1 2 /* ----------------------------------------------------------------------------------------------------------- 3 Software License for The Fraunhofer FDK AAC Codec Library for Android 4 5 Copyright 1995 - 2012 Fraunhofer-Gesellschaft zur Frderung der angewandten Forschung e.V. 6 All rights reserved. 7 8 1. INTRODUCTION 9 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements 10 the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio. 11 This FDK AAC Codec software is intended to be used on a wide variety of Android devices. 12 13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual 14 audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by 15 independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part 16 of the MPEG specifications. 17 18 Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer) 19 may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners 20 individually for the purpose of encoding or decoding bit streams in products that are compliant with 21 the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license 22 these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec 23 software may already be covered under those patent licenses when it is used for those licensed purposes only. 24 25 Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality, 26 are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional 27 applications information and documentation. 28 29 2. COPYRIGHT LICENSE 30 31 Redistribution and use in source and binary forms, with or without modification, are permitted without 32 payment of copyright license fees provided that you satisfy the following conditions: 33 34 You must retain the complete text of this software license in redistributions of the FDK AAC Codec or 35 your modifications thereto in source code form. 36 37 You must retain the complete text of this software license in the documentation and/or other materials 38 provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form. 39 You must make available free of charge copies of the complete source code of the FDK AAC Codec and your 40 modifications thereto to recipients of copies in binary form. 41 42 The name of Fraunhofer may not be used to endorse or promote products derived from this library without 43 prior written permission. 44 45 You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec 46 software or your modifications thereto. 47 48 Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software 49 and the date of any change. For modified versions of the FDK AAC Codec, the term 50 "Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term 51 "Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android." 52 53 3. NO PATENT LICENSE 54 55 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer, 56 ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with 57 respect to this software. 58 59 You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized 60 by appropriate patent licenses. 