1 //===-- tsan_platform_linux.cc --------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is a part of ThreadSanitizer (TSan), a race detector. 11 // 12 // Linux-specific code. 13 //===----------------------------------------------------------------------===// 14 15 #ifdef __linux__ 16 17 #include "sanitizer_common/sanitizer_common.h" 18 #include "sanitizer_common/sanitizer_libc.h" 19 #include "sanitizer_common/sanitizer_procmaps.h" 20 #include "tsan_platform.h" 21 #include "tsan_rtl.h" 22 #include "tsan_flags.h" 23 24 #include <asm/prctl.h> 25 #include <fcntl.h> 26 #include <pthread.h> 27 #include <signal.h> 28 #include <stdio.h> 29 #include <stdlib.h> 30 #include <string.h> 31 #include <stdarg.h> 32 #include <sys/mman.h> 33 #include <sys/prctl.h> 34 #include <sys/syscall.h> 35 #include <sys/time.h> 36 #include <sys/types.h> 37 #include <sys/resource.h> 38 #include <sys/stat.h> 39 #include <unistd.h> 40 #include <errno.h> 41 #include <sched.h> 42 #include <dlfcn.h> 43 #define __need_res_state 44 #include <resolv.h> 45 #include <malloc.h> 46 47 extern "C" int arch_prctl(int code, __sanitizer::uptr *addr); 48 extern "C" struct mallinfo __libc_mallinfo(); 49 50 namespace __tsan { 51 52 #ifndef TSAN_GO 53 ScopedInRtl::ScopedInRtl() 54 : thr_(cur_thread()) { 55 in_rtl_ = thr_->in_rtl; 56 thr_->in_rtl++; 57 errno_ = errno; 58 } 59 60 ScopedInRtl::~ScopedInRtl() { 61 thr_->in_rtl--; 62 errno = errno_; 63 CHECK_EQ(in_rtl_, thr_->in_rtl); 64 } 65 #else 66 ScopedInRtl::ScopedInRtl() { 67 } 68 69 ScopedInRtl::~ScopedInRtl() { 70 } 71 #endif 72 73 static bool ishex(char c) { 74 return (c >= '0' && c <= '9') 75 || (c >= 'a' && c <= 'f'); 76 } 77 78 static uptr readhex(const char *p) { 79 uptr v = 0; 80 for (; ishex(p[0]); p++) { 81 if (p[0] >= '0' && p[0] <= '9') 82 v = v * 16 + p[0] - '0'; 83 else 84 v = v * 16 + p[0] - 'a' + 10; 85 } 86 return v; 87 } 88 89 static uptr readdec(const char *p) { 90 uptr v = 0; 91 for (; p[0] >= '0' && p[0] <= '9' ; p++) 92 v = v * 10 + p[0] - '0'; 93 return v; 94 } 95 96 void WriteMemoryProfile(char *buf, uptr buf_size) { 97 char *smaps = 0; 98 uptr smaps_cap = 0; 99 uptr smaps_len = ReadFileToBuffer("/proc/self/smaps", 100 &smaps, &smaps_cap, 64<<20); 101 uptr mem[6] = {}; 102 uptr total = 0; 103 uptr start = 0; 104 bool file = false; 105 const char *pos = smaps; 106 while (pos < smaps + smaps_len) { 107 if (ishex(pos[0])) { 108 start = readhex(pos); 109 for (; *pos != '/' && *pos > '\n'; pos++) {} 110 file = *pos == '/'; 111 } else if (internal_strncmp(pos, "Rss:", 4) == 0) { 112 for (; *pos < '0' || *pos > '9'; pos++) {} 113 uptr rss = readdec(pos) * 1024; 114 total += rss; 115 start >>= 40; 116 if (start < 0x10) // shadow 117 mem[0] += rss; 118 else if (start >= 0x20 && start < 0x30) // compat modules 119 mem[file ? 1 : 2] += rss; 120 else if (start >= 0x7e) // modules 121 mem[file ? 1 : 2] += rss; 122 else if (start >= 0x60 && start < 0x62) // traces 123 mem[3] += rss; 124 else if (start >= 0x7d && start < 0x7e) // heap 125 mem[4] += rss; 126 else // other 127 mem[5] += rss; 128 } 129 while (*pos++ != '\n') {} 130 } 131 UnmapOrDie(smaps, smaps_cap); 132 char *buf_pos = buf; 133 char *buf_end = buf + buf_size; 134 buf_pos += internal_snprintf(buf_pos, buf_end - buf_pos, 135 "RSS %zd MB: shadow:%zd file:%zd mmap:%zd trace:%zd heap:%zd other:%zd\n", 136 total >> 20, mem[0] >> 20, mem[1] >> 20, mem[2] >> 20, 137 mem[3] >> 20, mem[4] >> 20, mem[5] >> 20); 