Home | History | Annotate | Download | only in jpeg
      1 /*
      2  * jdhuff.c
      3  *
      4  * Copyright (C) 1991-1997, Thomas G. Lane.
      5  * This file is part of the Independent JPEG Group's software.
      6  * For conditions of distribution and use, see the accompanying README file.
      7  *
      8  * This file contains Huffman entropy decoding routines.
      9  *
     10  * Much of the complexity here has to do with supporting input suspension.
     11  * If the data source module demands suspension, we want to be able to back
     12  * up to the start of the current MCU.  To do this, we copy state variables
     13  * into local working storage, and update them back to the permanent
     14  * storage only upon successful completion of an MCU.
     15  */
     16 
     17 #define JPEG_INTERNALS
     18 #include "jinclude.h"
     19 #include "jpeglib.h"
     20 #include "jdhuff.h"		/* Declarations shared with jdphuff.c */
     21 
     22 LOCAL(boolean) process_restart (j_decompress_ptr cinfo);
     23 
     24 
     25 /*
     26  * Expanded entropy decoder object for Huffman decoding.
     27  *
     28  * The savable_state subrecord contains fields that change within an MCU,
     29  * but must not be updated permanently until we complete the MCU.
     30  */
     31 
     32 typedef struct {
     33   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
     34 } savable_state;
     35 
     36 /* This macro is to work around compilers with missing or broken
     37  * structure assignment.  You'll need to fix this code if you have
     38  * such a compiler and you change MAX_COMPS_IN_SCAN.
     39  */
     40 
     41 #ifndef NO_STRUCT_ASSIGN
     42 #define ASSIGN_STATE(dest,src)  ((dest) = (src))
     43 #else
     44 #if MAX_COMPS_IN_SCAN == 4
     45 #define ASSIGN_STATE(dest,src)  \
     46 	((dest).last_dc_val[0] = (src).last_dc_val[0], \
     47 	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
     48 	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
     49 	 (dest).last_dc_val[3] = (src).last_dc_val[3])
     50 #endif
     51 #endif
     52 
     53 
     54 typedef struct {
     55   struct jpeg_entropy_decoder pub; /* public fields */
     56 
     57   /* These fields are loaded into local variables at start of each MCU.
     58    * In case of suspension, we exit WITHOUT updating them.
     59    */
     60   bitread_perm_state bitstate;	/* Bit buffer at start of MCU */
     61   savable_state saved;		/* Other state at start of MCU */
     62 
     63   /* These fields are NOT loaded into local working state. */
     64   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
     65 
     66   /* Pointers to derived tables (these workspaces have image lifespan) */
     67   d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
     68   d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
     69 
     70   /* Precalculated info set up by start_pass for use in decode_mcu: */
     71 
     72   /* Pointers to derived tables to be used for each block within an MCU */
     73   d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
     74   d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
     75   /* Whether we care about the DC and AC coefficient values for each block */
     76   boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
     77   boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
     78 } huff_entropy_decoder;
     79 
     80 typedef huff_entropy_decoder * huff_entropy_ptr;
     81 
     82 /*
     83  * Initialize for a Huffman-compressed scan.
     84  */
     85 
     86 METHODDEF(void)
     87 start_pass_huff_decoder (j_decompress_ptr cinfo)
     88 {
     89   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
     90   int ci, blkn, dctbl, actbl;
     91   jpeg_component_info * compptr;
     92 
     93   /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
     94    * This ought to be an error condition, but we make it a warning because
     95    * there are some baseline files out there with all zeroes in these bytes.
