1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Stmt nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "clang/Basic/PrettyStackTrace.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/InlineAsm.h" 24 #include "llvm/IR/Intrinsics.h" 25 using namespace clang; 26 using namespace CodeGen; 27 28 //===----------------------------------------------------------------------===// 29 // Statement Emission 30 //===----------------------------------------------------------------------===// 31 32 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 33 if (CGDebugInfo *DI = getDebugInfo()) { 34 SourceLocation Loc; 35 if (isa<DeclStmt>(S)) 36 Loc = S->getLocEnd(); 37 else 38 Loc = S->getLocStart(); 39 DI->EmitLocation(Builder, Loc); 40 } 41 } 42 43 void CodeGenFunction::EmitStmt(const Stmt *S) { 44 assert(S && "Null statement?"); 45 46 // These statements have their own debug info handling. 47 if (EmitSimpleStmt(S)) 48 return; 49 50 // Check if we are generating unreachable code. 51 if (!HaveInsertPoint()) { 52 // If so, and the statement doesn't contain a label, then we do not need to 53 // generate actual code. This is safe because (1) the current point is 54 // unreachable, so we don't need to execute the code, and (2) we've already 55 // handled the statements which update internal data structures (like the 56 // local variable map) which could be used by subsequent statements. 57 if (!ContainsLabel(S)) { 58 // Verify that any decl statements were handled as simple, they may be in 59 // scope of subsequent reachable statements. 60 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 61 return; 62 } 63 64 // Otherwise, make a new block to hold the code. 65 EnsureInsertPoint(); 66 } 67 68 // Generate a stoppoint if we are emitting debug info. 69 EmitStopPoint(S); 70 71 switch (S->getStmtClass()) { 72 case Stmt::NoStmtClass: 73 case Stmt::CXXCatchStmtClass: 74 case Stmt::SEHExceptStmtClass: 75 case Stmt::SEHFinallyStmtClass: 76 case Stmt::MSDependentExistsStmtClass: 77 llvm_unreachable("invalid statement class to emit generically"); 78 case Stmt::NullStmtClass: 79 case Stmt::CompoundStmtClass: 80 case Stmt::DeclStmtClass: 81 case Stmt::LabelStmtClass: 82 case Stmt::AttributedStmtClass: 83 case Stmt::GotoStmtClass: 84 case Stmt::BreakStmtClass: 85 case Stmt::ContinueStmtClass: 86 case Stmt::DefaultStmtClass: 87 case Stmt::CaseStmtClass: 88 llvm_unreachable("should have emitted these statements as simple"); 89 90 #define STMT(Type, Base) 91 #define ABSTRACT_STMT(Op) 92 #define EXPR(Type, Base) \ 93 case Stmt::Type##Class: 94 #include "clang/AST/StmtNodes.inc" 95 { 96 // Remember the block we came in on. 97 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 98 assert(incoming && "expression emission must have an insertion point"); 99 100 EmitIgnoredExpr(cast<Expr>(S)); 101 102 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 103 assert(outgoing && "expression emission cleared block!"); 104 105 // The expression emitters assume (reasonably!) that the insertion 106 // point is always set. To maintain that, the call-emission code 107 // for noreturn functions has to enter a new block with no 108 // predecessors. We want to kill that block and mark the current 109 // insertion point unreachable in the common case of a call like 110 // "exit();". Since expression emission doesn't otherwise create 111 // blocks with no predecessors, we can just test for that. 112 // However, we must be careful not to do this to our incoming 113 // block, because *statement* emission does sometimes create 114 // reachable blocks which will have no predecessors until later in 115 // the function. This occurs with, e.g., labels that are not 116 // reachable by fallthrough. 117 if (incoming != outgoing && outgoing->use_empty()) { 118 outgoing->eraseFromParent(); 119 Builder.ClearInsertionPoint(); 120 } 121 break; 122 } 123 124 case Stmt::IndirectGotoStmtClass: 125 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 126 127 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 128 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S)); break; 129 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S)); break; 130 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S)); break; 131 132 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 133 134 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 135 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 136 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 137 138 case Stmt::ObjCAtTryStmtClass: 139 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 140 break; 141 case Stmt::ObjCAtCatchStmtClass: 142 llvm_unreachable( 143 "@catch statements should be handled by EmitObjCAtTryStmt"); 144 case Stmt::ObjCAtFinallyStmtClass: 145 llvm_unreachable( 146 "@finally statements should be handled by EmitObjCAtTryStmt"); 147 case Stmt::ObjCAtThrowStmtClass: 148 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 149 break; 150 case Stmt::ObjCAtSynchronizedStmtClass: 151 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 152 break; 153 case Stmt::ObjCForCollectionStmtClass: 154 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 155 break; 156 case Stmt::ObjCAutoreleasePoolStmtClass: 157 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 158 break; 159 160 case Stmt::CXXTryStmtClass: 161 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 162 break; 163 case Stmt::CXXForRangeStmtClass: 164 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S)); 165 case Stmt::SEHTryStmtClass: 166 // FIXME Not yet implemented 167 break; 168 } 169 } 170 171 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { 172 switch (S->getStmtClass()) { 173 default: return false; 174 case Stmt::NullStmtClass: break; 175 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; 176 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break; 177 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break; 178 case Stmt::AttributedStmtClass: 179 EmitAttributedStmt(cast<AttributedStmt>(*S)); break; 180 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break; 181 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break; 182 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; 183 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break; 184 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break; 185 } 186 187 return true; 188 } 189 190 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 191 /// this captures the expression result of the last sub-statement and returns it 192 /// (for use by the statement expression extension). 193 RValue CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 194 AggValueSlot AggSlot) { 195 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 196 "LLVM IR generation of compound statement ('{}')"); 197 198 // Keep track of the current cleanup stack depth, including debug scopes. 199 LexicalScope Scope(*this, S.getSourceRange()); 200 201 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 202 } 203 204 RValue CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, bool GetLast, 205 AggValueSlot AggSlot) { 206 207 for (CompoundStmt::const_body_iterator I = S.body_begin(), 208 E = S.body_end()-GetLast; I != E; ++I) 209 EmitStmt(*I); 210 211 RValue RV; 212 if (!GetLast) 213 RV = RValue::get(0); 214 else { 215 // We have to special case labels here. They are statements, but when put 216 // at the end of a statement expression, they yield the value of their 217 // subexpression. Handle this by walking through all labels we encounter, 218 // emitting them before we evaluate the subexpr. 