1 /* 2 * Copyright 2011 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #ifndef GrDrawState_DEFINED 9 #define GrDrawState_DEFINED 10 11 #include "GrBackendEffectFactory.h" 12 #include "GrColor.h" 13 #include "GrEffectStage.h" 14 #include "GrRefCnt.h" 15 #include "GrRenderTarget.h" 16 #include "GrStencil.h" 17 #include "GrTemplates.h" 18 #include "GrTexture.h" 19 #include "effects/GrSimpleTextureEffect.h" 20 21 #include "SkMatrix.h" 22 #include "SkXfermode.h" 23 24 class GrPaint; 25 26 class GrDrawState : public GrRefCnt { 27 public: 28 SK_DECLARE_INST_COUNT(GrDrawState) 29 30 /** 31 * Total number of effect stages. Each stage can host a GrEffect. A stage is enabled if it has a 32 * GrEffect. The effect produces an output color in the fragment shader. It's inputs are the 33 * output from the previous enabled stage and a position. The position is either derived from 34 * the interpolated vertex positions or explicit per-vertex coords, depending upon the 35 * GrVertexLayout used to draw. 36 * 37 * The stages are divided into two sets, color-computing and coverage-computing. The final color 38 * stage produces the final pixel color. The coverage-computing stages function exactly as the 39 * color-computing but the output of the final coverage stage is treated as a fractional pixel 40 * coverage rather than as input to the src/dst color blend step. 41 * 42 * The input color to the first enabled color-stage is either the constant color or interpolated 43 * per-vertex colors, depending upon GrVertexLayout. The input to the first coverage stage is 44 * either a constant coverage (usually full-coverage), interpolated per-vertex coverage, or 45 * edge-AA computed coverage. (This latter is going away as soon as it can be rewritten as a 46 * GrEffect). 47 * 48 * See the documentation of kCoverageDrawing_StateBit for information about disabling the 49 * the color / coverage distinction. 50 * 51 * Stages 0 through GrPaint::kTotalStages-1 are reserved for stages copied from the client's 52 * GrPaint. Stages GrPaint::kTotalStages through kNumStages-2 are earmarked for use by 53 * GrTextContext and GrPathRenderer-derived classes. kNumStages-1 is earmarked for clipping 54 * by GrClipMaskManager. 55 */ 56 enum { 57 kNumStages = 5, 58 kMaxTexCoords = kNumStages 59 }; 60 61 GrDrawState() { 62 #if GR_DEBUG 63 VertexLayoutUnitTest(); 64 #endif 65 this->reset(); 66 } 67 68 GrDrawState(const GrDrawState& state) { 69 *this = state; 70 } 71 72 virtual ~GrDrawState() { 73 this->disableStages(); 74 } 75 76 /** 77 * Resets to the default state. 78 * GrEffects will be removed from all stages. 79 */ 80 void reset() { 81 82 this->disableStages(); 83 84 fRenderTarget.reset(NULL); 85 86 fCommon.fColor = 0xffffffff; 87 fCommon.fViewMatrix.reset(); 88 fCommon.fSrcBlend = kOne_GrBlendCoeff; 89 fCommon.fDstBlend = kZero_GrBlendCoeff; 90 fCommon.fBlendConstant = 0x0; 91 fCommon.fFlagBits = 0x0; 92 fCommon.fVertexEdgeType = kHairLine_EdgeType; 93 fCommon.fStencilSettings.setDisabled(); 94 fCommon.fFirstCoverageStage = kNumStages; 95 fCommon.fCoverage = 0xffffffff; 96 fCommon.fColorFilterMode = SkXfermode::kDst_Mode; 97 fCommon.fColorFilterColor = 0x0; 98 fCommon.fDrawFace = kBoth_DrawFace; 99 } 100 101 /** 102 * Initializes the GrDrawState based on a GrPaint. Note that GrDrawState 103 * encompasses more than GrPaint. Aspects of GrDrawState that have no 104 * GrPaint equivalents are not modified. GrPaint has fewer stages than 105 * GrDrawState. The extra GrDrawState stages are disabled. 106 */ 107 void setFromPaint(const GrPaint& paint); 108 109 /////////////////////////////////////////////////////////////////////////// 110 /// @name Vertex Format 111 //// 112 113 /** 114 * The format of vertices is represented as a bitfield of flags. 115 * Flags that indicate the layout of vertex data. Vertices always contain 116 * positions and may also contain up to GrDrawState::kMaxTexCoords sets 117 * of 2D texture coordinates, per-vertex colors, and per-vertex coverage. 118 * Each stage can 119 * use any of the texture coordinates as its input texture coordinates or it 120 * may use the positions as texture coordinates. 121 * 122 * If no texture coordinates are specified for a stage then the stage is 123 * disabled. 124 * 125 * Only one type of texture coord can be specified per stage. For 126 * example StageTexCoordVertexLayoutBit(0, 2) and 127 * StagePosAsTexCoordVertexLayoutBit(0) cannot both be specified. 128 * 129 * The order in memory is always (position, texture coord 0, ..., color, 130 * coverage) with any unused fields omitted. Note that this means that if 131 * only texture coordinates 1 is referenced then there is no texture 132 * coordinates 0 and the order would be (position, texture coordinate 1 133 * [, color][, coverage]). 134 */ 135 136 /** 137 * Generates a bit indicating that a texture stage uses texture coordinates 138 * 139 * @param stageIdx the stage that will use texture coordinates. 140 * @param texCoordIdx the index of the texture coordinates to use 141 * 142 * @return the bit to add to a GrVertexLayout bitfield. 