Home | History | Annotate | Download | only in doc
      1 namespace Eigen {
      2 
      3 /** \page TutorialBlockOperations Tutorial page 4 - %Block operations
      4     \ingroup Tutorial
      5 
      6 \li \b Previous: \ref TutorialArrayClass
      7 \li \b Next: \ref TutorialAdvancedInitialization
      8 
      9 This tutorial page explains the essentials of block operations.
     10 A block is a rectangular part of a matrix or array. Blocks expressions can be used both
     11 as rvalues and as lvalues. As usual with Eigen expressions, this abstraction has zero runtime cost
     12 provided that you let your compiler optimize.
     13 
     14 \b Table \b of \b contents
     15   - \ref TutorialBlockOperationsUsing
     16   - \ref TutorialBlockOperationsSyntaxColumnRows
     17   - \ref TutorialBlockOperationsSyntaxCorners
     18   - \ref TutorialBlockOperationsSyntaxVectors
     19 
     20 
     21 \section TutorialBlockOperationsUsing Using block operations
     22 
     23 The most general block operation in Eigen is called \link DenseBase::block() .block() \endlink.
     24 There are two versions, whose syntax is as follows:
     25 
     26 <table class="manual">
     27 <tr><th>\b %Block \b operation</td>
     28 <th>Version constructing a \n dynamic-size block expression</th>
     29 <th>Version constructing a \n fixed-size block expression</th></tr>
     30 <tr><td>%Block of size <tt>(p,q)</tt>, starting at <tt>(i,j)</tt></td>
     31     <td>\code
     32 matrix.block(i,j,p,q);\endcode </td>
     33     <td>\code 
     34 matrix.block<p,q>(i,j);\endcode </td>
     35 </tr>
     36 </table>
     37 
     38 As always in Eigen, indices start at 0.
     39 
     40 Both versions can be used on fixed-size and dynamic-size matrices and arrays.
     41 These two expressions are semantically equivalent.
     42 The only difference is that the fixed-size version will typically give you faster code if the block size is small,
     43 but requires this size to be known at compile time.
     44 
     45 The following program uses the dynamic-size and fixed-size versions to print the values of several blocks inside a
     46 matrix.
     47 
     48 <table class="example">
     49 <tr><th>Example:</th><th>Output:</th></tr>
     50 <tr><td>
     51 \include Tutorial_BlockOperations_print_block.cpp
     52 </td>
     53 <td>
     54 \verbinclude Tutorial_BlockOperations_print_block.out
     55 </td></tr></table>
     56 
     57 In the above example the \link DenseBase::block() .block() \endlink function was employed as a \em rvalue, i.e.
     58 it was only read from. However, blocks can also be used as \em lvalues, meaning that you can assign to a block.
     59 
     60 This is illustrated in the following example. This example also demonstrates blocks in arrays, which works exactly like the above-demonstrated blocks in matrices.
     61 
     62 <table class="example">
     63 <tr><th>Example:</th><th>Output:</th></tr>
     64 <tr><td>
     65 \include Tutorial_BlockOperations_block_assignment.cpp
     66 </td>
     67 <td>
     68 \verbinclude Tutorial_BlockOperations_block_assignment.out
     69 </td></tr></table>
     70 
     71 While the \link DenseBase::block() .block() \endlink method can be used for any block operation, there are
     72 other methods for special cases, providing more specialized API and/or better performance. On the topic of performance, all what
     73 matters is that you give Eigen as much information as possible at compile time. For example, if your block is a single whole column in a matrix,
     74 using the specialized \link DenseBase::col() .col() \endlink function described below lets Eigen know that, which can give it optimization opportunities.
     75 
     76 The rest of this page describes these specialized methods.
     77 
     78 \section TutorialBlockOperationsSyntaxColumnRows Columns and rows
     79 
     80 Individual columns and rows are special cases of blocks. Eigen provides methods to easily address them:
     81 \link DenseBase::col() .col() \endlink and \link DenseBase::row() .row()\endlink.
     82 
     83 <table class="manual">
     84 <tr><th>%Block operation</th>
     85 <th>Method</th>
     86 <tr><td>i<sup>th</sup> row
     87                     \link DenseBase::row() * \endlink</td>
     88     <td>\code
     89 matrix.row(i);\endcode </td>
     90 </tr>
     91 <tr><td>j<sup>th</sup> column
     92                     \link DenseBase::col() * \endlink</td>
     93     <td>\code
     94 matrix.col(j);\endcode </td>
     95 </tr>
     96 </table>
     97 
     98 The argument for \p col() and \p row() is the index of the column or row to be accessed. As always in Eigen, indices start at 0.
     99 
    100 <table class="example">
    101 <tr><th>Example:</th><th>Output:</th></tr>
    102 <tr><td>
    103 \include Tutorial_BlockOperations_colrow.cpp
    104 </td>
    105 <td>
    106 \verbinclude Tutorial_BlockOperations_colrow.out
    107 </td></tr></table>
    108 
    109 That example also demonstrates that block expressions (here columns) can be used in arithmetic like any other expression.