219 const Stmt *LastStmt = S.body_back(); 220 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) { 221 EmitLabel(LS->getDecl()); 222 LastStmt = LS->getSubStmt(); 223 } 224 225 EnsureInsertPoint(); 226 227 RV = EmitAnyExpr(cast<Expr>(LastStmt), AggSlot); 228 } 229 230 return RV; 231 } 232 233 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 234 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 235 236 // If there is a cleanup stack, then we it isn't worth trying to 237 // simplify this block (we would need to remove it from the scope map 238 // and cleanup entry). 239 if (!EHStack.empty()) 240 return; 241 242 // Can only simplify direct branches. 243 if (!BI || !BI->isUnconditional()) 244 return; 245 246 // Can only simplify empty blocks. 247 if (BI != BB->begin()) 248 return; 249 250 BB->replaceAllUsesWith(BI->getSuccessor(0)); 251 BI->eraseFromParent(); 252 BB->eraseFromParent(); 253 } 254 255 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 256 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 257 258 // Fall out of the current block (if necessary). 259 EmitBranch(BB); 260 261 if (IsFinished && BB->use_empty()) { 262 delete BB; 263 return; 264 } 265 266 // Place the block after the current block, if possible, or else at 267 // the end of the function. 268 if (CurBB && CurBB->getParent()) 269 CurFn->getBasicBlockList().insertAfter(CurBB, BB); 270 else 271 CurFn->getBasicBlockList().push_back(BB); 272 Builder.SetInsertPoint(BB); 273 } 274 275 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 276 // Emit a branch from the current block to the target one if this 277 // was a real block. If this was just a fall-through block after a 278 // terminator, don't emit it. 279 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 280 281 if (!CurBB || CurBB->getTerminator()) { 282 // If there is no insert point or the previous block is already 283 // terminated, don't touch it. 284 } else { 285 // Otherwise, create a fall-through branch. 286 Builder.CreateBr(Target); 287 } 288 289 Builder.ClearInsertionPoint(); 290 } 291 292 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 293 bool inserted = false; 294 for (llvm::BasicBlock::use_iterator 295 i = block->use_begin(), e = block->use_end(); i != e; ++i) { 296 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(*i)) { 297 CurFn->getBasicBlockList().insertAfter(insn->getParent(), block); 298 inserted = true; 299 break; 300 } 301 } 302 303 if (!inserted) 304 CurFn->getBasicBlockList().push_back(block); 305 306 Builder.SetInsertPoint(block); 307 } 308 309 CodeGenFunction::JumpDest 310 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 311 JumpDest &Dest = LabelMap[D]; 312 if (Dest.isValid()) return Dest; 313 314 // Create, but don't insert, the new block. 315 Dest = JumpDest(createBasicBlock(D->getName()), 316 EHScopeStack::stable_iterator::invalid(), 317 NextCleanupDestIndex++); 318 return Dest; 319 } 320 321 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 322 JumpDest &Dest = LabelMap[D]; 323 324 // If we didn't need a forward reference to this label, just go 325 // ahead and create a destination at the current scope. 326 if (!Dest.isValid()) { 327 Dest = getJumpDestInCurrentScope(D->getName()); 328 329 // Otherwise, we need to give this label a target depth and remove 330 // it from the branch-fixups list. 331 } else { 332 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 333 Dest = JumpDest(Dest.getBlock(), 334 EHStack.stable_begin(), 335 Dest.getDestIndex()); 336 337 ResolveBranchFixups(Dest.getBlock()); 338 } 339 340 EmitBlock(Dest.getBlock()); 341 } 342 343 344 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 345 EmitLabel(S.getDecl()); 346 EmitStmt(S.getSubStmt()); 347 } 348 349 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 350 EmitStmt(S.getSubStmt()); 351 } 352 353 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 354 // If this code is reachable then emit a stop point (if generating 355 // debug info). We have to do this ourselves because we are on the 356 // "simple" statement path. 357 if (HaveInsertPoint()) 358 EmitStopPoint(&S); 359 360 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 361 } 362 363 364 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 365 if (const LabelDecl *Target = S.getConstantTarget()) { 366 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 367 return; 368 } 369 370 // Ensure that we have an i8* for our PHI node. 371 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 372 Int8PtrTy, "addr"); 373 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 374 375 // Get the basic block for the indirect goto. 376 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 377 378 // The first instruction in the block has to be the PHI for the switch dest, 379 // add an entry for this branch. 380 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 381 382 EmitBranch(IndGotoBB); 383 } 384 385 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 386 // C99 6.8.4.1: The first substatement is executed if the expression compares 387 // unequal to 0. The condition must be a scalar type. 388 RunCleanupsScope ConditionScope(*this); 389 390 if (S.getConditionVariable()) 391 EmitAutoVarDecl(*S.getConditionVariable()); 392 393 // If the condition constant folds and can be elided, try to avoid emitting 394 // the condition and the dead arm of the if/else. 395 bool CondConstant; 396 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) { 397 // Figure out which block (then or else) is executed. 398 const Stmt *Executed = S.getThen(); 399 const Stmt *Skipped = S.getElse(); 400 if (!CondConstant) // Condition false? 401 std::swap(Executed, Skipped); 402 403 // If the skipped block has no labels in it, just emit the executed block. 404 // This avoids emitting dead code and simplifies the CFG substantially. 405 if (!ContainsLabel(Skipped)) { 406 if (Executed) { 407 RunCleanupsScope ExecutedScope(*this); 408 EmitStmt(Executed); 409 } 410 return; 411 } 412 } 413 414 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 415 // the conditional branch. 416 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 417 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 418 llvm::BasicBlock *ElseBlock = ContBlock; 419 if (S.getElse()) 420 ElseBlock = createBasicBlock("if.else"); 421 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock); 422 423 // Emit the 'then' code. 424 EmitBlock(ThenBlock); 425 { 426 RunCleanupsScope ThenScope(*this); 427 EmitStmt(S.getThen()); 428 } 429 EmitBranch(ContBlock); 430 431 // Emit the 'else' code if present. 432 if (const Stmt *Else = S.getElse()) { 433 // There is no need to emit line number for unconditional branch. 434 if (getDebugInfo()) 435 Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 436 EmitBlock(ElseBlock); 437 { 438 RunCleanupsScope ElseScope(*this); 439 EmitStmt(Else); 440 } 441 // There is no need to emit line number for unconditional branch. 442 if (getDebugInfo()) 443 Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 444 EmitBranch(ContBlock); 445 } 446 447 // Emit the continuation block for code after the if. 448 EmitBlock(ContBlock, true); 449 } 450 451 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) { 452 // Emit the header for the loop, which will also become 453 // the continue target. 454 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 455 EmitBlock(LoopHeader.getBlock()); 456 457 // Create an exit block for when the condition fails, which will 458 // also become the break target. 459 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 460 461 // Store the blocks to use for break and continue. 