Home | History | Annotate | Download | only in docs
      1 ================================
      2 Writing an LLVM Compiler Backend
      3 ================================
      4 
      5 .. toctree::
      6    :hidden:
      7 
      8    HowToUseInstrMappings
      9 
     10 .. contents::
     11    :local:
     12 
     13 Introduction
     14 ============
     15 
     16 This document describes techniques for writing compiler backends that convert
     17 the LLVM Intermediate Representation (IR) to code for a specified machine or
     18 other languages.  Code intended for a specific machine can take the form of
     19 either assembly code or binary code (usable for a JIT compiler).
     20 
     21 The backend of LLVM features a target-independent code generator that may
     22 create output for several types of target CPUs --- including X86, PowerPC,
     23 ARM, and SPARC.  The backend may also be used to generate code targeted at SPUs
     24 of the Cell processor or GPUs to support the execution of compute kernels.
     25 
     26 The document focuses on existing examples found in subdirectories of
     27 ``llvm/lib/Target`` in a downloaded LLVM release.  In particular, this document
     28 focuses on the example of creating a static compiler (one that emits text
     29 assembly) for a SPARC target, because SPARC has fairly standard
     30 characteristics, such as a RISC instruction set and straightforward calling
     31 conventions.
     32 
     33 Audience
     34 --------
     35 
     36 The audience for this document is anyone who needs to write an LLVM backend to
     37 generate code for a specific hardware or software target.
     38 
     39 Prerequisite Reading
     40 --------------------
     41 
     42 These essential documents must be read before reading this document:
     43 
     44 * `LLVM Language Reference Manual <LangRef.html>`_ --- a reference manual for
     45   the LLVM assembly language.
     46 
     47 * :doc:`CodeGenerator` --- a guide to the components (classes and code
     48   generation algorithms) for translating the LLVM internal representation into
     49   machine code for a specified target.  Pay particular attention to the
     50   descriptions of code generation stages: Instruction Selection, Scheduling and
     51   Formation, SSA-based Optimization, Register Allocation, Prolog/Epilog Code
     52   Insertion, Late Machine Code Optimizations, and Code Emission.
     53 
     54 * :doc:`TableGenFundamentals` --- a document that describes the TableGen
     55   (``tblgen``) application that manages domain-specific information to support
     56   LLVM code generation.  TableGen processes input from a target description
     57   file (``.td`` suffix) and generates C++ code that can be used for code
     58   generation.
     59 
     60 * :doc:`WritingAnLLVMPass` --- The assembly printer is a ``FunctionPass``, as
     61   are several ``SelectionDAG`` processing steps.
     62 
     63 To follow the SPARC examples in this document, have a copy of `The SPARC
     64 Architecture Manual, Version 8 <http://www.sparc.org/standards/V8.pdf>`_ for
     65 reference.  For details about the ARM instruction set, refer to the `ARM
     66 Architecture Reference Manual <http://infocenter.arm.com/>`_.  For more about
     67 the GNU Assembler format (``GAS``), see `Using As
     68 <http://sourceware.org/binutils/docs/as/index.html>`_, especially for the
     69 assembly printer.  "Using As" contains a list of target machine dependent
     70 features.
     71 
     72 Basic Steps
     73 -----------
     74 
     75 To write a compiler backend for LLVM that converts the LLVM IR to code for a
     76 specified target (machine or other language), follow these steps:
     77 
     78 * Create a subclass of the ``TargetMachine`` class that describes
     79   characteristics of your target machine.  Copy existing examples of specific
     80   ``TargetMachine`` class and header files; for example, start with
     81   ``SparcTargetMachine.cpp`` and ``SparcTargetMachine.h``, but change the file
     82   names for your target.  Similarly, change code that references "``Sparc``" to
     83   reference your target.
     84 
     85 * Describe the register set of the target.  Use TableGen to generate code for
     86   register definition, register aliases, and register classes from a
     87   target-specific ``RegisterInfo.td`` input file.  You should also write
     88   additional code for a subclass of the ``TargetRegisterInfo`` class that
     89   represents the class register file data used for register allocation and also
     90   describes the interactions between registers.
     91 
     92 * Describe the instruction set of the target.  Use TableGen to generate code
     93   for target-specific instructions from target-specific versions of
     94   ``TargetInstrFormats.td`` and ``TargetInstrInfo.td``.  You should write
     95   additional code for a subclass of the ``TargetInstrInfo`` class to represent
     96   machine instructions supported by the target machine.
     97 
     98 * Describe the selection and conversion of the LLVM IR from a Directed Acyclic
     99   Graph (DAG) representation of instructions to native target-specific
    100   instructions.  Use TableGen to generate code that matches patterns and
    101   selects instructions based on additional information in a target-specific
    102   version of ``TargetInstrInfo.td``.  Write code for ``XXXISelDAGToDAG.cpp``,
    103   where ``XXX`` identifies the specific target, to perform pattern matching and
    104   DAG-to-DAG instruction selection.  Also write code in ``XXXISelLowering.cpp``
    105   to replace or remove operations and data types that are not supported
    106   natively in a SelectionDAG.
    107 
    108 * Write code for an assembly printer that converts LLVM IR to a GAS format for
    109   your target machine.  You should add assembly strings to the instructions
    110   defined in your target-specific version of ``TargetInstrInfo.td``.  You
    111   should also write code for a subclass of ``AsmPrinter`` that performs the
    112   LLVM-to-assembly conversion and a trivial subclass of ``TargetAsmInfo``.
    113 
    114 * Optionally, add support for subtargets (i.e., variants with different
    115   capabilities).  You should also write code for a subclass of the
    116   ``TargetSubtarget`` class, which allows you to use the ``-mcpu=`` and
    117   ``-mattr=`` command-line options.
    118 
    119 * Optionally, add JIT support and create a machine code emitter (subclass of
    120   ``TargetJITInfo``) that is used to emit binary code directly into memory.
    121 
    122 In the ``.cpp`` and ``.h``. files, initially stub up these methods and then
    123 implement them later.  Initially, you may not know which private members that
    124 the class will need and which components will need to be subclassed.
    125 
    126 Preliminaries
    127 -------------
    128 
    129 To actually create your compiler backend, you need to create and modify a few
    130 files.  The absolute minimum is discussed here.  But to actually use the LLVM
    131 target-independent code generator, you must perform the steps described in the
    132 :doc:`LLVM Target-Independent Code Generator <CodeGenerator>` document.
    133 
    134 First, you should create a subdirectory under ``lib/Target`` to hold all the
    135 files related to your target.  If your target is called "Dummy", create the
    136 directory ``lib/Target/Dummy``.
    137 
    138 In this new directory, create a ``Makefile``.  It is easiest to copy a
    139 ``Makefile`` of another target and modify it.  It should at least contain the
    140 ``LEVEL``, ``LIBRARYNAME`` and ``TARGET`` variables, and then include
    141 ``$(LEVEL)/Makefile.common``.  The library can be named ``LLVMDummy`` (for
    142 example, see the MIPS target).  Alternatively, you can split the library into
    143 ``LLVMDummyCodeGen`` and ``LLVMDummyAsmPrinter``, the latter of which should be
    144 implemented in a subdirectory below ``lib/Target/Dummy`` (for example, see the
    145 PowerPC target).
    146 
    147 Note that these two naming schemes are hardcoded into ``llvm-config``.  Using
    148 any other naming scheme will confuse ``llvm-config`` and produce a lot of
    149 (seemingly unrelated) linker errors when linking ``llc``.
    150 
    151 To make your target actually do something, you need to implement a subclass of
    152 ``TargetMachine``.  This implementation should typically be in the file
    153 ``lib/Target/DummyTargetMachine.cpp``, but any file in the ``lib/Target``
    154 directory will be built and should work.  To use LLVM's target independent code
    155 generator, you should do what all current machine backends do: create a
    156 subclass of ``LLVMTargetMachine``.  (To create a target from scratch, create a
    157 subclass of ``TargetMachine``.)
    158 
    159 To get LLVM to actually build and link your target, you need to add it to the
    160 ``TARGETS_TO_BUILD`` variable.  To do this, you modify the configure script to
    161 know about your target when parsing the ``--enable-targets`` option.  Search
    162 the configure script for ``TARGETS_TO_BUILD``, add your target to the lists
    163 there (some creativity required), and then reconfigure.  Alternatively, you can
    164 change ``autotools/configure.ac`` and regenerate configure by running
    165 ``./autoconf/AutoRegen.sh``.
