Home | History | Annotate | Download | only in docs
      1 ================================
      2 Source Level Debugging with LLVM
      3 ================================
      4 
      5 .. contents::
      6    :local:
      7 
      8 Introduction
      9 ============
     10 
     11 This document is the central repository for all information pertaining to debug
     12 information in LLVM.  It describes the :ref:`actual format that the LLVM debug
     13 information takes <format>`, which is useful for those interested in creating
     14 front-ends or dealing directly with the information.  Further, this document
     15 provides specific examples of what debug information for C/C++ looks like.
     16 
     17 Philosophy behind LLVM debugging information
     18 --------------------------------------------
     19 
     20 The idea of the LLVM debugging information is to capture how the important
     21 pieces of the source-language's Abstract Syntax Tree map onto LLVM code.
     22 Several design aspects have shaped the solution that appears here.  The
     23 important ones are:
     24 
     25 * Debugging information should have very little impact on the rest of the
     26   compiler.  No transformations, analyses, or code generators should need to
     27   be modified because of debugging information.
     28 
     29 * LLVM optimizations should interact in :ref:`well-defined and easily described
     30   ways <intro_debugopt>` with the debugging information.
     31 
     32 * Because LLVM is designed to support arbitrary programming languages,
     33   LLVM-to-LLVM tools should not need to know anything about the semantics of
     34   the source-level-language.
     35 
     36 * Source-level languages are often **widely** different from one another.
     37   LLVM should not put any restrictions of the flavor of the source-language,
     38   and the debugging information should work with any language.
     39 
     40 * With code generator support, it should be possible to use an LLVM compiler
     41   to compile a program to native machine code and standard debugging
     42   formats.  This allows compatibility with traditional machine-code level
     43   debuggers, like GDB or DBX.
     44 
     45 The approach used by the LLVM implementation is to use a small set of
     46 :ref:`intrinsic functions <format_common_intrinsics>` to define a mapping
     47 between LLVM program objects and the source-level objects.  The description of
     48 the source-level program is maintained in LLVM metadata in an
     49 :ref:`implementation-defined format <ccxx_frontend>` (the C/C++ front-end
     50 currently uses working draft 7 of the `DWARF 3 standard
     51 <http://www.eagercon.com/dwarf/dwarf3std.htm>`_).
     52 
     53 When a program is being debugged, a debugger interacts with the user and turns
     54 the stored debug information into source-language specific information.  As
     55 such, a debugger must be aware of the source-language, and is thus tied to a
     56 specific language or family of languages.
     57 
     58 Debug information consumers
     59 ---------------------------
     60 
     61 The role of debug information is to provide meta information normally stripped
     62 away during the compilation process.  This meta information provides an LLVM
     63 user a relationship between generated code and the original program source
     64 code.
     65 
     66 Currently, debug information is consumed by DwarfDebug to produce dwarf
     67 information used by the gdb debugger.  Other targets could use the same
     68 information to produce stabs or other debug forms.
     69 
     70 It would also be reasonable to use debug information to feed profiling tools
     71 for analysis of generated code, or, tools for reconstructing the original
     72 source from generated code.
     73 
     74 TODO - expound a bit more.
     75 
     76 .. _intro_debugopt:
     77 
     78 Debugging optimized code
     79 ------------------------
     80 
     81 An extremely high priority of LLVM debugging information is to make it interact
     82 well with optimizations and analysis.  In particular, the LLVM debug
     83 information provides the following guarantees:
     84 
     85 * LLVM debug information **always provides information to accurately read
     86   the source-level state of the program**, regardless of which LLVM
     87   optimizations have been run, and without any modification to the
     88   optimizations themselves.  However, some optimizations may impact the
     89   ability to modify the current state of the program with a debugger, such
     90   as setting program variables, or calling functions that have been
     91   deleted.
     92 
     93 * As desired, LLVM optimizations can be upgraded to be aware of the LLVM
     94   debugging information, allowing them to update the debugging information
     95   as they perform aggressive optimizations.  This means that, with effort,
     96   the LLVM optimizers could optimize debug code just as well as non-debug
     97   code.
     98 
     99 * LLVM debug information does not prevent optimizations from
    100   happening (for example inlining, basic block reordering/merging/cleanup,
    101   tail duplication, etc).
    102 
    103 * LLVM debug information is automatically optimized along with the rest of
    104   the program, using existing facilities.  For example, duplicate
    105   information is automatically merged by the linker, and unused information
    106   is automatically removed.
    107 
    108 Basically, the debug information allows you to compile a program with
    109 "``-O0 -g``" and get full debug information, allowing you to arbitrarily modify
    110 the program as it executes from a debugger.  Compiling a program with
    111 "``-O3 -g``" gives you full debug information that is always available and
    112 accurate for reading (e.g., you get accurate stack traces despite tail call
    113 elimination and inlining), but you might lose the ability to modify the program
    114 and call functions where were optimized out of the program, or inlined away
    115 completely.
    116 
    117 :ref:`LLVM test suite <test-suite-quickstart>` provides a framework to test
    118 optimizer's handling of debugging information.  It can be run like this:
    119 
    120 .. code-block:: bash
    121 
    122   % cd llvm/projects/test-suite/MultiSource/Benchmarks  # or some other level
    123   % make TEST=dbgopt
    124 
    125 This will test impact of debugging information on optimization passes.  If
    126 debugging information influences optimization passes then it will be reported
    127 as a failure.  See :doc:`TestingGuide` for more information on LLVM test
    128 infrastructure and how to run various tests.
    129 
    130 .. _format:
    131 
    132 Debugging information format
    133 ============================
    134 
    135 LLVM debugging information has been carefully designed to make it possible for
    136 the optimizer to optimize the program and debugging information without
    137 necessarily having to know anything about debugging information.  In
    138 particular, the use of metadata avoids duplicated debugging information from
    139 the beginning, and the global dead code elimination pass automatically deletes
    140 debugging information for a function if it decides to delete the function.
    141 
    142 To do this, most of the debugging information (descriptors for types,
    143 variables, functions, source files, etc) is inserted by the language front-end
    144 in the form of LLVM metadata.
    145 
    146 Debug information is designed to be agnostic about the target debugger and
    147 debugging information representation (e.g. DWARF/Stabs/etc).  It uses a generic
    148 pass to decode the information that represents variables, types, functions,
    149 namespaces, etc: this allows for arbitrary source-language semantics and
    150 type-systems to be used, as long as there is a module written for the target
    151 debugger to interpret the information.
    152 
    153 To provide basic functionality, the LLVM debugger does have to make some
    154 assumptions about the source-level language being debugged, though it keeps
    155 these to a minimum.  The only common features that the LLVM debugger assumes
    156 exist are :ref:`source files <format_files>`, and :ref:`program objects
    157 <format_global_variables>`.  These abstract objects are used by a debugger to
    158 form stack traces, show information about local variables, etc.
    159 
    160 This section of the documentation first describes the representation aspects
    161 common to any source-language.  :ref:`ccxx_frontend` describes the data layout
    162 conventions used by the C and C++ front-ends.
    163 
    164 Debug information descriptors
    165 -----------------------------
    166 
    167 In consideration of the complexity and volume of debug information, LLVM
    168 provides a specification for well formed debug descriptors.
    169 
    170 Consumers of LLVM debug information expect the descriptors for program objects
    171 to start in a canonical format, but the descriptors can include additional
    172 information appended at the end that is source-language specific.  All LLVM
    173 debugging information is versioned, allowing backwards compatibility in the
    174 case that the core structures need to change in some way.  Also, all debugging
    175 information objects start with a tag to indicate what type of object it is.
    176 The source-language is allowed to define its own objects, by using unreserved
    177 tag numbers.  We recommend using with tags in the range 0x1000 through 0x2000
    178 (there is a defined ``enum DW_TAG_user_base = 0x1000``.)
    179 
    180 The fields of debug descriptors used internally by LLVM are restricted to only
    181 the simple data types ``i32``, ``i1``, ``float``, ``double``, ``mdstring`` and
    182 ``mdnode``.
    183 
    184 .. code-block:: llvm
    185 
    186   !1 = metadata !{
    187     i32,   ;; A tag
    188     ...
    189   }
    190 
    191 <a name="LLVMDebugVersion">The first field of a descriptor is always an
    192 ``i32`` containing a tag value identifying the content of the descriptor.
    193 The remaining fields are specific to the descriptor.  The values of tags are
    194 loosely bound to the tag values of DWARF information entries.  However, that
    195 does not restrict the use of the information supplied to DWARF targets.  To
    196 facilitate versioning of debug information, the tag is augmented with the
    197 current debug version (``LLVMDebugVersion = 8 << 16`` or 0x80000 or
    198 524288.)
    199 
    200 The details of the various descriptors follow.
    201 
    202 Compile unit descriptors
    203 ^^^^^^^^^^^^^^^^^^^^^^^^
    204 
    205 .. code-block:: llvm
    206 
    207   !0 = metadata !{
    208     i32,       ;; Tag = 17 + LLVMDebugVersion (DW_TAG_compile_unit)
    209     i32,       ;; Unused field.
    210     i32,       ;; DWARF language identifier (ex. DW_LANG_C89)
    211     metadata,  ;; Source file name
    212     metadata,  ;; Source file directory (includes trailing slash)
    213     metadata   ;; Producer (ex. "4.0.1 LLVM (LLVM research group)")
    214     i1,        ;; True if this is a main compile unit.
    215     i1,        ;; True if this is optimized.
    216     metadata,  ;; Flags
    217     i32        ;; Runtime version
    218     metadata   ;; List of enums types
    219     metadata   ;; List of retained types
    220     metadata   ;; List of subprograms
    221     metadata   ;; List of global variables
    222   }
    223 
    224 These descriptors contain a source language ID for the file (we use the DWARF
    225 3.0 ID numbers, such as ``DW_LANG_C89``, ``DW_LANG_C_plus_plus``,
    226 ``DW_LANG_Cobol74``, etc), three strings describing the filename, working
    227 directory of the compiler, and an identifier string for the compiler that
    228 produced it.
    229 
    230 Compile unit descriptors provide the root context for objects declared in a
    231 specific compilation unit.  File descriptors are defined using this context.
    232 These descriptors are collected by a named metadata ``!llvm.dbg.cu``.  They
    233 keep track of subprograms, global variables and type information.
    234 
    235 .. _format_files:
    236 
    237 File descriptors
    238 ^^^^^^^^^^^^^^^^
    239 
    240 .. code-block:: llvm
    241 
    242   !0 = metadata !{
    243     i32,       ;; Tag = 41 + LLVMDebugVersion (DW_TAG_file_type)
    244     metadata,  ;; Source file name
    245     metadata,  ;; Source file directory (includes trailing slash)
    246     metadata   ;; Unused
    247   }
    248 
    249 These descriptors contain information for a file.  Global variables and top
    250 level functions would be defined using this context.  File descriptors also
    251 provide context for source line correspondence.
    252 
    253 Each input file is encoded as a separate file descriptor in LLVM debugging
    254 information output.
    255 
    256 .. _format_global_variables:
    257 
    258 Global variable descriptors
    259 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
    260 
    261 .. code-block:: llvm
    262 
    263   !1 = metadata !{
    264     i32,      ;; Tag = 52 + LLVMDebugVersion (DW_TAG_variable)
    265     i32,      ;; Unused field.
    266     metadata, ;; Reference to context descriptor
    267     metadata, ;; Name
    268     metadata, ;; Display name (fully qualified C++ name)
    269     metadata, ;; MIPS linkage name (for C++)
    270     metadata, ;; Reference to file where defined
    271     i32,      ;; Line number where defined
    272     metadata, ;; Reference to type descriptor
    273     i1,       ;; True if the global is local to compile unit (static)
    274     i1,       ;; True if the global is defined in the compile unit (not extern)
    275     {}*       ;; Reference to the global variable
    276   }
    277 
    278 These descriptors provide debug information about globals variables.  They
    279 provide details such as name, type and where the variable is defined.  All
    280 global variables are collected inside the named metadata ``!llvm.dbg.cu``.
    281 
    282 .. _format_subprograms:
    283 
    284 Subprogram descriptors
    285 ^^^^^^^^^^^^^^^^^^^^^^
    286 
    287 .. code-block:: llvm
    288 
    289   !2 = metadata !{
    290     i32,      ;; Tag = 46 + LLVMDebugVersion (DW_TAG_subprogram)
    291     i32,      ;; Unused field.