462 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 463 464 // C++ [stmt.while]p2: 465 // When the condition of a while statement is a declaration, the 466 // scope of the variable that is declared extends from its point 467 // of declaration (3.3.2) to the end of the while statement. 468 // [...] 469 // The object created in a condition is destroyed and created 470 // with each iteration of the loop. 471 RunCleanupsScope ConditionScope(*this); 472 473 if (S.getConditionVariable()) 474 EmitAutoVarDecl(*S.getConditionVariable()); 475 476 // Evaluate the conditional in the while header. C99 6.8.5.1: The 477 // evaluation of the controlling expression takes place before each 478 // execution of the loop body. 479 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 480 481 // while(1) is common, avoid extra exit blocks. Be sure 482 // to correctly handle break/continue though. 483 bool EmitBoolCondBranch = true; 484 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 485 if (C->isOne()) 486 EmitBoolCondBranch = false; 487 488 // As long as the condition is true, go to the loop body. 489 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 490 if (EmitBoolCondBranch) { 491 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 492 if (ConditionScope.requiresCleanups()) 493 ExitBlock = createBasicBlock("while.exit"); 494 495 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 496 497 if (ExitBlock != LoopExit.getBlock()) { 498 EmitBlock(ExitBlock); 499 EmitBranchThroughCleanup(LoopExit); 500 } 501 } 502 503 // Emit the loop body. We have to emit this in a cleanup scope 504 // because it might be a singleton DeclStmt. 505 { 506 RunCleanupsScope BodyScope(*this); 507 EmitBlock(LoopBody); 508 EmitStmt(S.getBody()); 509 } 510 511 BreakContinueStack.pop_back(); 512 513 // Immediately force cleanup. 514 ConditionScope.ForceCleanup(); 515 516 // Branch to the loop header again. 517 EmitBranch(LoopHeader.getBlock()); 518 519 // Emit the exit block. 520 EmitBlock(LoopExit.getBlock(), true); 521 522 // The LoopHeader typically is just a branch if we skipped emitting 523 // a branch, try to erase it. 524 if (!EmitBoolCondBranch) 525 SimplifyForwardingBlocks(LoopHeader.getBlock()); 526 } 527 528 void CodeGenFunction::EmitDoStmt(const DoStmt &S) { 529 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 530 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 531 532 // Store the blocks to use for break and continue. 533 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 534 535 // Emit the body of the loop. 536 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 537 EmitBlock(LoopBody); 538 { 539 RunCleanupsScope BodyScope(*this); 540 EmitStmt(S.getBody()); 541 } 542 543 BreakContinueStack.pop_back(); 544 545 EmitBlock(LoopCond.getBlock()); 546 547 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 548 // after each execution of the loop body." 549 550 // Evaluate the conditional in the while header. 551 // C99 6.8.5p2/p4: The first substatement is executed if the expression 552 // compares unequal to 0. The condition must be a scalar type. 553 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 554 555 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 556 // to correctly handle break/continue though. 557 bool EmitBoolCondBranch = true; 558 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 559 if (C->isZero()) 560 EmitBoolCondBranch = false; 561 562 // As long as the condition is true, iterate the loop. 563 if (EmitBoolCondBranch) 564 Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock()); 565 566 // Emit the exit block. 567 EmitBlock(LoopExit.getBlock()); 568 569 // The DoCond block typically is just a branch if we skipped 570 // emitting a branch, try to erase it. 571 if (!EmitBoolCondBranch) 572 SimplifyForwardingBlocks(LoopCond.getBlock()); 573 } 574 575 void CodeGenFunction::EmitForStmt(const ForStmt &S) { 576 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 577 578 RunCleanupsScope ForScope(*this); 579 580 CGDebugInfo *DI = getDebugInfo(); 581 if (DI) 582 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 583 584 // Evaluate the first part before the loop. 585 if (S.getInit()) 586 EmitStmt(S.getInit()); 587 588 // Start the loop with a block that tests the condition. 589 // If there's an increment, the continue scope will be overwritten 590 // later. 591 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 592 llvm::BasicBlock *CondBlock = Continue.getBlock(); 593 EmitBlock(CondBlock); 594 595 // Create a cleanup scope for the condition variable cleanups. 596 RunCleanupsScope ConditionScope(*this); 597 598 llvm::Value *BoolCondVal = 0; 599 if (S.getCond()) { 600 // If the for statement has a condition scope, emit the local variable 601 // declaration. 602 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 603 if (S.getConditionVariable()) { 604 EmitAutoVarDecl(*S.getConditionVariable()); 605 } 606 607 // If there are any cleanups between here and the loop-exit scope, 608 // create a block to stage a loop exit along. 609 if (ForScope.requiresCleanups()) 610 ExitBlock = createBasicBlock("for.cond.cleanup"); 611 612 // As long as the condition is true, iterate the loop. 613 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 614 615 // C99 6.8.5p2/p4: The first substatement is executed if the expression 616 // compares unequal to 0. The condition must be a scalar type. 617 BoolCondVal = EvaluateExprAsBool(S.getCond()); 618 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock); 619 620 if (ExitBlock != LoopExit.getBlock()) { 621 EmitBlock(ExitBlock); 622 EmitBranchThroughCleanup(LoopExit); 623 } 624 625 EmitBlock(ForBody); 626 } else { 627 // Treat it as a non-zero constant. Don't even create a new block for the 628 // body, just fall into it. 629 } 630 631 // If the for loop doesn't have an increment we can just use the 632 // condition as the continue block. Otherwise we'll need to create 633 // a block for it (in the current scope, i.e. in the scope of the 634 // condition), and that we will become our continue block. 635 if (S.getInc()) 636 Continue = getJumpDestInCurrentScope("for.inc"); 637 638 // Store the blocks to use for break and continue. 639 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 640 641 { 642 // Create a separate cleanup scope for the body, in case it is not 643 // a compound statement. 644 RunCleanupsScope BodyScope(*this); 645 EmitStmt(S.getBody()); 646 } 647 648 // If there is an increment, emit it next. 649 if (S.getInc()) { 650 EmitBlock(Continue.getBlock()); 651 EmitStmt(S.getInc()); 652 } 653 654 BreakContinueStack.pop_back(); 655 656 ConditionScope.ForceCleanup(); 657 EmitBranch(CondBlock); 658 659 ForScope.ForceCleanup(); 660 661 if (DI) 662 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 663 664 // Emit the fall-through block. 665 EmitBlock(LoopExit.getBlock(), true); 666 } 667 668 void CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S) { 669 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 670 671 RunCleanupsScope ForScope(*this); 672 673 CGDebugInfo *DI = getDebugInfo(); 674 if (DI) 675 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 676 677 // Evaluate the first pieces before the loop. 678 EmitStmt(S.getRangeStmt()); 679 EmitStmt(S.getBeginEndStmt()); 680 681 // Start the loop with a block that tests the condition. 682 // If there's an increment, the continue scope will be overwritten 683 // later. 684 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 685 EmitBlock(CondBlock); 686 687 // If there are any cleanups between here and the loop-exit scope, 688 // create a block to stage a loop exit along. 