    166 
    167 Target Machine
    168 ==============
    169 
    170 ``LLVMTargetMachine`` is designed as a base class for targets implemented with
    171 the LLVM target-independent code generator.  The ``LLVMTargetMachine`` class
    172 should be specialized by a concrete target class that implements the various
    173 virtual methods.  ``LLVMTargetMachine`` is defined as a subclass of
    174 ``TargetMachine`` in ``include/llvm/Target/TargetMachine.h``.  The
    175 ``TargetMachine`` class implementation (``TargetMachine.cpp``) also processes
    176 numerous command-line options.
    177 
    178 To create a concrete target-specific subclass of ``LLVMTargetMachine``, start
    179 by copying an existing ``TargetMachine`` class and header.  You should name the
    180 files that you create to reflect your specific target.  For instance, for the
    181 SPARC target, name the files ``SparcTargetMachine.h`` and
    182 ``SparcTargetMachine.cpp``.
    183 
    184 For a target machine ``XXX``, the implementation of ``XXXTargetMachine`` must
    185 have access methods to obtain objects that represent target components.  These
    186 methods are named ``get*Info``, and are intended to obtain the instruction set
    187 (``getInstrInfo``), register set (``getRegisterInfo``), stack frame layout
    188 (``getFrameInfo``), and similar information.  ``XXXTargetMachine`` must also
    189 implement the ``getDataLayout`` method to access an object with target-specific
    190 data characteristics, such as data type size and alignment requirements.
    191 
    192 For instance, for the SPARC target, the header file ``SparcTargetMachine.h``
    193 declares prototypes for several ``get*Info`` and ``getDataLayout`` methods that
    194 simply return a class member.
    195 
    196 .. code-block:: c++
    197 
    198   namespace llvm {
    199 
    200   class Module;
    201 
    202   class SparcTargetMachine : public LLVMTargetMachine {
    203     const DataLayout DataLayout;       // Calculates type size & alignment
    204     SparcSubtarget Subtarget;
    205     SparcInstrInfo InstrInfo;
    206     TargetFrameInfo FrameInfo;
    207 
    208   protected:
    209     virtual const TargetAsmInfo *createTargetAsmInfo() const;
    210 
    211   public:
    212     SparcTargetMachine(const Module &M, const std::string &FS);
    213 
    214     virtual const SparcInstrInfo *getInstrInfo() const {return &InstrInfo; }
    215     virtual const TargetFrameInfo *getFrameInfo() const {return &FrameInfo; }
    216     virtual const TargetSubtarget *getSubtargetImpl() const{return &Subtarget; }
    217     virtual const TargetRegisterInfo *getRegisterInfo() const {
    218       return &InstrInfo.getRegisterInfo();
    219     }
    220     virtual const DataLayout *getDataLayout() const { return &DataLayout; }
    221     static unsigned getModuleMatchQuality(const Module &M);
    222 
    223     // Pass Pipeline Configuration
    224     virtual bool addInstSelector(PassManagerBase &PM, bool Fast);
    225     virtual bool addPreEmitPass(PassManagerBase &PM, bool Fast);
    226   };
    227 
    228   } // end namespace llvm
    229 
    230 * ``getInstrInfo()``
    231 * ``getRegisterInfo()``
    232 * ``getFrameInfo()``
    233 * ``getDataLayout()``
    234 * ``getSubtargetImpl()``
    235 
    236 For some targets, you also need to support the following methods:
    237 
    238 * ``getTargetLowering()``
    239 * ``getJITInfo()``
    240 
    241 In addition, the ``XXXTargetMachine`` constructor should specify a
    242 ``TargetDescription`` string that determines the data layout for the target
    243 machine, including characteristics such as pointer size, alignment, and
    244 endianness.  For example, the constructor for ``SparcTargetMachine`` contains
    245 the following:
    246 
    247 .. code-block:: c++
    248 
    249   SparcTargetMachine::SparcTargetMachine(const Module &M, const std::string &FS)
    250     : DataLayout("E-p:32:32-f128:128:128"),
    251       Subtarget(M, FS), InstrInfo(Subtarget),
    252       FrameInfo(TargetFrameInfo::StackGrowsDown, 8, 0) {
    253   }
    254 
    255 Hyphens separate portions of the ``TargetDescription`` string.
    256 
    257 * An upper-case "``E``" in the string indicates a big-endian target data model.
    258   A lower-case "``e``" indicates little-endian.
    259 
    260 * "``p:``" is followed by pointer information: size, ABI alignment, and
    261   preferred alignment.  If only two figures follow "``p:``", then the first
    262   value is pointer size, and the second value is both ABI and preferred
    263   alignment.
    264 
    265 * Then a letter for numeric type alignment: "``i``", "``f``", "``v``", or
    266   "``a``" (corresponding to integer, floating point, vector, or aggregate).
    267   "``i``", "``v``", or "``a``" are followed by ABI alignment and preferred
    268   alignment. "``f``" is followed by three values: the first indicates the size
    269   of a long double, then ABI alignment, and then ABI preferred alignment.
    270 
    271 Target Registration
    272 ===================
    273 
    274 You must also register your target with the ``TargetRegistry``, which is what
    275 other LLVM tools use to be able to lookup and use your target at runtime.  The
    276 ``TargetRegistry`` can be used directly, but for most targets there are helper
    277 templates which should take care of the work for you.
    278 
    279 All targets should declare a global ``Target`` object which is used to
    280 represent the target during registration.  Then, in the target's ``TargetInfo``
    281 library, the target should define that object and use the ``RegisterTarget``
    282 template to register the target.  For example, the Sparc registration code
    283 looks like this:
    284 
    285 .. code-block:: c++
    286 
    287   Target llvm::TheSparcTarget;
    288 
    289   extern "C" void LLVMInitializeSparcTargetInfo() {
    290     RegisterTarget<Triple::sparc, /*HasJIT=*/false>
    291       X(TheSparcTarget, "sparc", "Sparc");
    292   }
    293 
    294 This allows the ``TargetRegistry`` to look up the target by name or by target
    295 triple.  In addition, most targets will also register additional features which
    296 are available in separate libraries.  These registration steps are separate,
    297 because some clients may wish to only link in some parts of the target --- the
    298 JIT code generator does not require the use of the assembler printer, for
    299 example.  Here is an example of registering the Sparc assembly printer:
    300 
    301 .. code-block:: c++
    302 
    303   extern "C" void LLVMInitializeSparcAsmPrinter() {
    304     RegisterAsmPrinter<SparcAsmPrinter> X(TheSparcTarget);
    305   }
    306 
    307 For more information, see "`llvm/Target/TargetRegistry.h
    308 </doxygen/TargetRegistry_8h-source.html>`_".
    309 
    310 Register Set and Register Classes
    311 =================================
    312 
    313 You should describe a concrete target-specific class that represents the
    314 register file of a target machine.  This class is called ``XXXRegisterInfo``
    315 (where ``XXX`` identifies the target) and represents the class register file
    316 data that is used for register allocation.  It also describes the interactions
    317 between registers.
    318 
    319 You also need to define register classes to categorize related registers.  A
    320 register class should be added for groups of registers that are all treated the
    321 same way for some instruction.  Typical examples are register classes for
    322 integer, floating-point, or vector registers.  A register allocator allows an
    323 instruction to use any register in a specified register class to perform the
    324 instruction in a similar manner.  Register classes allocate virtual registers
    325 to instructions from these sets, and register classes let the
    326 target-independent register allocator automatically choose the actual
    327 registers.
    328 
    329 Much of the code for registers, including register definition, register
    330 aliases, and register classes, is generated by TableGen from
    331 ``XXXRegisterInfo.td`` input files and placed in ``XXXGenRegisterInfo.h.inc``
    332 and ``XXXGenRegisterInfo.inc`` output files.  Some of the code in the
    333 implementation of ``XXXRegisterInfo`` requires hand-coding.
    334 
    335 Defining a Register
    336 -------------------
    337 
    338 The ``XXXRegisterInfo.td`` file typically starts with register definitions for
    339 a target machine.  The ``Register`` class (specified in ``Target.td``) is used
    340 to define an object for each register.  The specified string ``n`` becomes the
    341 ``Name`` of the register.  The basic ``Register`` object does not have any
    342 subregisters and does not specify any aliases.
