Home | History | Annotate | Download | only in nist
      1 NIST/ITL StRD
      2 Dataset Name:  MGH09             (MGH09.dat)
      3 
      4 File Format:   ASCII
      5                Starting Values   (lines 41 to 44)
      6                Certified Values  (lines 41 to 49)
      7                Data              (lines 61 to 71)
      8 
      9 Procedure:     Nonlinear Least Squares Regression
     10 
     11 Description:   This problem was found to be difficult for some very 
     12                good algorithms.  There is a local minimum at (+inf,
     13                -14.07..., -inf, -inf) with final sum of squares 
     14                0.00102734....
     15 
     16                See More, J. J., Garbow, B. S., and Hillstrom, K. E. 
     17                (1981).  Testing unconstrained optimization software.
     18                ACM Transactions on Mathematical Software. 7(1): 
     19                pp. 17-41.
     20 
     21 Reference:     Kowalik, J.S., and M. R. Osborne, (1978).  
     22                Methods for Unconstrained Optimization Problems.  
     23                New York, NY:  Elsevier North-Holland.
     24 
     25 Data:          1 Response  (y)
     26                1 Predictor (x)
     27                11 Observations
     28                Higher Level of Difficulty
     29                Generated Data
     30  
     31 Model:         Rational Class (linear/quadratic)
     32                4 Parameters (b1 to b4)
     33  
     34                y = b1*(x**2+x*b2) / (x**2+x*b3+b4)  +  e
     35  
     36 
     37  
     38           Starting values                  Certified Values
     39 
     40         Start 1     Start 2           Parameter     Standard Deviation
     41   b1 =   25          0.25          1.9280693458E-01  1.1435312227E-02
     42   b2 =   39          0.39          1.9128232873E-01  1.9633220911E-01
     43   b3 =   41.5        0.415         1.2305650693E-01  8.0842031232E-02
     44   b4 =   39          0.39          1.3606233068E-01  9.0025542308E-02
     45 
     46 Residual Sum of Squares:                    3.0750560385E-04
     47 Residual Standard Deviation:                6.6279236551E-03
     48 Degrees of Freedom:                                7
     49 Number of Observations:                           11
     50  
     51  
     52 
     53 
     54 
     55 
     56 
     57  
     58  
     59  
     60 Data:  y               x
     61        1.957000E-01    4.000000E+00
     62        1.947000E-01    2.000000E+00
     63        1.735000E-01    1.000000E+00
     64        1.600000E-01    5.000000E-01
     65        8.440000E-02    2.500000E-01
     66        6.270000E-02    1.670000E-01
     67        4.560000E-02    1.250000E-01
     68        3.420000E-02    1.000000E-01
     69        3.230000E-02    8.330000E-02
     70        2.350000E-02    7.140000E-02
     71        2.460000E-02    6.250000E-02
     72