143 */ 144 static int StageTexCoordVertexLayoutBit(int stageIdx, int texCoordIdx) { 145 GrAssert(stageIdx < kNumStages); 146 GrAssert(texCoordIdx < kMaxTexCoords); 147 return 1 << (stageIdx + (texCoordIdx * kNumStages)); 148 } 149 150 static bool StageUsesTexCoords(GrVertexLayout layout, int stageIdx); 151 152 private: 153 // non-stage bits start at this index. 154 static const int STAGE_BIT_CNT = kNumStages * kMaxTexCoords; 155 public: 156 157 /** 158 * Additional Bits that can be specified in GrVertexLayout. 159 */ 160 enum VertexLayoutBits { 161 /* vertices have colors (GrColor) */ 162 kColor_VertexLayoutBit = 1 << (STAGE_BIT_CNT + 0), 163 /* vertices have coverage (GrColor) 164 */ 165 kCoverage_VertexLayoutBit = 1 << (STAGE_BIT_CNT + 1), 166 /* Use text vertices. (Pos and tex coords may be a different type for 167 * text [GrGpuTextVertex vs GrPoint].) 168 */ 169 kTextFormat_VertexLayoutBit = 1 << (STAGE_BIT_CNT + 2), 170 171 /* Each vertex specificies an edge. Distance to the edge is used to 172 * compute a coverage. See GrDrawState::setVertexEdgeType(). 173 */ 174 kEdge_VertexLayoutBit = 1 << (STAGE_BIT_CNT + 3), 175 // for below assert 176 kDummyVertexLayoutBit, 177 kHighVertexLayoutBit = kDummyVertexLayoutBit - 1 178 }; 179 // make sure we haven't exceeded the number of bits in GrVertexLayout. 180 GR_STATIC_ASSERT(kHighVertexLayoutBit < ((uint64_t)1 << 8*sizeof(GrVertexLayout))); 181 182 //////////////////////////////////////////////////////////////////////////// 183 // Helpers for picking apart vertex layouts 184 185 /** 186 * Helper function to compute the size of a vertex from a vertex layout 187 * @return size of a single vertex. 188 */ 189 static size_t VertexSize(GrVertexLayout vertexLayout); 190 191 /** 192 * Helper function for determining the index of texture coordinates that 193 * is input for a texture stage. Note that a stage may instead use positions 194 * as texture coordinates, in which case the result of the function is 195 * indistinguishable from the case when the stage is disabled. 196 * 197 * @param stageIdx the stage to query 198 * @param vertexLayout layout to query 199 * 200 * @return the texture coordinate index or -1 if the stage doesn't use 201 * separate (non-position) texture coordinates. 202 */ 203 static int VertexTexCoordsForStage(int stageIdx, GrVertexLayout vertexLayout); 204 205 /** 206 * Helper function to compute the offset of texture coordinates in a vertex 207 * @return offset of texture coordinates in vertex layout or -1 if the 208 * layout has no texture coordinates. Will be 0 if positions are 209 * used as texture coordinates for the stage. 210 */ 211 static int VertexStageCoordOffset(int stageIdx, GrVertexLayout vertexLayout); 212 213 /** 214 * Helper function to compute the offset of the color in a vertex 215 * @return offset of color in vertex layout or -1 if the 216 * layout has no color. 217 */ 218 static int VertexColorOffset(GrVertexLayout vertexLayout); 219 220 /** 221 * Helper function to compute the offset of the coverage in a vertex 222 * @return offset of coverage in vertex layout or -1 if the 223 * layout has no coverage. 224 */ 225 static int VertexCoverageOffset(GrVertexLayout vertexLayout); 226 227 /** 228 * Helper function to compute the offset of the edge pts in a vertex 229 * @return offset of edge in vertex layout or -1 if the 230 * layout has no edge. 231 */ 232 static int VertexEdgeOffset(GrVertexLayout vertexLayout); 233 234 /** 235 * Helper function to determine if vertex layout contains explicit texture 236 * coordinates of some index. 237 * 238 * @param coordIndex the tex coord index to query 239 * @param vertexLayout layout to query 240 * 241 * @return true if vertex specifies texture coordinates for the index, 242 * false otherwise. 243 */ 244 static bool VertexUsesTexCoordIdx(int coordIndex, 245 GrVertexLayout vertexLayout); 246 247 /** 248 * Helper function to compute the size of each vertex and the offsets of 249 * texture coordinates and color. Determines tex coord offsets by tex coord 250 * index rather than by stage. (Each stage can be mapped to any t.c. index 251 * by StageTexCoordVertexLayoutBit.) 252 * 253 * @param vertexLayout the layout to query 254 * @param texCoordOffsetsByIdx after return it is the offset of each 255 * tex coord index in the vertex or -1 if 256 * index isn't used. (optional) 257 * @param colorOffset after return it is the offset of the 258 * color field in each vertex, or -1 if 259 * there aren't per-vertex colors. (optional) 260 * @param coverageOffset after return it is the offset of the 261 * coverage field in each vertex, or -1 if 262 * there aren't per-vertex coeverages. 263 * (optional) 264 * @param edgeOffset after return it is the offset of the 265 * edge eq field in each vertex, or -1 if 266 * there aren't per-vertex edge equations. 267 * (optional) 268 * @return size of a single vertex 269 */ 270 static int VertexSizeAndOffsetsByIdx(GrVertexLayout vertexLayout, 271 int texCoordOffsetsByIdx[kMaxTexCoords], 272 int *colorOffset, 273 int *coverageOffset, 274 int* edgeOffset); 275 276 /** 277 * Helper function to compute the size of each vertex and the offsets of 278 * texture coordinates and color. Determines tex coord offsets by stage 279 * rather than by index. (Each stage can be mapped to any t.c. index 280 * by StageTexCoordVertexLayoutBit.) If a stage uses positions for 281 * tex coords then that stage's offset will be 0 (positions are always at 0). 