    343 
    344 .. code-block:: llvm
    345 
    346   class Register<string n> {
    347     string Namespace = "";
    348     string AsmName = n;
    349     string Name = n;
    350     int SpillSize = 0;
    351     int SpillAlignment = 0;
    352     list<Register> Aliases = [];
    353     list<Register> SubRegs = [];
    354     list<int> DwarfNumbers = [];
    355   }
    356 
    357 For example, in the ``X86RegisterInfo.td`` file, there are register definitions
    358 that utilize the ``Register`` class, such as:
    359 
    360 .. code-block:: llvm
    361 
    362   def AL : Register<"AL">, DwarfRegNum<[0, 0, 0]>;
    363 
    364 This defines the register ``AL`` and assigns it values (with ``DwarfRegNum``)
    365 that are used by ``gcc``, ``gdb``, or a debug information writer to identify a
    366 register.  For register ``AL``, ``DwarfRegNum`` takes an array of 3 values
    367 representing 3 different modes: the first element is for X86-64, the second for
    368 exception handling (EH) on X86-32, and the third is generic. -1 is a special
    369 Dwarf number that indicates the gcc number is undefined, and -2 indicates the
    370 register number is invalid for this mode.
    371 
    372 From the previously described line in the ``X86RegisterInfo.td`` file, TableGen
    373 generates this code in the ``X86GenRegisterInfo.inc`` file:
    374 
    375 .. code-block:: c++
    376 
    377   static const unsigned GR8[] = { X86::AL, ... };
    378 
    379   const unsigned AL_AliasSet[] = { X86::AX, X86::EAX, X86::RAX, 0 };
    380 
    381   const TargetRegisterDesc RegisterDescriptors[] = {
    382     ...
    383   { "AL", "AL", AL_AliasSet, Empty_SubRegsSet, Empty_SubRegsSet, AL_SuperRegsSet }, ...
    384 
    385 From the register info file, TableGen generates a ``TargetRegisterDesc`` object
    386 for each register.  ``TargetRegisterDesc`` is defined in
    387 ``include/llvm/Target/TargetRegisterInfo.h`` with the following fields:
    388 
    389 .. code-block:: c++
    390 
    391   struct TargetRegisterDesc {
    392     const char     *AsmName;      // Assembly language name for the register
    393     const char     *Name;         // Printable name for the reg (for debugging)
    394     const unsigned *AliasSet;     // Register Alias Set
    395     const unsigned *SubRegs;      // Sub-register set
    396     const unsigned *ImmSubRegs;   // Immediate sub-register set
    397     const unsigned *SuperRegs;    // Super-register set
    398   };
    399 
    400 TableGen uses the entire target description file (``.td``) to determine text
    401 names for the register (in the ``AsmName`` and ``Name`` fields of
    402 ``TargetRegisterDesc``) and the relationships of other registers to the defined
    403 register (in the other ``TargetRegisterDesc`` fields).  In this example, other
    404 definitions establish the registers "``AX``", "``EAX``", and "``RAX``" as
    405 aliases for one another, so TableGen generates a null-terminated array
    406 (``AL_AliasSet``) for this register alias set.
    407 
    408 The ``Register`` class is commonly used as a base class for more complex
    409 classes.  In ``Target.td``, the ``Register`` class is the base for the
    410 ``RegisterWithSubRegs`` class that is used to define registers that need to
    411 specify subregisters in the ``SubRegs`` list, as shown here:
    412 
    413 .. code-block:: llvm
    414 
    415   class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
    416     let SubRegs = subregs;
    417   }
    418 
    419 In ``SparcRegisterInfo.td``, additional register classes are defined for SPARC:
    420 a ``Register`` subclass, ``SparcReg``, and further subclasses: ``Ri``, ``Rf``,
    421 and ``Rd``.  SPARC registers are identified by 5-bit ID numbers, which is a
    422 feature common to these subclasses.  Note the use of "``let``" expressions to
    423 override values that are initially defined in a superclass (such as ``SubRegs``
    424 field in the ``Rd`` class).
    425 
    426 .. code-block:: llvm
    427 
    428   class SparcReg<string n> : Register<n> {
    429     field bits<5> Num;
    430     let Namespace = "SP";
    431   }
    432   // Ri - 32-bit integer registers
    433   class Ri<bits<5> num, string n> :
    434   SparcReg<n> {
    435     let Num = num;
    436   }
    437   // Rf - 32-bit floating-point registers
    438   class Rf<bits<5> num, string n> :
    439   SparcReg<n> {
    440     let Num = num;
    441   }
    442   // Rd - Slots in the FP register file for 64-bit floating-point values.
    443   class Rd<bits<5> num, string n, list<Register> subregs> : SparcReg<n> {
    444     let Num = num;
    445     let SubRegs = subregs;
    446   }
    447 
    448 In the ``SparcRegisterInfo.td`` file, there are register definitions that
    449 utilize these subclasses of ``Register``, such as:
    450 
    451 .. code-block:: llvm
    452 
    453   def G0 : Ri< 0, "G0">, DwarfRegNum<[0]>;
    454   def G1 : Ri< 1, "G1">, DwarfRegNum<[1]>;
    455   ...
    456   def F0 : Rf< 0, "F0">, DwarfRegNum<[32]>;
    457   def F1 : Rf< 1, "F1">, DwarfRegNum<[33]>;
    458   ...
    459   def D0 : Rd< 0, "F0", [F0, F1]>, DwarfRegNum<[32]>;
    460   def D1 : Rd< 2, "F2", [F2, F3]>, DwarfRegNum<[34]>;
    461 
    462 The last two registers shown above (``D0`` and ``D1``) are double-precision
    463 floating-point registers that are aliases for pairs of single-precision
    464 floating-point sub-registers.  In addition to aliases, the sub-register and
    465 super-register relationships of the defined register are in fields of a
    466 register's ``TargetRegisterDesc``.
    467 
    468 Defining a Register Class
    469 -------------------------
    470 
    471 The ``RegisterClass`` class (specified in ``Target.td``) is used to define an
    472 object that represents a group of related registers and also defines the
    473 default allocation order of the registers.  A target description file
    474 ``XXXRegisterInfo.td`` that uses ``Target.td`` can construct register classes
    475 using the following class:
    476 
    477 .. code-block:: llvm
    478 
    479   class RegisterClass<string namespace,
    480   list<ValueType> regTypes, int alignment, dag regList> {
    481     string Namespace = namespace;
    482     list<ValueType> RegTypes = regTypes;
    483     int Size = 0;  // spill size, in bits; zero lets tblgen pick the size
    484     int Alignment = alignment;
    485 
    486     // CopyCost is the cost of copying a value between two registers
    487     // default value 1 means a single instruction
    488     // A negative value means copying is extremely expensive or impossible
    489     int CopyCost = 1;
    490     dag MemberList = regList;
    491 
    492     // for register classes that are subregisters of this class
    493     list<RegisterClass> SubRegClassList = [];
    494 
    495     code MethodProtos = [{}];  // to insert arbitrary code
    496     code MethodBodies = [{}];
    497   }
    498 
    499 To define a ``RegisterClass``, use the following 4 arguments:
    500 
    501 * The first argument of the definition is the name of the namespace.
    502 
    503 * The second argument is a list of ``ValueType`` register type values that are
    504   defined in ``include/llvm/CodeGen/ValueTypes.td``.  Defined values include
    505   integer types (such as ``i16``, ``i32``, and ``i1`` for Boolean),
    506   floating-point types (``f32``, ``f64``), and vector types (for example,
    507   ``v8i16`` for an ``8 x i16`` vector).  All registers in a ``RegisterClass``
    508   must have the same ``ValueType``, but some registers may store vector data in
    509   different configurations.  For example a register that can process a 128-bit
    510   vector may be able to handle 16 8-bit integer elements, 8 16-bit integers, 4
    511   32-bit integers, and so on.
    512 
    513 * The third argument of the ``RegisterClass`` definition specifies the
    514   alignment required of the registers when they are stored or loaded to
    515   memory.
    516 
    517 * The final argument, ``regList``, specifies which registers are in this class.
    518   If an alternative allocation order method is not specified, then ``regList``
    519   also defines the order of allocation used by the register allocator.  Besides
    520   simply listing registers with ``(add R0, R1, ...)``, more advanced set
    521   operators are available.  See ``include/llvm/Target/Target.td`` for more
    522   information.
    523 
    524 In ``SparcRegisterInfo.td``, three ``RegisterClass`` objects are defined:
    525 ``FPRegs``, ``DFPRegs``, and ``IntRegs``.  For all three register classes, the
    526 first argument defines the namespace with the string "``SP``".  ``FPRegs``
    527 defines a group of 32 single-precision floating-point registers (``F0`` to
    528 ``F31``); ``DFPRegs`` defines a group of 16 double-precision registers
    529 (``D0-D15``).