     96    */
     97   if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
     98       cinfo->Ah != 0 || cinfo->Al != 0)
     99     WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
    100 
    101   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    102     compptr = cinfo->cur_comp_info[ci];
    103     dctbl = compptr->dc_tbl_no;
    104     actbl = compptr->ac_tbl_no;
    105     /* Compute derived values for Huffman tables */
    106     /* We may do this more than once for a table, but it's not expensive */
    107     jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl,
    108 			    & entropy->dc_derived_tbls[dctbl]);
    109     jpeg_make_d_derived_tbl(cinfo, FALSE, actbl,
    110 			    & entropy->ac_derived_tbls[actbl]);
    111     /* Initialize DC predictions to 0 */
    112     entropy->saved.last_dc_val[ci] = 0;
    113   }
    114 
    115   /* Precalculate decoding info for each block in an MCU of this scan */
    116   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    117     ci = cinfo->MCU_membership[blkn];
    118     compptr = cinfo->cur_comp_info[ci];
    119     /* Precalculate which table to use for each block */
    120     entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
    121     entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
    122     /* Decide whether we really care about the coefficient values */
    123     if (compptr->component_needed) {
    124       entropy->dc_needed[blkn] = TRUE;
    125       /* we don't need the ACs if producing a 1/8th-size image */
    126       entropy->ac_needed[blkn] = (compptr->DCT_scaled_size > 1);
    127     } else {
    128       entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
    129     }
    130   }
    131 
    132   /* Initialize bitread state variables */
    133   entropy->bitstate.bits_left = 0;
    134   entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
    135   entropy->pub.insufficient_data = FALSE;
    136 
    137   /* Initialize restart counter */
    138   entropy->restarts_to_go = cinfo->restart_interval;
    139 }
    140 
    141 
    142 /*
    143  * Compute the derived values for a Huffman table.
    144  * This routine also performs some validation checks on the table.
    145  *
    146  * Note this is also used by jdphuff.c.
    147  */
    148 
    149 GLOBAL(void)
    150 jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
    151 			 d_derived_tbl ** pdtbl)
    152 {
    153   JHUFF_TBL *htbl;
    154   d_derived_tbl *dtbl;
    155   int p, i, l, si, numsymbols;
    156   int lookbits, ctr;
    157   char huffsize[257];
    158   unsigned int huffcode[257];
    159   unsigned int code;
    160 
    161   /* Note that huffsize[] and huffcode[] are filled in code-length order,
    162    * paralleling the order of the symbols themselves in htbl->huffval[].
    163    */
    164 
    165   /* Find the input Huffman table */
    166   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
    167     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
    168   htbl =
    169     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
    170   if (htbl == NULL)
    171     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
    172 
    173   /* Allocate a workspace if we haven't already done so. */
    174   if (*pdtbl == NULL)
    175     *pdtbl = (d_derived_tbl *)
    176       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    177 				  SIZEOF(d_derived_tbl));
    178   dtbl = *pdtbl;
    179   dtbl->pub = htbl;		/* fill in back link */
    180 
    181   /* Figure C.1: make table of Huffman code length for each symbol */
    182 
    183   p = 0;
    184   for (l = 1; l <= 16; l++) {
    185     i = (int) htbl->bits[l];
    186     if (i < 0 || p + i > 256)	/* protect against table overrun */
    187       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    188     while (i--)
    189       huffsize[p++] = (char) l;
    190   }
    191   huffsize[p] = 0;
    192   numsymbols = p;
    193 
    194   /* Figure C.2: generate the codes themselves */
    195   /* We also validate that the counts represent a legal Huffman code tree. */
    196 
    197   code = 0;
    198   si = huffsize[0];
    199   p = 0;
    200   while (huffsize[p]) {
    201     while (((int) huffsize[p]) == si) {
    202       huffcode[p++] = code;
    203       code++;
    204     }
    205     /* code is now 1 more than the last code used for codelength si; but
    206      * it must still fit in si bits, since no code is allowed to be all ones.
    207      */
    208     if (((INT32) code) >= (((INT32) 1) << si))
    209       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    210     code <<= 1;
    211     si++;
    212   }
    213 
    214   /* Figure F.15: generate decoding tables for bit-sequential decoding */
    215 
    216   p = 0;
    217   for (l = 1; l <= 16; l++) {
    218     if (htbl->bits[l]) {
    219       /* valoffset[l] = huffval[] index of 1st symbol of code length l,
    220        * minus the minimum code of length l
    221        */
    222       dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
    223       p += htbl->bits[l];
    224       dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
    225     } else {
    226       dtbl->maxcode[l] = -1;	/* -1 if no codes of this length */
    227     }
    228   }
    229   dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
    230 
    231   /* Compute lookahead tables to speed up decoding.