282 * 283 * @param vertexLayout the layout to query 284 * @param texCoordOffsetsByStage after return it is the offset of each 285 * tex coord index in the vertex or -1 if 286 * index isn't used. (optional) 287 * @param colorOffset after return it is the offset of the 288 * color field in each vertex, or -1 if 289 * there aren't per-vertex colors. 290 * (optional) 291 * @param coverageOffset after return it is the offset of the 292 * coverage field in each vertex, or -1 if 293 * there aren't per-vertex coeverages. 294 * (optional) 295 * @param edgeOffset after return it is the offset of the 296 * edge eq field in each vertex, or -1 if 297 * there aren't per-vertex edge equations. 298 * (optional) 299 * @return size of a single vertex 300 */ 301 static int VertexSizeAndOffsetsByStage(GrVertexLayout vertexLayout, 302 int texCoordOffsetsByStage[kNumStages], 303 int* colorOffset, 304 int* coverageOffset, 305 int* edgeOffset); 306 307 /** 308 * Determines whether src alpha is guaranteed to be one for all src pixels 309 */ 310 bool srcAlphaWillBeOne(GrVertexLayout) const; 311 312 /** 313 * Determines whether the output coverage is guaranteed to be one for all pixels hit by a draw. 314 */ 315 bool hasSolidCoverage(GrVertexLayout) const; 316 317 /** 318 * Accessing positions, texture coords, or colors, of a vertex within an 319 * array is a hassle involving casts and simple math. These helpers exist 320 * to keep GrDrawTarget clients' code a bit nicer looking. 321 */ 322 323 /** 324 * Gets a pointer to a GrPoint of a vertex's position or texture 325 * coordinate. 326 * @param vertices the vetex array 327 * @param vertexIndex the index of the vertex in the array 328 * @param vertexSize the size of each vertex in the array 329 * @param offset the offset in bytes of the vertex component. 330 * Defaults to zero (corresponding to vertex position) 331 * @return pointer to the vertex component as a GrPoint 332 */ 333 static GrPoint* GetVertexPoint(void* vertices, 334 int vertexIndex, 335 int vertexSize, 336 int offset = 0) { 337 intptr_t start = GrTCast<intptr_t>(vertices); 338 return GrTCast<GrPoint*>(start + offset + 339 vertexIndex * vertexSize); 340 } 341 static const GrPoint* GetVertexPoint(const void* vertices, 342 int vertexIndex, 343 int vertexSize, 344 int offset = 0) { 345 intptr_t start = GrTCast<intptr_t>(vertices); 346 return GrTCast<const GrPoint*>(start + offset + 347 vertexIndex * vertexSize); 348 } 349 350 /** 351 * Gets a pointer to a GrColor inside a vertex within a vertex array. 352 * @param vertices the vetex array 353 * @param vertexIndex the index of the vertex in the array 354 * @param vertexSize the size of each vertex in the array 355 * @param offset the offset in bytes of the vertex color 356 * @return pointer to the vertex component as a GrColor 357 */ 358 static GrColor* GetVertexColor(void* vertices, 359 int vertexIndex, 360 int vertexSize, 361 int offset) { 362 intptr_t start = GrTCast<intptr_t>(vertices); 363 return GrTCast<GrColor*>(start + offset + 364 vertexIndex * vertexSize); 365 } 366 static const GrColor* GetVertexColor(const void* vertices, 367 int vertexIndex, 368 int vertexSize, 369 int offset) { 370 const intptr_t start = GrTCast<intptr_t>(vertices); 371 return GrTCast<const GrColor*>(start + offset + 372 vertexIndex * vertexSize); 373 } 374 375 static void VertexLayoutUnitTest(); 376 377 /// @} 378 379 /////////////////////////////////////////////////////////////////////////// 380 /// @name Color 381 //// 382 383 /** 384 * Sets color for next draw to a premultiplied-alpha color. 385 * 386 * @param color the color to set. 387 */ 388 void setColor(GrColor color) { fCommon.fColor = color; } 389 390 GrColor getColor() const { return fCommon.fColor; } 391 392 /** 393 * Sets the color to be used for the next draw to be 394 * (r,g,b,a) = (alpha, alpha, alpha, alpha). 395 * 396 * @param alpha The alpha value to set as the color. 397 */ 398 void setAlpha(uint8_t a) { 399 this->setColor((a << 24) | (a << 16) | (a << 8) | a); 400 } 401 402 /** 403 * Add a color filter that can be represented by a color and a mode. Applied 404 * after color-computing texture stages. 405 */ 406 void setColorFilter(GrColor c, SkXfermode::Mode mode) { 407 fCommon.fColorFilterColor = c; 408 fCommon.fColorFilterMode = mode; 409 } 410 411 GrColor getColorFilterColor() const { return fCommon.fColorFilterColor; } 412 SkXfermode::Mode getColorFilterMode() const { return fCommon.fColorFilterMode; } 413 414 /** 415 * Constructor sets the color to be 'color' which is undone by the destructor. 416 */ 417 class AutoColorRestore : public ::GrNoncopyable { 418 public: 419 AutoColorRestore() : fDrawState(NULL) {} 420 421 AutoColorRestore(GrDrawState* drawState, GrColor color) { 422 fDrawState = NULL; 423 this->set(drawState, color); 424 } 425 426 void reset() { 427 if (NULL != fDrawState) { 428 fDrawState->setColor(fOldColor); 429 fDrawState = NULL; 430 } 431 } 432 433 void set(GrDrawState* drawState, GrColor color) { 434 this->reset(); 435 fDrawState = drawState; 436 fOldColor = fDrawState->getColor(); 437 fDrawState->setColor(color); 438 } 439 440 ~AutoColorRestore() { this->reset(); } 441 private: 442 GrDrawState* fDrawState; 443 GrColor fOldColor; 444 }; 445 446 /// @} 447 448 /////////////////////////////////////////////////////////////////////////// 449 /// @name Coverage 450 //// 451 452 /** 453 * Sets a constant fractional coverage to be applied to the draw. The 454 * initial value (after construction or reset()) is 0xff. The constant 455 * coverage is ignored when per-vertex coverage is provided. 