    530 
    531 .. code-block:: llvm
    532 
    533   // F0, F1, F2, ..., F31
    534   def FPRegs : RegisterClass<"SP", [f32], 32, (sequence "F%u", 0, 31)>;
    535 
    536   def DFPRegs : RegisterClass<"SP", [f64], 64,
    537                               (add D0, D1, D2, D3, D4, D5, D6, D7, D8,
    538                                    D9, D10, D11, D12, D13, D14, D15)>;
    539 
    540   def IntRegs : RegisterClass<"SP", [i32], 32,
    541       (add L0, L1, L2, L3, L4, L5, L6, L7,
    542            I0, I1, I2, I3, I4, I5,
    543            O0, O1, O2, O3, O4, O5, O7,
    544            G1,
    545            // Non-allocatable regs:
    546            G2, G3, G4,
    547            O6,        // stack ptr
    548            I6,        // frame ptr
    549            I7,        // return address
    550            G0,        // constant zero
    551            G5, G6, G7 // reserved for kernel
    552       )>;
    553 
    554 Using ``SparcRegisterInfo.td`` with TableGen generates several output files
    555 that are intended for inclusion in other source code that you write.
    556 ``SparcRegisterInfo.td`` generates ``SparcGenRegisterInfo.h.inc``, which should
    557 be included in the header file for the implementation of the SPARC register
    558 implementation that you write (``SparcRegisterInfo.h``).  In
    559 ``SparcGenRegisterInfo.h.inc`` a new structure is defined called
    560 ``SparcGenRegisterInfo`` that uses ``TargetRegisterInfo`` as its base.  It also
    561 specifies types, based upon the defined register classes: ``DFPRegsClass``,
    562 ``FPRegsClass``, and ``IntRegsClass``.
    563 
    564 ``SparcRegisterInfo.td`` also generates ``SparcGenRegisterInfo.inc``, which is
    565 included at the bottom of ``SparcRegisterInfo.cpp``, the SPARC register
    566 implementation.  The code below shows only the generated integer registers and
    567 associated register classes.  The order of registers in ``IntRegs`` reflects
    568 the order in the definition of ``IntRegs`` in the target description file.
    569 
    570 .. code-block:: c++
    571 
    572   // IntRegs Register Class...
    573   static const unsigned IntRegs[] = {
    574     SP::L0, SP::L1, SP::L2, SP::L3, SP::L4, SP::L5,
    575     SP::L6, SP::L7, SP::I0, SP::I1, SP::I2, SP::I3,
    576     SP::I4, SP::I5, SP::O0, SP::O1, SP::O2, SP::O3,
    577     SP::O4, SP::O5, SP::O7, SP::G1, SP::G2, SP::G3,
    578     SP::G4, SP::O6, SP::I6, SP::I7, SP::G0, SP::G5,
    579     SP::G6, SP::G7,
    580   };
    581 
    582   // IntRegsVTs Register Class Value Types...
    583   static const MVT::ValueType IntRegsVTs[] = {
    584     MVT::i32, MVT::Other
    585   };
    586 
    587   namespace SP {   // Register class instances
    588     DFPRegsClass    DFPRegsRegClass;
    589     FPRegsClass     FPRegsRegClass;
    590     IntRegsClass    IntRegsRegClass;
    591   ...
    592     // IntRegs Sub-register Classess...
    593     static const TargetRegisterClass* const IntRegsSubRegClasses [] = {
    594       NULL
    595     };
    596   ...
    597     // IntRegs Super-register Classess...
    598     static const TargetRegisterClass* const IntRegsSuperRegClasses [] = {
    599       NULL
    600     };
    601   ...
    602     // IntRegs Register Class sub-classes...
    603     static const TargetRegisterClass* const IntRegsSubclasses [] = {
    604       NULL
    605     };
    606   ...
    607     // IntRegs Register Class super-classes...
    608     static const TargetRegisterClass* const IntRegsSuperclasses [] = {
    609       NULL
    610     };
    611 
    612     IntRegsClass::IntRegsClass() : TargetRegisterClass(IntRegsRegClassID,
    613       IntRegsVTs, IntRegsSubclasses, IntRegsSuperclasses, IntRegsSubRegClasses,
    614       IntRegsSuperRegClasses, 4, 4, 1, IntRegs, IntRegs + 32) {}
    615   }
    616 
    617 The register allocators will avoid using reserved registers, and callee saved
    618 registers are not used until all the volatile registers have been used.  That
    619 is usually good enough, but in some cases it may be necessary to provide custom
    620 allocation orders.
    621 
    622 Implement a subclass of ``TargetRegisterInfo``
    623 ----------------------------------------------
    624 
    625 The final step is to hand code portions of ``XXXRegisterInfo``, which
    626 implements the interface described in ``TargetRegisterInfo.h`` (see
    627 :ref:`TargetRegisterInfo`).  These functions return ``0``, ``NULL``, or
    628 ``false``, unless overridden.  Here is a list of functions that are overridden
    629 for the SPARC implementation in ``SparcRegisterInfo.cpp``:
    630 
    631 * ``getCalleeSavedRegs`` --- Returns a list of callee-saved registers in the
    632   order of the desired callee-save stack frame offset.
    633 
    634 * ``getReservedRegs`` --- Returns a bitset indexed by physical register
    635   numbers, indicating if a particular register is unavailable.
    636 
    637 * ``hasFP`` --- Return a Boolean indicating if a function should have a
    638   dedicated frame pointer register.
    639 
    640 * ``eliminateCallFramePseudoInstr`` --- If call frame setup or destroy pseudo
    641   instructions are used, this can be called to eliminate them.
    642 
    643 * ``eliminateFrameIndex`` --- Eliminate abstract frame indices from
    644   instructions that may use them.
    645 
    646 * ``emitPrologue`` --- Insert prologue code into the function.
    647 
    648 * ``emitEpilogue`` --- Insert epilogue code into the function.
    649 
    650 .. _instruction-set:
    651 
    652 Instruction Set
    653 ===============
    654 
    655 During the early stages of code generation, the LLVM IR code is converted to a
    656 ``SelectionDAG`` with nodes that are instances of the ``SDNode`` class
    657 containing target instructions.  An ``SDNode`` has an opcode, operands, type
    658 requirements, and operation properties.  For example, is an operation
    659 commutative, does an operation load from memory.  The various operation node
    660 types are described in the ``include/llvm/CodeGen/SelectionDAGNodes.h`` file
    661 (values of the ``NodeType`` enum in the ``ISD`` namespace).
    662 
    663 TableGen uses the following target description (``.td``) input files to
    664 generate much of the code for instruction definition:
    665 
    666 * ``Target.td`` --- Where the ``Instruction``, ``Operand``, ``InstrInfo``, and
    667   other fundamental classes are defined.
    668 
    669 * ``TargetSelectionDAG.td`` --- Used by ``SelectionDAG`` instruction selection
    670   generators, contains ``SDTC*`` classes (selection DAG type constraint),
    671   definitions of ``SelectionDAG`` nodes (such as ``imm``, ``cond``, ``bb``,
    672   ``add``, ``fadd``, ``sub``), and pattern support (``Pattern``, ``Pat``,
    673   ``PatFrag``, ``PatLeaf``, ``ComplexPattern``.
    674 
    675 * ``XXXInstrFormats.td`` --- Patterns for definitions of target-specific
    676   instructions.
    677 
    678 * ``XXXInstrInfo.td`` --- Target-specific definitions of instruction templates,
    679   condition codes, and instructions of an instruction set.  For architecture
    680   modifications, a different file name may be used.  For example, for Pentium
    681   with SSE instruction, this file is ``X86InstrSSE.td``, and for Pentium with
    682   MMX, this file is ``X86InstrMMX.td``.
    683 
    684 There is also a target-specific ``XXX.td`` file, where ``XXX`` is the name of
    685 the target.  The ``XXX.td`` file includes the other ``.td`` input files, but
    686 its contents are only directly important for subtargets.
    687 
    688 You should describe a concrete target-specific class ``XXXInstrInfo`` that
    689 represents machine instructions supported by a target machine.
    690 ``XXXInstrInfo`` contains an array of ``XXXInstrDescriptor`` objects, each of
    691 which describes one instruction.  An instruction descriptor defines:
    692 
    693 * Opcode mnemonic
    694 * Number of operands
    695 * List of implicit register definitions and uses
    696 * Target-independent properties (such as memory access, is commutable)
    697 * Target-specific flags
    698 
    699 The Instruction class (defined in ``Target.td``) is mostly used as a base for
    700 more complex instruction classes.