61 62 4. DISCLAIMER 63 64 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors 65 "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties 66 of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR 67 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages, 68 including but not limited to procurement of substitute goods or services; loss of use, data, or profits, 69 or business interruption, however caused and on any theory of liability, whether in contract, strict 70 liability, or tort (including negligence), arising in any way out of the use of this software, even if 71 advised of the possibility of such damage. 72 73 5. CONTACT INFORMATION 74 75 Fraunhofer Institute for Integrated Circuits IIS 76 Attention: Audio and Multimedia Departments - FDK AAC LL 77 Am Wolfsmantel 33 78 91058 Erlangen, Germany 79 80 www.iis.fraunhofer.de/amm 81 amm-info (at) iis.fraunhofer.de 82 ----------------------------------------------------------------------------------------------------------- */ 83 84 /***************************** MPEG Audio Encoder *************************** 85 86 Initial Authors: M. Multrus 87 Contents/Description: PS Wrapper, Downmix 88 89 ******************************************************************************/ 90 91 #include "ps_main.h" 92 93 94 /* Includes ******************************************************************/ 95 96 #include "ps_const.h" 97 #include "ps_bitenc.h" 98 99 #include "sbr_ram.h" 100 101 /*--------------- function declarations --------------------*/ 102 static void psFindBestScaling( 103 HANDLE_PARAMETRIC_STEREO hParametricStereo, 104 FIXP_DBL *hybridData[HYBRID_FRAMESIZE][MAX_PS_CHANNELS][2], 105 UCHAR *dynBandScale, 106 FIXP_QMF *maxBandValue, 107 SCHAR *dmxScale 108 ); 109 110 /*------------- function definitions ----------------*/ 111 FDK_PSENC_ERROR PSEnc_Create( 112 HANDLE_PARAMETRIC_STEREO *phParametricStereo 113 ) 114 { 115 FDK_PSENC_ERROR error = PSENC_OK; 116 117 if (phParametricStereo==NULL) { 118 error = PSENC_INVALID_HANDLE; 119 } 120 else { 121 int i; 122 HANDLE_PARAMETRIC_STEREO hParametricStereo = NULL; 123 124 if (NULL==(hParametricStereo = GetRam_ParamStereo())) { 125 error = PSENC_MEMORY_ERROR; 126 goto bail; 127 } 128 FDKmemclear(hParametricStereo, sizeof(PARAMETRIC_STEREO)); 129 130 if (PSENC_OK != (error = FDKsbrEnc_CreatePSEncode(&hParametricStereo->hPsEncode))) { 131 goto bail; 132 } 133 134 for (i=0; i<MAX_PS_CHANNELS; i++) { 135 if (FDKhybridAnalysisOpen( 136 &hParametricStereo->fdkHybAnaFilter[i], 137 hParametricStereo->__staticHybAnaStatesLF[i], 138 sizeof(hParametricStereo->__staticHybAnaStatesLF[i]), 139 hParametricStereo->__staticHybAnaStatesHF[i], 140 sizeof(hParametricStereo->__staticHybAnaStatesHF[i]) 141 ) !=0 ) 142 { 143 error = PSENC_MEMORY_ERROR; 144 goto bail; 145 } 146 } 147 148 *phParametricStereo = hParametricStereo; /* return allocated handle */ 149 } 150 bail: 151 return error; 152 } 153 154 FDK_PSENC_ERROR PSEnc_Init( 155 HANDLE_PARAMETRIC_STEREO hParametricStereo, 156 const HANDLE_PSENC_CONFIG hPsEncConfig, 157 INT noQmfSlots, 158 INT noQmfBands 159 ,UCHAR *dynamic_RAM 160 ) 161 { 162 FDK_PSENC_ERROR error = PSENC_OK; 163 164 if ( (NULL==hParametricStereo) || (NULL==hPsEncConfig) ) { 165 error = PSENC_INVALID_HANDLE; 166 } 167 else { 168 int ch, i; 169 170 hParametricStereo->initPS = 1; 171 hParametricStereo->noQmfSlots = noQmfSlots; 172 hParametricStereo->noQmfBands = noQmfBands; 173 174 /* clear delay lines */ 175 FDKmemclear(hParametricStereo->qmfDelayLines, sizeof(hParametricStereo->qmfDelayLines)); 176 177 hParametricStereo->qmfDelayScale = FRACT_BITS-1; 178 179 /* create configuration for hybrid filter bank */ 180 for (ch=0; ch<MAX_PS_CHANNELS; ch++) { 181 FDKhybridAnalysisInit( 182 &hParametricStereo->fdkHybAnaFilter[ch], 183 THREE_TO_TEN, 184 QMF_CHANNELS, 185 QMF_CHANNELS, 186 1 187 ); 188 } /* ch */ 189 190 FDKhybridSynthesisInit( 191 &hParametricStereo->fdkHybSynFilter, 192 THREE_TO_TEN, 193 QMF_CHANNELS, 194 QMF_CHANNELS 195 ); 196 197 /* determine average delay */ 198 hParametricStereo->psDelay = (HYBRID_FILTER_DELAY*hParametricStereo->noQmfBands); 199 200 if ( (hPsEncConfig->maxEnvelopes < PSENC_NENV_1) || (hPsEncConfig->maxEnvelopes > PSENC_NENV_MAX) ) { 201 hPsEncConfig->maxEnvelopes = PSENC_NENV_DEFAULT; 202 } 203 hParametricStereo->maxEnvelopes = hPsEncConfig->maxEnvelopes; 204 205 if (PSENC_OK != (error = FDKsbrEnc_InitPSEncode(hParametricStereo->hPsEncode, (PS_BANDS) hPsEncConfig->nStereoBands, hPsEncConfig->iidQuantErrorThreshold))){ 206 goto bail; 207 } 208 209 for (ch = 0; ch<MAX_PS_CHANNELS; ch ++) { 210 FIXP_DBL *pDynReal = GetRam_Sbr_envRBuffer (ch, dynamic_RAM); 211 FIXP_DBL *pDynImag = GetRam_Sbr_envIBuffer (ch, dynamic_RAM); 212 213 for (i=0; i<HYBRID_FRAMESIZE; i++) { 214 hParametricStereo->pHybridData[i+HYBRID_READ_OFFSET][ch][0] = &pDynReal[i*MAX_HYBRID_BANDS]; 215 hParametricStereo->pHybridData[i+HYBRID_READ_OFFSET][ch][1] = &pDynImag[i*MAX_HYBRID_BANDS];; 216 } 217 218 for (i=0; i<HYBRID_READ_OFFSET; i++) { 219 hParametricStereo->pHybridData[i][ch][0] = hParametricStereo->__staticHybridData[i][ch][0]; 220 hParametricStereo->pHybridData[i][ch][1] = hParametricStereo->__staticHybridData[i][ch][1]; 221 } 222 } /* ch */ 223 224 /* clear static hybrid buffer */ 225 FDKmemclear(hParametricStereo->__staticHybridData, sizeof(hParametricStereo->__staticHybridData)); 226 227 /* clear bs buffer */ 228 FDKmemclear(hParametricStereo->psOut, sizeof(hParametricStereo->psOut)); 229 230 /* clear scaling buffer */ 231 FDKmemclear(hParametricStereo->dynBandScale, sizeof(UCHAR)*PS_MAX_BANDS); 232 FDKmemclear(hParametricStereo->maxBandValue, sizeof(FIXP_QMF)*PS_MAX_BANDS); 233 234 } /* valid handle */ 235 bail: 236 return error; 237 } 238 239 240 FDK_PSENC_ERROR PSEnc_Destroy( 241 HANDLE_PARAMETRIC_STEREO *phParametricStereo 242 ) 243 { 244 FDK_PSENC_ERROR error = PSENC_OK; 245 246 if (NULL!