138 struct mallinfo mi = __libc_mallinfo(); 139 buf_pos += internal_snprintf(buf_pos, buf_end - buf_pos, 140 "mallinfo: arena=%d mmap=%d fordblks=%d keepcost=%d\n", 141 mi.arena >> 20, mi.hblkhd >> 20, mi.fordblks >> 20, mi.keepcost >> 20); 142 } 143 144 void FlushShadowMemory() { 145 FlushUnneededShadowMemory(kLinuxShadowBeg, kLinuxShadowEnd - kLinuxShadowBeg); 146 } 147 148 #ifndef TSAN_GO 149 static void ProtectRange(uptr beg, uptr end) { 150 ScopedInRtl in_rtl; 151 CHECK_LE(beg, end); 152 if (beg == end) 153 return; 154 if (beg != (uptr)Mprotect(beg, end - beg)) { 155 Printf("FATAL: ThreadSanitizer can not protect [%zx,%zx]\n", beg, end); 156 Printf("FATAL: Make sure you are not using unlimited stack\n"); 157 Die(); 158 } 159 } 160 #endif 161 162 #ifndef TSAN_GO 163 void InitializeShadowMemory() { 164 uptr shadow = (uptr)MmapFixedNoReserve(kLinuxShadowBeg, 165 kLinuxShadowEnd - kLinuxShadowBeg); 166 if (shadow != kLinuxShadowBeg) { 167 Printf("FATAL: ThreadSanitizer can not mmap the shadow memory\n"); 168 Printf("FATAL: Make sure to compile with -fPIE and " 169 "to link with -pie (%p, %p).\n", shadow, kLinuxShadowBeg); 170 Die(); 171 } 172 const uptr kClosedLowBeg = 0x200000; 173 const uptr kClosedLowEnd = kLinuxShadowBeg - 1; 174 const uptr kClosedMidBeg = kLinuxShadowEnd + 1; 175 const uptr kClosedMidEnd = min(kLinuxAppMemBeg, kTraceMemBegin); 176 ProtectRange(kClosedLowBeg, kClosedLowEnd); 177 ProtectRange(kClosedMidBeg, kClosedMidEnd); 178 DPrintf("kClosedLow %zx-%zx (%zuGB)\n", 179 kClosedLowBeg, kClosedLowEnd, (kClosedLowEnd - kClosedLowBeg) >> 30); 180 DPrintf("kLinuxShadow %zx-%zx (%zuGB)\n", 181 kLinuxShadowBeg, kLinuxShadowEnd, 182 (kLinuxShadowEnd - kLinuxShadowBeg) >> 30); 183 DPrintf("kClosedMid %zx-%zx (%zuGB)\n", 184 kClosedMidBeg, kClosedMidEnd, (kClosedMidEnd - kClosedMidBeg) >> 30); 185 DPrintf("kLinuxAppMem %zx-%zx (%zuGB)\n", 186 kLinuxAppMemBeg, kLinuxAppMemEnd, 187 (kLinuxAppMemEnd - kLinuxAppMemBeg) >> 30); 188 DPrintf("stack %zx\n", (uptr)&shadow); 189 } 190 #endif 191 192 static uptr g_data_start; 193 static uptr g_data_end; 194 195 #ifndef TSAN_GO 196 static void CheckPIE() { 197 // Ensure that the binary is indeed compiled with -pie. 198 MemoryMappingLayout proc_maps; 199 uptr start, end; 200 if (proc_maps.Next(&start, &end, 201 /*offset*/0, /*filename*/0, /*filename_size*/0, 202 /*protection*/0)) { 203 if ((u64)start < kLinuxAppMemBeg) { 204 Printf("FATAL: ThreadSanitizer can not mmap the shadow memory (" 205 "something is mapped at 0x%zx < 0x%zx)\n", 206 start, kLinuxAppMemBeg); 207 Printf("FATAL: Make sure to compile with -fPIE" 208 " and to link with -pie.\n"); 209 Die(); 210 } 211 } 212 } 213 214 static void InitDataSeg() { 215 MemoryMappingLayout proc_maps; 216 uptr start, end, offset; 217 char name[128]; 218 bool prev_is_data = false; 219 while (proc_maps.Next(&start, &end, &offset, name, ARRAY_SIZE(name), 220 /*protection*/ 0)) { 221 DPrintf("%p-%p %p %s\n", start, end, offset, name); 222 bool is_data = offset != 0 && name[0] != 0; 223 // BSS may get merged with [heap] in /proc/self/maps. This is not very 224 // reliable. 