    701 
    702 .. code-block:: llvm
    703 
    704   class Instruction {
    705     string Namespace = "";
    706     dag OutOperandList;    // A dag containing the MI def operand list.
    707     dag InOperandList;     // A dag containing the MI use operand list.
    708     string AsmString = ""; // The .s format to print the instruction with.
    709     list<dag> Pattern;     // Set to the DAG pattern for this instruction.
    710     list<Register> Uses = [];
    711     list<Register> Defs = [];
    712     list<Predicate> Predicates = [];  // predicates turned into isel match code
    713     ... remainder not shown for space ...
    714   }
    715 
    716 A ``SelectionDAG`` node (``SDNode``) should contain an object representing a
    717 target-specific instruction that is defined in ``XXXInstrInfo.td``.  The
    718 instruction objects should represent instructions from the architecture manual
    719 of the target machine (such as the SPARC Architecture Manual for the SPARC
    720 target).
    721 
    722 A single instruction from the architecture manual is often modeled as multiple
    723 target instructions, depending upon its operands.  For example, a manual might
    724 describe an add instruction that takes a register or an immediate operand.  An
    725 LLVM target could model this with two instructions named ``ADDri`` and
    726 ``ADDrr``.
    727 
    728 You should define a class for each instruction category and define each opcode
    729 as a subclass of the category with appropriate parameters such as the fixed
    730 binary encoding of opcodes and extended opcodes.  You should map the register
    731 bits to the bits of the instruction in which they are encoded (for the JIT).
    732 Also you should specify how the instruction should be printed when the
    733 automatic assembly printer is used.
    734 
    735 As is described in the SPARC Architecture Manual, Version 8, there are three
    736 major 32-bit formats for instructions.  Format 1 is only for the ``CALL``
    737 instruction.  Format 2 is for branch on condition codes and ``SETHI`` (set high
    738 bits of a register) instructions.  Format 3 is for other instructions.
    739 
    740 Each of these formats has corresponding classes in ``SparcInstrFormat.td``.
    741 ``InstSP`` is a base class for other instruction classes.  Additional base
    742 classes are specified for more precise formats: for example in
    743 ``SparcInstrFormat.td``, ``F2_1`` is for ``SETHI``, and ``F2_2`` is for
    744 branches.  There are three other base classes: ``F3_1`` for register/register
    745 operations, ``F3_2`` for register/immediate operations, and ``F3_3`` for
    746 floating-point operations.  ``SparcInstrInfo.td`` also adds the base class
    747 ``Pseudo`` for synthetic SPARC instructions.
    748 
    749 ``SparcInstrInfo.td`` largely consists of operand and instruction definitions
    750 for the SPARC target.  In ``SparcInstrInfo.td``, the following target
    751 description file entry, ``LDrr``, defines the Load Integer instruction for a
    752 Word (the ``LD`` SPARC opcode) from a memory address to a register.  The first
    753 parameter, the value 3 (``11``\ :sub:`2`), is the operation value for this
    754 category of operation.  The second parameter (``000000``\ :sub:`2`) is the
    755 specific operation value for ``LD``/Load Word.  The third parameter is the
    756 output destination, which is a register operand and defined in the ``Register``
    757 target description file (``IntRegs``).
    758 
    759 .. code-block:: llvm
    760 
    761   def LDrr : F3_1 <3, 0b000000, (outs IntRegs:$dst), (ins MEMrr:$addr),
    762                    "ld [$addr], $dst",
    763                    [(set IntRegs:$dst, (load ADDRrr:$addr))]>;
    764 
    765 The fourth parameter is the input source, which uses the address operand
    766 ``MEMrr`` that is defined earlier in ``SparcInstrInfo.td``:
    767 
    768 .. code-block:: llvm
    769 
    770   def MEMrr : Operand<i32> {
    771     let PrintMethod = "printMemOperand";
    772     let MIOperandInfo = (ops IntRegs, IntRegs);
    773   }
    774 
    775 The fifth parameter is a string that is used by the assembly printer and can be
    776 left as an empty string until the assembly printer interface is implemented.
    777 The sixth and final parameter is the pattern used to match the instruction
    778 during the SelectionDAG Select Phase described in :doc:`CodeGenerator`.
    779 This parameter is detailed in the next section, :ref:`instruction-selector`.
    780 
    781 Instruction class definitions are not overloaded for different operand types,
    782 so separate versions of instructions are needed for register, memory, or
    783 immediate value operands.  For example, to perform a Load Integer instruction
    784 for a Word from an immediate operand to a register, the following instruction
    785 class is defined:
    786 
    787 .. code-block:: llvm
    788 
    789   def LDri : F3_2 <3, 0b000000, (outs IntRegs:$dst), (ins MEMri:$addr),
    790                    "ld [$addr], $dst",
    791                    [(set IntRegs:$dst, (load ADDRri:$addr))]>;
    792 
    793 Writing these definitions for so many similar instructions can involve a lot of
    794 cut and paste.  In ``.td`` files, the ``multiclass`` directive enables the
    795 creation of templates to define several instruction classes at once (using the
    796 ``defm`` directive).  For example in ``SparcInstrInfo.td``, the ``multiclass``
    797 pattern ``F3_12`` is defined to create 2 instruction classes each time
    798 ``F3_12`` is invoked:
    799 
    800 .. code-block:: llvm
    801 
    802   multiclass F3_12 <string OpcStr, bits<6> Op3Val, SDNode OpNode> {
    803     def rr  : F3_1 <2, Op3Val,
    804                    (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
    805                    !strconcat(OpcStr, " $b, $c, $dst"),
    806                    [(set IntRegs:$dst, (OpNode IntRegs:$b, IntRegs:$c))]>;
    807     def ri  : F3_2 <2, Op3Val,
    808                    (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
    809                    !strconcat(OpcStr, " $b, $c, $dst"),
    810                    [(set IntRegs:$dst, (OpNode IntRegs:$b, simm13:$c))]>;
    811   }
    812 
    813 So when the ``defm`` directive is used for the ``XOR`` and ``ADD``
    814 instructions, as seen below, it creates four instruction objects: ``XORrr``,
    815 ``XORri``, ``ADDrr``, and ``ADDri``.
    816 
    817 .. code-block:: llvm
    818 
    819   defm XOR   : F3_12<"xor", 0b000011, xor>;
    820   defm ADD   : F3_12<"add", 0b000000, add>;
    821 
    822 ``SparcInstrInfo.td`` also includes definitions for condition codes that are
    823 referenced by branch instructions.  The following definitions in
    824 ``SparcInstrInfo.td`` indicate the bit location of the SPARC condition code.
    825 For example, the 10\ :sup:`th` bit represents the "greater than" condition for
    826 integers, and the 22\ :sup:`nd` bit represents the "greater than" condition for
    827 floats.
    828 
    829 .. code-block:: llvm
    830 
    831   def ICC_NE  : ICC_VAL< 9>;  // Not Equal
    832   def ICC_E   : ICC_VAL< 1>;  // Equal
    833   def ICC_G   : ICC_VAL<10>;  // Greater
    834   ...
    835   def FCC_U   : FCC_VAL<23>;  // Unordered
    836   def FCC_G   : FCC_VAL<22>;  // Greater
    837   def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
    838   ...
    839 
    840 (Note that ``Sparc.h`` also defines enums that correspond to the same SPARC
    841 condition codes.  Care must be taken to ensure the values in ``Sparc.h``
    842 correspond to the values in ``SparcInstrInfo.td``.  I.e., ``SPCC::ICC_NE = 9``,
    843 ``SPCC::FCC_U = 23`` and so on.)
    844 
    845 Instruction Operand Mapping
    846 ---------------------------
    847 
    848 The code generator backend maps instruction operands to fields in the
    849 instruction.  Operands are assigned to unbound fields in the instruction in the
    850 order they are defined.  Fields are bound when they are assigned a value.  For
    851 example, the Sparc target defines the ``XNORrr`` instruction as a ``F3_1``
    852 format instruction having three operands.
    853 
    854 .. code-block:: llvm
    855 
    856   def XNORrr  : F3_1<2, 0b000111,
    857                      (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
    858                      "xnor $b, $c, $dst",
    859                      [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>;
    860 
    861 The instruction templates in ``SparcInstrFormats.td`` show the base class for
    862 ``F3_1`` is ``InstSP``.