    292     metadata, ;; Reference to context descriptor
    293     metadata, ;; Name
    294     metadata, ;; Display name (fully qualified C++ name)
    295     metadata, ;; MIPS linkage name (for C++)
    296     metadata, ;; Reference to file where defined
    297     i32,      ;; Line number where defined
    298     metadata, ;; Reference to type descriptor
    299     i1,       ;; True if the global is local to compile unit (static)
    300     i1,       ;; True if the global is defined in the compile unit (not extern)
    301     i32,      ;; Virtuality, e.g. dwarf::DW_VIRTUALITY__virtual
    302     i32,      ;; Index into a virtual function
    303     metadata, ;; indicates which base type contains the vtable pointer for the
    304               ;; derived class
    305     i32,      ;; Flags - Artifical, Private, Protected, Explicit, Prototyped.
    306     i1,       ;; isOptimized
    307     Function * , ;; Pointer to LLVM function
    308     metadata, ;; Lists function template parameters
    309     metadata, ;; Function declaration descriptor
    310     metadata, ;; List of function variables
    311     i32       ;; Line number where the scope of the subprogram begins
    312   }
    313 
    314 These descriptors provide debug information about functions, methods and
    315 subprograms.  They provide details such as name, return types and the source
    316 location where the subprogram is defined.
    317 
    318 Block descriptors
    319 ^^^^^^^^^^^^^^^^^
    320 
    321 .. code-block:: llvm
    322 
    323   !3 = metadata !{
    324     i32,     ;; Tag = 11 + LLVMDebugVersion (DW_TAG_lexical_block)
    325     metadata,;; Reference to context descriptor
    326     i32,     ;; Line number
    327     i32,     ;; Column number
    328     metadata,;; Reference to source file
    329     i32      ;; Unique ID to identify blocks from a template function
    330   }
    331 
    332 This descriptor provides debug information about nested blocks within a
    333 subprogram.  The line number and column numbers are used to dinstinguish two
    334 lexical blocks at same depth.
    335 
    336 .. code-block:: llvm
    337 
    338   !3 = metadata !{
    339     i32,     ;; Tag = 11 + LLVMDebugVersion (DW_TAG_lexical_block)
    340     metadata ;; Reference to the scope we're annotating with a file change
    341     metadata,;; Reference to the file the scope is enclosed in.
    342   }
    343 
    344 This descriptor provides a wrapper around a lexical scope to handle file
    345 changes in the middle of a lexical block.
    346 
    347 .. _format_basic_type:
    348 
    349 Basic type descriptors
    350 ^^^^^^^^^^^^^^^^^^^^^^
    351 
    352 .. code-block:: llvm
    353 
    354   !4 = metadata !{
    355     i32,      ;; Tag = 36 + LLVMDebugVersion (DW_TAG_base_type)
    356     metadata, ;; Reference to context
    357     metadata, ;; Name (may be "" for anonymous types)
    358     metadata, ;; Reference to file where defined (may be NULL)
    359     i32,      ;; Line number where defined (may be 0)
    360     i64,      ;; Size in bits
    361     i64,      ;; Alignment in bits
    362     i64,      ;; Offset in bits
    363     i32,      ;; Flags
    364     i32       ;; DWARF type encoding
    365   }
    366 
    367 These descriptors define primitive types used in the code.  Example ``int``,
    368 ``bool`` and ``float``.  The context provides the scope of the type, which is
    369 usually the top level.  Since basic types are not usually user defined the
    370 context and line number can be left as NULL and 0.  The size, alignment and
    371 offset are expressed in bits and can be 64 bit values.  The alignment is used
    372 to round the offset when embedded in a :ref:`composite type
    373 <format_composite_type>` (example to keep float doubles on 64 bit boundaries).
    374 The offset is the bit offset if embedded in a :ref:`composite type
    375 <format_composite_type>`.
    376 
    377 The type encoding provides the details of the type.  The values are typically
    378 one of the following:
    379 
    380 .. code-block:: llvm
    381 
    382   DW_ATE_address       = 1
    383   DW_ATE_boolean       = 2
    384   DW_ATE_float         = 4
    385   DW_ATE_signed        = 5
    386   DW_ATE_signed_char   = 6
    387   DW_ATE_unsigned      = 7
    388   DW_ATE_unsigned_char = 8
    389 
    390 .. _format_derived_type:
    391 
    392 Derived type descriptors
    393 ^^^^^^^^^^^^^^^^^^^^^^^^
    394 
    395 .. code-block:: llvm
    396 
    397   !5 = metadata !{
    398     i32,      ;; Tag (see below)
    399     metadata, ;; Reference to context
    400     metadata, ;; Name (may be "" for anonymous types)
    401     metadata, ;; Reference to file where defined (may be NULL)
    402     i32,      ;; Line number where defined (may be 0)
    403     i64,      ;; Size in bits
    404     i64,      ;; Alignment in bits
    405     i64,      ;; Offset in bits
    406     i32,      ;; Flags to encode attributes, e.g. private
    407     metadata, ;; Reference to type derived from
    408     metadata, ;; (optional) Name of the Objective C property associated with
    409               ;; Objective-C an ivar, or the type of which this
    410               ;; pointer-to-member is pointing to members of.
    411     metadata, ;; (optional) Name of the Objective C property getter selector.
    412     metadata, ;; (optional) Name of the Objective C property setter selector.
    413     i32       ;; (optional) Objective C property attributes.
    414   }
    415 
    416 These descriptors are used to define types derived from other types.  The value
    417 of the tag varies depending on the meaning.  The following are possible tag
    418 values:
    419 
    420 .. code-block:: llvm
    421 
    422   DW_TAG_formal_parameter   = 5
    423   DW_TAG_member             = 13
    424   DW_TAG_pointer_type       = 15
    425   DW_TAG_reference_type     = 16
    426   DW_TAG_typedef            = 22
    427   DW_TAG_ptr_to_member_type = 31
    428   DW_TAG_const_type         = 38
    429   DW_TAG_volatile_type      = 53
    430   DW_TAG_restrict_type      = 55
    431 
    432 ``DW_TAG_member`` is used to define a member of a :ref:`composite type
    433 <format_composite_type>` or :ref:`subprogram <format_subprograms>`.  The type
    434 of the member is the :ref:`derived type <format_derived_type>`.
    435 ``DW_TAG_formal_parameter`` is used to define a member which is a formal
    436 argument of a subprogram.
    437 
    438 ``DW_TAG_typedef`` is used to provide a name for the derived type.
    439 
    440 ``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
    441 ``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
    442 :ref:`derived type <format_derived_type>`.
    443 
    444 :ref:`Derived type <format_derived_type>` location can be determined from the
    445 context and line number.  The size, alignment and offset are expressed in bits
    446 and can be 64 bit values.  The alignment is used to round the offset when
    447 embedded in a :ref:`composite type <format_composite_type>`  (example to keep
    448 float doubles on 64 bit boundaries.) The offset is the bit offset if embedded
    449 in a :ref:`composite type <format_composite_type>`.
    450 
    451 Note that the ``void *`` type is expressed as a type derived from NULL.
    452 
    453 .. _format_composite_type:
    454 
    455 Composite type descriptors
    456 ^^^^^^^^^^^^^^^^^^^^^^^^^^
    457 
    458 .. code-block:: llvm
    459 
    460   !6 = metadata !{
    461     i32,      ;; Tag (see below)
    462     metadata, ;; Reference to context
    463     metadata, ;; Name (may be "" for anonymous types)
    464     metadata, ;; Reference to file where defined (may be NULL)
    465     i32,      ;; Line number where defined (may be 0)
    466     i64,      ;; Size in bits
    467     i64,      ;; Alignment in bits
    468     i64,      ;; Offset in bits
    469     i32,      ;; Flags
    470     metadata, ;; Reference to type derived from
    471     metadata, ;; Reference to array of member descriptors
    472     i32       ;; Runtime languages
    473   }
    474 
    475 These descriptors are used to define types that are composed of 0 or more
    476 elements.  The value of the tag varies depending on the meaning.  The following
    477 are possible tag values:
    478 
    479 .. code-block:: llvm
    480 
    481   DW_TAG_array_type       = 1
    482   DW_TAG_enumeration_type = 4
    483   DW_TAG_structure_type   = 19
    484   DW_TAG_union_type       = 23
    485   DW_TAG_subroutine_type  = 21
    486   DW_TAG_inheritance      = 28
    487 
    488 The vector flag indicates that an array type is a native packed vector.
    489 
    490 The members of array types (tag = ``DW_TAG_array_type``) are
    491 :ref:`subrange descriptors <format_subrange>`, each
    492 representing the range of subscripts at that level of indexing.
    493 
    494 The members of enumeration types (tag = ``DW_TAG_enumeration_type``) are
    495 :ref:`enumerator descriptors <format_enumerator>`, each representing the
    496 definition of enumeration value for the set.  All enumeration type descriptors
    497 are collected inside the named metadata ``!llvm.dbg.cu``.
    498 
    499 The members of structure (tag = ``DW_TAG_structure_type``) or union (tag =
    500 ``DW_TAG_union_type``) types are any one of the :ref:`basic
    501 <format_basic_type>`, :ref:`derived <format_derived_type>` or :ref:`composite
    502 <format_composite_type>` type descriptors, each representing a field member of
    503 the structure or union.
    504 
    505 For C++ classes (tag = ``DW_TAG_structure_type``), member descriptors provide
    506 information about base classes, static members and member functions.  If a
    507 member is a :ref:`derived type descriptor <format_derived_type>` and has a tag
    508 of ``DW_TAG_inheritance``, then the type represents a base class.  If the member
    509 of is a :ref:`global variable descriptor <format_global_variables>` then it
    510 represents a static member.  And, if the member is a :ref:`subprogram
    511 descriptor <format_subprograms>` then it represents a member function.  For
    512 static members and member functions, ``getName()`` returns the members link or
    513 the C++ mangled name.  ``getDisplayName()`` the simplied version of the name.
    514 
    515 The first member of subroutine (tag = ``DW_TAG_subroutine_type``) type elements
    516 is the return type for the subroutine.  The remaining elements are the formal
    517 arguments to the subroutine.
    518 
    519 :ref:`Composite type <format_composite_type>` location can be determined from
    520 the context and line number.  The size, alignment and offset are expressed in
    521 bits and can be 64 bit values.  The alignment is used to round the offset when
    522 embedded in a :ref:`composite type <format_composite_type>` (as an example, to
    523 keep float doubles on 64 bit boundaries).  The offset is the bit offset if
    524 embedded in a :ref:`composite type <format_composite_type>`.
    525 
    526 .. _format_subrange:
    527 
    528 Subrange descriptors
    529 ^^^^^^^^^^^^^^^^^^^^
    530 
    531 .. code-block:: llvm
    532 
    533   !42 = metadata !{
    534     i32,    ;; Tag = 33 + LLVMDebugVersion (DW_TAG_subrange_type)
    535     i64,    ;; Low value
    536     i64     ;; High value
    537   }
    538 
    539 These descriptors are used to define ranges of array subscripts for an array
    540 :ref:`composite type <format_composite_type>`.  The low value defines the lower
    541 bounds typically zero for C/C++.  The high value is the upper bounds.  Values
    542 are 64 bit.  ``High - Low + 1`` is the size of the array.  If ``Low > High``
    543 the array bounds are not included in generated debugging information.
    544 
    545 .. _format_enumerator:
    546 
    547 Enumerator descriptors
    548 ^^^^^^^^^^^^^^^^^^^^^^
    549 
    550 .. code-block:: llvm
    551 
    552   !6 = metadata !{
    553     i32,      ;; Tag = 40 + LLVMDebugVersion (DW_TAG_enumerator)
    554     metadata, ;; Name
    555     i64       ;; Value
    556   }
    557 
    558 These descriptors are used to define members of an enumeration :ref:`composite
    559 type <format_composite_type>`, it associates the name to the value.
    560 
    561 Local variables
    562 ^^^^^^^^^^^^^^^
    563 
    564 .. code-block:: llvm
    565 
    566   !7 = metadata !{
    567     i32,      ;; Tag (see below)
    568     metadata, ;; Context
    569     metadata, ;; Name
    570     metadata, ;; Reference to file where defined
    571     i32,      ;; 24 bit - Line number where defined
    572               ;; 8 bit - Argument number. 1 indicates 1st argument.