225 bool is_bss = offset == 0 && 226 (name[0] == 0 || internal_strcmp(name, "[heap]") == 0) && prev_is_data; 227 if (g_data_start == 0 && is_data) 228 g_data_start = start; 229 if (is_bss) 230 g_data_end = end; 231 prev_is_data = is_data; 232 } 233 DPrintf("guessed data_start=%p data_end=%p\n", g_data_start, g_data_end); 234 CHECK_LT(g_data_start, g_data_end); 235 CHECK_GE((uptr)&g_data_start, g_data_start); 236 CHECK_LT((uptr)&g_data_start, g_data_end); 237 } 238 239 #endif // #ifndef TSAN_GO 240 241 static rlim_t getlim(int res) { 242 rlimit rlim; 243 CHECK_EQ(0, getrlimit(res, &rlim)); 244 return rlim.rlim_cur; 245 } 246 247 static void setlim(int res, rlim_t lim) { 248 // The following magic is to prevent clang from replacing it with memset. 249 volatile rlimit rlim; 250 rlim.rlim_cur = lim; 251 rlim.rlim_max = lim; 252 setrlimit(res, (rlimit*)&rlim); 253 } 254 255 const char *InitializePlatform() { 256 void *p = 0; 257 if (sizeof(p) == 8) { 258 // Disable core dumps, dumping of 16TB usually takes a bit long. 259 setlim(RLIMIT_CORE, 0); 260 } 261 262 // Go maps shadow memory lazily and works fine with limited address space. 263 // Unlimited stack is not a problem as well, because the executable 264 // is not compiled with -pie. 265 if (kCppMode) { 266 bool reexec = false; 267 // TSan doesn't play well with unlimited stack size (as stack 268 // overlaps with shadow memory). If we detect unlimited stack size, 269 // we re-exec the program with limited stack size as a best effort. 270 if (getlim(RLIMIT_STACK) == (rlim_t)-1) { 271 const uptr kMaxStackSize = 32 * 1024 * 1024; 272 Report("WARNING: Program is run with unlimited stack size, which " 273 "wouldn't work with ThreadSanitizer.\n"); 274 Report("Re-execing with stack size limited to %zd bytes.\n", 275 kMaxStackSize); 276 SetStackSizeLimitInBytes(kMaxStackSize); 277 reexec = true; 278 } 279 280 if (getlim(RLIMIT_AS) != (rlim_t)-1) { 281 Report("WARNING: Program is run with limited virtual address space," 282 " which wouldn't work with ThreadSanitizer.\n"); 283 Report("Re-execing with unlimited virtual address space.\n"); 284 setlim(RLIMIT_AS, -1); 285 reexec = true; 286 } 287 if (reexec) 288 ReExec(); 289 } 290 291 #ifndef TSAN_GO 292 CheckPIE(); 293 InitTlsSize(); 294 InitDataSeg(); 295 #endif 296 return GetEnv(kTsanOptionsEnv); 297 } 298 299 void FinalizePlatform() { 300 fflush(0); 301 } 302 303 void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size, 304 uptr *tls_addr, uptr *tls_size) { 305 #ifndef TSAN_GO 306 arch_prctl(ARCH_GET_FS, tls_addr); 307 *tls_size = GetTlsSize(); 308 *tls_addr -= *tls_size; 309 310 uptr stack_top, stack_bottom; 311 GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom); 312 *stk_addr = stack_bottom; 313 *stk_size = stack_top - stack_bottom; 314 315 if (!main) { 316 // If stack and tls intersect, make them non-intersecting. 317 if (*tls_addr > *stk_addr && *tls_addr < *stk_addr + *stk_size) { 318 CHECK_GT(*tls_addr + *tls_size, *stk_addr); 319 CHECK_LE(*tls_addr + *tls_size, *stk_addr + *stk_size); 320 *stk_size -= *tls_size; 321 *tls_addr = *stk_addr + *stk_size; 322 } 323 } 324 #else 325 *stk_addr = 0; 326 *stk_size = 0; 327 *tls_addr = 0; 328 *tls_size = 0; 329 #endif 330 } 331 332 bool IsGlobalVar(uptr addr) { 333 return g_data_start && addr >= g_data_start && addr < g_data_end; 334 } 335 336 #ifndef TSAN_GO 337 int ExtractResolvFDs(void *state, int *fds, int nfd) { 338 int cnt = 0; 339 __res_state *statp = (__res_state*)state; 340 for (int i = 0; i < MAXNS && cnt < nfd; i++) { 341 if (statp->_u._ext.nsaddrs[i] && statp->_u._ext.nssocks[i] != -1) 342 fds[cnt++] = statp->_u._ext.nssocks[i]; 343 } 344 return cnt; 345 } 346 #endif 347 348 349 } // namespace __tsan 350 351 #endif // #ifdef __linux__ 352