=phParametricStereo) { 247 HANDLE_PARAMETRIC_STEREO hParametricStereo = *phParametricStereo; 248 if(hParametricStereo != NULL){ 249 FDKsbrEnc_DestroyPSEncode(&hParametricStereo->hPsEncode); 250 FreeRam_ParamStereo(phParametricStereo); 251 } 252 } 253 254 return error; 255 } 256 257 static FDK_PSENC_ERROR ExtractPSParameters( 258 HANDLE_PARAMETRIC_STEREO hParametricStereo, 259 const int sendHeader, 260 FIXP_DBL *hybridData[HYBRID_FRAMESIZE][MAX_PS_CHANNELS][2] 261 ) 262 { 263 FDK_PSENC_ERROR error = PSENC_OK; 264 265 if (hParametricStereo == NULL) { 266 error = PSENC_INVALID_HANDLE; 267 } 268 else { 269 /* call ps encode function */ 270 if (hParametricStereo->initPS){ 271 hParametricStereo->psOut[1] = hParametricStereo->psOut[0]; 272 } 273 hParametricStereo->psOut[0] = hParametricStereo->psOut[1]; 274 275 if (PSENC_OK != (error = FDKsbrEnc_PSEncode( 276 hParametricStereo->hPsEncode, 277 &hParametricStereo->psOut[1], 278 hParametricStereo->dynBandScale, 279 hParametricStereo->maxEnvelopes, 280 hybridData, 281 hParametricStereo->noQmfSlots, 282 sendHeader))) 283 { 284 goto bail; 285 } 286 287 if (hParametricStereo->initPS) { 288 hParametricStereo->psOut[0] = hParametricStereo->psOut[1]; 289 hParametricStereo->initPS = 0; 290 } 291 } 292 bail: 293 return error; 294 } 295 296 297 static FDK_PSENC_ERROR DownmixPSQmfData( 298 HANDLE_PARAMETRIC_STEREO hParametricStereo, 299 HANDLE_QMF_FILTER_BANK sbrSynthQmf, 300 FIXP_QMF **RESTRICT mixRealQmfData, 301 FIXP_QMF **RESTRICT mixImagQmfData, 302 INT_PCM *downsampledOutSignal, 303 FIXP_DBL *hybridData[HYBRID_FRAMESIZE][MAX_PS_CHANNELS][2], 304 const INT noQmfSlots, 305 const INT psQmfScale[MAX_PS_CHANNELS], 306 SCHAR *qmfScale 307 ) 308 { 309 FDK_PSENC_ERROR error = PSENC_OK; 310 311 if(hParametricStereo == NULL){ 312 error = PSENC_INVALID_HANDLE; 313 } 314 else { 315 int n, k; 316 C_ALLOC_SCRATCH_START(pWorkBuffer, FIXP_QMF, QMF_CHANNELS*2); 317 318 /* define scalings */ 319 int dynQmfScale = fixMax(0, hParametricStereo->dmxScale-1); /* scale one bit more for addition of left and right */ 320 int downmixScale = psQmfScale[0] - dynQmfScale; 321 const FIXP_DBL maxStereoScaleFactor = MAXVAL_DBL; /* 2.f/2.f */ 322 323 for (n = 0; n<noQmfSlots; n++) { 324 325 FIXP_DBL tmpHybrid[2][MAX_HYBRID_BANDS]; 326 327 for(k = 0; k<71; k++){ 328 int dynScale, sc; /* scaling */ 329 FIXP_QMF tmpLeftReal, tmpRightReal, tmpLeftImag, tmpRightImag; 330 FIXP_DBL tmpScaleFactor, stereoScaleFactor; 331 332 tmpLeftReal = hybridData[n][0][0][k]; 333 tmpLeftImag = hybridData[n][0][1][k]; 334 tmpRightReal = hybridData[n][1][0][k]; 335 tmpRightImag = hybridData[n][1][1][k]; 336 337 sc = fixMax(0,CntLeadingZeros( fixMax(fixMax(fixp_abs(tmpLeftReal),fixp_abs(tmpLeftImag)),fixMax(fixp_abs(tmpRightReal),fixp_abs(tmpRightImag))) )-2); 338 339 tmpLeftReal <<= sc; tmpLeftImag <<= sc; 340 tmpRightReal <<= sc; tmpRightImag <<= sc; 341 dynScale = fixMin(sc-dynQmfScale,DFRACT_BITS-1); 342 343 /* calc stereo scale factor to avoid loss of energy in bands */ 344 /* stereo scale factor = min(2.0f, sqrt( (abs(l(k, n)^2 + abs(r(k, n)^2 )))/(0.5f*abs(l(k, n) + r(k, n))) )) */ 345 stereoScaleFactor = fPow2Div2(tmpLeftReal) + fPow2Div2(tmpLeftImag) 346 + fPow2Div2(tmpRightReal) + fPow2Div2(tmpRightImag) ; 347 348 /* might be that tmpScaleFactor becomes negative, so fabs(.) */ 349 tmpScaleFactor = fixp_abs(stereoScaleFactor + fMult(tmpLeftReal,tmpRightReal) + fMult(tmpLeftImag,tmpRightImag)); 350 351 /* min(2.0f, sqrt(stereoScaleFactor/(0.5f*tmpScaleFactor))) */ 352 if ( (stereoScaleFactor>>1) < fMult(maxStereoScaleFactor,tmpScaleFactor) ) { 353 354 int sc_num = CountLeadingBits(stereoScaleFactor) ; 355 int sc_denum = CountLeadingBits(tmpScaleFactor) ; 356 sc = -(sc_num-sc_denum); 357 358 tmpScaleFactor = schur_div((stereoScaleFactor<<(sc_num))>>1, 359 tmpScaleFactor<<sc_denum, 360 16) ; 361 362 /* prevent odd scaling for next sqrt calculation */ 363 if (sc&0x1) { 364 sc++; 365 tmpScaleFactor>>=1; 366 } 367 stereoScaleFactor = sqrtFixp(tmpScaleFactor); 368 stereoScaleFactor <<= (sc>>1); 369 } 370 else { 371 stereoScaleFactor = maxStereoScaleFactor; 372 } 373 374 /* write data to hybrid output */ 375 tmpHybrid[0][k] = fMultDiv2(stereoScaleFactor, (FIXP_QMF)(tmpLeftReal + tmpRightReal))>>dynScale; 376 tmpHybrid[1][k] = fMultDiv2(stereoScaleFactor, (FIXP_QMF)(tmpLeftImag + tmpRightImag))>>dynScale; 377 378 } /* hybrid bands - k */ 379 380 FDKhybridSynthesisApply( 381 &hParametricStereo->fdkHybSynFilter, 382 tmpHybrid[0], 383 tmpHybrid[1], 384 mixRealQmfData[n], 385 mixImagQmfData[n]); 386 387 qmfSynthesisFilteringSlot( 388 sbrSynthQmf, 389 mixRealQmfData[n], 390 mixImagQmfData[n], 391 downmixScale-7, 392 downmixScale-7, 393 downsampledOutSignal+(n*sbrSynthQmf->no_channels), 394 1, 395 pWorkBuffer); 396 397 } /* slots */ 398 399 *qmfScale = -downmixScale + 7; 400 401 C_ALLOC_SCRATCH_END(pWorkBuffer, FIXP_QMF, QMF_CHANNELS*2); 402 403 404 { 405 const INT noQmfSlots2 = hParametricStereo->noQmfSlots>>1; 406 const int noQmfBands = hParametricStereo->noQmfBands; 407 408 INT scale, i, j, slotOffset; 409 410 FIXP_QMF tmp[2][QMF_CHANNELS]; 411 412 for (i=0; i<noQmfSlots2; i++) { 413 FDKmemcpy(tmp[0], hParametricStereo->qmfDelayLines[0][i], noQmfBands*sizeof(FIXP_QMF)); 414 FDKmemcpy(tmp[1], hParametricStereo->qmfDelayLines[1][i], noQmfBands*sizeof(FIXP_QMF)); 415 416 FDKmemcpy(hParametricStereo->qmfDelayLines[0][i], mixRealQmfData[i+noQmfSlots2], noQmfBands*sizeof(FIXP_QMF)); 417 FDKmemcpy(hParametricStereo->qmfDelayLines[1][i], mixImagQmfData[i+noQmfSlots2], noQmfBands*sizeof(FIXP_QMF)); 418 419 FDKmemcpy(mixRealQmfData[i+noQmfSlots2], mixRealQmfData[i], noQmfBands*sizeof(FIXP_QMF)); 420 FDKmemcpy(mixImagQmfData[i+noQmfSlots2], mixImagQmfData[i], noQmfBands*sizeof(FIXP_QMF)); 421 422 FDKmemcpy(mixRealQmfData[i], tmp[0], noQmfBands*sizeof(FIXP_QMF)); 423 FDKmemcpy(mixImagQmfData[i], tmp[1], noQmfBands*sizeof(FIXP_QMF)); 424 } 425 426 if (hParametricStereo->qmfDelayScale > *qmfScale) { 427 scale = hParametricStereo->qmfDelayScale - *qmfScale; 428 slotOffset = 0; 429 } 430 else { 431 scale = *qmfScale - hParametricStereo->qmfDelayScale; 432 slotOffset = noQmfSlots2; 433 } 434 435 for (i=0; i<noQmfSlots2; i++) { 436 for (j=0; j<noQmfBands; j++) { 437 mixRealQmfData[i+slotOffset][j] >>= scale; 438 mixImagQmfData[i+slotOffset][j] >>= scale; 439 } 440 } 441 442 scale = *qmfScale; 443 *qmfScale = FDKmin(*qmfScale, hParametricStereo->qmfDelayScale); 444 hParametricStereo->qmfDelayScale = scale; 445 } 446 447 } /* valid handle */ 448 449 return error; 450 } 451 452 453 INT FDKsbrEnc_PSEnc_WritePSData( 454 HANDLE_PARAMETRIC_STEREO hParametricStereo, 455 HANDLE_FDK_BITSTREAM hBitstream 456 ) 457 { 458 return ( (hParametricStereo!