    232    * First we set all the table entries to 0, indicating "too long";
    233    * then we iterate through the Huffman codes that are short enough and
    234    * fill in all the entries that correspond to bit sequences starting
    235    * with that code.
    236    */
    237 
    238   MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
    239 
    240   p = 0;
    241   for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
    242     for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
    243       /* l = current code's length, p = its index in huffcode[] & huffval[]. */
    244       /* Generate left-justified code followed by all possible bit sequences */
    245       lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
    246       for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
    247 	dtbl->look_nbits[lookbits] = l;
    248 	dtbl->look_sym[lookbits] = htbl->huffval[p];
    249 	lookbits++;
    250       }
    251     }
    252   }
    253 
    254   /* Validate symbols as being reasonable.
    255    * For AC tables, we make no check, but accept all byte values 0..255.
    256    * For DC tables, we require the symbols to be in range 0..15.
    257    * (Tighter bounds could be applied depending on the data depth and mode,
    258    * but this is sufficient to ensure safe decoding.)
    259    */
    260   if (isDC) {
    261     for (i = 0; i < numsymbols; i++) {
    262       int sym = htbl->huffval[i];
    263       if (sym < 0 || sym > 15)
    264 	ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    265     }
    266   }
    267 }
    268 
    269 
    270 /*
    271  * Out-of-line code for bit fetching (shared with jdphuff.c).
    272  * See jdhuff.h for info about usage.
    273  * Note: current values of get_buffer and bits_left are passed as parameters,
    274  * but are returned in the corresponding fields of the state struct.
    275  *
    276  * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
    277  * of get_buffer to be used.  (On machines with wider words, an even larger
    278  * buffer could be used.)  However, on some machines 32-bit shifts are
    279  * quite slow and take time proportional to the number of places shifted.
    280  * (This is true with most PC compilers, for instance.)  In this case it may
    281  * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
    282  * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
    283  */
    284 
    285 #ifdef SLOW_SHIFT_32
    286 #define MIN_GET_BITS  15	/* minimum allowable value */
    287 #else
    288 #define MIN_GET_BITS  (BIT_BUF_SIZE-7)
    289 #endif
    290 
    291 
    292 GLOBAL(boolean)
    293 jpeg_fill_bit_buffer (bitread_working_state * state,
    294 		      register bit_buf_type get_buffer, register int bits_left,
    295 		      int nbits)
    296 /* Load up the bit buffer to a depth of at least nbits */
    297 {
    298   /* Copy heavily used state fields into locals (hopefully registers) */
    299   register const JOCTET * next_input_byte = state->next_input_byte;
    300   register size_t bytes_in_buffer = state->bytes_in_buffer;
    301   j_decompress_ptr cinfo = state->cinfo;
    302 
    303   /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
    304   /* (It is assumed that no request will be for more than that many bits.) */
    305   /* We fail to do so only if we hit a marker or are forced to suspend. */
    306 
    307   if (cinfo->unread_marker == 0) {	/* cannot advance past a marker */
    308     while (bits_left < MIN_GET_BITS) {
    309       register int c;
    310 
    311       /* Attempt to read a byte */
    312       if (bytes_in_buffer == 0) {
    313 	if (! (*cinfo->src->fill_input_buffer) (cinfo))
    314 	  return FALSE;
    315 	next_input_byte = cinfo->src->next_input_byte;
    316 	bytes_in_buffer = cinfo->src->bytes_in_buffer;
    317       }
    318       bytes_in_buffer--;
    319       c = GETJOCTET(*next_input_byte++);
    320 
    321       /* If it's 0xFF, check and discard stuffed zero byte */
    322       if (c == 0xFF) {
    323 	/* Loop here to discard any padding FF's on terminating marker,
    324 	 * so that we can save a valid unread_marker value.  NOTE: we will
    325 	 * accept multiple FF's followed by a 0 as meaning a single FF data
    326 	 * byte.  This data pattern is not valid according to the standard.
