the name of an extension to VFPv3-D16 that provides 16 811 * additional double precision registers (d16-d31). Note that there are 812 * still only 32 single precision registers. 813 * 814 * VFPv3xD is a *subset* of VFPv3-D16 that only provides single-precision 815 * registers. It is only used on ARMv7-M (i.e. on micro-controllers) which 816 * are not supported by Android. Note that it is not compatible with VFPv2. 817 * 818 * NOTE: The term 'VFPv3' usually designate either VFPv3-D16 or VFPv3-D32 819 * depending on context. For example GCC uses it for VFPv3-D32, but 820 * the Linux kernel code uses it for VFPv3-D16 (especially in 821 * /proc/cpuinfo). Always try to use the full designation when 822 * possible. 823 * 824 * NEON, a.k.a. "ARM Advanced SIMD" is an extension that provides 825 * instructions to perform parallel computations on vectors of 8, 16, 826 * 32, 64 and 128 bit quantities. NEON requires VFPv32-D32 since all 827 * NEON registers are also mapped to the same register banks. 828 * 829 * VFPv4-D16, adds a few instructions on top of VFPv3-D16 in order to 830 * perform fused multiply-accumulate on VFP registers, as well as 831 * half-precision (16-bit) conversion operations. 832 * 833 * VFPv4-D32 is VFPv4-D16 with 32, instead of 16, FPU double precision 834 * registers. 835 * 836 * VPFv4-NEON is VFPv4-D32 with NEON instructions. It also adds fused 837 * multiply-accumulate instructions that work on the NEON registers. 838 * 839 * NOTE: Similarly, "VFPv4" might either reference VFPv4-D16 or VFPv4-D32 840 * depending on context. 841 * 842 * The following information was determined by scanning the binutils-2.22 843 * sources: 844 * 845 * Basic VFP instruction subsets: 846 * 847 * #define FPU_VFP_EXT_V1xD 0x08000000 // Base VFP instruction set. 848 * #define FPU_VFP_EXT_V1 0x04000000 // Double-precision insns. 849 * #define FPU_VFP_EXT_V2 0x02000000 // ARM10E VFPr1. 850 * #define FPU_VFP_EXT_V3xD 0x01000000 // VFPv3 single-precision. 851 * #define FPU_VFP_EXT_V3 0x00800000 // VFPv3 double-precision. 852 * #define FPU_NEON_EXT_V1 0x00400000 // Neon (SIMD) insns. 853 * #define FPU_VFP_EXT_D32 0x00200000 // Registers D16-D31. 854 * #define FPU_VFP_EXT_FP16 0x00100000 // Half-precision extensions. 855 * #define FPU_NEON_EXT_FMA 0x00080000 // Neon fused multiply-add 856 * #define FPU_VFP_EXT_FMA 0x00040000 // VFP fused multiply-add 857 * 858 * FPU types (excluding NEON) 859 * 860 * FPU_VFP_V1xD (EXT_V1xD) 861 * | 862 * +--------------------------+ 863 * | | 864 * FPU_VFP_V1 (+EXT_V1) FPU_VFP_V3xD (+EXT_V2+EXT_V3xD) 865 * | | 866 * | | 867 * FPU_VFP_V2 (+EXT_V2) FPU_VFP_V4_SP_D16 (+EXT_FP16+EXT_FMA) 868 * | 869 * FPU_VFP_V3D16 (+EXT_Vx3D+EXT_V3) 870 * | 871 * +--------------------------+ 872 * | | 873 * FPU_VFP_V3 (+EXT_D32) FPU_VFP_V4D16 (+EXT_FP16+EXT_FMA) 874 * | | 875 * | FPU_VFP_V4 (+EXT_D32) 876 * | 877 * FPU_VFP_HARD (+EXT_FMA+NEON_EXT_FMA) 878 * 879 * VFP architectures: 880 * 881 * ARCH_VFP_V1xD (EXT_V1xD) 882 * | 883 * +------------------+ 884 * | | 885 * | ARCH_VFP_V3xD (+EXT_V2+EXT_V3xD) 886 * | | 887 * | ARCH_VFP_V3xD_FP16 (+EXT_FP16) 888 * | | 889 * | ARCH_VFP_V4_SP_D16 (+EXT_FMA) 890 * | 891 * ARCH_VFP_V1 (+EXT_V1) 892 * | 893 * ARCH_VFP_V2 (+EXT_V2) 894 * | 895 * ARCH_VFP_V3D16 (+EXT_V3xD+EXT_V3) 896 * | 897 * +-------------------+ 898 * | | 899 * | ARCH_VFP_V3D16_FP16 (+EXT_FP16) 900 * | 901 * +-------------------+ 902 * | | 903 * | ARCH_VFP_V4_D16 (+EXT_FP16+EXT_FMA) 904 * | | 905 * | ARCH_VFP_V4 (+EXT_D32) 906 * | | 907 * | ARCH_NEON_VFP_V4 (+EXT_NEON+EXT_NEON_FMA) 908 * | 909 * ARCH_VFP_V3 (+EXT_D32) 910 * | 911 * +-------------------+ 912 * | | 913 * | ARCH_VFP_V3_FP16 (+EXT_FP16) 914 * | 915 * ARCH_VFP_V3_PLUS_NEON_V1 (+EXT_NEON) 916 * | 917 * ARCH_NEON_FP16 (+EXT_FP16) 918 * 919 * -fpu=<name> values and their correspondance with FPU architectures above: 920 * 921 * {"vfp", FPU_ARCH_VFP_V2}, 922 * {"vfp9", FPU_ARCH_VFP_V2}, 923 * {"vfp3", FPU_ARCH_VFP_V3}, // For backwards compatbility. 924 * {"vfp10", FPU_ARCH_VFP_V2}, 925 * {"vfp10-r0", FPU_ARCH_VFP_V1}, 926 * {"vfpxd", FPU_ARCH_VFP_V1xD}, 927 * {"vfpv2", FPU_ARCH_VFP_V2}, 928 * {"vfpv3", FPU_ARCH_VFP_V3}, 929 * {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16}, 930 * {"vfpv3-d16", FPU_ARCH_VFP_V3D16}, 931 * {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16}, 932 * {"vfpv3xd", FPU_ARCH_VFP_V3xD}, 933 * {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16}, 934 * {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1}, 935 * {"neon-fp16", FPU_ARCH_NEON_FP16}, 936 * {"vfpv4", FPU_ARCH_VFP_V4}, 937 * {"vfpv4-d16", FPU_ARCH_VFP_V4D16}, 938 * {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16}, 939 * {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4}, 940 * 941 * 942 * Simplified diagram that only includes FPUs supported by Android: 943 * Only ARCH_VFP_V3D16 is actually mandated by the armeabi-v7a ABI, 944 * all others are optional and must be probed at runtime. 945 * 946 * ARCH_VFP_V3D16 (EXT_V1xD+EXT_V1+EXT_V2+EXT_V3xD+EXT_V3) 947 * | 948 * +-------------------+ 949 * | | 950 * | ARCH_VFP_V3D16_FP16 (+EXT_FP16) 951 * | 952 * +-------------------+ 953 * | | 954 * | ARCH_VFP_V4_D16 (+EXT_FP16+EXT_FMA) 955 * | | 956 * | ARCH_VFP_V4 (+EXT_D32) 957 * | | 958 * | ARCH_NEON_VFP_V4 (+EXT_NEON+EXT_NEON_FMA) 959 * | 960 * ARCH_VFP_V3 (+EXT_D32) 961 * | 962 * +-------------------+ 963 * | | 964 * | ARCH_VFP_V3_FP16 (+EXT_FP16) 965 * | 966 * ARCH_VFP_V3_PLUS_NEON_V1 (+EXT_NEON) 967 * | 968 * ARCH_NEON_FP16 (+EXT_FP16) 969 * 970 */ 971