689 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 690 if (ForScope.requiresCleanups()) 691 ExitBlock = createBasicBlock("for.cond.cleanup"); 692 693 // The loop body, consisting of the specified body and the loop variable. 694 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 695 696 // The body is executed if the expression, contextually converted 697 // to bool, is true. 698 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 699 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock); 700 701 if (ExitBlock != LoopExit.getBlock()) { 702 EmitBlock(ExitBlock); 703 EmitBranchThroughCleanup(LoopExit); 704 } 705 706 EmitBlock(ForBody); 707 708 // Create a block for the increment. In case of a 'continue', we jump there. 709 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 710 711 // Store the blocks to use for break and continue. 712 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 713 714 { 715 // Create a separate cleanup scope for the loop variable and body. 716 RunCleanupsScope BodyScope(*this); 717 EmitStmt(S.getLoopVarStmt()); 718 EmitStmt(S.getBody()); 719 } 720 721 // If there is an increment, emit it next. 722 EmitBlock(Continue.getBlock()); 723 EmitStmt(S.getInc()); 724 725 BreakContinueStack.pop_back(); 726 727 EmitBranch(CondBlock); 728 729 ForScope.ForceCleanup(); 730 731 if (DI) 732 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 733 734 // Emit the fall-through block. 735 EmitBlock(LoopExit.getBlock(), true); 736 } 737 738 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 739 if (RV.isScalar()) { 740 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 741 } else if (RV.isAggregate()) { 742 EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty); 743 } else { 744 EmitStoreOfComplex(RV.getComplexVal(), 745 MakeNaturalAlignAddrLValue(ReturnValue, Ty), 746 /*init*/ true); 747 } 748 EmitBranchThroughCleanup(ReturnBlock); 749 } 750 751 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 752 /// if the function returns void, or may be missing one if the function returns 753 /// non-void. Fun stuff :). 754 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 755 // Emit the result value, even if unused, to evalute the side effects. 756 const Expr *RV = S.getRetValue(); 757 758 // Treat block literals in a return expression as if they appeared 759 // in their own scope. This permits a small, easily-implemented 760 // exception to our over-conservative rules about not jumping to 761 // statements following block literals with non-trivial cleanups. 762 RunCleanupsScope cleanupScope(*this); 763 if (const ExprWithCleanups *cleanups = 764 dyn_cast_or_null<ExprWithCleanups>(RV)) { 765 enterFullExpression(cleanups); 766 RV = cleanups->getSubExpr(); 767 } 768 769 // FIXME: Clean this up by using an LValue for ReturnTemp, 770 // EmitStoreThroughLValue, and EmitAnyExpr. 771 if (S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable() && 772 !Target.useGlobalsForAutomaticVariables()) { 773 // Apply the named return value optimization for this return statement, 774 // which means doing nothing: the appropriate result has already been 775 // constructed into the NRVO variable. 776 777 // If there is an NRVO flag for this variable, set it to 1 into indicate 778 // that the cleanup code should not destroy the variable. 779 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 780 Builder.CreateStore(Builder.getTrue(), NRVOFlag); 781 } else if (!ReturnValue) { 782 // Make sure not to return anything, but evaluate the expression 783 // for side effects. 784 if (RV) 785 EmitAnyExpr(RV); 786 } else if (RV == 0) { 787 // Do nothing (return value is left uninitialized) 788 } else if (FnRetTy->isReferenceType()) { 789 // If this function returns a reference, take the address of the expression 790 // rather than the value. 791 RValue Result = EmitReferenceBindingToExpr(RV, /*InitializedDecl=*/0); 792 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 793 } else { 794 switch (getEvaluationKind(RV->getType())) { 795 case TEK_Scalar: 796 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 797 break; 798 case TEK_Complex: 799 EmitComplexExprIntoLValue(RV, 800 MakeNaturalAlignAddrLValue(ReturnValue, RV->getType()), 801 /*isInit*/ true); 802 break; 803 case TEK_Aggregate: { 804 CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType()); 805 EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment, 806 Qualifiers(), 807 AggValueSlot::IsDestructed, 808 AggValueSlot::DoesNotNeedGCBarriers, 809 AggValueSlot::IsNotAliased)); 810 break; 811 } 812 } 813 } 814 815 cleanupScope.ForceCleanup(); 816 EmitBranchThroughCleanup(ReturnBlock); 817 } 818 819 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 820 // As long as debug info is modeled with instructions, we have to ensure we 821 // have a place to insert here and write the stop point here. 822 if (HaveInsertPoint()) 823 EmitStopPoint(&S); 824 825 for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end(); 826 I != E; ++I) 827 EmitDecl(**I); 828 } 829 830 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 831 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 832 833 // If this code is reachable then emit a stop point (if generating 834 // debug info). We have to do this ourselves because we are on the 835 // "simple" statement path. 836 if (HaveInsertPoint()) 837 EmitStopPoint(&S); 838 839 JumpDest Block = BreakContinueStack.back().BreakBlock; 840 EmitBranchThroughCleanup(Block); 841 } 842 843 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 844 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 845 846 // If this code is reachable then emit a stop point (if generating 847 // debug info). We have to do this ourselves because we are on the 848 // "simple" statement path. 849 if (HaveInsertPoint()) 850 EmitStopPoint(&S); 851 852 JumpDest Block = BreakContinueStack.back().ContinueBlock; 853 EmitBranchThroughCleanup(Block); 854 } 855 856 /// EmitCaseStmtRange - If case statement range is not too big then 857 /// add multiple cases to switch instruction, one for each value within 858 /// the range. If range is too big then emit "if" condition check. 859 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { 860 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 861 862 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 863 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 864 865 // Emit the code for this case. We do this first to make sure it is 866 // properly chained from our predecessor before generating the 867 // switch machinery to enter this block. 868 EmitBlock(createBasicBlock("sw.bb")); 869 llvm::BasicBlock *CaseDest = Builder.GetInsertBlock(); 870 EmitStmt(S.getSubStmt()); 871 872 // If range is empty, do nothing. 873 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 874 return; 875 876 llvm::APInt Range = RHS - LHS; 877 // FIXME: parameters such as this should not be hardcoded. 878 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 879 // Range is small enough to add multiple switch instruction cases. 880 for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) { 881 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 882 LHS++; 883 } 884 return; 885 } 886 887 // The range is too big. Emit "if" condition into a new block, 888 // making sure to save and restore the current insertion point. 889 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 890 891 // Push this test onto the chain of range checks (which terminates 892 // in the default basic block). The switch's default will be changed 893 // to the top of this chain after switch emission is complete. 