456 */ 457 void setCoverage(uint8_t coverage) { 458 fCommon.fCoverage = GrColorPackRGBA(coverage, coverage, coverage, coverage); 459 } 460 461 /** 462 * Version of above that specifies 4 channel per-vertex color. The value 463 * should be premultiplied. 464 */ 465 void setCoverage4(GrColor coverage) { 466 fCommon.fCoverage = coverage; 467 } 468 469 GrColor getCoverage() const { 470 return fCommon.fCoverage; 471 } 472 473 /// @} 474 475 /////////////////////////////////////////////////////////////////////////// 476 /// @name Effect Stages 477 //// 478 479 const GrEffectRef* setEffect(int stageIdx, const GrEffectRef* effect) { 480 fStages[stageIdx].setEffect(effect); 481 return effect; 482 } 483 484 /** 485 * Creates a GrSimpleTextureEffect. 486 */ 487 void createTextureEffect(int stageIdx, GrTexture* texture, const SkMatrix& matrix) { 488 GrAssert(!this->getStage(stageIdx).getEffect()); 489 GrEffectRef* effect = GrSimpleTextureEffect::Create(texture, matrix); 490 this->setEffect(stageIdx, effect)->unref(); 491 } 492 void createTextureEffect(int stageIdx, 493 GrTexture* texture, 494 const SkMatrix& matrix, 495 const GrTextureParams& params) { 496 GrAssert(!this->getStage(stageIdx).getEffect()); 497 GrEffectRef* effect = GrSimpleTextureEffect::Create(texture, matrix, params); 498 this->setEffect(stageIdx, effect)->unref(); 499 } 500 501 bool stagesDisabled() { 502 for (int i = 0; i < kNumStages; ++i) { 503 if (NULL != fStages[i].getEffect()) { 504 return false; 505 } 506 } 507 return true; 508 } 509 510 void disableStage(int stageIdx) { this->setEffect(stageIdx, NULL); } 511 512 /** 513 * Release all the GrEffects referred to by this draw state. 514 */ 515 void disableStages() { 516 for (int i = 0; i < kNumStages; ++i) { 517 this->disableStage(i); 518 } 519 } 520 521 class AutoStageDisable : public ::GrNoncopyable { 522 public: 523 AutoStageDisable(GrDrawState* ds) : fDrawState(ds) {} 524 ~AutoStageDisable() { 525 if (NULL != fDrawState) { 526 fDrawState->disableStages(); 527 } 528 } 529 private: 530 GrDrawState* fDrawState; 531 }; 532 533 /** 534 * Returns the current stage by index. 535 */ 536 const GrEffectStage& getStage(int stageIdx) const { 537 GrAssert((unsigned)stageIdx < kNumStages); 538 return fStages[stageIdx]; 539 } 540 541 /** 542 * Called when the source coord system is changing. preConcat gives the transformation from the 543 * old coord system to the new coord system. 544 */ 545 void preConcatStageMatrices(const SkMatrix& preConcat) { 546 this->preConcatStageMatrices(~0U, preConcat); 547 } 548 /** 549 * Version of above that applies the update matrix selectively to stages via a mask. 550 */ 551 void preConcatStageMatrices(uint32_t stageMask, const SkMatrix& preConcat) { 552 for (int i = 0; i < kNumStages; ++i) { 553 if (((1 << i) & stageMask) && this->isStageEnabled(i)) { 554 fStages[i].preConcatCoordChange(preConcat); 555 } 556 } 557 } 558 559 /** 560 * Called when the source coord system is changing. preConcatInverse is the inverse of the 561 * transformation from the old coord system to the new coord system. Returns false if the matrix 562 * cannot be inverted. 563 */ 564 bool preConcatStageMatricesWithInverse(const SkMatrix& preConcatInverse) { 565 SkMatrix inv; 566 bool computed = false; 567 for (int i = 0; i < kNumStages; ++i) { 568 if (this->isStageEnabled(i)) { 569 if (!computed && !preConcatInverse.invert(&inv)) { 570 return false; 571 } else { 572 computed = true; 573 } 574 fStages[i].preConcatCoordChange(preConcatInverse); 575 } 576 } 577 return true; 578 } 579 580 /// @} 581 582 /////////////////////////////////////////////////////////////////////////// 583 /// @name Coverage / Color Stages 584 //// 585 586 /** 587 * A common pattern is to compute a color with the initial stages and then 588 * modulate that color by a coverage value in later stage(s) (AA, mask- 589 * filters, glyph mask, etc). Color-filters, xfermodes, etc should be 590 * computed based on the pre-coverage-modulated color. The division of 591 * stages between color-computing and coverage-computing is specified by 592 * this method. Initially this is kNumStages (all stages 593 * are color-computing). 594 */ 595 void setFirstCoverageStage(int firstCoverageStage) { 596 GrAssert((unsigned)firstCoverageStage <= kNumStages); 597 fCommon.fFirstCoverageStage = firstCoverageStage; 598 } 599 600 /** 601 * Gets the index of the first coverage-computing stage. 602 */ 603 int getFirstCoverageStage() const { 604 return fCommon.fFirstCoverageStage; 605 } 606 607 ///@} 608 609 /////////////////////////////////////////////////////////////////////////// 610 /// @name Blending 611 //// 612 613 /** 614 * Sets the blending function coefficients. 