    327 	 */
    328 	do {
    329 	  if (bytes_in_buffer == 0) {
    330 	    if (! (*cinfo->src->fill_input_buffer) (cinfo))
    331 	      return FALSE;
    332 	    next_input_byte = cinfo->src->next_input_byte;
    333 	    bytes_in_buffer = cinfo->src->bytes_in_buffer;
    334 	  }
    335 	  bytes_in_buffer--;
    336 	  c = GETJOCTET(*next_input_byte++);
    337 	} while (c == 0xFF);
    338 
    339 	if (c == 0) {
    340 	  /* Found FF/00, which represents an FF data byte */
    341 	  c = 0xFF;
    342 	} else {
    343 	  /* Oops, it's actually a marker indicating end of compressed data.
    344 	   * Save the marker code for later use.
    345 	   * Fine point: it might appear that we should save the marker into
    346 	   * bitread working state, not straight into permanent state.  But
    347 	   * once we have hit a marker, we cannot need to suspend within the
    348 	   * current MCU, because we will read no more bytes from the data
    349 	   * source.  So it is OK to update permanent state right away.
    350 	   */
    351 	  cinfo->unread_marker = c;
    352 	  /* See if we need to insert some fake zero bits. */
    353 	  goto no_more_bytes;
    354 	}
    355       }
    356 
    357       /* OK, load c into get_buffer */
    358       get_buffer = (get_buffer << 8) | c;
    359       bits_left += 8;
    360     } /* end while */
    361   } else {
    362   no_more_bytes:
    363     /* We get here if we've read the marker that terminates the compressed
    364      * data segment.  There should be enough bits in the buffer register
    365      * to satisfy the request; if so, no problem.
    366      */
    367     if (nbits > bits_left) {
    368       /* Uh-oh.  Report corrupted data to user and stuff zeroes into
    369        * the data stream, so that we can produce some kind of image.
    370        * We use a nonvolatile flag to ensure that only one warning message
    371        * appears per data segment.
    372        */
    373       if (! cinfo->entropy->insufficient_data) {
    374 	WARNMS(cinfo, JWRN_HIT_MARKER);
    375 	cinfo->entropy->insufficient_data = TRUE;
    376       }
    377       /* Fill the buffer with zero bits */
    378       get_buffer <<= MIN_GET_BITS - bits_left;
    379       bits_left = MIN_GET_BITS;
    380     }
    381   }
    382 
    383   /* Unload the local registers */
    384   state->next_input_byte = next_input_byte;
    385   state->bytes_in_buffer = bytes_in_buffer;
    386   state->get_buffer = get_buffer;
    387   state->bits_left = bits_left;
    388 
    389   return TRUE;
    390 }
    391 
    392 
    393 /*
    394  * Out-of-line code for Huffman code decoding.
    395  * See jdhuff.h for info about usage.
    396  */
    397 
    398 GLOBAL(int)
    399 jpeg_huff_decode (bitread_working_state * state,
    400 		  register bit_buf_type get_buffer, register int bits_left,
    401 		  d_derived_tbl * htbl, int min_bits)
    402 {
    403   register int l = min_bits;
    404   register INT32 code;
    405 
    406   /* HUFF_DECODE has determined that the code is at least min_bits */
    407   /* bits long, so fetch that many bits in one swoop. */
    408 
    409   CHECK_BIT_BUFFER(*state, l, return -1);
    410   code = GET_BITS(l);
    411 
    412   /* Collect the rest of the Huffman code one bit at a time. */
    413   /* This is per Figure F.16 in the JPEG spec. */
    414 
    415   while (code > htbl->maxcode[l]) {
    416     code <<= 1;
    417     CHECK_BIT_BUFFER(*state, 1, return -1);
    418     code |= GET_BITS(1);
    419     l++;
    420   }
    421 
    422   /* Unload the local registers */
    423   state->get_buffer = get_buffer;
    424   state->bits_left = bits_left;
    425 
    426   /* With garbage input we may reach the sentinel value l = 17. */
    427 
    428   if (l > 16) {
    429     WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
    430     return 0;			/* fake a zero as the safest result */
    431   }
    432 
    433   return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
    434 }
    435 
    436 
    437 /*
    438  * Figure F.12: extend sign bit.