894 llvm::BasicBlock *FalseDest = CaseRangeBlock; 895 CaseRangeBlock = createBasicBlock("sw.caserange"); 896 897 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 898 Builder.SetInsertPoint(CaseRangeBlock); 899 900 // Emit range check. 901 llvm::Value *Diff = 902 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 903 llvm::Value *Cond = 904 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 905 Builder.CreateCondBr(Cond, CaseDest, FalseDest); 906 907 // Restore the appropriate insertion point. 908 if (RestoreBB) 909 Builder.SetInsertPoint(RestoreBB); 910 else 911 Builder.ClearInsertionPoint(); 912 } 913 914 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { 915 // If there is no enclosing switch instance that we're aware of, then this 916 // case statement and its block can be elided. This situation only happens 917 // when we've constant-folded the switch, are emitting the constant case, 918 // and part of the constant case includes another case statement. For 919 // instance: switch (4) { case 4: do { case 5: } while (1); } 920 if (!SwitchInsn) { 921 EmitStmt(S.getSubStmt()); 922 return; 923 } 924 925 // Handle case ranges. 926 if (S.getRHS()) { 927 EmitCaseStmtRange(S); 928 return; 929 } 930 931 llvm::ConstantInt *CaseVal = 932 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 933 934 // If the body of the case is just a 'break', and if there was no fallthrough, 935 // try to not emit an empty block. 936 if ((CGM.getCodeGenOpts().OptimizationLevel > 0) && 937 isa<BreakStmt>(S.getSubStmt())) { 938 JumpDest Block = BreakContinueStack.back().BreakBlock; 939 940 // Only do this optimization if there are no cleanups that need emitting. 941 if (isObviouslyBranchWithoutCleanups(Block)) { 942 SwitchInsn->addCase(CaseVal, Block.getBlock()); 943 944 // If there was a fallthrough into this case, make sure to redirect it to 945 // the end of the switch as well. 946 if (Builder.GetInsertBlock()) { 947 Builder.CreateBr(Block.getBlock()); 948 Builder.ClearInsertionPoint(); 949 } 950 return; 951 } 952 } 953 954 EmitBlock(createBasicBlock("sw.bb")); 955 llvm::BasicBlock *CaseDest = Builder.GetInsertBlock(); 956 SwitchInsn->addCase(CaseVal, CaseDest); 957 958 // Recursively emitting the statement is acceptable, but is not wonderful for 959 // code where we have many case statements nested together, i.e.: 960 // case 1: 961 // case 2: 962 // case 3: etc. 963 // Handling this recursively will create a new block for each case statement 964 // that falls through to the next case which is IR intensive. It also causes 965 // deep recursion which can run into stack depth limitations. Handle 966 // sequential non-range case statements specially. 967 const CaseStmt *CurCase = &S; 968 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 969 970 // Otherwise, iteratively add consecutive cases to this switch stmt. 971 while (NextCase && NextCase->getRHS() == 0) { 972 CurCase = NextCase; 973 llvm::ConstantInt *CaseVal = 974 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 975 SwitchInsn->addCase(CaseVal, CaseDest); 976 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 977 } 978 979 // Normal default recursion for non-cases. 980 EmitStmt(CurCase->getSubStmt()); 981 } 982 983 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { 984 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 985 assert(DefaultBlock->empty() && 986 "EmitDefaultStmt: Default block already defined?"); 987 EmitBlock(DefaultBlock); 988 EmitStmt(S.getSubStmt()); 989 } 990 991 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 992 /// constant value that is being switched on, see if we can dead code eliminate 993 /// the body of the switch to a simple series of statements to emit. Basically, 994 /// on a switch (5) we want to find these statements: 995 /// case 5: 996 /// printf(...); <-- 997 /// ++i; <-- 998 /// break; 999 /// 1000 /// and add them to the ResultStmts vector. If it is unsafe to do this 1001 /// transformation (for example, one of the elided statements contains a label 1002 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1003 /// should include statements after it (e.g. the printf() line is a substmt of 1004 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1005 /// statement, then return CSFC_Success. 1006 /// 1007 /// If Case is non-null, then we are looking for the specified case, checking 1008 /// that nothing we jump over contains labels. If Case is null, then we found 1009 /// the case and are looking for the break. 1010 /// 1011 /// If the recursive walk actually finds our Case, then we set FoundCase to 1012 /// true. 1013 /// 1014 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1015 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1016 const SwitchCase *Case, 1017 bool &FoundCase, 1018 SmallVectorImpl<const Stmt*> &ResultStmts) { 1019 // If this is a null statement, just succeed. 1020 if (S == 0) 1021 return Case ? CSFC_Success : CSFC_FallThrough; 1022 1023 // If this is the switchcase (case 4: or default) that we're looking for, then 1024 // we're in business. Just add the substatement. 1025 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1026 if (S == Case) { 1027 FoundCase = true; 1028 return CollectStatementsForCase(SC->getSubStmt(), 0, FoundCase, 1029 ResultStmts); 1030 } 1031 1032 // Otherwise, this is some other case or default statement, just ignore it. 1033 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1034 ResultStmts); 1035 } 1036 1037 // If we are in the live part of the code and we found our break statement, 1038 // return a success! 1039 if (Case == 0 && isa<BreakStmt>(S)) 1040 return CSFC_Success; 1041 1042 // If this is a switch statement, then it might contain the SwitchCase, the 1043 // break, or neither. 1044 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1045 // Handle this as two cases: we might be looking for the SwitchCase (if so 1046 // the skipped statements must be skippable) or we might already have it. 1047 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1048 if (Case) { 1049 // Keep track of whether we see a skipped declaration. The code could be 1050 // using the declaration even if it is skipped, so we can't optimize out 1051 // the decl if the kept statements might refer to it. 1052 bool HadSkippedDecl = false; 1053 1054 // If we're looking for the case, just see if we can skip each of the 1055 // substatements. 1056 for (; Case && I != E; ++I) { 1057 HadSkippedDecl |= isa<DeclStmt>(*I); 1058 1059 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1060 case CSFC_Failure: return CSFC_Failure; 1061 case CSFC_Success: 1062 // A successful result means that either 1) that the statement doesn't 1063 // have the case and is skippable, or 2) does contain the case value 1064 // and also contains the break to exit the switch. In the later case, 1065 // we just verify the rest of the statements are elidable. 1066 if (FoundCase) { 1067 // If we found the case and skipped declarations, we can't do the 1068 // optimization. 1069 if (HadSkippedDecl) 1070 return CSFC_Failure; 1071 1072 for (++I; I != E; ++I) 1073 if (CodeGenFunction::ContainsLabel(*I, true)) 1074 return CSFC_Failure; 1075 return CSFC_Success; 1076 } 1077 break; 1078 case CSFC_FallThrough: 1079 // If we have a fallthrough condition, then we must have found the 1080 // case started to include statements. Consider the rest of the 1081 // statements in the compound statement as candidates for inclusion. 1082 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1083 // We recursively found Case, so we're not looking for it anymore. 