Home | History | Annotate | Download | only in nist
      1 NIST/ITL StRD
      2 Dataset Name:  MGH10             (MGH10.dat)
      3 
      4 File Format:   ASCII
      5                Starting Values   (lines 41 to 43)
      6                Certified Values  (lines 41 to 48)
      7                Data              (lines 61 to 76)
      8 
      9 Procedure:     Nonlinear Least Squares Regression
     10 
     11 Description:   This problem was found to be difficult for some very
     12                good algorithms.
     13 
     14                See More, J. J., Garbow, B. S., and Hillstrom, K. E. 
     15                (1981).  Testing unconstrained optimization software.
     16                ACM Transactions on Mathematical Software. 7(1): 
     17                pp. 17-41.
     18 
     19 Reference:     Meyer, R. R. (1970).  
     20                Theoretical and computational aspects of nonlinear 
     21                regression.  In Nonlinear Programming, Rosen, 
     22                Mangasarian and Ritter (Eds).  
     23                New York, NY: Academic Press, pp. 465-486.
     24 
     25 Data:          1 Response  (y)
     26                1 Predictor (x)
     27                16 Observations
     28                Higher Level of Difficulty
     29                Generated Data
     30  
     31 Model:         Exponential Class
     32                3 Parameters (b1 to b3)
     33  
     34                y = b1 * exp[b2/(x+b3)]  +  e
     35 
     36 
     37 
     38           Starting values                  Certified Values
     39 
     40         Start 1     Start 2           Parameter     Standard Deviation
     41   b1 =        2         0.02       5.6096364710E-03  1.5687892471E-04
     42   b2 =   400000      4000          6.1813463463E+03  2.3309021107E+01
     43   b3 =    25000       250          3.4522363462E+02  7.8486103508E-01
     44 
     45 Residual Sum of Squares:                    8.7945855171E+01
     46 Residual Standard Deviation:                2.6009740065E+00
     47 Degrees of Freedom:                                13
     48 Number of Observations:                            16
     49 
     50 
     51 
     52 
     53 
     54 
     55 
     56 
     57 
     58 
     59 
     60 Data:  y               x
     61       3.478000E+04    5.000000E+01
     62       2.861000E+04    5.500000E+01
     63       2.365000E+04    6.000000E+01
     64       1.963000E+04    6.500000E+01
     65       1.637000E+04    7.000000E+01
     66       1.372000E+04    7.500000E+01
     67       1.154000E+04    8.000000E+01
     68       9.744000E+03    8.500000E+01
     69       8.261000E+03    9.000000E+01
     70       7.030000E+03    9.500000E+01
     71       6.005000E+03    1.000000E+02
     72       5.147000E+03    1.050000E+02
     73       4.427000E+03    1.100000E+02
     74       3.820000E+03    1.150000E+02
     75       3.307000E+03    1.200000E+02
     76       2.872000E+03    1.250000E+02
     77