    439  * On some machines, a shift and add will be faster than a table lookup.
    440  */
    441 
    442 #ifdef AVOID_TABLES
    443 
    444 #define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
    445 
    446 #else
    447 
    448 #define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
    449 
    450 static const int extend_test[16] =   /* entry n is 2**(n-1) */
    451   { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
    452     0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
    453 
    454 static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
    455   { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
    456     ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
    457     ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
    458     ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
    459 
    460 #endif /* AVOID_TABLES */
    461 
    462 
    463 /*
    464  * Check for a restart marker & resynchronize decoder.
    465  * Returns FALSE if must suspend.
    466  */
    467 
    468 LOCAL(boolean)
    469 process_restart (j_decompress_ptr cinfo)
    470 {
    471   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    472   int ci;
    473 
    474   /* Throw away any unused bits remaining in bit buffer; */
    475   /* include any full bytes in next_marker's count of discarded bytes */
    476   cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
    477   entropy->bitstate.bits_left = 0;
    478 
    479   /* Advance past the RSTn marker */
    480   if (! (*cinfo->marker->read_restart_marker) (cinfo))
    481     return FALSE;
    482 
    483   /* Re-initialize DC predictions to 0 */
    484   for (ci = 0; ci < cinfo->comps_in_scan; ci++)
    485     entropy->saved.last_dc_val[ci] = 0;
    486 
    487   /* Reset restart counter */
    488   entropy->restarts_to_go = cinfo->restart_interval;
    489 
    490   /* Reset out-of-data flag, unless read_restart_marker left us smack up
    491    * against a marker.  In that case we will end up treating the next data
    492    * segment as empty, and we can avoid producing bogus output pixels by
    493    * leaving the flag set.
    494    */
    495   if (cinfo->unread_marker == 0)
    496     entropy->pub.insufficient_data = FALSE;
    497 
    498   return TRUE;
    499 }
    500 
    501 /*
    502  * Save the current Huffman deocde position and the DC coefficients
    503  * for each component into bitstream_offset and dc_info[], respectively.
    504  */
    505 METHODDEF(void)
    506 get_huffman_decoder_configuration(j_decompress_ptr cinfo,
    507         huffman_offset_data *offset)
    508 {
    509   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    510   short int *dc_info = offset->prev_dc;
    511   int i;
    512   jpeg_get_huffman_decoder_configuration(cinfo, offset);
    513   for (i = 0; i < cinfo->comps_in_scan; i++) {
    514     dc_info[i] = entropy->saved.last_dc_val[i];
    515   }
    516 }
    517 
    518 /*
    519  * Save the current Huffman decoder position and the bit buffer
    520  * into bitstream_offset and get_buffer, respectively.
    521  */
    522 GLOBAL(void)
    523 jpeg_get_huffman_decoder_configuration(j_decompress_ptr cinfo,
    524         huffman_offset_data *offset)
    525 {
    526   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    527 
    528   if (cinfo->restart_interval) {
    529     // We are at the end of a data segment
    530     if (entropy->restarts_to_go == 0)
    531       if (! process_restart(cinfo))
    532 	return;
    533   }
    534 
    535   // Save restarts_to_go and next_restart_num
    536   offset->restarts_to_go = (unsigned short) entropy->restarts_to_go;
    537   offset->next_restart_num = cinfo->marker->next_restart_num;
    538 
    539   offset->bitstream_offset =
    540       (jget_input_stream_position(cinfo) << LOG_TWO_BIT_BUF_SIZE)
    541       + entropy->bitstate.bits_left;
    542 
    543   offset->get_buffer = entropy->bitstate.get_buffer;
    544 }
    545 
    546 /*
    547  * Configure the Huffman decoder to decode the image
    548  * starting from the bitstream position recorded in offset.