    573     metadata, ;; Type descriptor
    574     i32,      ;; flags
    575     metadata  ;; (optional) Reference to inline location
    576   }
    577 
    578 These descriptors are used to define variables local to a sub program.  The
    579 value of the tag depends on the usage of the variable:
    580 
    581 .. code-block:: llvm
    582 
    583   DW_TAG_auto_variable   = 256
    584   DW_TAG_arg_variable    = 257
    585 
    586 An auto variable is any variable declared in the body of the function.  An
    587 argument variable is any variable that appears as a formal argument to the
    588 function.
    589 
    590 The context is either the subprogram or block where the variable is defined.
    591 Name the source variable name.  Context and line indicate where the variable
    592 was defined.  Type descriptor defines the declared type of the variable.
    593 
    594 .. _format_common_intrinsics:
    595 
    596 Debugger intrinsic functions
    597 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
    598 
    599 LLVM uses several intrinsic functions (name prefixed with "``llvm.dbg``") to
    600 provide debug information at various points in generated code.
    601 
    602 ``llvm.dbg.declare``
    603 ^^^^^^^^^^^^^^^^^^^^
    604 
    605 .. code-block:: llvm
    606 
    607   void %llvm.dbg.declare(metadata, metadata)
    608 
    609 This intrinsic provides information about a local element (e.g., variable).
    610 The first argument is metadata holding the alloca for the variable.  The second
    611 argument is metadata containing a description of the variable.
    612 
    613 ``llvm.dbg.value``
    614 ^^^^^^^^^^^^^^^^^^
    615 
    616 .. code-block:: llvm
    617 
    618   void %llvm.dbg.value(metadata, i64, metadata)
    619 
    620 This intrinsic provides information when a user source variable is set to a new
    621 value.  The first argument is the new value (wrapped as metadata).  The second
    622 argument is the offset in the user source variable where the new value is
    623 written.  The third argument is metadata containing a description of the user
    624 source variable.
    625 
    626 Object lifetimes and scoping
    627 ============================
    628 
    629 In many languages, the local variables in functions can have their lifetimes or
    630 scopes limited to a subset of a function.  In the C family of languages, for
    631 example, variables are only live (readable and writable) within the source
    632 block that they are defined in.  In functional languages, values are only
    633 readable after they have been defined.  Though this is a very obvious concept,
    634 it is non-trivial to model in LLVM, because it has no notion of scoping in this
    635 sense, and does not want to be tied to a language's scoping rules.
    636 
    637 In order to handle this, the LLVM debug format uses the metadata attached to
    638 llvm instructions to encode line number and scoping information.  Consider the
    639 following C fragment, for example:
    640 
    641 .. code-block:: c
    642 
    643   1.  void foo() {
    644   2.    int X = 21;
    645   3.    int Y = 22;
    646   4.    {
    647   5.      int Z = 23;
    648   6.      Z = X;
    649   7.    }
    650   8.    X = Y;
    651   9.  }
    652 
    653 Compiled to LLVM, this function would be represented like this:
    654 
    655 .. code-block:: llvm
    656 
    657   define void @foo() nounwind ssp {
    658   entry:
    659     %X = alloca i32, align 4                        ; <i32*> [#uses=4]
    660     %Y = alloca i32, align 4                        ; <i32*> [#uses=4]
    661     %Z = alloca i32, align 4                        ; <i32*> [#uses=3]
    662     %0 = bitcast i32* %X to {}*                     ; <{}*> [#uses=1]
    663     call void @llvm.dbg.declare(metadata !{i32 * %X}, metadata !0), !dbg !7
    664     store i32 21, i32* %X, !dbg !8
    665     %1 = bitcast i32* %Y to {}*                     ; <{}*> [#uses=1]
    666     call void @llvm.dbg.declare(metadata !{i32 * %Y}, metadata !9), !dbg !10
    667     store i32 22, i32* %Y, !dbg !11
    668     %2 = bitcast i32* %Z to {}*                     ; <{}*> [#uses=1]
    669     call void @llvm.dbg.declare(metadata !{i32 * %Z}, metadata !12), !dbg !14
    670     store i32 23, i32* %Z, !dbg !15
    671     %tmp = load i32* %X, !dbg !16                   ; <i32> [#uses=1]
    672     %tmp1 = load i32* %Y, !dbg !16                  ; <i32> [#uses=1]
    673     %add = add nsw i32 %tmp, %tmp1, !dbg !16        ; <i32> [#uses=1]
    674     store i32 %add, i32* %Z, !dbg !16
    675     %tmp2 = load i32* %Y, !dbg !17                  ; <i32> [#uses=1]
    676     store i32 %tmp2, i32* %X, !dbg !17
    677     ret void, !dbg !18
    678   }
    679 
    680   declare void @llvm.dbg.declare(metadata, metadata) nounwind readnone
    681 
    682   !0 = metadata !{i32 459008, metadata !1, metadata !"X",
    683                   metadata !3, i32 2, metadata !6}; [ DW_TAG_auto_variable ]
    684   !1 = metadata !{i32 458763, metadata !2}; [DW_TAG_lexical_block ]
    685   !2 = metadata !{i32 458798, i32 0, metadata !3, metadata !"foo", metadata !"foo",
    686                  metadata !"foo", metadata !3, i32 1, metadata !4,
    687                  i1 false, i1 true}; [DW_TAG_subprogram ]
    688   !3 = metadata !{i32 458769, i32 0, i32 12, metadata !"foo.c",
    689                   metadata !"/private/tmp", metadata !"clang 1.1", i1 true,
    690                   i1 false, metadata !"", i32 0}; [DW_TAG_compile_unit ]
    691   !4 = metadata !{i32 458773, metadata !3, metadata !"", null, i32 0, i64 0, i64 0,
    692                   i64 0, i32 0, null, metadata !5, i32 0}; [DW_TAG_subroutine_type ]
    693   !5 = metadata !{null}
    694   !6 = metadata !{i32 458788, metadata !3, metadata !"int", metadata !3, i32 0,
    695                   i64 32, i64 32, i64 0, i32 0, i32 5}; [DW_TAG_base_type ]
    696   !7 = metadata !{i32 2, i32 7, metadata !1, null}
    697   !8 = metadata !{i32 2, i32 3, metadata !1, null}
    698   !9 = metadata !{i32 459008, metadata !1, metadata !"Y", metadata !3, i32 3,
    699                   metadata !6}; [ DW_TAG_auto_variable ]
    700   !10 = metadata !{i32 3, i32 7, metadata !1, null}
    701   !11 = metadata !{i32 3, i32 3, metadata !1, null}
    702   !12 = metadata !{i32 459008, metadata !13, metadata !"Z", metadata !3, i32 5,
    703                    metadata !6}; [ DW_TAG_auto_variable ]
    704   !13 = metadata !{i32 458763, metadata !1}; [DW_TAG_lexical_block ]
    705   !14 = metadata !{i32 5, i32 9, metadata !13, null}
    706   !15 = metadata !{i32 5, i32 5, metadata !13, null}
    707   !16 = metadata !{i32 6, i32 5, metadata !13, null}
    708   !17 = metadata !{i32 8, i32 3, metadata !1, null}
    709   !18 = metadata !{i32 9, i32 1, metadata !2, null}
    710 
    711 This example illustrates a few important details about LLVM debugging
    712 information.  In particular, it shows how the ``llvm.dbg.declare`` intrinsic and
    713 location information, which are attached to an instruction, are applied
    714 together to allow a debugger to analyze the relationship between statements,
    715 variable definitions, and the code used to implement the function.
    716 
    717 .. code-block:: llvm
    718 
    719   call void @llvm.dbg.declare(metadata, metadata !0), !dbg !7
    720 
    721 The first intrinsic ``%llvm.dbg.declare`` encodes debugging information for the
    722 variable ``X``.  The metadata ``!dbg !7`` attached to the intrinsic provides
    723 scope information for the variable ``X``.
    724 
    725 .. code-block:: llvm
    726 
    727   !7 = metadata !{i32 2, i32 7, metadata !1, null}
    728   !1 = metadata !{i32 458763, metadata !2}; [DW_TAG_lexical_block ]
    729   !2 = metadata !{i32 458798, i32 0, metadata !3, metadata !"foo",
    730                   metadata !"foo", metadata !"foo", metadata !3, i32 1,
    731                   metadata !4, i1 false, i1 true}; [DW_TAG_subprogram ]
    732 
    733 Here ``!7`` is metadata providing location information.  It has four fields:
    734 line number, column number, scope, and original scope.  The original scope
    735 represents inline location if this instruction is inlined inside a caller, and
    736 is null otherwise.  In this example, scope is encoded by ``!1``. ``!1``
    737 represents a lexical block inside the scope ``!2``, where ``!2`` is a
    738 :ref:`subprogram descriptor <format_subprograms>`.  This way the location
    739 information attached to the intrinsics indicates that the variable ``X`` is
    740 declared at line number 2 at a function level scope in function ``foo``.
    741 
    742 Now lets take another example.
    743 
    744 .. code-block:: llvm
    745 
    746   call void @llvm.dbg.declare(metadata, metadata !12), !dbg !14
    747 
    748 The second intrinsic ``%llvm.dbg.declare`` encodes debugging information for
    749 variable ``Z``.  The metadata ``!dbg !14`` attached to the intrinsic provides
    750 scope information for the variable ``Z``.
    751 
    752 .. code-block:: llvm
    753 
    754   !13 = metadata !{i32 458763, metadata !1}; [DW_TAG_lexical_block ]
    755   !14 = metadata !{i32 5, i32 9, metadata !13, null}
    756 
    757 Here ``!14`` indicates that ``Z`` is declared at line number 5 and
    758 column number 9 inside of lexical scope ``!13``.  The lexical scope itself
    759 resides inside of lexical scope ``!1`` described above.
    760 
    761 The scope information attached with each instruction provides a straightforward
    762 way to find instructions covered by a scope.
    763 
    764 .. _ccxx_frontend:
    765 
    766 C/C++ front-end specific debug information
    767 ==========================================
    768 
    769 The C and C++ front-ends represent information about the program in a format
    770 that is effectively identical to `DWARF 3.0
    771 <http://www.eagercon.com/dwarf/dwarf3std.htm>`_ in terms of information
    772 content.  This allows code generators to trivially support native debuggers by
    773 generating standard dwarf information, and contains enough information for
    774 non-dwarf targets to translate it as needed.
    775 
    776 This section describes the forms used to represent C and C++ programs.  Other
    777 languages could pattern themselves after this (which itself is tuned to
    778 representing programs in the same way that DWARF 3 does), or they could choose
    779 to provide completely different forms if they don't fit into the DWARF model.
    780 As support for debugging information gets added to the various LLVM
    781 source-language front-ends, the information used should be documented here.
    782 
    783 The following sections provide examples of various C/C++ constructs and the
    784 debug information that would best describe those constructs.
    785 
    786 C/C++ source file information
    787 -----------------------------
    788 
    789 Given the source files ``MySource.cpp`` and ``MyHeader.h`` located in the
    790 directory ``/Users/mine/sources``, the following code:
    791 
    792 .. code-block:: c
    793 
    794   #include "MyHeader.h"
    795 
    796   int main(int argc, char *argv[]) {
    797     return 0;
    798   }
    799 
    800 a C/C++ front-end would generate the following descriptors:
    801 
    802 .. code-block:: llvm
    803 
    804   ...
    805   ;;
    806   ;; Define the compile unit for the main source file "/Users/mine/sources/MySource.cpp".
    807   ;;
    808   !2 = metadata !{
    809     i32 524305,    ;; Tag
    810     i32 0,         ;; Unused
    811     i32 4,         ;; Language Id
    812     metadata !"MySource.cpp",
    813     metadata !"/Users/mine/sources",
    814     metadata !"4.2.1 (Based on Apple Inc. build 5649) (LLVM build 00)",
    815     i1 true,       ;; Main Compile Unit
    816     i1 false,      ;; Optimized compile unit
    817     metadata !"",  ;; Compiler flags
    818     i32 0}         ;; Runtime version
    819 
    820   ;;
    821   ;; Define the file for the file "/Users/mine/sources/MySource.cpp".