    863 
    864 .. code-block:: llvm
    865 
    866   class InstSP<dag outs, dag ins, string asmstr, list<dag> pattern> : Instruction {
    867     field bits<32> Inst;
    868     let Namespace = "SP";
    869     bits<2> op;
    870     let Inst{31-30} = op;
    871     dag OutOperandList = outs;
    872     dag InOperandList = ins;
    873     let AsmString   = asmstr;
    874     let Pattern = pattern;
    875   }
    876 
    877 ``InstSP`` leaves the ``op`` field unbound.
    878 
    879 .. code-block:: llvm
    880 
    881   class F3<dag outs, dag ins, string asmstr, list<dag> pattern>
    882       : InstSP<outs, ins, asmstr, pattern> {
    883     bits<5> rd;
    884     bits<6> op3;
    885     bits<5> rs1;
    886     let op{1} = 1;   // Op = 2 or 3
    887     let Inst{29-25} = rd;
    888     let Inst{24-19} = op3;
    889     let Inst{18-14} = rs1;
    890   }
    891 
    892 ``F3`` binds the ``op`` field and defines the ``rd``, ``op3``, and ``rs1``
    893 fields.  ``F3`` format instructions will bind the operands ``rd``, ``op3``, and
    894 ``rs1`` fields.
    895 
    896 .. code-block:: llvm
    897 
    898   class F3_1<bits<2> opVal, bits<6> op3val, dag outs, dag ins,
    899              string asmstr, list<dag> pattern> : F3<outs, ins, asmstr, pattern> {
    900     bits<8> asi = 0; // asi not currently used
    901     bits<5> rs2;
    902     let op         = opVal;
    903     let op3        = op3val;
    904     let Inst{13}   = 0;     // i field = 0
    905     let Inst{12-5} = asi;   // address space identifier
    906     let Inst{4-0}  = rs2;
    907   }
    908 
    909 ``F3_1`` binds the ``op3`` field and defines the ``rs2`` fields.  ``F3_1``
    910 format instructions will bind the operands to the ``rd``, ``rs1``, and ``rs2``
    911 fields.  This results in the ``XNORrr`` instruction binding ``$dst``, ``$b``,
    912 and ``$c`` operands to the ``rd``, ``rs1``, and ``rs2`` fields respectively.
    913 
    914 Instruction Relation Mapping
    915 ----------------------------
    916 
    917 This TableGen feature is used to relate instructions with each other.  It is
    918 particularly useful when you have multiple instruction formats and need to
    919 switch between them after instruction selection.  This entire feature is driven
    920 by relation models which can be defined in ``XXXInstrInfo.td`` files
    921 according to the target-specific instruction set.  Relation models are defined
    922 using ``InstrMapping`` class as a base.  TableGen parses all the models
    923 and generates instruction relation maps using the specified information.
    924 Relation maps are emitted as tables in the ``XXXGenInstrInfo.inc`` file
    925 along with the functions to query them.  For the detailed information on how to
    926 use this feature, please refer to :doc:`HowToUseInstrMappings`.
    927 
    928 Implement a subclass of ``TargetInstrInfo``
    929 -------------------------------------------
    930 
    931 The final step is to hand code portions of ``XXXInstrInfo``, which implements
    932 the interface described in ``TargetInstrInfo.h`` (see :ref:`TargetInstrInfo`).
    933 These functions return ``0`` or a Boolean or they assert, unless overridden.
    934 Here's a list of functions that are overridden for the SPARC implementation in
    935 ``SparcInstrInfo.cpp``:
    936 
    937 * ``isLoadFromStackSlot`` --- If the specified machine instruction is a direct
    938   load from a stack slot, return the register number of the destination and the
    939   ``FrameIndex`` of the stack slot.
    940 
    941 * ``isStoreToStackSlot`` --- If the specified machine instruction is a direct
    942   store to a stack slot, return the register number of the destination and the
    943   ``FrameIndex`` of the stack slot.
    944 
    945 * ``copyPhysReg`` --- Copy values between a pair of physical registers.
    946 
    947 * ``storeRegToStackSlot`` --- Store a register value to a stack slot.
    948 
    949 * ``loadRegFromStackSlot`` --- Load a register value from a stack slot.
    950 
    951 * ``storeRegToAddr`` --- Store a register value to memory.
    952 
    953 * ``loadRegFromAddr`` --- Load a register value from memory.
    954 
    955 * ``foldMemoryOperand`` --- Attempt to combine instructions of any load or
    956   store instruction for the specified operand(s).
    957 
    958 Branch Folding and If Conversion
    959 --------------------------------
    960 
    961 Performance can be improved by combining instructions or by eliminating
    962 instructions that are never reached.  The ``AnalyzeBranch`` method in
    963 ``XXXInstrInfo`` may be implemented to examine conditional instructions and
    964 remove unnecessary instructions.  ``AnalyzeBranch`` looks at the end of a
    965 machine basic block (MBB) for opportunities for improvement, such as branch
    966 folding and if conversion.  The ``BranchFolder`` and ``IfConverter`` machine
    967 function passes (see the source files ``BranchFolding.cpp`` and
    968 ``IfConversion.cpp`` in the ``lib/CodeGen`` directory) call ``AnalyzeBranch``
    969 to improve the control flow graph that represents the instructions.
    970 
    971 Several implementations of ``AnalyzeBranch`` (for ARM, Alpha, and X86) can be
    972 examined as models for your own ``AnalyzeBranch`` implementation.  Since SPARC
    973 does not implement a useful ``AnalyzeBranch``, the ARM target implementation is
    974 shown below.
    975 
    976 ``AnalyzeBranch`` returns a Boolean value and takes four parameters:
    977 
    978 * ``MachineBasicBlock &MBB`` --- The incoming block to be examined.
    979 
    980 * ``MachineBasicBlock *&TBB`` --- A destination block that is returned.  For a
    981   conditional branch that evaluates to true, ``TBB`` is the destination.
    982 
    983 * ``MachineBasicBlock *&FBB`` --- For a conditional branch that evaluates to
    984   false, ``FBB`` is returned as the destination.
    985 
    986 * ``std::vector<MachineOperand> &Cond`` --- List of operands to evaluate a
    987   condition for a conditional branch.
    988 
    989 In the simplest case, if a block ends without a branch, then it falls through
    990 to the successor block.  No destination blocks are specified for either ``TBB``
    991 or ``FBB``, so both parameters return ``NULL``.  The start of the
    992 ``AnalyzeBranch`` (see code below for the ARM target) shows the function
    993 parameters and the code for the simplest case.
    994 
    995 .. code-block:: c++
    996 
    997   bool ARMInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
    998                                    MachineBasicBlock *&TBB,
    999                                    MachineBasicBlock *&FBB,
   1000                                    std::vector<MachineOperand> &Cond) const
   1001   {
   1002     MachineBasicBlock::iterator I = MBB.end();
   1003     if (I == MBB.begin() || !isUnpredicatedTerminator(--I))
   1004       return false;
   1005 
   1006 If a block ends with a single unconditional branch instruction, then
   1007 ``AnalyzeBranch`` (shown below) should return the destination of that branch in
   1008 the ``TBB`` parameter.
   1009 
   1010 .. code-block:: c++
   1011 
   1012     if (LastOpc == ARM::B || LastOpc == ARM::tB) {
   1013       TBB = LastInst->getOperand(0).getMBB();
   1014       return false;
   1015     }
   1016 
   1017 If a block ends with two unconditional branches, then the second branch is
   1018 never reached.  In that situation, as shown below, remove the last branch
   1019 instruction and return the penultimate branch in the ``TBB`` parameter.
   1020 
   1021 .. code-block:: c++
   1022 
   1023     if ((SecondLastOpc == ARM::B || SecondLastOpc == ARM::tB) &&
   1024         (LastOpc == ARM::B || LastOpc == ARM::tB)) {
   1025       TBB = SecondLastInst->getOperand(0).getMBB();
   1026       I = LastInst;
   1027       I->eraseFromParent();
   1028       return false;
   1029     }
   1030 
   1031 A block may end with a single conditional branch instruction that falls through
   1032 to successor block if the condition evaluates to false.  In that case,
   1033 ``AnalyzeBranch`` (shown below) should return the destination of that
   1034 conditional branch in the ``TBB`` parameter and a list of operands in the
   1035 ``Cond`` parameter to evaluate the condition.
   1036 
   1037 .. code-block:: c++
   1038 
   1039     if (LastOpc == ARM::Bcc || LastOpc == ARM::tBcc) {
   1040       // Block ends with fall-through condbranch.
