1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2009 Hauke Heibel <hauke.heibel (at) gmail.com> 5 // 6 // This Source Code Form is subject to the terms of the Mozilla 7 // Public License v. 2.0. If a copy of the MPL was not distributed 8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9 10 #include "main.h" 11 12 #include <Eigen/Core> 13 14 using namespace Eigen; 15 16 template <typename Scalar, int Storage> 17 void run_matrix_tests() 18 { 19 typedef Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, Storage> MatrixType; 20 typedef typename MatrixType::Index Index; 21 22 MatrixType m, n; 23 24 // boundary cases ... 25 m = n = MatrixType::Random(50,50); 26 m.conservativeResize(1,50); 27 VERIFY_IS_APPROX(m, n.block(0,0,1,50)); 28 29 m = n = MatrixType::Random(50,50); 30 m.conservativeResize(50,1); 31 VERIFY_IS_APPROX(m, n.block(0,0,50,1)); 32 33 m = n = MatrixType::Random(50,50); 34 m.conservativeResize(50,50); 35 VERIFY_IS_APPROX(m, n.block(0,0,50,50)); 36 37 // random shrinking ... 38 for (int i=0; i<25; ++i) 39 { 40 const Index rows = internal::random<Index>(1,50); 41 const Index cols = internal::random<Index>(1,50); 42 m = n = MatrixType::Random(50,50); 43 m.conservativeResize(rows,cols); 44 VERIFY_IS_APPROX(m, n.block(0,0,rows,cols)); 45 } 46 47 // random growing with zeroing ... 48 for (int i=0; i<25; ++i) 49 { 50 const Index rows = internal::random<Index>(50,75); 51 const Index cols = internal::random<Index>(50,75); 52 m = n = MatrixType::Random(50,50); 53 m.conservativeResizeLike(MatrixType::Zero(rows,cols)); 54 VERIFY_IS_APPROX(m.block(0,0,n.rows(),n.cols()), n); 55 VERIFY( rows<=50 || m.block(50,0,rows-50,cols).sum() == Scalar(0) ); 56 VERIFY( cols<=50 || m.block(0,50,rows,cols-50).sum() == Scalar(0) ); 57 } 58 } 59 60 template <typename Scalar> 61 void run_vector_tests() 62 { 63 typedef Matrix<Scalar, 1, Eigen::Dynamic> MatrixType; 64 65 MatrixType m, n; 66 67 // boundary cases ... 68 m = n = MatrixType::Random(50); 69 m.conservativeResize(1); 70 VERIFY_IS_APPROX(m, n.segment(0,1)); 71 72 m = n = MatrixType::Random(50); 73 m.conservativeResize(50); 74 VERIFY_IS_APPROX(m, n.segment(0,50)); 75 76 // random shrinking ... 77 for (int i=0; i<50; ++i) 78 { 79 const int size = internal::random<int>(1,50); 80 m = n = MatrixType::Random(50); 81 m.conservativeResize(size); 82 VERIFY_IS_APPROX(m, n.segment(0,size)); 83 } 84 85 // random growing with zeroing ... 86 for (int i=0; i<50; ++i) 87 { 88 const int size = internal::random<int>(50,100); 89 m = n = MatrixType::Random(50); 90 m.conservativeResizeLike(MatrixType::Zero(size)); 91 VERIFY_IS_APPROX(m.segment(0,50), n); 92 VERIFY( size<=50 || m.segment(50,size-50).sum() == Scalar(0) ); 93 } 94 } 95 96 void test_conservative_resize() 97 { 98 CALL_SUBTEST_1((run_matrix_tests<int, Eigen::RowMajor>())); 99 CALL_SUBTEST_1((run_matrix_tests<int, Eigen::ColMajor>())); 100 CALL_SUBTEST_2((run_matrix_tests<float, Eigen::RowMajor>())); 101 CALL_SUBTEST_2((run_matrix_tests<float, Eigen::ColMajor>())); 102 CALL_SUBTEST_3((run_matrix_tests<double, Eigen::RowMajor>())); 103 CALL_SUBTEST_3((run_matrix_tests<double, Eigen::ColMajor>())); 104 CALL_SUBTEST_4((run_matrix_tests<std::complex<float>, Eigen::RowMajor>())); 105 CALL_SUBTEST_4((run_matrix_tests<std::complex<float>, Eigen::ColMajor>())); 106 CALL_SUBTEST_5((run_matrix_tests<std::complex<double>, Eigen::RowMajor>())); 107 CALL_SUBTEST_6((run_matrix_tests<std::complex<double>, Eigen::ColMajor>())); 108 109 CALL_SUBTEST_1((run_vector_tests<int>())); 110 CALL_SUBTEST_2((run_vector_tests<float>())); 111 CALL_SUBTEST_3((run_vector_tests<double>())); 112 CALL_SUBTEST_4((run_vector_tests<std::complex<float> >())); 113 CALL_SUBTEST_5((run_vector_tests<std::complex<double> >())); 114 } 115