    822   ;;
    823   !1 = metadata !{
    824     i32 524329,    ;; Tag
    825     metadata !"MySource.cpp",
    826     metadata !"/Users/mine/sources",
    827     metadata !2    ;; Compile unit
    828   }
    829 
    830   ;;
    831   ;; Define the file for the file "/Users/mine/sources/Myheader.h"
    832   ;;
    833   !3 = metadata !{
    834     i32 524329,    ;; Tag
    835     metadata !"Myheader.h"
    836     metadata !"/Users/mine/sources",
    837     metadata !2    ;; Compile unit
    838   }
    839 
    840   ...
    841 
    842 ``llvm::Instruction`` provides easy access to metadata attached with an
    843 instruction.  One can extract line number information encoded in LLVM IR using
    844 ``Instruction::getMetadata()`` and ``DILocation::getLineNumber()``.
    845 
    846 .. code-block:: c++
    847 
    848   if (MDNode *N = I->getMetadata("dbg")) {  // Here I is an LLVM instruction
    849     DILocation Loc(N);                      // DILocation is in DebugInfo.h
    850     unsigned Line = Loc.getLineNumber();
    851     StringRef File = Loc.getFilename();
    852     StringRef Dir = Loc.getDirectory();
    853   }
    854 
    855 C/C++ global variable information
    856 ---------------------------------
    857 
    858 Given an integer global variable declared as follows:
    859 
    860 .. code-block:: c
    861 
    862   int MyGlobal = 100;
    863 
    864 a C/C++ front-end would generate the following descriptors:
    865 
    866 .. code-block:: llvm
    867 
    868   ;;
    869   ;; Define the global itself.
    870   ;;
    871   %MyGlobal = global int 100
    872   ...
    873   ;;
    874   ;; List of debug info of globals
    875   ;;
    876   !llvm.dbg.cu = !{!0}
    877 
    878   ;; Define the compile unit.
    879   !0 = metadata !{
    880     i32 786449,                       ;; Tag
    881     i32 0,                            ;; Context
    882     i32 4,                            ;; Language
    883     metadata !"foo.cpp",              ;; File
    884     metadata !"/Volumes/Data/tmp",    ;; Directory
    885     metadata !"clang version 3.1 ",   ;; Producer
    886     i1 true,                          ;; Deprecated field
    887     i1 false,                         ;; "isOptimized"?
    888     metadata !"",                     ;; Flags
    889     i32 0,                            ;; Runtime Version
    890     metadata !1,                      ;; Enum Types
    891     metadata !1,                      ;; Retained Types
    892     metadata !1,                      ;; Subprograms
    893     metadata !3                       ;; Global Variables
    894   } ; [ DW_TAG_compile_unit ]
    895 
    896   ;; The Array of Global Variables
    897   !3 = metadata !{
    898     metadata !4
    899   }
    900 
    901   !4 = metadata !{
    902     metadata !5
    903   }
    904 
    905   ;;
    906   ;; Define the global variable itself.
    907   ;;
    908   !5 = metadata !{
    909     i32 786484,                        ;; Tag
    910     i32 0,                             ;; Unused
    911     null,                              ;; Unused
    912     metadata !"MyGlobal",              ;; Name
    913     metadata !"MyGlobal",              ;; Display Name
    914     metadata !"",                      ;; Linkage Name
    915     metadata !6,                       ;; File
    916     i32 1,                             ;; Line
    917     metadata !7,                       ;; Type
    918     i32 0,                             ;; IsLocalToUnit
    919     i32 1,                             ;; IsDefinition
    920     i32* @MyGlobal                     ;; LLVM-IR Value
    921   } ; [ DW_TAG_variable ]
    922 
    923   ;;
    924   ;; Define the file
    925   ;;
    926   !6 = metadata !{
    927     i32 786473,                        ;; Tag
    928     metadata !"foo.cpp",               ;; File
    929     metadata !"/Volumes/Data/tmp",     ;; Directory
    930     null                               ;; Unused
    931   } ; [ DW_TAG_file_type ]
    932 
    933   ;;
    934   ;; Define the type
    935   ;;
    936   !7 = metadata !{
    937     i32 786468,                         ;; Tag
    938     null,                               ;; Unused
    939     metadata !"int",                    ;; Name
    940     null,                               ;; Unused
    941     i32 0,                              ;; Line
    942     i64 32,                             ;; Size in Bits
    943     i64 32,                             ;; Align in Bits
    944     i64 0,                              ;; Offset
    945     i32 0,                              ;; Flags
    946     i32 5                               ;; Encoding
    947   } ; [ DW_TAG_base_type ]
    948 
    949 C/C++ function information
    950 --------------------------
    951 
    952 Given a function declared as follows:
    953 
    954 .. code-block:: c
    955 
    956   int main(int argc, char *argv[]) {
    957     return 0;
    958   }
    959 
    960 a C/C++ front-end would generate the following descriptors:
    961 
    962 .. code-block:: llvm
    963 
    964   ;;
    965   ;; Define the anchor for subprograms.  Note that the second field of the
    966   ;; anchor is 46, which is the same as the tag for subprograms
    967   ;; (46 = DW_TAG_subprogram.)
    968   ;;
    969   !6 = metadata !{
    970     i32 524334,        ;; Tag
    971     i32 0,             ;; Unused
    972     metadata !1,       ;; Context
    973     metadata !"main",  ;; Name
    974     metadata !"main",  ;; Display name
    975     metadata !"main",  ;; Linkage name
    976     metadata !1,       ;; File
    977     i32 1,             ;; Line number
    978     metadata !4,       ;; Type
    979     i1 false,          ;; Is local
    980     i1 true,           ;; Is definition
    981     i32 0,             ;; Virtuality attribute, e.g. pure virtual function
    982     i32 0,             ;; Index into virtual table for C++ methods
    983     i32 0,             ;; Type that holds virtual table.
    984     i32 0,             ;; Flags
    985     i1 false,          ;; True if this function is optimized
    986     Function *,        ;; Pointer to llvm::Function
    987     null               ;; Function template parameters
    988   }
    989   ;;
    990   ;; Define the subprogram itself.
    991   ;;
    992   define i32 @main(i32 %argc, i8** %argv) {
    993   ...
    994   }
    995 
    996 C/C++ basic types
    997 -----------------
    998 
    999 The following are the basic type descriptors for C/C++ core types:
   1000 
   1001 bool
   1002 ^^^^
   1003 
   1004 .. code-block:: llvm
   1005 
   1006   !2 = metadata !{
   1007     i32 524324,        ;; Tag
   1008     metadata !1,       ;; Context
   1009     metadata !"bool",  ;; Name
   1010     metadata !1,       ;; File
   1011     i32 0,             ;; Line number
   1012     i64 8,             ;; Size in Bits
   1013     i64 8,             ;; Align in Bits
   1014     i64 0,             ;; Offset in Bits
   1015     i32 0,             ;; Flags
   1016     i32 2              ;; Encoding
   1017   }
   1018 
   1019 char
   1020 ^^^^
   1021 
   1022 .. code-block:: llvm
   1023 
   1024   !2 = metadata !{
   1025     i32 524324,        ;; Tag
   1026     metadata !1,       ;; Context
   1027     metadata !"char",  ;; Name
   1028     metadata !1,       ;; File
   1029     i32 0,             ;; Line number
   1030     i64 8,             ;; Size in Bits
   1031     i64 8,             ;; Align in Bits
   1032     i64 0,             ;; Offset in Bits
   1033     i32 0,             ;; Flags
   1034     i32 6              ;; Encoding
   1035   }
   1036 
   1037 unsigned char
   1038 ^^^^^^^^^^^^^
   1039 
   1040 .. code-block:: llvm
   1041 
   1042   !2 = metadata !{
   1043     i32 524324,        ;; Tag
   1044     metadata !1,       ;; Context
   1045     metadata !"unsigned char",
   1046     metadata !1,       ;; File
   1047     i32 0,             ;; Line number
   1048     i64 8,             ;; Size in Bits
   1049     i64 8,             ;; Align in Bits
   1050     i64 0,             ;; Offset in Bits
   1051     i32 0,             ;; Flags
   1052     i32 8              ;; Encoding
   1053   }
   1054 
   1055 short
   1056 ^^^^^
   1057 
   1058 .. code-block:: llvm
   1059 
   1060   !2 = metadata !{
   1061     i32 524324,        ;; Tag
   1062     metadata !1,       ;; Context
   1063     metadata !"short int",
   1064     metadata !1,       ;; File
   1065     i32 0,             ;; Line number
   1066     i64 16,            ;; Size in Bits
   1067     i64 16,            ;; Align in Bits
   1068     i64 0,             ;; Offset in Bits
   1069     i32 0,             ;; Flags
   1070     i32 5              ;; Encoding
   1071   }
   1072 
   1073 unsigned short
   1074 ^^^^^^^^^^^^^^
   1075 
   1076 .. code-block:: llvm
   1077 
   1078   !2 = metadata !{
   1079     i32 524324,        ;; Tag
   1080     metadata !1,       ;; Context
   1081     metadata !"short unsigned int",
   1082     metadata !1,       ;; File
   1083     i32 0,             ;; Line number
   1084     i64 16,            ;; Size in Bits
   1085     i64 16,            ;; Align in Bits
   1086     i64 0,             ;; Offset in Bits
   1087     i32 0,             ;; Flags
   1088     i32 7              ;; Encoding
   1089   }
   1090 
   1091 int
   1092 ^^^
   1093 
   1094 .. code-block:: llvm
   1095 
   1096   !2 = metadata !{
   1097     i32 524324,        ;; Tag
   1098     metadata !1,       ;; Context
   1099     metadata !"int",   ;; Name
   1100     metadata !1,       ;; File
   1101     i32 0,             ;; Line number
   1102     i64 32,            ;; Size in Bits
   1103     i64 32,            ;; Align in Bits
   1104     i64 0,             ;; Offset in Bits
   1105     i32 0,             ;; Flags
   1106     i32 5              ;; Encoding
   1107   }
   1108 
   1109 unsigned int
   1110 ^^^^^^^^^^^^
   1111 
   1112 .. code-block:: llvm
   1113 
   1114   !2 = metadata !{
   1115     i32 524324,        ;; Tag
   1116     metadata !1,       ;; Context
   1117     metadata !"unsigned int",
   1118     metadata !1,       ;; File
   1119     i32 0,             ;; Line number
   1120     i64 32,            ;; Size in Bits
   1121     i64 32,            ;; Align in Bits
   1122     i64 0,             ;; Offset in Bits
   1123     i32 0,             ;; Flags
   1124     i32 7              ;; Encoding
   1125   }
   1126 
   1127 long long
   1128 ^^^^^^^^^
   1129 
   1130 .. code-block:: llvm
   1131 
   1132   !2 = metadata !{
   1133     i32 524324,        ;; Tag
   1134     metadata !1,       ;; Context
   1135     metadata !"long long int",
   1136     metadata !1,       ;; File
   1137     i32 0,             ;; Line number
   1138     i64 64,            ;; Size in Bits
   1139     i64 64,            ;; Align in Bits
   1140     i64 0,             ;; Offset in Bits
   1141     i32 0,             ;; Flags
   1142     i32 5              ;; Encoding
   1143   }
   1144 
   1145 unsigned long long
   1146 ^^^^^^^^^^^^^^^^^^
   1147 
   1148 .. code-block:: llvm
   1149 
   1150   !2 = metadata !{
   1151     i32 524324,        ;; Tag
   1152     metadata !1,       ;; Context
   1153     metadata !"long long unsigned int",
   1154     metadata !1,       ;; File
   1155     i32 0,             ;; Line number
   1156     i64 64,            ;; Size in Bits
   1157     i64 64,            ;; Align in Bits
   1158     i64 0,             ;; Offset in Bits
   1159     i32 0,             ;; Flags
   1160     i32 7              ;; Encoding
   1161   }
   1162 
   1163 float
   1164 ^^^^^
   1165 
   1166 .. code-block:: llvm
   1167 
   1168   !2 = metadata !{
   1169     i32 524324,        ;; Tag
   1170     metadata !1,       ;; Context
   1171     metadata !"float",
   1172     metadata !1,       ;; File
   1173     i32 0,             ;; Line number
   1174     i64 32,            ;; Size in Bits
   1175     i64 32,            ;; Align in Bits
   1176     i64 0,             ;; Offset in Bits
   1177     i32 0,             ;; Flags
   1178     i32 4              ;; Encoding
   1179   }
   1180 
   1181 double
   1182 ^^^^^^
   1183 
   1184 .. code-block:: llvm
   1185 
   1186   !2 = metadata !{
   1187     i32 524324,        ;; Tag
   1188     metadata !1,       ;; Context
   1189     metadata !"double",;; Name
   1190     metadata !1,       ;; File
   1191     i32 0,             ;; Line number
   1192     i64 64,            ;; Size in Bits
   1193     i64 64,            ;; Align in Bits
   1194     i64 0,             ;; Offset in Bits
   1195     i32 0,             ;; Flags
   1196     i32 4              ;; Encoding
   1197   }
   1198 
   1199 C/C++ derived types
   1200 -------------------
   1201 
   1202 Given the following as an example of C/C++ derived type:
   1203 
   1204 .. code-block:: c
   1205 
   1206   typedef const int *IntPtr;
   1207 
   1208 a C/C++ front-end would generate the following descriptors:
   1209 
   1210 .. code-block:: llvm
   1211 
   1212   ;;
   1213   ;; Define the typedef "IntPtr".