    110 
    111 
    112 \section TutorialBlockOperationsSyntaxCorners Corner-related operations
    113 
    114 Eigen also provides special methods for blocks that are flushed against one of the corners or sides of a
    115 matrix or array. For instance, \link DenseBase::topLeftCorner() .topLeftCorner() \endlink can be used to refer
    116 to a block in the top-left corner of a matrix.
    117 
    118 The different possibilities are summarized in the following table:
    119 
    120 <table class="manual">
    121 <tr><th>%Block \b operation</td>
    122 <th>Version constructing a \n dynamic-size block expression</th>
    123 <th>Version constructing a \n fixed-size block expression</th></tr>
    124 <tr><td>Top-left p by q block \link DenseBase::topLeftCorner() * \endlink</td>
    125     <td>\code
    126 matrix.topLeftCorner(p,q);\endcode </td>
    127     <td>\code 
    128 matrix.topLeftCorner<p,q>();\endcode </td>
    129 </tr>
    130 <tr><td>Bottom-left p by q block
    131               \link DenseBase::bottomLeftCorner() * \endlink</td>
    132     <td>\code
    133 matrix.bottomLeftCorner(p,q);\endcode </td>
    134     <td>\code 
    135 matrix.bottomLeftCorner<p,q>();\endcode </td>
    136 </tr>
    137 <tr><td>Top-right p by q block
    138               \link DenseBase::topRightCorner() * \endlink</td>
    139     <td>\code
    140 matrix.topRightCorner(p,q);\endcode </td>
    141     <td>\code 
    142 matrix.topRightCorner<p,q>();\endcode </td>
    143 </tr>
    144 <tr><td>Bottom-right p by q block
    145                \link DenseBase::bottomRightCorner() * \endlink</td>
    146     <td>\code
    147 matrix.bottomRightCorner(p,q);\endcode </td>
    148     <td>\code 
    149 matrix.bottomRightCorner<p,q>();\endcode </td>
    150 </tr>
    151 <tr><td>%Block containing the first q rows
    152                    \link DenseBase::topRows() * \endlink</td>
    153     <td>\code
    154 matrix.topRows(q);\endcode </td>
    155     <td>\code 
    156 matrix.topRows<q>();\endcode </td>
    157 </tr>
    158 <tr><td>%Block containing the last q rows
    159                     \link DenseBase::bottomRows() * \endlink</td>
    160     <td>\code
    161 matrix.bottomRows(q);\endcode </td>
    162     <td>\code 
    163 matrix.bottomRows<q>();\endcode </td>
    164 </tr>
    165 <tr><td>%Block containing the first p columns
    166                     \link DenseBase::leftCols() * \endlink</td>
    167     <td>\code
    168 matrix.leftCols(p);\endcode </td>
    169     <td>\code 
    170 matrix.leftCols<p>();\endcode </td>
    171 </tr>
    172 <tr><td>%Block containing the last q columns
    173                     \link DenseBase::rightCols() * \endlink</td>
    174     <td>\code
    175 matrix.rightCols(q);\endcode </td>
    176     <td>\code 
    177 matrix.rightCols<q>();\endcode </td>
    178 </tr>
    179 </table>
    180 
    181 Here is a simple example illustrating the use of the operations presented above:
    182 
    183 <table class="example">
    184 <tr><th>Example:</th><th>Output:</th></tr>
    185 <tr><td>
    186 \include Tutorial_BlockOperations_corner.cpp
    187 </td>
    188 <td>
    189 \verbinclude Tutorial_BlockOperations_corner.out
    190 </td></tr></table>
    191 
    192 
    193 \section TutorialBlockOperationsSyntaxVectors Block operations for vectors
    194 
    195 Eigen also provides a set of block operations designed specifically for the special case of vectors and one-dimensional arrays:
    196 
    197 <table class="manual">
    198 <tr><th> %Block operation</th>
    199 <th>Version constructing a \n dynamic-size block expression</th>
    200 <th>Version constructing a \n fixed-size block expression</th></tr>
    201 <tr><td>%Block containing the first \p n elements 
    202                     \link DenseBase::head() * \endlink</td>
    203     <td>\code
    204 vector.head(n);\endcode </td>
    205     <td>\code 
    206 vector.head<n>();\endcode </td>
    207 </tr>
    208 <tr><td>%Block containing the last \p n elements
    209                     \link DenseBase::tail() * \endlink</td>
    210     <td>\code
    211 vector.tail(n);\endcode </td>
    212     <td>\code 
    213 vector.tail<n>();\endcode </td>
    214 </tr>
    215 <tr><td>%Block containing \p n elements, starting at position \p i
    216                     \link DenseBase::segment() * \endlink</td>
    217     <td>\code
    218 vector.segment(i,n);\endcode </td>
    219     <td>\code 
    220 vector.segment<n>(i);\endcode </td>
    221 </tr>
    222 </table>
    223 
    224 
    225 An example is presented below:
    226 <table class="example">
    227 <tr><th>Example:</th><th>Output:</th></tr>
    228 <tr><td>
    229 \include Tutorial_BlockOperations_vector.cpp
    230 </td>
    231 <td>
    232 \verbinclude Tutorial_BlockOperations_vector.out
    233 </td></tr></table>
    234 
    235 \li \b Next: \ref TutorialAdvancedInitialization
    236 
    237 */
    238 
    239 }
    240