1084 Case = 0; 1085 1086 // If we found the case and skipped declarations, we can't do the 1087 // optimization. 1088 if (HadSkippedDecl) 1089 return CSFC_Failure; 1090 break; 1091 } 1092 } 1093 } 1094 1095 // If we have statements in our range, then we know that the statements are 1096 // live and need to be added to the set of statements we're tracking. 1097 for (; I != E; ++I) { 1098 switch (CollectStatementsForCase(*I, 0, FoundCase, ResultStmts)) { 1099 case CSFC_Failure: return CSFC_Failure; 1100 case CSFC_FallThrough: 1101 // A fallthrough result means that the statement was simple and just 1102 // included in ResultStmt, keep adding them afterwards. 1103 break; 1104 case CSFC_Success: 1105 // A successful result means that we found the break statement and 1106 // stopped statement inclusion. We just ensure that any leftover stmts 1107 // are skippable and return success ourselves. 1108 for (++I; I != E; ++I) 1109 if (CodeGenFunction::ContainsLabel(*I, true)) 1110 return CSFC_Failure; 1111 return CSFC_Success; 1112 } 1113 } 1114 1115 return Case ? CSFC_Success : CSFC_FallThrough; 1116 } 1117 1118 // Okay, this is some other statement that we don't handle explicitly, like a 1119 // for statement or increment etc. If we are skipping over this statement, 1120 // just verify it doesn't have labels, which would make it invalid to elide. 1121 if (Case) { 1122 if (CodeGenFunction::ContainsLabel(S, true)) 1123 return CSFC_Failure; 1124 return CSFC_Success; 1125 } 1126 1127 // Otherwise, we want to include this statement. Everything is cool with that 1128 // so long as it doesn't contain a break out of the switch we're in. 1129 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1130 1131 // Otherwise, everything is great. Include the statement and tell the caller 1132 // that we fall through and include the next statement as well. 1133 ResultStmts.push_back(S); 1134 return CSFC_FallThrough; 1135 } 1136 1137 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1138 /// then invoke CollectStatementsForCase to find the list of statements to emit 1139 /// for a switch on constant. See the comment above CollectStatementsForCase 1140 /// for more details. 1141 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1142 const llvm::APSInt &ConstantCondValue, 1143 SmallVectorImpl<const Stmt*> &ResultStmts, 1144 ASTContext &C) { 1145 // First step, find the switch case that is being branched to. We can do this 1146 // efficiently by scanning the SwitchCase list. 1147 const SwitchCase *Case = S.getSwitchCaseList(); 1148 const DefaultStmt *DefaultCase = 0; 1149 1150 for (; Case; Case = Case->getNextSwitchCase()) { 1151 // It's either a default or case. Just remember the default statement in 1152 // case we're not jumping to any numbered cases. 1153 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1154 DefaultCase = DS; 1155 continue; 1156 } 1157 1158 // Check to see if this case is the one we're looking for. 1159 const CaseStmt *CS = cast<CaseStmt>(Case); 1160 // Don't handle case ranges yet. 1161 if (CS->getRHS()) return false; 1162 1163 // If we found our case, remember it as 'case'. 1164 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1165 break; 1166 } 1167 1168 // If we didn't find a matching case, we use a default if it exists, or we 1169 // elide the whole switch body! 1170 if (Case == 0) { 1171 // It is safe to elide the body of the switch if it doesn't contain labels 1172 // etc. If it is safe, return successfully with an empty ResultStmts list. 1173 if (DefaultCase == 0) 1174 return !CodeGenFunction::ContainsLabel(&S); 1175 Case = DefaultCase; 1176 } 1177 1178 // Ok, we know which case is being jumped to, try to collect all the 1179 // statements that follow it. This can fail for a variety of reasons. Also, 1180 // check to see that the recursive walk actually found our case statement. 1181 // Insane cases like this can fail to find it in the recursive walk since we 1182 // don't handle every stmt kind: 1183 // switch (4) { 1184 // while (1) { 1185 // case 4: ... 1186 bool FoundCase = false; 1187 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1188 ResultStmts) != CSFC_Failure && 1189 FoundCase; 1190 } 1191 1192 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1193 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1194 1195 RunCleanupsScope ConditionScope(*this); 1196 1197 if (S.getConditionVariable()) 1198 EmitAutoVarDecl(*S.getConditionVariable()); 1199 1200 // Handle nested switch statements. 1201 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1202 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1203 1204 // See if we can constant fold the condition of the switch and therefore only 1205 // emit the live case statement (if any) of the switch. 1206 llvm::APSInt ConstantCondValue; 1207 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1208 SmallVector<const Stmt*, 4> CaseStmts; 1209 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1210 getContext())) { 1211 RunCleanupsScope ExecutedScope(*this); 1212 1213 // At this point, we are no longer "within" a switch instance, so 1214 // we can temporarily enforce this to ensure that any embedded case 1215 // statements are not emitted. 1216 SwitchInsn = 0; 1217 1218 // Okay, we can dead code eliminate everything except this case. Emit the 1219 // specified series of statements and we're good. 1220 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1221 EmitStmt(CaseStmts[i]); 1222 1223 // Now we want to restore the saved switch instance so that nested 1224 // switches continue to function properly 1225 SwitchInsn = SavedSwitchInsn; 1226 1227 return; 1228 } 1229 } 1230 1231 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1232 1233 // Create basic block to hold stuff that comes after switch 1234 // statement. We also need to create a default block now so that 1235 // explicit case ranges tests can have a place to jump to on 1236 // failure. 1237 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1238 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1239 CaseRangeBlock = DefaultBlock; 1240 1241 // Clear the insertion point to indicate we are in unreachable code. 1242 Builder.ClearInsertionPoint(); 1243 1244 // All break statements jump to NextBlock. If BreakContinueStack is non empty 1245 // then reuse last ContinueBlock. 1246 JumpDest OuterContinue; 1247 if (!BreakContinueStack.empty()) 1248 OuterContinue = BreakContinueStack.back().ContinueBlock; 1249 1250 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1251 1252 // Emit switch body. 1253 EmitStmt(S.getBody()); 1254 1255 BreakContinueStack.pop_back(); 1256 1257 // Update the default block in case explicit case range tests have 1258 // been chained on top. 1259 SwitchInsn->setDefaultDest(CaseRangeBlock); 1260 1261 // If a default was never emitted: 1262 if (!DefaultBlock->getParent()) { 1263 // If we have cleanups, emit the default block so that there's a 1264 // place to jump through the cleanups from. 1265 if (ConditionScope.requiresCleanups()) { 1266 EmitBlock(DefaultBlock); 1267 1268 // Otherwise, just forward the default block to the switch end. 1269 } else { 1270 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1271 delete DefaultBlock; 1272 } 1273 } 1274 1275 ConditionScope.ForceCleanup(); 1276 1277 // Emit continuation. 1278 EmitBlock(SwitchExit.getBlock(), true); 1279 1280 SwitchInsn = SavedSwitchInsn; 1281 CaseRangeBlock = SavedCRBlock; 1282 } 1283 1284 static std::string 1285 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1286 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) { 1287 std::string Result; 1288 1289 while (*Constraint) { 1290 switch (*Constraint) { 1291 default: 1292 Result += Target.convertConstraint(Constraint); 1293 break; 1294 // Ignore these 1295 case '*': 1296 case '?': 1297 case '!': 1298 case '=': // Will see this and the following in mult-alt constraints. 