   1214   ;;
   1215   !2 = metadata !{
   1216     i32 524310,          ;; Tag
   1217     metadata !1,         ;; Context
   1218     metadata !"IntPtr",  ;; Name
   1219     metadata !3,         ;; File
   1220     i32 0,               ;; Line number
   1221     i64 0,               ;; Size in bits
   1222     i64 0,               ;; Align in bits
   1223     i64 0,               ;; Offset in bits
   1224     i32 0,               ;; Flags
   1225     metadata !4          ;; Derived From type
   1226   }
   1227   ;;
   1228   ;; Define the pointer type.
   1229   ;;
   1230   !4 = metadata !{
   1231     i32 524303,          ;; Tag
   1232     metadata !1,         ;; Context
   1233     metadata !"",        ;; Name
   1234     metadata !1,         ;; File
   1235     i32 0,               ;; Line number
   1236     i64 64,              ;; Size in bits
   1237     i64 64,              ;; Align in bits
   1238     i64 0,               ;; Offset in bits
   1239     i32 0,               ;; Flags
   1240     metadata !5          ;; Derived From type
   1241   }
   1242   ;;
   1243   ;; Define the const type.
   1244   ;;
   1245   !5 = metadata !{
   1246     i32 524326,          ;; Tag
   1247     metadata !1,         ;; Context
   1248     metadata !"",        ;; Name
   1249     metadata !1,         ;; File
   1250     i32 0,               ;; Line number
   1251     i64 32,              ;; Size in bits
   1252     i64 32,              ;; Align in bits
   1253     i64 0,               ;; Offset in bits
   1254     i32 0,               ;; Flags
   1255     metadata !6          ;; Derived From type
   1256   }
   1257   ;;
   1258   ;; Define the int type.
   1259   ;;
   1260   !6 = metadata !{
   1261     i32 524324,          ;; Tag
   1262     metadata !1,         ;; Context
   1263     metadata !"int",     ;; Name
   1264     metadata !1,         ;; File
   1265     i32 0,               ;; Line number
   1266     i64 32,              ;; Size in bits
   1267     i64 32,              ;; Align in bits
   1268     i64 0,               ;; Offset in bits
   1269     i32 0,               ;; Flags
   1270     5                    ;; Encoding
   1271   }
   1272 
   1273 C/C++ struct/union types
   1274 ------------------------
   1275 
   1276 Given the following as an example of C/C++ struct type:
   1277 
   1278 .. code-block:: c
   1279 
   1280   struct Color {
   1281     unsigned Red;
   1282     unsigned Green;
   1283     unsigned Blue;
   1284   };
   1285 
   1286 a C/C++ front-end would generate the following descriptors:
   1287 
   1288 .. code-block:: llvm
   1289 
   1290   ;;
   1291   ;; Define basic type for unsigned int.
   1292   ;;
   1293   !5 = metadata !{
   1294     i32 524324,        ;; Tag
   1295     metadata !1,       ;; Context
   1296     metadata !"unsigned int",
   1297     metadata !1,       ;; File
   1298     i32 0,             ;; Line number
   1299     i64 32,            ;; Size in Bits
   1300     i64 32,            ;; Align in Bits
   1301     i64 0,             ;; Offset in Bits
   1302     i32 0,             ;; Flags
   1303     i32 7              ;; Encoding
   1304   }
   1305   ;;
   1306   ;; Define composite type for struct Color.
   1307   ;;
   1308   !2 = metadata !{
   1309     i32 524307,        ;; Tag
   1310     metadata !1,       ;; Context
   1311     metadata !"Color", ;; Name
   1312     metadata !1,       ;; Compile unit
   1313     i32 1,             ;; Line number
   1314     i64 96,            ;; Size in bits
   1315     i64 32,            ;; Align in bits
   1316     i64 0,             ;; Offset in bits
   1317     i32 0,             ;; Flags
   1318     null,              ;; Derived From
   1319     metadata !3,       ;; Elements
   1320     i32 0              ;; Runtime Language
   1321   }
   1322 
   1323   ;;
   1324   ;; Define the Red field.
   1325   ;;
   1326   !4 = metadata !{
   1327     i32 524301,        ;; Tag
   1328     metadata !1,       ;; Context
   1329     metadata !"Red",   ;; Name
   1330     metadata !1,       ;; File
   1331     i32 2,             ;; Line number
   1332     i64 32,            ;; Size in bits
   1333     i64 32,            ;; Align in bits
   1334     i64 0,             ;; Offset in bits
   1335     i32 0,             ;; Flags
   1336     metadata !5        ;; Derived From type
   1337   }
   1338 
   1339   ;;
   1340   ;; Define the Green field.
   1341   ;;
   1342   !6 = metadata !{
   1343     i32 524301,        ;; Tag
   1344     metadata !1,       ;; Context
   1345     metadata !"Green", ;; Name
   1346     metadata !1,       ;; File
   1347     i32 3,             ;; Line number
   1348     i64 32,            ;; Size in bits
   1349     i64 32,            ;; Align in bits
   1350     i64 32,             ;; Offset in bits
   1351     i32 0,             ;; Flags
   1352     metadata !5        ;; Derived From type
   1353   }
   1354 
   1355   ;;
   1356   ;; Define the Blue field.
   1357   ;;
   1358   !7 = metadata !{
   1359     i32 524301,        ;; Tag
   1360     metadata !1,       ;; Context
   1361     metadata !"Blue",  ;; Name
   1362     metadata !1,       ;; File
   1363     i32 4,             ;; Line number
   1364     i64 32,            ;; Size in bits
   1365     i64 32,            ;; Align in bits
   1366     i64 64,             ;; Offset in bits
   1367     i32 0,             ;; Flags
   1368     metadata !5        ;; Derived From type
   1369   }
   1370 
   1371   ;;
   1372   ;; Define the array of fields used by the composite type Color.
   1373   ;;
   1374   !3 = metadata !{metadata !4, metadata !6, metadata !7}
   1375 
   1376 C/C++ enumeration types
   1377 -----------------------
   1378 
   1379 Given the following as an example of C/C++ enumeration type:
   1380 
   1381 .. code-block:: c
   1382 
   1383   enum Trees {
   1384     Spruce = 100,
   1385     Oak = 200,
   1386     Maple = 300
   1387   };
   1388 
   1389 a C/C++ front-end would generate the following descriptors:
   1390 
   1391 .. code-block:: llvm
   1392 
   1393   ;;
   1394   ;; Define composite type for enum Trees
   1395   ;;
   1396   !2 = metadata !{
   1397     i32 524292,        ;; Tag
   1398     metadata !1,       ;; Context
   1399     metadata !"Trees", ;; Name
   1400     metadata !1,       ;; File
   1401     i32 1,             ;; Line number
   1402     i64 32,            ;; Size in bits
   1403     i64 32,            ;; Align in bits
   1404     i64 0,             ;; Offset in bits
   1405     i32 0,             ;; Flags
   1406     null,              ;; Derived From type
   1407     metadata !3,       ;; Elements
   1408     i32 0              ;; Runtime language
   1409   }
   1410 
   1411   ;;
   1412   ;; Define the array of enumerators used by composite type Trees.
   1413   ;;
   1414   !3 = metadata !{metadata !4, metadata !5, metadata !6}
   1415 
   1416   ;;
   1417   ;; Define Spruce enumerator.
   1418   ;;
   1419   !4 = metadata !{i32 524328, metadata !"Spruce", i64 100}
   1420 
   1421   ;;
   1422   ;; Define Oak enumerator.
   1423   ;;
   1424   !5 = metadata !{i32 524328, metadata !"Oak", i64 200}
   1425 
   1426   ;;
   1427   ;; Define Maple enumerator.
   1428   ;;
   1429   !6 = metadata !{i32 524328, metadata !"Maple", i64 300}
   1430 
   1431 Debugging information format
   1432 ============================
   1433 
   1434 Debugging Information Extension for Objective C Properties
   1435 ----------------------------------------------------------
   1436 
   1437 Introduction
   1438 ^^^^^^^^^^^^
   1439 
   1440 Objective C provides a simpler way to declare and define accessor methods using
   1441 declared properties.  The language provides features to declare a property and
   1442 to let compiler synthesize accessor methods.
   1443 
   1444 The debugger lets developer inspect Objective C interfaces and their instance
   1445 variables and class variables.  However, the debugger does not know anything
   1446 about the properties defined in Objective C interfaces.  The debugger consumes
   1447 information generated by compiler in DWARF format.  The format does not support
   1448 encoding of Objective C properties.  This proposal describes DWARF extensions to
   1449 encode Objective C properties, which the debugger can use to let developers
   1450 inspect Objective C properties.
   1451 
   1452 Proposal
   1453 ^^^^^^^^
   1454 
   1455 Objective C properties exist separately from class members.  A property can be
   1456 defined only by "setter" and "getter" selectors, and be calculated anew on each
   1457 access.  Or a property can just be a direct access to some declared ivar.
   1458 Finally it can have an ivar "automatically synthesized" for it by the compiler,
   1459 in which case the property can be referred to in user code directly using the
   1460 standard C dereference syntax as well as through the property "dot" syntax, but
   1461 there is no entry in the ``@interface`` declaration corresponding to this ivar.
   1462 
   1463 To facilitate debugging, these properties we will add a new DWARF TAG into the
   1464 ``DW_TAG_structure_type`` definition for the class to hold the description of a
   1465 given property, and a set of DWARF attributes that provide said description.
   1466 The property tag will also contain the name and declared type of the property.
   1467 
   1468 If there is a related ivar, there will also be a DWARF property attribute placed
   1469 in the ``DW_TAG_member`` DIE for that ivar referring back to the property TAG
   1470 for that property.  And in the case where the compiler synthesizes the ivar
   1471 directly, the compiler is expected to generate a ``DW_TAG_member`` for that
   1472 ivar (with the ``DW_AT_artificial`` set to 1), whose name will be the name used
   1473 to access this ivar directly in code, and with the property attribute pointing
   1474 back to the property it is backing.
   1475 
   1476 The following examples will serve as illustration for our discussion:
   1477 
   1478 .. code-block:: objc
   1479 
   1480   @interface I1 {
   1481     int n2;
   1482   }
   1483 
   1484   @property int p1;
   1485   @property int p2;
   1486   @end
   1487 
   1488   @implementation I1
   1489   @synthesize p1;
   1490   @synthesize p2 = n2;
   1491   @end
   1492 
   1493 This produces the following DWARF (this is a "pseudo dwarfdump" output):
   1494 
   1495 .. code-block:: none
   1496 
   1497   0x00000100:  TAG_structure_type [7] *
   1498                  AT_APPLE_runtime_class( 0x10 )
   1499                  AT_name( "I1" )
   1500                  AT_decl_file( "Objc_Property.m" )
   1501                  AT_decl_line( 3 )
   1502 
   1503   0x00000110    TAG_APPLE_property
   1504                   AT_name ( "p1" )
   1505                   AT_type ( {0x00000150} ( int ) )
   1506 
   1507   0x00000120:   TAG_APPLE_property
   1508                   AT_name ( "p2" )
   1509                   AT_type ( {0x00000150} ( int ) )
   1510 
   1511   0x00000130:   TAG_member [8]
   1512                   AT_name( "_p1" )
   1513                   AT_APPLE_property ( {0x00000110} "p1" )
   1514                   AT_type( {0x00000150} ( int ) )
   1515                   AT_artificial ( 0x1 )
   1516 
   1517   0x00000140:    TAG_member [8]
   1518                    AT_name( "n2" )
   1519                    AT_APPLE_property ( {0x00000120} "p2" )
   1520                    AT_type( {0x00000150} ( int ) )
   1521 
   1522   0x00000150:  AT_type( ( int ) )
   1523 
   1524 Note, the current convention is that the name of the ivar for an
   1525 auto-synthesized property is the name of the property from which it derives
   1526 with an underscore prepended, as is shown in the example.  But we actually
   1527 don't need to know this convention, since we are given the name of the ivar
   1528 directly.