   1041       TBB = LastInst->getOperand(0).getMBB();
   1042       Cond.push_back(LastInst->getOperand(1));
   1043       Cond.push_back(LastInst->getOperand(2));
   1044       return false;
   1045     }
   1046 
   1047 If a block ends with both a conditional branch and an ensuing unconditional
   1048 branch, then ``AnalyzeBranch`` (shown below) should return the conditional
   1049 branch destination (assuming it corresponds to a conditional evaluation of
   1050 "``true``") in the ``TBB`` parameter and the unconditional branch destination
   1051 in the ``FBB`` (corresponding to a conditional evaluation of "``false``").  A
   1052 list of operands to evaluate the condition should be returned in the ``Cond``
   1053 parameter.
   1054 
   1055 .. code-block:: c++
   1056 
   1057     unsigned SecondLastOpc = SecondLastInst->getOpcode();
   1058 
   1059     if ((SecondLastOpc == ARM::Bcc && LastOpc == ARM::B) ||
   1060         (SecondLastOpc == ARM::tBcc && LastOpc == ARM::tB)) {
   1061       TBB =  SecondLastInst->getOperand(0).getMBB();
   1062       Cond.push_back(SecondLastInst->getOperand(1));
   1063       Cond.push_back(SecondLastInst->getOperand(2));
   1064       FBB = LastInst->getOperand(0).getMBB();
   1065       return false;
   1066     }
   1067 
   1068 For the last two cases (ending with a single conditional branch or ending with
   1069 one conditional and one unconditional branch), the operands returned in the
   1070 ``Cond`` parameter can be passed to methods of other instructions to create new
   1071 branches or perform other operations.  An implementation of ``AnalyzeBranch``
   1072 requires the helper methods ``RemoveBranch`` and ``InsertBranch`` to manage
   1073 subsequent operations.
   1074 
   1075 ``AnalyzeBranch`` should return false indicating success in most circumstances.
   1076 ``AnalyzeBranch`` should only return true when the method is stumped about what
   1077 to do, for example, if a block has three terminating branches.
   1078 ``AnalyzeBranch`` may return true if it encounters a terminator it cannot
   1079 handle, such as an indirect branch.
   1080 
   1081 .. _instruction-selector:
   1082 
   1083 Instruction Selector
   1084 ====================
   1085 
   1086 LLVM uses a ``SelectionDAG`` to represent LLVM IR instructions, and nodes of
   1087 the ``SelectionDAG`` ideally represent native target instructions.  During code
   1088 generation, instruction selection passes are performed to convert non-native
   1089 DAG instructions into native target-specific instructions.  The pass described
   1090 in ``XXXISelDAGToDAG.cpp`` is used to match patterns and perform DAG-to-DAG
   1091 instruction selection.  Optionally, a pass may be defined (in
   1092 ``XXXBranchSelector.cpp``) to perform similar DAG-to-DAG operations for branch
   1093 instructions.  Later, the code in ``XXXISelLowering.cpp`` replaces or removes
   1094 operations and data types not supported natively (legalizes) in a
   1095 ``SelectionDAG``.
   1096 
   1097 TableGen generates code for instruction selection using the following target
   1098 description input files:
   1099 
   1100 * ``XXXInstrInfo.td`` --- Contains definitions of instructions in a
   1101   target-specific instruction set, generates ``XXXGenDAGISel.inc``, which is
   1102   included in ``XXXISelDAGToDAG.cpp``.
   1103 
   1104 * ``XXXCallingConv.td`` --- Contains the calling and return value conventions
   1105   for the target architecture, and it generates ``XXXGenCallingConv.inc``,
   1106   which is included in ``XXXISelLowering.cpp``.
   1107 
   1108 The implementation of an instruction selection pass must include a header that
   1109 declares the ``FunctionPass`` class or a subclass of ``FunctionPass``.  In
   1110 ``XXXTargetMachine.cpp``, a Pass Manager (PM) should add each instruction
   1111 selection pass into the queue of passes to run.
   1112 
   1113 The LLVM static compiler (``llc``) is an excellent tool for visualizing the
   1114 contents of DAGs.  To display the ``SelectionDAG`` before or after specific
   1115 processing phases, use the command line options for ``llc``, described at
   1116 :ref:`SelectionDAG-Process`.
   1117 
   1118 To describe instruction selector behavior, you should add patterns for lowering
   1119 LLVM code into a ``SelectionDAG`` as the last parameter of the instruction
   1120 definitions in ``XXXInstrInfo.td``.  For example, in ``SparcInstrInfo.td``,
   1121 this entry defines a register store operation, and the last parameter describes
   1122 a pattern with the store DAG operator.
   1123 
   1124 .. code-block:: llvm
   1125 
   1126   def STrr  : F3_1< 3, 0b000100, (outs), (ins MEMrr:$addr, IntRegs:$src),
   1127                    "st $src, [$addr]", [(store IntRegs:$src, ADDRrr:$addr)]>;
   1128 
   1129 ``ADDRrr`` is a memory mode that is also defined in ``SparcInstrInfo.td``:
   1130 
   1131 .. code-block:: llvm
   1132 
   1133   def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;
   1134 
   1135 The definition of ``ADDRrr`` refers to ``SelectADDRrr``, which is a function
   1136 defined in an implementation of the Instructor Selector (such as
   1137 ``SparcISelDAGToDAG.cpp``).
   1138 
   1139 In ``lib/Target/TargetSelectionDAG.td``, the DAG operator for store is defined
   1140 below:
   1141 
   1142 .. code-block:: llvm
   1143 
   1144   def store : PatFrag<(ops node:$val, node:$ptr),
   1145                       (st node:$val, node:$ptr), [{
   1146     if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N))
   1147       return !ST->isTruncatingStore() &&
   1148              ST->getAddressingMode() == ISD::UNINDEXED;
   1149     return false;
   1150   }]>;
   1151 
   1152 ``XXXInstrInfo.td`` also generates (in ``XXXGenDAGISel.inc``) the
   1153 ``SelectCode`` method that is used to call the appropriate processing method
   1154 for an instruction.  In this example, ``SelectCode`` calls ``Select_ISD_STORE``
   1155 for the ``ISD::STORE`` opcode.
   1156 
   1157 .. code-block:: c++
   1158 
   1159   SDNode *SelectCode(SDValue N) {
   1160     ...
   1161     MVT::ValueType NVT = N.getNode()->getValueType(0);
   1162     switch (N.getOpcode()) {
   1163     case ISD::STORE: {
   1164       switch (NVT) {
   1165       default:
   1166         return Select_ISD_STORE(N);
   1167         break;
   1168       }
   1169       break;
   1170     }
   1171     ...
   1172 
   1173 The pattern for ``STrr`` is matched, so elsewhere in ``XXXGenDAGISel.inc``,
   1174 code for ``STrr`` is created for ``Select_ISD_STORE``.  The ``Emit_22`` method
   1175 is also generated in ``XXXGenDAGISel.inc`` to complete the processing of this
   1176 instruction.
   1177 
   1178 .. code-block:: c++
   1179 
   1180   SDNode *Select_ISD_STORE(const SDValue &N) {
   1181     SDValue Chain = N.getOperand(0);
   1182     if (Predicate_store(N.getNode())) {
   1183       SDValue N1 = N.getOperand(1);
   1184       SDValue N2 = N.getOperand(2);
   1185       SDValue CPTmp0;
   1186       SDValue CPTmp1;
   1187 
   1188       // Pattern: (st:void IntRegs:i32:$src,
   1189       //           ADDRrr:i32:$addr)<<P:Predicate_store>>
   1190       // Emits: (STrr:void ADDRrr:i32:$addr, IntRegs:i32:$src)
   1191       // Pattern complexity = 13  cost = 1  size = 0
   1192       if (SelectADDRrr(N, N2, CPTmp0, CPTmp1) &&
   1193           N1.getNode()->getValueType(0) == MVT::i32 &&
   1194           N2.getNode()->getValueType(0) == MVT::i32) {
   1195         return Emit_22(N, SP::STrr, CPTmp0, CPTmp1);
   1196       }
   1197   ...
   1198 
   1199 The SelectionDAG Legalize Phase
   1200 -------------------------------
   1201 
   1202 The Legalize phase converts a DAG to use types and operations that are natively
   1203 supported by the target.  For natively unsupported types and operations, you
   1204 need to add code to the target-specific ``XXXTargetLowering`` implementation to
   1205 convert unsupported types and operations to supported ones.