1299 case '+': 1300 break; 1301 case '#': // Ignore the rest of the constraint alternative. 1302 while (Constraint[1] && Constraint[1] != ',') 1303 Constraint++; 1304 break; 1305 case ',': 1306 Result += "|"; 1307 break; 1308 case 'g': 1309 Result += "imr"; 1310 break; 1311 case '[': { 1312 assert(OutCons && 1313 "Must pass output names to constraints with a symbolic name"); 1314 unsigned Index; 1315 bool result = Target.resolveSymbolicName(Constraint, 1316 &(*OutCons)[0], 1317 OutCons->size(), Index); 1318 assert(result && "Could not resolve symbolic name"); (void)result; 1319 Result += llvm::utostr(Index); 1320 break; 1321 } 1322 } 1323 1324 Constraint++; 1325 } 1326 1327 return Result; 1328 } 1329 1330 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 1331 /// as using a particular register add that as a constraint that will be used 1332 /// in this asm stmt. 1333 static std::string 1334 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 1335 const TargetInfo &Target, CodeGenModule &CGM, 1336 const AsmStmt &Stmt) { 1337 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 1338 if (!AsmDeclRef) 1339 return Constraint; 1340 const ValueDecl &Value = *AsmDeclRef->getDecl(); 1341 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 1342 if (!Variable) 1343 return Constraint; 1344 if (Variable->getStorageClass() != SC_Register) 1345 return Constraint; 1346 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 1347 if (!Attr) 1348 return Constraint; 1349 StringRef Register = Attr->getLabel(); 1350 assert(Target.isValidGCCRegisterName(Register)); 1351 // We're using validateOutputConstraint here because we only care if 1352 // this is a register constraint. 1353 TargetInfo::ConstraintInfo Info(Constraint, ""); 1354 if (Target.validateOutputConstraint(Info) && 1355 !Info.allowsRegister()) { 1356 CGM.ErrorUnsupported(&Stmt, "__asm__"); 1357 return Constraint; 1358 } 1359 // Canonicalize the register here before returning it. 1360 Register = Target.getNormalizedGCCRegisterName(Register); 1361 return "{" + Register.str() + "}"; 1362 } 1363 1364 llvm::Value* 1365 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 1366 LValue InputValue, QualType InputType, 1367 std::string &ConstraintStr) { 1368 llvm::Value *Arg; 1369 if (Info.allowsRegister() || !Info.allowsMemory()) { 1370 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 1371 Arg = EmitLoadOfLValue(InputValue).getScalarVal(); 1372 } else { 1373 llvm::Type *Ty = ConvertType(InputType); 1374 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 1375 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 1376 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 1377 Ty = llvm::PointerType::getUnqual(Ty); 1378 1379 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), 1380 Ty)); 1381 } else { 1382 Arg = InputValue.getAddress(); 1383 ConstraintStr += '*'; 1384 } 1385 } 1386 } else { 1387 Arg = InputValue.getAddress(); 1388 ConstraintStr += '*'; 1389 } 1390 1391 return Arg; 1392 } 1393 1394 llvm::Value* CodeGenFunction::EmitAsmInput( 1395 const TargetInfo::ConstraintInfo &Info, 1396 const Expr *InputExpr, 1397 std::string &ConstraintStr) { 1398 if (Info.allowsRegister() || !Info.allowsMemory()) 1399 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 1400 return EmitScalarExpr(InputExpr); 1401 1402 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 1403 LValue Dest = EmitLValue(InputExpr); 1404 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr); 1405 } 1406 1407 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 1408 /// asm call instruction. The !srcloc MDNode contains a list of constant 1409 /// integers which are the source locations of the start of each line in the 1410 /// asm. 1411 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 1412 CodeGenFunction &CGF) { 1413 SmallVector<llvm::Value *, 8> Locs; 1414 // Add the location of the first line to the MDNode. 1415 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 1416 Str->getLocStart().getRawEncoding())); 1417 StringRef StrVal = Str->getString(); 1418 if (!StrVal.empty()) { 1419 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 1420 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 1421 1422 // Add the location of the start of each subsequent line of the asm to the 1423 // MDNode. 1424 for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) { 1425 if (StrVal[i] != '\n') continue; 1426 SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts, 1427 CGF.Target); 1428 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 1429 LineLoc.getRawEncoding())); 1430 } 1431 } 1432 1433 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 1434 } 1435 1436 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 1437 // Assemble the final asm string. 1438 std::string AsmString = S.generateAsmString(getContext()); 1439 1440 // Get all the output and input constraints together. 1441 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 1442 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 1443 1444 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1445 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), 1446 S.getOutputName(i)); 1447 bool IsValid = Target.validateOutputConstraint(Info); (void)IsValid; 1448 assert(IsValid && "Failed to parse output constraint"); 1449 OutputConstraintInfos.push_back(Info); 1450 } 1451 1452 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1453 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), 1454 S.getInputName(i)); 1455 bool IsValid = Target.validateInputConstraint(OutputConstraintInfos.data(), 1456 S.getNumOutputs(), Info); 1457 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 1458 InputConstraintInfos.push_back(Info); 1459 } 1460 1461 std::string Constraints; 1462 1463 std::vector<LValue> ResultRegDests; 1464 std::vector<QualType> ResultRegQualTys; 1465 std::vector<llvm::Type *> ResultRegTypes; 1466 std::vector<llvm::Type *> ResultTruncRegTypes; 1467 std::vector<llvm::Type *> ArgTypes; 1468 std::vector<llvm::Value*> Args; 1469 1470 // Keep track of inout constraints. 1471 std::string InOutConstraints; 1472 std::vector<llvm::Value*> InOutArgs; 1473 std::vector<llvm::Type*> InOutArgTypes; 1474 1475 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1476 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 1477 1478 // Simplify the output constraint. 1479 std::string OutputConstraint(S.getOutputConstraint(i)); 1480 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, Target); 1481 1482 const Expr *OutExpr = S.getOutputExpr(i); 1483 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 1484 1485 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 1486 Target, CGM, S); 1487 1488 LValue Dest = EmitLValue(OutExpr); 1489 if (!Constraints.empty()) 1490 Constraints += ','; 1491 1492 // If this is a register output, then make the inline asm return it 1493 // by-value. If this is a memory result, return the value by-reference. 