   1529 
   1530 Also, it is common practice in ObjC to have different property declarations in
   1531 the @interface and @implementation - e.g. to provide a read-only property in
   1532 the interface,and a read-write interface in the implementation.  In that case,
   1533 the compiler should emit whichever property declaration will be in force in the
   1534 current translation unit.
   1535 
   1536 Developers can decorate a property with attributes which are encoded using
   1537 ``DW_AT_APPLE_property_attribute``.
   1538 
   1539 .. code-block:: objc
   1540 
   1541   @property (readonly, nonatomic) int pr;
   1542 
   1543 .. code-block:: none
   1544 
   1545   TAG_APPLE_property [8]
   1546     AT_name( "pr" )
   1547     AT_type ( {0x00000147} (int) )
   1548     AT_APPLE_property_attribute (DW_APPLE_PROPERTY_readonly, DW_APPLE_PROPERTY_nonatomic)
   1549 
   1550 The setter and getter method names are attached to the property using
   1551 ``DW_AT_APPLE_property_setter`` and ``DW_AT_APPLE_property_getter`` attributes.
   1552 
   1553 .. code-block:: objc
   1554 
   1555   @interface I1
   1556   @property (setter=myOwnP3Setter:) int p3;
   1557   -(void)myOwnP3Setter:(int)a;
   1558   @end
   1559 
   1560   @implementation I1
   1561   @synthesize p3;
   1562   -(void)myOwnP3Setter:(int)a{ }
   1563   @end
   1564 
   1565 The DWARF for this would be:
   1566 
   1567 .. code-block:: none
   1568 
   1569   0x000003bd: TAG_structure_type [7] *
   1570                 AT_APPLE_runtime_class( 0x10 )
   1571                 AT_name( "I1" )
   1572                 AT_decl_file( "Objc_Property.m" )
   1573                 AT_decl_line( 3 )
   1574 
   1575   0x000003cd      TAG_APPLE_property
   1576                     AT_name ( "p3" )
   1577                     AT_APPLE_property_setter ( "myOwnP3Setter:" )
   1578                     AT_type( {0x00000147} ( int ) )
   1579 
   1580   0x000003f3:     TAG_member [8]
   1581                     AT_name( "_p3" )
   1582                     AT_type ( {0x00000147} ( int ) )
   1583                     AT_APPLE_property ( {0x000003cd} )
   1584                     AT_artificial ( 0x1 )
   1585 
   1586 New DWARF Tags
   1587 ^^^^^^^^^^^^^^
   1588 
   1589 +-----------------------+--------+
   1590 | TAG                   | Value  |
   1591 +=======================+========+
   1592 | DW_TAG_APPLE_property | 0x4200 |
   1593 +-----------------------+--------+
   1594 
   1595 New DWARF Attributes
   1596 ^^^^^^^^^^^^^^^^^^^^
   1597 
   1598 +--------------------------------+--------+-----------+
   1599 | Attribute                      | Value  | Classes   |
   1600 +================================+========+===========+
   1601 | DW_AT_APPLE_property           | 0x3fed | Reference |
   1602 +--------------------------------+--------+-----------+
   1603 | DW_AT_APPLE_property_getter    | 0x3fe9 | String    |
   1604 +--------------------------------+--------+-----------+
   1605 | DW_AT_APPLE_property_setter    | 0x3fea | String    |
   1606 +--------------------------------+--------+-----------+
   1607 | DW_AT_APPLE_property_attribute | 0x3feb | Constant  |
   1608 +--------------------------------+--------+-----------+
   1609 
   1610 New DWARF Constants
   1611 ^^^^^^^^^^^^^^^^^^^
   1612 
   1613 +--------------------------------+-------+
   1614 | Name                           | Value |
   1615 +================================+=======+
   1616 | DW_AT_APPLE_PROPERTY_readonly  | 0x1   |
   1617 +--------------------------------+-------+
   1618 | DW_AT_APPLE_PROPERTY_readwrite | 0x2   |
   1619 +--------------------------------+-------+
   1620 | DW_AT_APPLE_PROPERTY_assign    | 0x4   |
   1621 +--------------------------------+-------+
   1622 | DW_AT_APPLE_PROPERTY_retain    | 0x8   |
   1623 +--------------------------------+-------+
   1624 | DW_AT_APPLE_PROPERTY_copy      | 0x10  |
   1625 +--------------------------------+-------+
   1626 | DW_AT_APPLE_PROPERTY_nonatomic | 0x20  |
   1627 +--------------------------------+-------+
   1628 
   1629 Name Accelerator Tables
   1630 -----------------------
   1631 
   1632 Introduction
   1633 ^^^^^^^^^^^^
   1634 
   1635 The "``.debug_pubnames``" and "``.debug_pubtypes``" formats are not what a
   1636 debugger needs.  The "``pub``" in the section name indicates that the entries
   1637 in the table are publicly visible names only.  This means no static or hidden
   1638 functions show up in the "``.debug_pubnames``".  No static variables or private
   1639 class variables are in the "``.debug_pubtypes``".  Many compilers add different
   1640 things to these tables, so we can't rely upon the contents between gcc, icc, or
   1641 clang.
   1642 
   1643 The typical query given by users tends not to match up with the contents of
   1644 these tables.  For example, the DWARF spec states that "In the case of the name
   1645 of a function member or static data member of a C++ structure, class or union,
   1646 the name presented in the "``.debug_pubnames``" section is not the simple name
   1647 given by the ``DW_AT_name attribute`` of the referenced debugging information
   1648 entry, but rather the fully qualified name of the data or function member."
   1649 So the only names in these tables for complex C++ entries is a fully
   1650 qualified name.  Debugger users tend not to enter their search strings as
   1651 "``a::b::c(int,const Foo&) const``", but rather as "``c``", "``b::c``" , or
   1652 "``a::b::c``".  So the name entered in the name table must be demangled in
   1653 order to chop it up appropriately and additional names must be manually entered
   1654 into the table to make it effective as a name lookup table for debuggers to
   1655 se.
   1656 
   1657 All debuggers currently ignore the "``.debug_pubnames``" table as a result of
   1658 its inconsistent and useless public-only name content making it a waste of
   1659 space in the object file.  These tables, when they are written to disk, are not
   1660 sorted in any way, leaving every debugger to do its own parsing and sorting.
   1661 These tables also include an inlined copy of the string values in the table
   1662 itself making the tables much larger than they need to be on disk, especially
   1663 for large C++ programs.
   1664 
   1665 Can't we just fix the sections by adding all of the names we need to this
   1666 table? No, because that is not what the tables are defined to contain and we
   1667 won't know the difference between the old bad tables and the new good tables.
   1668 At best we could make our own renamed sections that contain all of the data we
   1669 need.
   1670 
   1671 These tables are also insufficient for what a debugger like LLDB needs.  LLDB
   1672 uses clang for its expression parsing where LLDB acts as a PCH.  LLDB is then
   1673 often asked to look for type "``foo``" or namespace "``bar``", or list items in
   1674 namespace "``baz``".  Namespaces are not included in the pubnames or pubtypes
   1675 tables.  Since clang asks a lot of questions when it is parsing an expression,
   1676 we need to be very fast when looking up names, as it happens a lot.  Having new
   1677 accelerator tables that are optimized for very quick lookups will benefit this
   1678 type of debugging experience greatly.
   1679 
   1680 We would like to generate name lookup tables that can be mapped into memory
   1681 from disk, and used as is, with little or no up-front parsing.  We would also
   1682 be able to control the exact content of these different tables so they contain
   1683 exactly what we need.  The Name Accelerator Tables were designed to fix these
   1684 issues.  In order to solve these issues we need to:
   1685 
   1686 * Have a format that can be mapped into memory from disk and used as is
   1687 * Lookups should be very fast
   1688 * Extensible table format so these tables can be made by many producers
   1689 * Contain all of the names needed for typical lookups out of the box
   1690 * Strict rules for the contents of tables
   1691 
   1692 Table size is important and the accelerator table format should allow the reuse
   1693 of strings from common string tables so the strings for the names are not
   1694 duplicated.  We also want to make sure the table is ready to be used as-is by
   1695 simply mapping the table into memory with minimal header parsing.
   1696 
   1697 The name lookups need to be fast and optimized for the kinds of lookups that
   1698 debuggers tend to do.  Optimally we would like to touch as few parts of the
   1699 mapped table as possible when doing a name lookup and be able to quickly find
   1700 the name entry we are looking for, or discover there are no matches.  In the
   1701 case of debuggers we optimized for lookups that fail most of the time.
   1702 
   1703 Each table that is defined should have strict rules on exactly what is in the
   1704 accelerator tables and documented so clients can rely on the content.
   1705 
   1706 Hash Tables
   1707 ^^^^^^^^^^^
   1708 
   1709 Standard Hash Tables
   1710 """"""""""""""""""""
   1711 
   1712 Typical hash tables have a header, buckets, and each bucket points to the
   1713 bucket contents:
   1714 
   1715 .. code-block:: none
   1716 
   1717   .------------.
   1718   |  HEADER    |
   1719   |------------|
   1720   |  BUCKETS   |
   1721   |------------|
   1722   |  DATA      |
   1723   `------------'
   1724 
   1725 The BUCKETS are an array of offsets to DATA for each hash:
   1726 
   1727 .. code-block:: none
   1728 
   1729   .------------.
   1730   | 0x00001000 | BUCKETS[0]
   1731   | 0x00002000 | BUCKETS[1]
   1732   | 0x00002200 | BUCKETS[2]
   1733   | 0x000034f0 | BUCKETS[3]
   1734   |            | ...
   1735   | 0xXXXXXXXX | BUCKETS[n_buckets]
   1736   '------------'
   1737 
   1738 So for ``bucket[3]`` in the example above, we have an offset into the table
   1739 0x000034f0 which points to a chain of entries for the bucket.  Each bucket must
   1740 contain a next pointer, full 32 bit hash value, the string itself, and the data
   1741 for the current string value.
   1742 
   1743 .. code-block:: none
   1744 
   1745               .------------.
   1746   0x000034f0: | 0x00003500 | next pointer
   1747               | 0x12345678 | 32 bit hash
   1748               | "erase"    | string value
   1749               | data[n]    | HashData for this bucket
   1750               |------------|
   1751   0x00003500: | 0x00003550 | next pointer
   1752               | 0x29273623 | 32 bit hash
   1753               | "dump"     | string value
   1754               | data[n]    | HashData for this bucket
   1755               |------------|
   1756   0x00003550: | 0x00000000 | next pointer
   1757               | 0x82638293 | 32 bit hash
   1758               | "main"     | string value
   1759               | data[n]    | HashData for this bucket
   1760               `------------'
   1761 
   1762 The problem with this layout for debuggers is that we need to optimize for the
   1763 negative lookup case where the symbol we're searching for is not present.  So
   1764 if we were to lookup "``printf``" in the table above, we would make a 32 hash
   1765 for "``printf``", it might match ``bucket[3]``.  We would need to go to the
   1766 offset 0x000034f0 and start looking to see if our 32 bit hash matches.  To do
   1767 so, we need to read the next pointer, then read the hash, compare it, and skip
   1768 to the next bucket.  Each time we are skipping many bytes in memory and
   1769 touching new cache pages just to do the compare on the full 32 bit hash.  All
   1770 of these accesses then tell us that we didn't have a match.