615 * 616 * The blend function will be: 617 * D' = sat(S*srcCoef + D*dstCoef) 618 * 619 * where D is the existing destination color, S is the incoming source 620 * color, and D' is the new destination color that will be written. sat() 621 * is the saturation function. 622 * 623 * @param srcCoef coefficient applied to the src color. 624 * @param dstCoef coefficient applied to the dst color. 625 */ 626 void setBlendFunc(GrBlendCoeff srcCoeff, GrBlendCoeff dstCoeff) { 627 fCommon.fSrcBlend = srcCoeff; 628 fCommon.fDstBlend = dstCoeff; 629 #if GR_DEBUG 630 switch (dstCoeff) { 631 case kDC_GrBlendCoeff: 632 case kIDC_GrBlendCoeff: 633 case kDA_GrBlendCoeff: 634 case kIDA_GrBlendCoeff: 635 GrPrintf("Unexpected dst blend coeff. Won't work correctly with" 636 "coverage stages.\n"); 637 break; 638 default: 639 break; 640 } 641 switch (srcCoeff) { 642 case kSC_GrBlendCoeff: 643 case kISC_GrBlendCoeff: 644 case kSA_GrBlendCoeff: 645 case kISA_GrBlendCoeff: 646 GrPrintf("Unexpected src blend coeff. Won't work correctly with" 647 "coverage stages.\n"); 648 break; 649 default: 650 break; 651 } 652 #endif 653 } 654 655 GrBlendCoeff getSrcBlendCoeff() const { return fCommon.fSrcBlend; } 656 GrBlendCoeff getDstBlendCoeff() const { return fCommon.fDstBlend; } 657 658 void getDstBlendCoeff(GrBlendCoeff* srcBlendCoeff, 659 GrBlendCoeff* dstBlendCoeff) const { 660 *srcBlendCoeff = fCommon.fSrcBlend; 661 *dstBlendCoeff = fCommon.fDstBlend; 662 } 663 664 /** 665 * Sets the blending function constant referenced by the following blending 666 * coefficients: 667 * kConstC_GrBlendCoeff 668 * kIConstC_GrBlendCoeff 669 * kConstA_GrBlendCoeff 670 * kIConstA_GrBlendCoeff 671 * 672 * @param constant the constant to set 673 */ 674 void setBlendConstant(GrColor constant) { fCommon.fBlendConstant = constant; } 675 676 /** 677 * Retrieves the last value set by setBlendConstant() 678 * @return the blending constant value 679 */ 680 GrColor getBlendConstant() const { return fCommon.fBlendConstant; } 681 682 /// @} 683 684 /////////////////////////////////////////////////////////////////////////// 685 /// @name View Matrix 686 //// 687 688 /** 689 * Sets the matrix applied to vertex positions. 690 * 691 * In the post-view-matrix space the rectangle [0,w]x[0,h] 692 * fully covers the render target. (w and h are the width and height of the 693 * the render-target.) 694 */ 695 void setViewMatrix(const SkMatrix& m) { fCommon.fViewMatrix = m; } 696 697 /** 698 * Gets a writable pointer to the view matrix. 699 */ 700 SkMatrix* viewMatrix() { return &fCommon.fViewMatrix; } 701 702 /** 703 * Multiplies the current view matrix by a matrix 704 * 705 * After this call V' = V*m where V is the old view matrix, 706 * m is the parameter to this function, and V' is the new view matrix. 707 * (We consider positions to be column vectors so position vector p is 708 * transformed by matrix X as p' = X*p.) 709 * 710 * @param m the matrix used to modify the view matrix. 711 */ 712 void preConcatViewMatrix(const SkMatrix& m) { fCommon.fViewMatrix.preConcat(m); } 713 714 /** 715 * Multiplies the current view matrix by a matrix 716 * 717 * After this call V' = m*V where V is the old view matrix, 718 * m is the parameter to this function, and V' is the new view matrix. 719 * (We consider positions to be column vectors so position vector p is 720 * transformed by matrix X as p' = X*p.) 721 * 722 * @param m the matrix used to modify the view matrix. 723 */ 724 void postConcatViewMatrix(const SkMatrix& m) { fCommon.fViewMatrix.postConcat(m); } 725 726 /** 727 * Retrieves the current view matrix 728 * @return the current view matrix. 729 */ 730 const SkMatrix& getViewMatrix() const { return fCommon.fViewMatrix; } 731 732 /** 733 * Retrieves the inverse of the current view matrix. 734 * 735 * If the current view matrix is invertible, return true, and if matrix 736 * is non-null, copy the inverse into it. If the current view matrix is 737 * non-invertible, return false and ignore the matrix parameter. 738 * 739 * @param matrix if not null, will receive a copy of the current inverse. 740 */ 741 bool getViewInverse(SkMatrix* matrix) const { 742 // TODO: determine whether we really need to leave matrix unmodified 743 // at call sites when inversion fails. 744 SkMatrix inverse; 745 if (fCommon.fViewMatrix.invert(&inverse)) { 746 if (matrix) { 747 *matrix = inverse; 748 } 749 return true; 750 } 751 return false; 752 } 753 754 //////////////////////////////////////////////////////////////////////////// 755 756 /** 757 * Preconcats the current view matrix and restores the previous view matrix in the destructor. 758 * Effect matrices are automatically adjusted to compensate. 759 */ 760 class AutoViewMatrixRestore : public ::GrNoncopyable { 761 public: 762 AutoViewMatrixRestore() : fDrawState(NULL) {} 763 764 AutoViewMatrixRestore(GrDrawState* ds, 765 const SkMatrix& preconcatMatrix, 766 uint32_t explicitCoordStageMask = 0) { 767 fDrawState = NULL; 768 this->set(ds, preconcatMatrix, explicitCoordStageMask); 769 } 770 771 ~AutoViewMatrixRestore() { this->restore(); } 772 773 /** 774 * Can be called prior to destructor to restore the original matrix. 