    549  */
    550 METHODDEF(void)
    551 configure_huffman_decoder(j_decompress_ptr cinfo, huffman_offset_data offset)
    552 {
    553   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    554   short int *dc_info = offset.prev_dc;
    555   int i;
    556   jpeg_configure_huffman_decoder(cinfo, offset);
    557   for (i = 0; i < cinfo->comps_in_scan; i++) {
    558     entropy->saved.last_dc_val[i] = dc_info[i];
    559   }
    560 }
    561 
    562 /*
    563  * Configure the Huffman decoder reader position and bit buffer.
    564  */
    565 GLOBAL(void)
    566 jpeg_configure_huffman_decoder(j_decompress_ptr cinfo,
    567         huffman_offset_data offset)
    568 {
    569   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    570 
    571   // Restore restarts_to_go and next_restart_num
    572   cinfo->unread_marker = 0;
    573   entropy->restarts_to_go = offset.restarts_to_go;
    574   cinfo->marker->next_restart_num = offset.next_restart_num;
    575 
    576   unsigned int bitstream_offset = offset.bitstream_offset;
    577   int blkn, i;
    578 
    579   unsigned int byte_offset = bitstream_offset >> LOG_TWO_BIT_BUF_SIZE;
    580   unsigned int bit_in_bit_buffer =
    581       bitstream_offset & ((1 << LOG_TWO_BIT_BUF_SIZE) - 1);
    582 
    583   jset_input_stream_position_bit(cinfo, byte_offset,
    584           bit_in_bit_buffer, offset.get_buffer);
    585 }
    586 
    587 /*
    588  * Decode and return one MCU's worth of Huffman-compressed coefficients.
    589  * The coefficients are reordered from zigzag order into natural array order,
    590  * but are not dequantized.
    591  *
    592  * The i'th block of the MCU is stored into the block pointed to by
    593  * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
    594  * (Wholesale zeroing is usually a little faster than retail...)
    595  *
    596  * Returns FALSE if data source requested suspension.  In that case no
    597  * changes have been made to permanent state.  (Exception: some output
    598  * coefficients may already have been assigned.  This is harmless for
    599  * this module, since we'll just re-assign them on the next call.)
    600  */
    601 
    602 METHODDEF(boolean)
    603 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
    604 {
    605   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    606   int blkn;
    607   BITREAD_STATE_VARS;
    608   savable_state state;
    609 
    610   /* Process restart marker if needed; may have to suspend */
    611   if (cinfo->restart_interval) {
    612     if (entropy->restarts_to_go == 0)
    613       if (! process_restart(cinfo))
    614 	return FALSE;
    615   }
    616 
    617   /* If we've run out of data, just leave the MCU set to zeroes.
    618    * This way, we return uniform gray for the remainder of the segment.
    619    */
    620   if (! entropy->pub.insufficient_data) {
    621     /* Load up working state */
    622     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
    623     ASSIGN_STATE(state, entropy->saved);
    624 
    625     /* Outer loop handles each block in the MCU */
    626 
    627     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    628       JBLOCKROW block = MCU_data[blkn];
    629       d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
    630       d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
    631       register int s, k, r;
    632 
    633       /* Decode a single block's worth of coefficients */
    634 
    635       /* Section F.2.2.1: decode the DC coefficient difference */
    636       HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
    637       if (s) {
    638 	CHECK_BIT_BUFFER(br_state, s, return FALSE);
    639 	r = GET_BITS(s);
    640 	s = HUFF_EXTEND(r, s);
    641       }
    642 
    643       if (entropy->dc_needed[blkn]) {
    644 	/* Convert DC difference to actual value, update last_dc_val */
    645 	int ci = cinfo->MCU_membership[blkn];
    646 	s += state.last_dc_val[ci];
    647 	state.last_dc_val[ci] = s;
    648 	/* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
    649 	(*block)[0] = (JCOEF) s;
    650       }
    651 
    652       if (entropy->ac_needed[blkn]) {
    653 
    654 	/* Section F.2.2.2: decode the AC coefficients */
    655 	/* Since zeroes are skipped, output area must be cleared beforehand */
    656 	for (k = 1; k < DCTSIZE2; k++) {
    657 	  HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
    658 
    659 	  r = s >> 4;
    660 	  s &= 15;
    661 
    662 	  if (s) {
    663 	    k += r;
    664 	    CHECK_BIT_BUFFER(br_state, s, return FALSE);
    665 	    r = GET_BITS(s);
    666 	    s = HUFF_EXTEND(r, s);
    667 	    /* Output coefficient in natural (dezigzagged) order.