   1771 
   1772 Name Hash Tables
   1773 """"""""""""""""
   1774 
   1775 To solve the issues mentioned above we have structured the hash tables a bit
   1776 differently: a header, buckets, an array of all unique 32 bit hash values,
   1777 followed by an array of hash value data offsets, one for each hash value, then
   1778 the data for all hash values:
   1779 
   1780 .. code-block:: none
   1781 
   1782   .-------------.
   1783   |  HEADER     |
   1784   |-------------|
   1785   |  BUCKETS    |
   1786   |-------------|
   1787   |  HASHES     |
   1788   |-------------|
   1789   |  OFFSETS    |
   1790   |-------------|
   1791   |  DATA       |
   1792   `-------------'
   1793 
   1794 The ``BUCKETS`` in the name tables are an index into the ``HASHES`` array.  By
   1795 making all of the full 32 bit hash values contiguous in memory, we allow
   1796 ourselves to efficiently check for a match while touching as little memory as
   1797 possible.  Most often checking the 32 bit hash values is as far as the lookup
   1798 goes.  If it does match, it usually is a match with no collisions.  So for a
   1799 table with "``n_buckets``" buckets, and "``n_hashes``" unique 32 bit hash
   1800 values, we can clarify the contents of the ``BUCKETS``, ``HASHES`` and
   1801 ``OFFSETS`` as:
   1802 
   1803 .. code-block:: none
   1804 
   1805   .-------------------------.
   1806   |  HEADER.magic           | uint32_t
   1807   |  HEADER.version         | uint16_t
   1808   |  HEADER.hash_function   | uint16_t
   1809   |  HEADER.bucket_count    | uint32_t
   1810   |  HEADER.hashes_count    | uint32_t
   1811   |  HEADER.header_data_len | uint32_t
   1812   |  HEADER_DATA            | HeaderData
   1813   |-------------------------|
   1814   |  BUCKETS                | uint32_t[n_buckets] // 32 bit hash indexes
   1815   |-------------------------|
   1816   |  HASHES                 | uint32_t[n_hashes] // 32 bit hash values
   1817   |-------------------------|
   1818   |  OFFSETS                | uint32_t[n_hashes] // 32 bit offsets to hash value data
   1819   |-------------------------|
   1820   |  ALL HASH DATA          |
   1821   `-------------------------'
   1822 
   1823 So taking the exact same data from the standard hash example above we end up
   1824 with:
   1825 
   1826 .. code-block:: none
   1827 
   1828               .------------.
   1829               | HEADER     |
   1830               |------------|
   1831               |          0 | BUCKETS[0]
   1832               |          2 | BUCKETS[1]
   1833               |          5 | BUCKETS[2]
   1834               |          6 | BUCKETS[3]
   1835               |            | ...
   1836               |        ... | BUCKETS[n_buckets]
   1837               |------------|
   1838               | 0x........ | HASHES[0]
   1839               | 0x........ | HASHES[1]
   1840               | 0x........ | HASHES[2]
   1841               | 0x........ | HASHES[3]
   1842               | 0x........ | HASHES[4]
   1843               | 0x........ | HASHES[5]
   1844               | 0x12345678 | HASHES[6]    hash for BUCKETS[3]
   1845               | 0x29273623 | HASHES[7]    hash for BUCKETS[3]
   1846               | 0x82638293 | HASHES[8]    hash for BUCKETS[3]
   1847               | 0x........ | HASHES[9]
   1848               | 0x........ | HASHES[10]
   1849               | 0x........ | HASHES[11]
   1850               | 0x........ | HASHES[12]
   1851               | 0x........ | HASHES[13]
   1852               | 0x........ | HASHES[n_hashes]
   1853               |------------|
   1854               | 0x........ | OFFSETS[0]
   1855               | 0x........ | OFFSETS[1]
   1856               | 0x........ | OFFSETS[2]
   1857               | 0x........ | OFFSETS[3]
   1858               | 0x........ | OFFSETS[4]
   1859               | 0x........ | OFFSETS[5]
   1860               | 0x000034f0 | OFFSETS[6]   offset for BUCKETS[3]
   1861               | 0x00003500 | OFFSETS[7]   offset for BUCKETS[3]
   1862               | 0x00003550 | OFFSETS[8]   offset for BUCKETS[3]
   1863               | 0x........ | OFFSETS[9]
   1864               | 0x........ | OFFSETS[10]
   1865               | 0x........ | OFFSETS[11]
   1866               | 0x........ | OFFSETS[12]
   1867               | 0x........ | OFFSETS[13]
   1868               | 0x........ | OFFSETS[n_hashes]
   1869               |------------|
   1870               |            |
   1871               |            |
   1872               |            |
   1873               |            |
   1874               |            |
   1875               |------------|
   1876   0x000034f0: | 0x00001203 | .debug_str ("erase")
   1877               | 0x00000004 | A 32 bit array count - number of HashData with name "erase"
   1878               | 0x........ | HashData[0]
   1879               | 0x........ | HashData[1]
   1880               | 0x........ | HashData[2]
   1881               | 0x........ | HashData[3]
   1882               | 0x00000000 | String offset into .debug_str (terminate data for hash)
   1883               |------------|
   1884   0x00003500: | 0x00001203 | String offset into .debug_str ("collision")
   1885               | 0x00000002 | A 32 bit array count - number of HashData with name "collision"
   1886               | 0x........ | HashData[0]
   1887               | 0x........ | HashData[1]
   1888               | 0x00001203 | String offset into .debug_str ("dump")
   1889               | 0x00000003 | A 32 bit array count - number of HashData with name "dump"
   1890               | 0x........ | HashData[0]
   1891               | 0x........ | HashData[1]
   1892               | 0x........ | HashData[2]
   1893               | 0x00000000 | String offset into .debug_str (terminate data for hash)
   1894               |------------|
   1895   0x00003550: | 0x00001203 | String offset into .debug_str ("main")
   1896               | 0x00000009 | A 32 bit array count - number of HashData with name "main"
   1897               | 0x........ | HashData[0]
   1898               | 0x........ | HashData[1]
   1899               | 0x........ | HashData[2]
   1900               | 0x........ | HashData[3]
   1901               | 0x........ | HashData[4]
   1902               | 0x........ | HashData[5]
   1903               | 0x........ | HashData[6]
   1904               | 0x........ | HashData[7]
   1905               | 0x........ | HashData[8]
   1906               | 0x00000000 | String offset into .debug_str (terminate data for hash)
   1907               `------------'
   1908 
   1909 So we still have all of the same data, we just organize it more efficiently for
   1910 debugger lookup.  If we repeat the same "``printf``" lookup from above, we
   1911 would hash "``printf``" and find it matches ``BUCKETS[3]`` by taking the 32 bit
   1912 hash value and modulo it by ``n_buckets``.  ``BUCKETS[3]`` contains "6" which
   1913 is the index into the ``HASHES`` table.  We would then compare any consecutive
   1914 32 bit hashes values in the ``HASHES`` array as long as the hashes would be in
   1915 ``BUCKETS[3]``.  We do this by verifying that each subsequent hash value modulo
   1916 ``n_buckets`` is still 3.  In the case of a failed lookup we would access the
   1917 memory for ``BUCKETS[3]``, and then compare a few consecutive 32 bit hashes
   1918 before we know that we have no match.  We don't end up marching through
   1919 multiple words of memory and we really keep the number of processor data cache
   1920 lines being accessed as small as possible.
   1921 
   1922 The string hash that is used for these lookup tables is the Daniel J.
   1923 Bernstein hash which is also used in the ELF ``GNU_HASH`` sections.  It is a
   1924 very good hash for all kinds of names in programs with very few hash
   1925 collisions.
   1926 
   1927 Empty buckets are designated by using an invalid hash index of ``UINT32_MAX``.
   1928 
   1929 Details
   1930 ^^^^^^^
   1931 
   1932 These name hash tables are designed to be generic where specializations of the
   1933 table get to define additional data that goes into the header ("``HeaderData``"),
   1934 how the string value is stored ("``KeyType``") and the content of the data for each
   1935 hash value.
   1936 
   1937 Header Layout
   1938 """""""""""""
   1939 
   1940 The header has a fixed part, and the specialized part.  The exact format of the
   1941 header is:
   1942 
   1943 .. code-block:: c
   1944 
   1945   struct Header
   1946   {
   1947     uint32_t   magic;           // 'HASH' magic value to allow endian detection
   1948     uint16_t   version;         // Version number
   1949     uint16_t   hash_function;   // The hash function enumeration that was used
   1950     uint32_t   bucket_count;    // The number of buckets in this hash table
   1951     uint32_t   hashes_count;    // The total number of unique hash values and hash data offsets in this table
   1952     uint32_t   header_data_len; // The bytes to skip to get to the hash indexes (buckets) for correct alignment
   1953                                 // Specifically the length of the following HeaderData field - this does not
   1954                                 // include the size of the preceding fields
   1955     HeaderData header_data;     // Implementation specific header data
   1956   };
   1957 
   1958 The header starts with a 32 bit "``magic``" value which must be ``'HASH'``
   1959 encoded as an ASCII integer.  This allows the detection of the start of the
   1960 hash table and also allows the table's byte order to be determined so the table
   1961 can be correctly extracted.  The "``magic``" value is followed by a 16 bit
   1962 ``version`` number which allows the table to be revised and modified in the
   1963 future.  The current version number is 1. ``hash_function`` is a ``uint16_t``
   1964 enumeration that specifies which hash function was used to produce this table.
   1965 The current values for the hash function enumerations include:
   1966 
   1967 .. code-block:: c
   1968 
   1969   enum HashFunctionType
   1970   {
   1971     eHashFunctionDJB = 0u, // Daniel J Bernstein hash function
   1972   };
   1973 
   1974 ``bucket_count`` is a 32 bit unsigned integer that represents how many buckets
   1975 are in the ``BUCKETS`` array.  ``hashes_count`` is the number of unique 32 bit
   1976 hash values that are in the ``HASHES`` array, and is the same number of offsets
   1977 are contained in the ``OFFSETS`` array.  ``header_data_len`` specifies the size
   1978 in bytes of the ``HeaderData`` that is filled in by specialized versions of
   1979 this table.
   1980 
   1981 Fixed Lookup
   1982 """"""""""""
   1983 
   1984 The header is followed by the buckets, hashes, offsets, and hash value data.
   1985 
   1986 .. code-block:: c
   1987 
   1988   struct FixedTable
   1989   {
   1990     uint32_t buckets[Header.bucket_count];  // An array of hash indexes into the "hashes[]" array below
   1991     uint32_t hashes [Header.hashes_count];  // Every unique 32 bit hash for the entire table is in this table
   1992     uint32_t offsets[Header.hashes_count];  // An offset that corresponds to each item in the "hashes[]" array above
   1993   };
   1994 
   1995 ``buckets`` is an array of 32 bit indexes into the ``hashes`` array.  The
   1996 ``hashes`` array contains all of the 32 bit hash values for all names in the
   1997 hash table.  Each hash in the ``hashes`` table has an offset in the ``offsets``
   1998 array that points to the data for the hash value.
   1999 
   2000 This table setup makes it very easy to repurpose these tables to contain
   2001 different data, while keeping the lookup mechanism the same for all tables.
   2002 This layout also makes it possible to save the table to disk and map it in
   2003 later and do very efficient name lookups with little or no parsing.
   2004 
   2005 DWARF lookup tables can be implemented in a variety of ways and can store a lot
   2006 of information for each name.  We want to make the DWARF tables extensible and
   2007 able to store the data efficiently so we have used some of the DWARF features
   2008 that enable efficient data storage to define exactly what kind of data we store
   2009 for each name.
   2010 
   2011 The ``HeaderData`` contains a definition of the contents of each HashData chunk.
   2012 We might want to store an offset to all of the debug information entries (DIEs)
   2013 for each name.  To keep things extensible, we create a list of items, or
   2014 Atoms, that are contained in the data for each name.  First comes the type of
   2015 the data in each atom:
   2016 
   2017 .. code-block:: c
   2018 
   2019   enum AtomType
   2020   {
   2021     eAtomTypeNULL       = 0u,
   2022     eAtomTypeDIEOffset  = 1u,   // DIE offset, check form for encoding
   2023     eAtomTypeCUOffset   = 2u,   // DIE offset of the compiler unit header that contains the item in question
   2024     eAtomTypeTag        = 3u,   // DW_TAG_xxx value, should be encoded as DW_FORM_data1 (if no tags exceed 255) or DW_FORM_data2
   2025     eAtomTypeNameFlags  = 4u,   // Flags from enum NameFlags
   2026     eAtomTypeTypeFlags  = 5u,   // Flags from enum TypeFlags
   2027   };
   2028 
   2029 The enumeration values and their meanings are:
   2030 
   2031 .. code-block:: none
   2032 
   2033   eAtomTypeNULL       - a termination atom that specifies the end of the atom list
   2034   eAtomTypeDIEOffset  - an offset into the .debug_info section for the DWARF DIE for this name
   2035   eAtomTypeCUOffset   - an offset into the .debug_info section for the CU that contains the DIE
   2036   eAtomTypeDIETag     - The DW_TAG_XXX enumeration value so you don't have to parse the DWARF to see what it is
   2037   eAtomTypeNameFlags  - Flags for functions and global variables (isFunction, isInlined, isExternal...)