=NULL) ? FDKsbrEnc_WritePSBitstream(&hParametricStereo->psOut[0], hBitstream) : 0 ); 459 } 460 461 462 FDK_PSENC_ERROR FDKsbrEnc_PSEnc_ParametricStereoProcessing( 463 HANDLE_PARAMETRIC_STEREO hParametricStereo, 464 INT_PCM *samples[2], 465 UINT timeInStride, 466 QMF_FILTER_BANK **hQmfAnalysis, 467 FIXP_QMF **RESTRICT downmixedRealQmfData, 468 FIXP_QMF **RESTRICT downmixedImagQmfData, 469 INT_PCM *downsampledOutSignal, 470 HANDLE_QMF_FILTER_BANK sbrSynthQmf, 471 SCHAR *qmfScale, 472 const int sendHeader 473 ) 474 { 475 FDK_PSENC_ERROR error = PSENC_OK; 476 INT noQmfBands = hParametricStereo->noQmfBands; 477 INT psQmfScale[MAX_PS_CHANNELS] = {0}; 478 int psCh, i; 479 C_ALLOC_SCRATCH_START(pWorkBuffer, FIXP_DBL, QMF_CHANNELS*4); 480 481 for (psCh = 0; psCh<MAX_PS_CHANNELS; psCh ++) { 482 483 for (i = 0; i < hQmfAnalysis[psCh]->no_col; i++) { 484 485 qmfAnalysisFilteringSlot( 486 hQmfAnalysis[psCh], 487 &pWorkBuffer[2*QMF_CHANNELS], /* qmfReal[QMF_CHANNELS] */ 488 &pWorkBuffer[3*QMF_CHANNELS], /* qmfImag[QMF_CHANNELS] */ 489 samples[psCh]+i*(hQmfAnalysis[psCh]->no_channels*timeInStride), 490 timeInStride, 491 &pWorkBuffer[0*QMF_CHANNELS] /* qmf workbuffer 2*QMF_CHANNELS */ 492 ); 493 494 FDKhybridAnalysisApply( 495 &hParametricStereo->fdkHybAnaFilter[psCh], 496 &pWorkBuffer[2*QMF_CHANNELS], /* qmfReal[QMF_CHANNELS] */ 497 &pWorkBuffer[3*QMF_CHANNELS], /* qmfImag[QMF_CHANNELS] */ 498 hParametricStereo->pHybridData[i+HYBRID_READ_OFFSET][psCh][0], 499 hParametricStereo->pHybridData[i+HYBRID_READ_OFFSET][psCh][1] 500 ); 501 502 } /* no_col loop i */ 503 504 psQmfScale[psCh] = hQmfAnalysis[psCh]->outScalefactor; 505 506 } /* for psCh */ 507 508 C_ALLOC_SCRATCH_END(pWorkBuffer, FIXP_DBL, QMF_CHANNELS*4); 509 510 /* find best scaling in new QMF and Hybrid data */ 511 psFindBestScaling( hParametricStereo, 512 &hParametricStereo->pHybridData[HYBRID_READ_OFFSET], 513 hParametricStereo->dynBandScale, 514 hParametricStereo->maxBandValue, 515 &hParametricStereo->dmxScale ) ; 516 517 518 /* extract the ps parameters */ 519 if(PSENC_OK != (error = ExtractPSParameters(hParametricStereo, sendHeader, &hParametricStereo->pHybridData[0]))){ 520 goto bail; 521 } 522 523 /* save hybrid date for next frame */ 524 for (i=0; i<HYBRID_READ_OFFSET; i++) { 525 FDKmemcpy(hParametricStereo->pHybridData[i][0][0], hParametricStereo->pHybridData[HYBRID_FRAMESIZE+i][0][0], MAX_HYBRID_BANDS*sizeof(FIXP_DBL)); /* left, real */ 526 FDKmemcpy(hParametricStereo->pHybridData[i][0][1], hParametricStereo->pHybridData[HYBRID_FRAMESIZE+i][0][1], MAX_HYBRID_BANDS*sizeof(FIXP_DBL)); /* left, imag */ 527 FDKmemcpy(hParametricStereo->pHybridData[i][1][0], hParametricStereo->pHybridData[HYBRID_FRAMESIZE+i][1][0], MAX_HYBRID_BANDS*sizeof(FIXP_DBL)); /* right, real */ 528 FDKmemcpy(hParametricStereo->pHybridData[i][1][1], hParametricStereo->pHybridData[HYBRID_FRAMESIZE+i][1][1], MAX_HYBRID_BANDS*sizeof(FIXP_DBL)); /* right, imag */ 529 } 530 531 /* downmix and hybrid synthesis */ 532 if (PSENC_OK != (error = DownmixPSQmfData(hParametricStereo, sbrSynthQmf, downmixedRealQmfData, downmixedImagQmfData, downsampledOutSignal, &hParametricStereo->pHybridData[HYBRID_READ_OFFSET], hParametricStereo->noQmfSlots, psQmfScale, qmfScale))) { 533 goto bail; 534 } 535 536 bail: 537 538 return error; 539 } 540 541 static void psFindBestScaling( 542 HANDLE_PARAMETRIC_STEREO hParametricStereo, 543 FIXP_DBL *hybridData[HYBRID_FRAMESIZE][MAX_PS_CHANNELS][2], 544 UCHAR *dynBandScale, 545 FIXP_QMF *maxBandValue, 546 SCHAR *dmxScale 547 ) 548 { 549 HANDLE_PS_ENCODE hPsEncode = hParametricStereo->hPsEncode; 550 551 INT group, bin, col, band; 552 const INT frameSize = hParametricStereo->noQmfSlots; 553 const INT psBands = (INT) hPsEncode->psEncMode; 554 const INT nIidGroups = hPsEncode->nQmfIidGroups + hPsEncode->nSubQmfIidGroups; 555 556 /* group wise scaling */ 557 FIXP_QMF maxVal [2][PS_MAX_BANDS]; 558 FIXP_QMF maxValue = FL2FXCONST_DBL(0.f); 559 560 FDKmemclear(maxVal, sizeof(maxVal)); 561 562 /* start with hybrid data */ 563 for (group=0; group < nIidGroups; group++) { 564 /* Translate group to bin */ 565 bin = hPsEncode->subband2parameterIndex[group]; 566 567 /* Translate from 20 bins to 10 bins */ 568 if (hPsEncode->psEncMode == PS_BANDS_COARSE) { 569 bin >>= 1; 570 } 571 572 /* QMF downmix scaling */ 573 { 574 FIXP_QMF tmp = maxVal[0][bin]; 575 int i; 576 for (col=0; col<frameSize-HYBRID_READ_OFFSET; col++) { 577 for (i = hPsEncode->iidGroupBorders[group]; i < hPsEncode->iidGroupBorders[group+1]; i++) { 578 tmp = fixMax(tmp, (FIXP_QMF)fixp_abs(hybridData[col][0][0][i])); 579 tmp = fixMax(tmp, (FIXP_QMF)fixp_abs(hybridData[col][0][1][i])); 580 tmp = fixMax(tmp, (FIXP_QMF)fixp_abs(hybridData[col][1][0][i])); 581 tmp = fixMax(tmp, (FIXP_QMF)fixp_abs(hybridData[col][1][1][i])); 582 } 583 } 584 maxVal[0][bin] = tmp; 585 586 tmp = maxVal[1][bin]; 587 for (col=frameSize-HYBRID_READ_OFFSET; col<frameSize; col++) { 588 for (i = hPsEncode->iidGroupBorders[group]; i < hPsEncode->iidGroupBorders[group+1]; i++) { 589 tmp = fixMax(tmp, (FIXP_QMF)fixp_abs(hybridData[col][0][0][i])); 590 tmp = fixMax(tmp, (FIXP_QMF)fixp_abs(hybridData[col][0][1][i])); 591 tmp = fixMax(tmp, (FIXP_QMF)fixp_abs(hybridData[col][1][0][i])); 592 tmp = fixMax(tmp, (FIXP_QMF)fixp_abs(hybridData[col][1][1][i])); 593 } 594 } 595 maxVal[1][bin] = tmp; 596 } 597 } /* nIidGroups */ 598 599 /* convert maxSpec to maxScaling, find scaling space */ 600 for (band=0; band<psBands; band++) { 601 #ifndef MULT_16x16 602 dynBandScale[band] = CountLeadingBits(fixMax(maxVal[0][band],maxBandValue[band])); 603 #else 604 dynBandScale[band] = fixMax(0,CountLeadingBits(fixMax(maxVal[0][band],maxBandValue[band]))-FRACT_BITS); 605 #endif 606 maxValue = fixMax(maxValue,fixMax(maxVal[0][band],maxVal[1][band])); 607 maxBandValue[band] = fixMax(maxVal[0][band], maxVal[1][band]); 608 } 609 610 /* calculate maximal scaling for QMF downmix */ 611 #ifndef MULT_16x16 612 *dmxScale = fixMin(DFRACT_BITS, CountLeadingBits(maxValue)); 613 #else 614 *dmxScale = fixMax(0,fixMin(FRACT_BITS, CountLeadingBits(FX_QMF2FX_DBL(maxValue)))); 615 #endif 616 617 } 618 619