    668 	     * Note: the extra entries in jpeg_natural_order[] will save us
    669 	     * if k >= DCTSIZE2, which could happen if the data is corrupted.
    670 	     */
    671 	    (*block)[jpeg_natural_order[k]] = (JCOEF) s;
    672 	  } else {
    673 	    if (r != 15)
    674 	      break;
    675 	    k += 15;
    676 	  }
    677 	}
    678 
    679       } else {
    680 
    681 	/* Section F.2.2.2: decode the AC coefficients */
    682 	/* In this path we just discard the values */
    683 	for (k = 1; k < DCTSIZE2; k++) {
    684 	  HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
    685 
    686 	  r = s >> 4;
    687 	  s &= 15;
    688 
    689 	  if (s) {
    690 	    k += r;
    691 	    CHECK_BIT_BUFFER(br_state, s, return FALSE);
    692 	    DROP_BITS(s);
    693 	  } else {
    694 	    if (r != 15)
    695 	      break;
    696 	    k += 15;
    697 	  }
    698 	}
    699 
    700       }
    701     }
    702 
    703     /* Completed MCU, so update state */
    704     BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
    705     ASSIGN_STATE(entropy->saved, state);
    706   }
    707 
    708   /* Account for restart interval (no-op if not using restarts) */
    709   entropy->restarts_to_go--;
    710 
    711   return TRUE;
    712 }
    713 
    714 /*
    715  * Decode one MCU's worth of Huffman-compressed coefficients.
    716  * The propose of this method is to calculate the
    717  * data length of one MCU in Huffman-coded format.
    718  * Therefore, all coefficients are discarded.
    719  */
    720 
    721 METHODDEF(boolean)
    722 decode_mcu_discard_coef (j_decompress_ptr cinfo)
    723 {
    724   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    725   int blkn;
    726   BITREAD_STATE_VARS;
    727   savable_state state;
    728 
    729   /* Process restart marker if needed; may have to suspend */
    730   if (cinfo->restart_interval) {
    731     if (entropy->restarts_to_go == 0)
    732       if (! process_restart(cinfo))
    733 	return FALSE;
    734   }
    735 
    736   if (! entropy->pub.insufficient_data) {
    737 
    738     /* Load up working state */
    739     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
    740     ASSIGN_STATE(state, entropy->saved);
    741 
    742     /* Outer loop handles each block in the MCU */
    743 
    744     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    745       d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
    746       d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
    747       register int s, k, r;
    748 
    749       /* Decode a single block's worth of coefficients */
    750 
    751       /* Section F.2.2.1: decode the DC coefficient difference */
    752       HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
    753       if (s) {
    754 	CHECK_BIT_BUFFER(br_state, s, return FALSE);
    755 	r = GET_BITS(s);
    756 	s = HUFF_EXTEND(r, s);
    757       }
    758 
    759       /* discard all coefficients */
    760       if (entropy->dc_needed[blkn]) {
    761 	/* Convert DC difference to actual value, update last_dc_val */
    762 	int ci = cinfo->MCU_membership[blkn];
    763 	s += state.last_dc_val[ci];
    764 	state.last_dc_val[ci] = s;
    765       }
    766       for (k = 1; k < DCTSIZE2; k++) {
    767         HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
    768 
    769         r = s >> 4;
    770         s &= 15;
    771 
    772         if (s) {
    773           k += r;
    774           CHECK_BIT_BUFFER(br_state, s, return FALSE);
    775           DROP_BITS(s);
    776         } else {
    777           if (r != 15)
    778             break;
    779           k += 15;
    780         }
    781       }
    782     }
    783 
    784     /* Completed MCU, so update state */
    785     BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
    786     ASSIGN_STATE(entropy->saved, state);
    787   }
    788 
    789   /* Account for restart interval (no-op if not using restarts) */
    790   entropy->restarts_to_go--;
    791 
    792   return TRUE;
    793 }
    794 
    795 
    796 /*
    797  * Module initialization routine for Huffman entropy decoding.