775 */ 776 void restore(); 777 778 void set(GrDrawState* drawState, 779 const SkMatrix& preconcatMatrix, 780 uint32_t explicitCoordStageMask = 0); 781 782 bool isSet() const { return NULL != fDrawState; } 783 784 private: 785 GrDrawState* fDrawState; 786 SkMatrix fViewMatrix; 787 GrEffectStage::SavedCoordChange fSavedCoordChanges[GrDrawState::kNumStages]; 788 uint32_t fRestoreMask; 789 }; 790 791 //////////////////////////////////////////////////////////////////////////// 792 793 /** 794 * This sets the view matrix to identity and adjusts stage matrices to compensate. The 795 * destructor undoes the changes, restoring the view matrix that was set before the 796 * constructor. It is similar to passing the inverse of the current view matrix to 797 * AutoViewMatrixRestore, but lazily computes the inverse only if necessary. 798 */ 799 class AutoDeviceCoordDraw : ::GrNoncopyable { 800 public: 801 AutoDeviceCoordDraw() : fDrawState(NULL) {} 802 /** 803 * If a stage's texture matrix is applied to explicit per-vertex coords, rather than to 804 * positions, then we don't want to modify its matrix. The explicitCoordStageMask is used 805 * to specify such stages. 806 */ 807 AutoDeviceCoordDraw(GrDrawState* drawState, 808 uint32_t explicitCoordStageMask = 0) { 809 fDrawState = NULL; 810 this->set(drawState, explicitCoordStageMask); 811 } 812 813 ~AutoDeviceCoordDraw() { this->restore(); } 814 815 bool set(GrDrawState* drawState, uint32_t explicitCoordStageMask = 0); 816 817 /** 818 * Returns true if this object was successfully initialized on to a GrDrawState. It may 819 * return false because a non-default constructor or set() were never called or because 820 * the view matrix was not invertible. 821 */ 822 bool succeeded() const { return NULL != fDrawState; } 823 824 /** 825 * Returns the matrix that was set previously set on the drawState. This is only valid 826 * if succeeded returns true. 827 */ 828 const SkMatrix& getOriginalMatrix() const { 829 GrAssert(this->succeeded()); 830 return fViewMatrix; 831 } 832 833 /** 834 * Can be called prior to destructor to restore the original matrix. 835 */ 836 void restore(); 837 838 private: 839 GrDrawState* fDrawState; 840 SkMatrix fViewMatrix; 841 GrEffectStage::SavedCoordChange fSavedCoordChanges[GrDrawState::kNumStages]; 842 uint32_t fRestoreMask; 843 }; 844 845 /// @} 846 847 /////////////////////////////////////////////////////////////////////////// 848 /// @name Render Target 849 //// 850 851 /** 852 * Sets the render-target used at the next drawing call 853 * 854 * @param target The render target to set. 855 */ 856 void setRenderTarget(GrRenderTarget* target) { 857 fRenderTarget.reset(SkSafeRef(target)); 858 } 859 860 /** 861 * Retrieves the currently set render-target. 862 * 863 * @return The currently set render target. 864 */ 865 const GrRenderTarget* getRenderTarget() const { return fRenderTarget.get(); } 866 GrRenderTarget* getRenderTarget() { return fRenderTarget.get(); } 867 868 class AutoRenderTargetRestore : public ::GrNoncopyable { 869 public: 870 AutoRenderTargetRestore() : fDrawState(NULL), fSavedTarget(NULL) {} 871 AutoRenderTargetRestore(GrDrawState* ds, GrRenderTarget* newTarget) { 872 fDrawState = NULL; 873 fSavedTarget = NULL; 874 this->set(ds, newTarget); 875 } 876 ~AutoRenderTargetRestore() { this->restore(); } 877 878 void restore() { 879 if (NULL != fDrawState) { 880 fDrawState->setRenderTarget(fSavedTarget); 881 fDrawState = NULL; 882 } 883 GrSafeSetNull(fSavedTarget); 884 } 885 886 void set(GrDrawState* ds, GrRenderTarget* newTarget) { 887 this->restore(); 888 889 if (NULL != ds) { 890 GrAssert(NULL == fSavedTarget); 891 fSavedTarget = ds->getRenderTarget(); 892 SkSafeRef(fSavedTarget); 893 ds->setRenderTarget(newTarget); 894 fDrawState = ds; 895 } 896 } 897 private: 898 GrDrawState* fDrawState; 899 GrRenderTarget* fSavedTarget; 900 }; 901 902 /// @} 903 904 /////////////////////////////////////////////////////////////////////////// 905 /// @name Stencil 906 //// 907 908 /** 909 * Sets the stencil settings to use for the next draw. 910 * Changing the clip has the side-effect of possibly zeroing 911 * out the client settable stencil bits. So multipass algorithms 912 * using stencil should not change the clip between passes. 913 * @param settings the stencil settings to use. 914 */ 915 void setStencil(const GrStencilSettings& settings) { 916 fCommon.fStencilSettings = settings; 917 } 918 919 /** 920 * Shortcut to disable stencil testing and ops. 921 */ 922 void disableStencil() { 923 fCommon.fStencilSettings.setDisabled(); 924 } 925 926 const GrStencilSettings& getStencil() const { return fCommon.fStencilSettings; } 927 928 GrStencilSettings* stencil() { return &fCommon.fStencilSettings; } 929 930 /// @} 931 932 /////////////////////////////////////////////////////////////////////////// 933 // @name Edge AA 934 // Edge equations can be specified to perform anti-aliasing. Because the 935 // edges are specified as per-vertex data, vertices that are shared by 936 // multiple edges must be split. 937 // 938 //// 939 940 /** 941 * When specifying edges as vertex data this enum specifies what type of 942 * edges are in use. The edges are always 4 SkScalars in memory, even when 943 * the edge type requires fewer than 4. 944 * 945 * TODO: Fix the fact that HairLine and Circle edge types use y-down coords. 