1494 if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) { 1495 Constraints += "=" + OutputConstraint; 1496 ResultRegQualTys.push_back(OutExpr->getType()); 1497 ResultRegDests.push_back(Dest); 1498 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 1499 ResultTruncRegTypes.push_back(ResultRegTypes.back()); 1500 1501 // If this output is tied to an input, and if the input is larger, then 1502 // we need to set the actual result type of the inline asm node to be the 1503 // same as the input type. 1504 if (Info.hasMatchingInput()) { 1505 unsigned InputNo; 1506 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 1507 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 1508 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 1509 break; 1510 } 1511 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 1512 1513 QualType InputTy = S.getInputExpr(InputNo)->getType(); 1514 QualType OutputType = OutExpr->getType(); 1515 1516 uint64_t InputSize = getContext().getTypeSize(InputTy); 1517 if (getContext().getTypeSize(OutputType) < InputSize) { 1518 // Form the asm to return the value as a larger integer or fp type. 1519 ResultRegTypes.back() = ConvertType(InputTy); 1520 } 1521 } 1522 if (llvm::Type* AdjTy = 1523 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1524 ResultRegTypes.back())) 1525 ResultRegTypes.back() = AdjTy; 1526 } else { 1527 ArgTypes.push_back(Dest.getAddress()->getType()); 1528 Args.push_back(Dest.getAddress()); 1529 Constraints += "=*"; 1530 Constraints += OutputConstraint; 1531 } 1532 1533 if (Info.isReadWrite()) { 1534 InOutConstraints += ','; 1535 1536 const Expr *InputExpr = S.getOutputExpr(i); 1537 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 1538 InOutConstraints); 1539 1540 if (llvm::Type* AdjTy = 1541 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1542 Arg->getType())) 1543 Arg = Builder.CreateBitCast(Arg, AdjTy); 1544 1545 if (Info.allowsRegister()) 1546 InOutConstraints += llvm::utostr(i); 1547 else 1548 InOutConstraints += OutputConstraint; 1549 1550 InOutArgTypes.push_back(Arg->getType()); 1551 InOutArgs.push_back(Arg); 1552 } 1553 } 1554 1555 unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs(); 1556 1557 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1558 const Expr *InputExpr = S.getInputExpr(i); 1559 1560 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 1561 1562 if (!Constraints.empty()) 1563 Constraints += ','; 1564 1565 // Simplify the input constraint. 1566 std::string InputConstraint(S.getInputConstraint(i)); 1567 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), Target, 1568 &OutputConstraintInfos); 1569 1570 InputConstraint = 1571 AddVariableConstraints(InputConstraint, 1572 *InputExpr->IgnoreParenNoopCasts(getContext()), 1573 Target, CGM, S); 1574 1575 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 1576 1577 // If this input argument is tied to a larger output result, extend the 1578 // input to be the same size as the output. The LLVM backend wants to see 1579 // the input and output of a matching constraint be the same size. Note 1580 // that GCC does not define what the top bits are here. We use zext because 1581 // that is usually cheaper, but LLVM IR should really get an anyext someday. 1582 if (Info.hasTiedOperand()) { 1583 unsigned Output = Info.getTiedOperand(); 1584 QualType OutputType = S.getOutputExpr(Output)->getType(); 1585 QualType InputTy = InputExpr->getType(); 1586 1587 if (getContext().getTypeSize(OutputType) > 1588 getContext().getTypeSize(InputTy)) { 1589 // Use ptrtoint as appropriate so that we can do our extension. 1590 if (isa<llvm::PointerType>(Arg->getType())) 1591 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 1592 llvm::Type *OutputTy = ConvertType(OutputType); 1593 if (isa<llvm::IntegerType>(OutputTy)) 1594 Arg = Builder.CreateZExt(Arg, OutputTy); 1595 else if (isa<llvm::PointerType>(OutputTy)) 1596 Arg = Builder.CreateZExt(Arg, IntPtrTy); 1597 else { 1598 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 1599 Arg = Builder.CreateFPExt(Arg, OutputTy); 1600 } 1601 } 1602 } 1603 if (llvm::Type* AdjTy = 1604 getTargetHooks().adjustInlineAsmType(*this, InputConstraint, 1605 Arg->getType())) 1606 Arg = Builder.CreateBitCast(Arg, AdjTy); 1607 1608 ArgTypes.push_back(Arg->getType()); 1609 Args.push_back(Arg); 1610 Constraints += InputConstraint; 1611 } 1612 1613 // Append the "input" part of inout constraints last. 1614 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 1615 ArgTypes.push_back(InOutArgTypes[i]); 1616 Args.push_back(InOutArgs[i]); 1617 } 1618 Constraints += InOutConstraints; 1619 1620 // Clobbers 1621 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 1622 StringRef Clobber = S.getClobber(i); 1623 1624 if (Clobber != "memory" && Clobber != "cc") 1625 Clobber = Target.getNormalizedGCCRegisterName(Clobber); 1626 1627 if (i != 0 || NumConstraints != 0) 1628 Constraints += ','; 1629 1630 Constraints += "~{"; 1631 Constraints += Clobber; 1632 Constraints += '}'; 1633 } 1634 1635 // Add machine specific clobbers 1636 std::string MachineClobbers = Target.getClobbers(); 1637 if (!MachineClobbers.empty()) { 1638 if (!Constraints.empty()) 1639 Constraints += ','; 1640 Constraints += MachineClobbers; 1641 } 1642 1643 llvm::Type *ResultType; 1644 if (ResultRegTypes.empty()) 1645 ResultType = VoidTy; 1646 else if (ResultRegTypes.size() == 1) 1647 ResultType = ResultRegTypes[0]; 1648 else 1649 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 1650 1651 llvm::FunctionType *FTy = 1652 llvm::FunctionType::get(ResultType, ArgTypes, false); 1653 1654 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 1655 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 1656 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 1657 llvm::InlineAsm *IA = 1658 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, 1659 /* IsAlignStack */ false, AsmDialect); 1660 llvm::CallInst *Result = Builder.CreateCall(IA, Args); 1661 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 1662 llvm::Attribute::NoUnwind); 1663 1664 // Slap the source location of the inline asm into a !srcloc metadata on the 1665 // call. FIXME: Handle metadata for MS-style inline asms. 1666 if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) 1667 Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(), 1668 *this)); 1669 1670 // Extract all of the register value results from the asm. 1671 std::vector<llvm::Value*> RegResults; 1672 if (ResultRegTypes.size() == 1) { 1673 RegResults.push_back(Result); 1674 } else { 1675 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 1676 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); 1677 RegResults.push_back(Tmp); 1678 } 1679 } 1680 1681 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 1682 llvm::Value *Tmp = RegResults[i]; 1683 1684 // If the result type of the LLVM IR asm doesn't match the result type of 1685 // the expression, do the conversion. 1686 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 1687 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 1688 1689 // Truncate the integer result to the right size, note that TruncTy can be 1690 // a pointer. 1691 if (TruncTy->isFloatingPointTy()) 1692 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 1693 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 1694 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 1695 Tmp = Builder.CreateTrunc(Tmp, 1696 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 1697 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 1698 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 1699 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 1700 Tmp = Builder.CreatePtrToInt(Tmp, 1701 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 1702 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 1703 } else if (TruncTy->isIntegerTy()) { 1704 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 1705 } else if (TruncTy->isVectorTy()) { 1706 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 1707 } 1708 } 1709 1710 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]); 1711 } 1712 } 1713