    798  */
    799 
    800 GLOBAL(void)
    801 jinit_huff_decoder (j_decompress_ptr cinfo)
    802 {
    803   huff_entropy_ptr entropy;
    804   int i;
    805 
    806   entropy = (huff_entropy_ptr)
    807     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    808 				SIZEOF(huff_entropy_decoder));
    809   cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
    810   entropy->pub.start_pass = start_pass_huff_decoder;
    811   entropy->pub.decode_mcu = decode_mcu;
    812   entropy->pub.decode_mcu_discard_coef = decode_mcu_discard_coef;
    813   entropy->pub.configure_huffman_decoder = configure_huffman_decoder;
    814   entropy->pub.get_huffman_decoder_configuration =
    815         get_huffman_decoder_configuration;
    816   entropy->pub.index = NULL;
    817 
    818   /* Mark tables unallocated */
    819   for (i = 0; i < NUM_HUFF_TBLS; i++) {
    820     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
    821   }
    822 }
    823 
    824 /*
    825  * Call after jpeg_read_header
    826  */
    827 GLOBAL(void)
    828 jpeg_create_huffman_index(j_decompress_ptr cinfo, huffman_index *index)
    829 {
    830   int i, s;
    831   index->scan_count = 1;
    832   index->total_iMCU_rows = cinfo->total_iMCU_rows;
    833   index->scan = (huffman_scan_header*)malloc(index->scan_count
    834           * sizeof(huffman_scan_header));
    835   index->scan[0].offset = (huffman_offset_data**)malloc(cinfo->total_iMCU_rows
    836           * sizeof(huffman_offset_data*));
    837   index->scan[0].prev_MCU_offset.bitstream_offset = 0;
    838   index->MCU_sample_size = DEFAULT_MCU_SAMPLE_SIZE;
    839 
    840   index->mem_used = sizeof(huffman_scan_header)
    841       + cinfo->total_iMCU_rows * sizeof(huffman_offset_data*);
    842 }
    843 
    844 GLOBAL(void)
    845 jpeg_destroy_huffman_index(huffman_index *index)
    846 {
    847     int i, j;
    848     for (i = 0; i < index->scan_count; i++) {
    849         for(j = 0; j < index->total_iMCU_rows; j++) {
    850             free(index->scan[i].offset[j]);
    851         }
    852         free(index->scan[i].offset);
    853     }
    854     free(index->scan);
    855 }
    856 
    857 /*
    858  * Set the reader byte position to offset
    859  */
    860 GLOBAL(void)
    861 jset_input_stream_position(j_decompress_ptr cinfo, int offset)
    862 {
    863   if (cinfo->src->seek_input_data) {
    864     cinfo->src->seek_input_data(cinfo, offset);
    865   } else {
    866     cinfo->src->bytes_in_buffer = cinfo->src->current_offset - offset;
    867     cinfo->src->next_input_byte = cinfo->src->start_input_byte + offset;
    868   }
    869 }
    870 
    871 /*
    872  * Set the reader byte position to offset and bit position to bit_left
    873  * with bit buffer set to buf.
    874  */
    875 GLOBAL(void)
    876 jset_input_stream_position_bit(j_decompress_ptr cinfo,
    877         int byte_offset, int bit_left, INT32 buf)
    878 {
    879   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    880 
    881   entropy->bitstate.bits_left = bit_left;
    882   entropy->bitstate.get_buffer = buf;
    883 
    884   jset_input_stream_position(cinfo, byte_offset);
    885 }
    886 
    887 /*
    888  * Get the current reader byte position.
    889  */
    890 GLOBAL(int)
    891 jget_input_stream_position(j_decompress_ptr cinfo)
    892 {
    893   return cinfo->src->current_offset - cinfo->src->bytes_in_buffer;
    894 }
    895