946 * (either adjust in VS or use origin_upper_left in GLSL) 947 */ 948 enum VertexEdgeType { 949 /* 1-pixel wide line 950 2D implicit line eq (a*x + b*y +c = 0). 4th component unused */ 951 kHairLine_EdgeType, 952 /* Quadratic specified by u^2-v canonical coords (only 2 953 components used). Coverage based on signed distance with negative 954 being inside, positive outside. Edge specified in window space 955 (y-down) */ 956 kQuad_EdgeType, 957 /* Same as above but for hairline quadratics. Uses unsigned distance. 958 Coverage is min(0, 1-distance). */ 959 kHairQuad_EdgeType, 960 /* Circle specified as center_x, center_y, outer_radius, inner_radius 961 all in window space (y-down). */ 962 kCircle_EdgeType, 963 /* Axis-aligned ellipse specified as center_x, center_y, x_radius, x_radius/y_radius 964 all in window space (y-down). */ 965 kEllipse_EdgeType, 966 967 kVertexEdgeTypeCnt 968 }; 969 970 /** 971 * Determines the interpretation per-vertex edge data when the 972 * kEdge_VertexLayoutBit is set (see GrDrawTarget). When per-vertex edges 973 * are not specified the value of this setting has no effect. 974 */ 975 void setVertexEdgeType(VertexEdgeType type) { 976 GrAssert(type >=0 && type < kVertexEdgeTypeCnt); 977 fCommon.fVertexEdgeType = type; 978 } 979 980 VertexEdgeType getVertexEdgeType() const { return fCommon.fVertexEdgeType; } 981 982 /// @} 983 984 /////////////////////////////////////////////////////////////////////////// 985 /// @name State Flags 986 //// 987 988 /** 989 * Flags that affect rendering. Controlled using enable/disableState(). All 990 * default to disabled. 991 */ 992 enum StateBits { 993 /** 994 * Perform dithering. TODO: Re-evaluate whether we need this bit 995 */ 996 kDither_StateBit = 0x01, 997 /** 998 * Perform HW anti-aliasing. This means either HW FSAA, if supported by the render target, 999 * or smooth-line rendering if a line primitive is drawn and line smoothing is supported by 1000 * the 3D API. 1001 */ 1002 kHWAntialias_StateBit = 0x02, 1003 /** 1004 * Draws will respect the clip, otherwise the clip is ignored. 1005 */ 1006 kClip_StateBit = 0x04, 1007 /** 1008 * Disables writing to the color buffer. Useful when performing stencil 1009 * operations. 1010 */ 1011 kNoColorWrites_StateBit = 0x08, 1012 1013 /** 1014 * Usually coverage is applied after color blending. The color is blended using the coeffs 1015 * specified by setBlendFunc(). The blended color is then combined with dst using coeffs 1016 * of src_coverage, 1-src_coverage. Sometimes we are explicitly drawing a coverage mask. In 1017 * this case there is no distinction between coverage and color and the caller needs direct 1018 * control over the blend coeffs. When set, there will be a single blend step controlled by 1019 * setBlendFunc() which will use coverage*color as the src color. 1020 */ 1021 kCoverageDrawing_StateBit = 0x10, 1022 1023 // Users of the class may add additional bits to the vector 1024 kDummyStateBit, 1025 kLastPublicStateBit = kDummyStateBit-1, 1026 }; 1027 1028 void resetStateFlags() { 1029 fCommon.fFlagBits = 0; 1030 } 1031 1032 /** 1033 * Enable render state settings. 1034 * 1035 * @param stateBits bitfield of StateBits specifying the states to enable 1036 */ 1037 void enableState(uint32_t stateBits) { 1038 fCommon.fFlagBits |= stateBits; 1039 } 1040 1041 /** 1042 * Disable render state settings. 1043 * 1044 * @param stateBits bitfield of StateBits specifying the states to disable 1045 */ 1046 void disableState(uint32_t stateBits) { 1047 fCommon.fFlagBits &= ~(stateBits); 1048 } 1049 1050 /** 1051 * Enable or disable stateBits based on a boolean. 1052 * 1053 * @param stateBits bitfield of StateBits to enable or disable 1054 * @param enable if true enable stateBits, otherwise disable 1055 */ 1056 void setState(uint32_t stateBits, bool enable) { 1057 if (enable) { 1058 this->enableState(stateBits); 1059 } else { 1060 this->disableState(stateBits); 1061 } 1062 } 1063 1064 bool isDitherState() const { 1065 return 0 != (fCommon.fFlagBits & kDither_StateBit); 1066 } 1067 1068 bool isHWAntialiasState() const { 1069 return 0 != (fCommon.fFlagBits & kHWAntialias_StateBit); 1070 } 1071 1072 bool isClipState() const { 1073 return 0 != (fCommon.fFlagBits & kClip_StateBit); 1074 } 1075 1076 bool isColorWriteDisabled() const { 1077 return 0 != (fCommon.fFlagBits & kNoColorWrites_StateBit); 1078 } 1079 1080 bool isCoverageDrawing() const { 1081 return 0 != (fCommon.fFlagBits & kCoverageDrawing_StateBit); 1082 } 1083 1084 bool isStateFlagEnabled(uint32_t stateBit) const { 1085 return 0 != (stateBit & fCommon.fFlagBits); 1086 } 1087 1088 /// @} 1089 1090 /////////////////////////////////////////////////////////////////////////// 1091 /// @name Face Culling 1092 //// 1093 1094 enum DrawFace { 1095 kInvalid_DrawFace = -1, 1096 1097 kBoth_DrawFace, 1098 kCCW_DrawFace, 1099 kCW_DrawFace, 1100 }; 1101 1102 /** 1103 * Controls whether clockwise, counterclockwise, or both faces are drawn. 1104 * @param face the face(s) to draw. 1105 */ 1106 void setDrawFace(DrawFace face) { 1107 GrAssert(kInvalid_DrawFace != face); 1108 fCommon.fDrawFace = face; 1109 } 1110 1111 /** 1112 * Gets whether the target is drawing clockwise, counterclockwise, 1113 * or both faces. 1114 * @return the current draw face(s). 