   2038   eAtomTypeTypeFlags  - Flags for types (isCXXClass, isObjCClass, ...)
   2039 
   2040 Then we allow each atom type to define the atom type and how the data for each
   2041 atom type data is encoded:
   2042 
   2043 .. code-block:: c
   2044 
   2045   struct Atom
   2046   {
   2047     uint16_t type;  // AtomType enum value
   2048     uint16_t form;  // DWARF DW_FORM_XXX defines
   2049   };
   2050 
   2051 The ``form`` type above is from the DWARF specification and defines the exact
   2052 encoding of the data for the Atom type.  See the DWARF specification for the
   2053 ``DW_FORM_`` definitions.
   2054 
   2055 .. code-block:: c
   2056 
   2057   struct HeaderData
   2058   {
   2059     uint32_t die_offset_base;
   2060     uint32_t atom_count;
   2061     Atoms    atoms[atom_count0];
   2062   };
   2063 
   2064 ``HeaderData`` defines the base DIE offset that should be added to any atoms
   2065 that are encoded using the ``DW_FORM_ref1``, ``DW_FORM_ref2``,
   2066 ``DW_FORM_ref4``, ``DW_FORM_ref8`` or ``DW_FORM_ref_udata``.  It also defines
   2067 what is contained in each ``HashData`` object -- ``Atom.form`` tells us how large
   2068 each field will be in the ``HashData`` and the ``Atom.type`` tells us how this data
   2069 should be interpreted.
   2070 
   2071 For the current implementations of the "``.apple_names``" (all functions +
   2072 globals), the "``.apple_types``" (names of all types that are defined), and
   2073 the "``.apple_namespaces``" (all namespaces), we currently set the ``Atom``
   2074 array to be:
   2075 
   2076 .. code-block:: c
   2077 
   2078   HeaderData.atom_count = 1;
   2079   HeaderData.atoms[0].type = eAtomTypeDIEOffset;
   2080   HeaderData.atoms[0].form = DW_FORM_data4;
   2081 
   2082 This defines the contents to be the DIE offset (eAtomTypeDIEOffset) that is
   2083   encoded as a 32 bit value (DW_FORM_data4).  This allows a single name to have
   2084   multiple matching DIEs in a single file, which could come up with an inlined
   2085   function for instance.  Future tables could include more information about the
   2086   DIE such as flags indicating if the DIE is a function, method, block,
   2087   or inlined.
   2088 
   2089 The KeyType for the DWARF table is a 32 bit string table offset into the
   2090   ".debug_str" table.  The ".debug_str" is the string table for the DWARF which
   2091   may already contain copies of all of the strings.  This helps make sure, with
   2092   help from the compiler, that we reuse the strings between all of the DWARF
   2093   sections and keeps the hash table size down.  Another benefit to having the
   2094   compiler generate all strings as DW_FORM_strp in the debug info, is that
   2095   DWARF parsing can be made much faster.
   2096 
   2097 After a lookup is made, we get an offset into the hash data.  The hash data
   2098   needs to be able to deal with 32 bit hash collisions, so the chunk of data
   2099   at the offset in the hash data consists of a triple:
   2100 
   2101 .. code-block:: c
   2102 
   2103   uint32_t str_offset
   2104   uint32_t hash_data_count
   2105   HashData[hash_data_count]
   2106 
   2107 If "str_offset" is zero, then the bucket contents are done. 99.9% of the
   2108   hash data chunks contain a single item (no 32 bit hash collision):
   2109 
   2110 .. code-block:: none
   2111 
   2112   .------------.
   2113   | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
   2114   | 0x00000004 | uint32_t HashData count
   2115   | 0x........ | uint32_t HashData[0] DIE offset
   2116   | 0x........ | uint32_t HashData[1] DIE offset
   2117   | 0x........ | uint32_t HashData[2] DIE offset
   2118   | 0x........ | uint32_t HashData[3] DIE offset
   2119   | 0x00000000 | uint32_t KeyType (end of hash chain)
   2120   `------------'
   2121 
   2122 If there are collisions, you will have multiple valid string offsets:
   2123 
   2124 .. code-block:: none
   2125 
   2126   .------------.
   2127   | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
   2128   | 0x00000004 | uint32_t HashData count
   2129   | 0x........ | uint32_t HashData[0] DIE offset
   2130   | 0x........ | uint32_t HashData[1] DIE offset
   2131   | 0x........ | uint32_t HashData[2] DIE offset
   2132   | 0x........ | uint32_t HashData[3] DIE offset
   2133   | 0x00002023 | uint32_t KeyType (.debug_str[0x0002023] => "print")
   2134   | 0x00000002 | uint32_t HashData count
   2135   | 0x........ | uint32_t HashData[0] DIE offset
   2136   | 0x........ | uint32_t HashData[1] DIE offset
   2137   | 0x00000000 | uint32_t KeyType (end of hash chain)
   2138   `------------'
   2139 
   2140 Current testing with real world C++ binaries has shown that there is around 1
   2141 32 bit hash collision per 100,000 name entries.
   2142 
   2143 Contents
   2144 ^^^^^^^^
   2145 
   2146 As we said, we want to strictly define exactly what is included in the
   2147 different tables.  For DWARF, we have 3 tables: "``.apple_names``",
   2148 "``.apple_types``", and "``.apple_namespaces``".
   2149 
   2150 "``.apple_names``" sections should contain an entry for each DWARF DIE whose
   2151 ``DW_TAG`` is a ``DW_TAG_label``, ``DW_TAG_inlined_subroutine``, or
   2152 ``DW_TAG_subprogram`` that has address attributes: ``DW_AT_low_pc``,
   2153 ``DW_AT_high_pc``, ``DW_AT_ranges`` or ``DW_AT_entry_pc``.  It also contains
   2154 ``DW_TAG_variable`` DIEs that have a ``DW_OP_addr`` in the location (global and
   2155 static variables).  All global and static variables should be included,
   2156 including those scoped within functions and classes.  For example using the
   2157 following code:
   2158 
   2159 .. code-block:: c
   2160 
   2161   static int var = 0;
   2162 
   2163   void f ()
   2164   {
   2165     static int var = 0;
   2166   }
   2167 
   2168 Both of the static ``var`` variables would be included in the table.  All
   2169 functions should emit both their full names and their basenames.  For C or C++,
   2170 the full name is the mangled name (if available) which is usually in the
   2171 ``DW_AT_MIPS_linkage_name`` attribute, and the ``DW_AT_name`` contains the
   2172 function basename.  If global or static variables have a mangled name in a
   2173 ``DW_AT_MIPS_linkage_name`` attribute, this should be emitted along with the
   2174 simple name found in the ``DW_AT_name`` attribute.
   2175 
   2176 "``.apple_types``" sections should contain an entry for each DWARF DIE whose
   2177 tag is one of:
   2178 
   2179 * DW_TAG_array_type
   2180 * DW_TAG_class_type
   2181 * DW_TAG_enumeration_type
   2182 * DW_TAG_pointer_type
   2183 * DW_TAG_reference_type
   2184 * DW_TAG_string_type
   2185 * DW_TAG_structure_type
   2186 * DW_TAG_subroutine_type
   2187 * DW_TAG_typedef
   2188 * DW_TAG_union_type
   2189 * DW_TAG_ptr_to_member_type
   2190 * DW_TAG_set_type
   2191 * DW_TAG_subrange_type
   2192 * DW_TAG_base_type
   2193 * DW_TAG_const_type
   2194 * DW_TAG_constant
   2195 * DW_TAG_file_type
   2196 * DW_TAG_namelist
   2197 * DW_TAG_packed_type
   2198 * DW_TAG_volatile_type
   2199 * DW_TAG_restrict_type
   2200 * DW_TAG_interface_type
   2201 * DW_TAG_unspecified_type
   2202 * DW_TAG_shared_type
   2203 
   2204 Only entries with a ``DW_AT_name`` attribute are included, and the entry must
   2205 not be a forward declaration (``DW_AT_declaration`` attribute with a non-zero
   2206 value).  For example, using the following code:
   2207 
   2208 .. code-block:: c
   2209 
   2210   int main ()
   2211   {
   2212     int *b = 0;
   2213     return *b;
   2214   }
   2215 
   2216 We get a few type DIEs:
   2217 
   2218 .. code-block:: none
   2219 
   2220   0x00000067:     TAG_base_type [5]
   2221                   AT_encoding( DW_ATE_signed )
   2222                   AT_name( "int" )
   2223                   AT_byte_size( 0x04 )
   2224 
   2225   0x0000006e:     TAG_pointer_type [6]
   2226                   AT_type( {0x00000067} ( int ) )
   2227                   AT_byte_size( 0x08 )
   2228 
   2229 The DW_TAG_pointer_type is not included because it does not have a ``DW_AT_name``.
   2230 
   2231 "``.apple_namespaces``" section should contain all ``DW_TAG_namespace`` DIEs.
   2232 If we run into a namespace that has no name this is an anonymous namespace, and
   2233 the name should be output as "``(anonymous namespace)``" (without the quotes).
   2234 Why?  This matches the output of the ``abi::cxa_demangle()`` that is in the
   2235 standard C++ library that demangles mangled names.
   2236 
   2237 
   2238 Language Extensions and File Format Changes
   2239 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   2240 
   2241 Objective-C Extensions
   2242 """"""""""""""""""""""
   2243 
   2244 "``.apple_objc``" section should contain all ``DW_TAG_subprogram`` DIEs for an
   2245 Objective-C class.  The name used in the hash table is the name of the
   2246 Objective-C class itself.  If the Objective-C class has a category, then an
   2247 entry is made for both the class name without the category, and for the class
   2248 name with the category.  So if we have a DIE at offset 0x1234 with a name of
   2249 method "``-[NSString(my_additions) stringWithSpecialString:]``", we would add
   2250 an entry for "``NSString``" that points to DIE 0x1234, and an entry for
   2251 "``NSString(my_additions)``" that points to 0x1234.  This allows us to quickly
   2252 track down all Objective-C methods for an Objective-C class when doing
   2253 expressions.  It is needed because of the dynamic nature of Objective-C where
   2254 anyone can add methods to a class.  The DWARF for Objective-C methods is also
   2255 emitted differently from C++ classes where the methods are not usually
   2256 contained in the class definition, they are scattered about across one or more
   2257 compile units.  Categories can also be defined in different shared libraries.
   2258 So we need to be able to quickly find all of the methods and class functions
   2259 given the Objective-C class name, or quickly find all methods and class
   2260 functions for a class + category name.  This table does not contain any
   2261 selector names, it just maps Objective-C class names (or class names +
   2262 category) to all of the methods and class functions.  The selectors are added
   2263 as function basenames in the "``.debug_names``" section.
   2264 
   2265 In the "``.apple_names``" section for Objective-C functions, the full name is
   2266 the entire function name with the brackets ("``-[NSString
   2267 stringWithCString:]``") and the basename is the selector only
   2268 ("``stringWithCString:``").
   2269 
   2270 Mach-O Changes
   2271 """"""""""""""
   2272 
   2273 The sections names for the apple hash tables are for non mach-o files.  For
   2274 mach-o files, the sections should be contained in the ``__DWARF`` segment with
   2275 names as follows:
   2276 
   2277 * "``.apple_names``" -> "``__apple_names``"
   2278 * "``.apple_types``" -> "``__apple_types``"
   2279 * "``.apple_namespaces``" -> "``__apple_namespac``" (16 character limit)
   2280 * "``.apple_objc``" -> "``__apple_objc``"
   2281 
   2282