1115 */ 1116 DrawFace getDrawFace() const { return fCommon.fDrawFace; } 1117 1118 /// @} 1119 1120 /////////////////////////////////////////////////////////////////////////// 1121 1122 bool isStageEnabled(int s) const { 1123 GrAssert((unsigned)s < kNumStages); 1124 return (NULL != fStages[s].getEffect()); 1125 } 1126 1127 // Most stages are usually not used, so conditionals here 1128 // reduce the expected number of bytes touched by 50%. 1129 bool operator ==(const GrDrawState& s) const { 1130 if (fRenderTarget.get() != s.fRenderTarget.get() || fCommon != s.fCommon) { 1131 return false; 1132 } 1133 1134 for (int i = 0; i < kNumStages; i++) { 1135 bool enabled = this->isStageEnabled(i); 1136 if (enabled != s.isStageEnabled(i)) { 1137 return false; 1138 } 1139 if (enabled && this->fStages[i] != s.fStages[i]) { 1140 return false; 1141 } 1142 } 1143 return true; 1144 } 1145 bool operator !=(const GrDrawState& s) const { return !(*this == s); } 1146 1147 GrDrawState& operator= (const GrDrawState& s) { 1148 this->setRenderTarget(s.fRenderTarget.get()); 1149 fCommon = s.fCommon; 1150 for (int i = 0; i < kNumStages; i++) { 1151 if (s.isStageEnabled(i)) { 1152 this->fStages[i] = s.fStages[i]; 1153 } 1154 } 1155 return *this; 1156 } 1157 1158 private: 1159 1160 /** Fields that are identical in GrDrawState and GrDrawState::DeferredState. */ 1161 struct CommonState { 1162 // These fields are roughly sorted by decreasing likelihood of being different in op== 1163 GrColor fColor; 1164 SkMatrix fViewMatrix; 1165 GrBlendCoeff fSrcBlend; 1166 GrBlendCoeff fDstBlend; 1167 GrColor fBlendConstant; 1168 uint32_t fFlagBits; 1169 VertexEdgeType fVertexEdgeType; 1170 GrStencilSettings fStencilSettings; 1171 int fFirstCoverageStage; 1172 GrColor fCoverage; 1173 SkXfermode::Mode fColorFilterMode; 1174 GrColor fColorFilterColor; 1175 DrawFace fDrawFace; 1176 bool operator== (const CommonState& other) const { 1177 return fColor == other.fColor && 1178 fViewMatrix.cheapEqualTo(other.fViewMatrix) && 1179 fSrcBlend == other.fSrcBlend && 1180 fDstBlend == other.fDstBlend && 1181 fBlendConstant == other.fBlendConstant && 1182 fFlagBits == other.fFlagBits && 1183 fVertexEdgeType == other.fVertexEdgeType && 1184 fStencilSettings == other.fStencilSettings && 1185 fFirstCoverageStage == other.fFirstCoverageStage && 1186 fCoverage == other.fCoverage && 1187 fColorFilterMode == other.fColorFilterMode && 1188 fColorFilterColor == other.fColorFilterColor && 1189 fDrawFace == other.fDrawFace; 1190 } 1191 bool operator!= (const CommonState& other) const { return !(*this == other); } 1192 }; 1193 1194 /** GrDrawState uses GrEffectStages to hold stage state which holds a ref on GrEffectRef. 1195 DeferredState must directly reference GrEffects, however. */ 1196 struct SavedEffectStage { 1197 SavedEffectStage() : fEffect(NULL) {} 1198 const GrEffect* fEffect; 1199 GrEffectStage::SavedCoordChange fCoordChange; 1200 }; 1201 1202 public: 1203 /** 1204 * DeferredState contains all of the data of a GrDrawState but does not hold refs on GrResource 1205 * objects. Resources are allowed to hit zero ref count while in DeferredStates. Their internal 1206 * dispose mechanism returns them to the cache. This allows recycling resources through the 1207 * the cache while they are in a deferred draw queue. 1208 */ 1209 class DeferredState { 1210 public: 1211 DeferredState() : fRenderTarget(NULL) { 1212 GR_DEBUGCODE(fInitialized = false;) 1213 } 1214 // TODO: Remove this when DeferredState no longer holds a ref to the RT 1215 ~DeferredState() { SkSafeUnref(fRenderTarget); } 1216 1217 void saveFrom(const GrDrawState& drawState) { 1218 fCommon = drawState.fCommon; 1219 // TODO: Here we will copy the GrRenderTarget pointer without taking a ref. 1220 fRenderTarget = drawState.fRenderTarget.get(); 1221 SkSafeRef(fRenderTarget); 1222 // Here we ref the effects directly rather than the effect-refs. TODO: When the effect- 1223 // ref gets fully unref'ed it will cause the underlying effect to unref its resources 1224 // and recycle them to the cache (if no one else is holding a ref to the resources). 1225 for (int i = 0; i < kNumStages; ++i) { 1226 fStages[i].saveFrom(drawState.fStages[i]); 1227 } 1228 GR_DEBUGCODE(fInitialized = true;) 1229 } 1230 1231 void restoreTo(GrDrawState* drawState) { 1232 GrAssert(fInitialized); 1233 drawState->fCommon = fCommon; 1234 drawState->setRenderTarget(fRenderTarget); 1235 for (int i = 0; i < kNumStages; ++i) { 1236 fStages[i].restoreTo(&drawState->fStages[i]); 1237 } 1238 } 1239 1240 bool isEqual(const GrDrawState& state) const { 1241 if (fRenderTarget != state.fRenderTarget.get() || fCommon != state.fCommon) { 1242 return false; 1243 } 1244 for (int i = 0; i < kNumStages; ++i) { 1245 if (!fStages[i].isEqual(state.fStages[i])) { 1246 return false; 1247 } 1248 } 1249 return true; 1250 } 1251 1252 private: 1253 GrRenderTarget* fRenderTarget; 1254 CommonState fCommon; 1255 GrEffectStage::DeferredStage fStages[kNumStages]; 1256 1257 GR_DEBUGCODE(bool fInitialized;) 1258 }; 1259 1260 private: 1261 SkAutoTUnref<GrRenderTarget> fRenderTarget; 1262 CommonState fCommon; 1263 GrEffectStage fStages[kNumStages]; 1264 1265 typedef GrRefCnt INHERITED; 1266 }; 1267 1268 #endif 1269