   1206 
   1207 In the constructor for the ``XXXTargetLowering`` class, first use the
   1208 ``addRegisterClass`` method to specify which types are supported and which
   1209 register classes are associated with them.  The code for the register classes
   1210 are generated by TableGen from ``XXXRegisterInfo.td`` and placed in
   1211 ``XXXGenRegisterInfo.h.inc``.  For example, the implementation of the
   1212 constructor for the SparcTargetLowering class (in ``SparcISelLowering.cpp``)
   1213 starts with the following code:
   1214 
   1215 .. code-block:: c++
   1216 
   1217   addRegisterClass(MVT::i32, SP::IntRegsRegisterClass);
   1218   addRegisterClass(MVT::f32, SP::FPRegsRegisterClass);
   1219   addRegisterClass(MVT::f64, SP::DFPRegsRegisterClass);
   1220 
   1221 You should examine the node types in the ``ISD`` namespace
   1222 (``include/llvm/CodeGen/SelectionDAGNodes.h``) and determine which operations
   1223 the target natively supports.  For operations that do **not** have native
   1224 support, add a callback to the constructor for the ``XXXTargetLowering`` class,
   1225 so the instruction selection process knows what to do.  The ``TargetLowering``
   1226 class callback methods (declared in ``llvm/Target/TargetLowering.h``) are:
   1227 
   1228 * ``setOperationAction`` --- General operation.
   1229 * ``setLoadExtAction`` --- Load with extension.
   1230 * ``setTruncStoreAction`` --- Truncating store.
   1231 * ``setIndexedLoadAction`` --- Indexed load.
   1232 * ``setIndexedStoreAction`` --- Indexed store.
   1233 * ``setConvertAction`` --- Type conversion.
   1234 * ``setCondCodeAction`` --- Support for a given condition code.
   1235 
   1236 Note: on older releases, ``setLoadXAction`` is used instead of
   1237 ``setLoadExtAction``.  Also, on older releases, ``setCondCodeAction`` may not
   1238 be supported.  Examine your release to see what methods are specifically
   1239 supported.
   1240 
   1241 These callbacks are used to determine that an operation does or does not work
   1242 with a specified type (or types).  And in all cases, the third parameter is a
   1243 ``LegalAction`` type enum value: ``Promote``, ``Expand``, ``Custom``, or
   1244 ``Legal``.  ``SparcISelLowering.cpp`` contains examples of all four
   1245 ``LegalAction`` values.
   1246 
   1247 Promote
   1248 ^^^^^^^
   1249 
   1250 For an operation without native support for a given type, the specified type
   1251 may be promoted to a larger type that is supported.  For example, SPARC does
   1252 not support a sign-extending load for Boolean values (``i1`` type), so in
   1253 ``SparcISelLowering.cpp`` the third parameter below, ``Promote``, changes
   1254 ``i1`` type values to a large type before loading.
   1255 
   1256 .. code-block:: c++
   1257 
   1258   setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
   1259 
   1260 Expand
   1261 ^^^^^^
   1262 
   1263 For a type without native support, a value may need to be broken down further,
   1264 rather than promoted.  For an operation without native support, a combination
   1265 of other operations may be used to similar effect.  In SPARC, the
   1266 floating-point sine and cosine trig operations are supported by expansion to
   1267 other operations, as indicated by the third parameter, ``Expand``, to
   1268 ``setOperationAction``:
   1269 
   1270 .. code-block:: c++
   1271 
   1272   setOperationAction(ISD::FSIN, MVT::f32, Expand);
   1273   setOperationAction(ISD::FCOS, MVT::f32, Expand);
   1274 
   1275 Custom
   1276 ^^^^^^
   1277 
   1278 For some operations, simple type promotion or operation expansion may be
   1279 insufficient.  In some cases, a special intrinsic function must be implemented.
   1280 
   1281 For example, a constant value may require special treatment, or an operation
   1282 may require spilling and restoring registers in the stack and working with
   1283 register allocators.
   1284 
   1285 As seen in ``SparcISelLowering.cpp`` code below, to perform a type conversion
   1286 from a floating point value to a signed integer, first the
   1287 ``setOperationAction`` should be called with ``Custom`` as the third parameter:
   1288 
   1289 .. code-block:: c++
   1290 
   1291   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
   1292 
   1293 In the ``LowerOperation`` method, for each ``Custom`` operation, a case
   1294 statement should be added to indicate what function to call.  In the following
   1295 code, an ``FP_TO_SINT`` opcode will call the ``LowerFP_TO_SINT`` method:
   1296 
   1297 .. code-block:: c++
   1298 
   1299   SDValue SparcTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
   1300     switch (Op.getOpcode()) {
   1301     case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
   1302     ...
   1303     }
   1304   }
   1305 
   1306 Finally, the ``LowerFP_TO_SINT`` method is implemented, using an FP register to
   1307 convert the floating-point value to an integer.
   1308 
   1309 .. code-block:: c++
   1310 
   1311   static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
   1312     assert(Op.getValueType() == MVT::i32);
   1313     Op = DAG.getNode(SPISD::FTOI, MVT::f32, Op.getOperand(0));
   1314     return DAG.getNode(ISD::BITCAST, MVT::i32, Op);
   1315   }
   1316 
   1317 Legal
   1318 ^^^^^
   1319 
   1320 The ``Legal`` ``LegalizeAction`` enum value simply indicates that an operation
   1321 **is** natively supported.  ``Legal`` represents the default condition, so it
   1322 is rarely used.  In ``SparcISelLowering.cpp``, the action for ``CTPOP`` (an
   1323 operation to count the bits set in an integer) is natively supported only for
   1324 SPARC v9.  The following code enables the ``Expand`` conversion technique for
   1325 non-v9 SPARC implementations.
   1326 
   1327 .. code-block:: c++
   1328 
   1329   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
   1330   ...
   1331   if (TM.getSubtarget<SparcSubtarget>().isV9())
   1332     setOperationAction(ISD::CTPOP, MVT::i32, Legal);
   1333 
   1334 Calling Conventions
   1335 -------------------
   1336 
   1337 To support target-specific calling conventions, ``XXXGenCallingConv.td`` uses
   1338 interfaces (such as ``CCIfType`` and ``CCAssignToReg``) that are defined in
   1339 ``lib/Target/TargetCallingConv.td``.  TableGen can take the target descriptor
   1340 file ``XXXGenCallingConv.td`` and generate the header file
   1341 ``XXXGenCallingConv.inc``, which is typically included in
   1342 ``XXXISelLowering.cpp``.  You can use the interfaces in
   1343 ``TargetCallingConv.td`` to specify:
   1344 
   1345 * The order of parameter allocation.
   1346 
   1347 * Where parameters and return values are placed (that is, on the stack or in
   1348   registers).
   1349 
   1350 * Which registers may be used.
   1351 
   1352 * Whether the caller or callee unwinds the stack.
   1353 
   1354 The following example demonstrates the use of the ``CCIfType`` and
   1355 ``CCAssignToReg`` interfaces.  If the ``CCIfType`` predicate is true (that is,
   1356 if the current argument is of type ``f32`` or ``f64``), then the action is
   1357 performed.  In this case, the ``CCAssignToReg`` action assigns the argument
   1358 value to the first available register: either ``R0`` or ``R1``.
   1359 
   1360 .. code-block:: llvm
   1361 
   1362   CCIfType<[f32,f64], CCAssignToReg<[R0, R1]>>
   1363 
   1364 ``SparcCallingConv.td`` contains definitions for a target-specific return-value
   1365 calling convention (``RetCC_Sparc32``) and a basic 32-bit C calling convention
   1366 (``CC_Sparc32``).  The definition of ``RetCC_Sparc32`` (shown below) indicates
   1367 which registers are used for specified scalar return types.  A single-precision
   1368 float is returned to register ``F0``, and a double-precision float goes to
   1369 register ``D0``.  A 32-bit integer is returned in register ``I0`` or ``I1``.
   1370 
   1371 .. code-block:: llvm
   1372 
   1373   def RetCC_Sparc32 : CallingConv<[
   1374     CCIfType<[i32], CCAssignToReg<[I0, I1]>>,
   1375     CCIfType<[f32], CCAssignToReg<[F0]>>,
   1376     CCIfType<[f64], CCAssignToReg<[D0]>>
   1377   ]>;
   1378 
   1379 The definition of ``CC_Sparc32`` in ``SparcCallingConv.td`` introduces
   1380 ``CCAssignToStack``, which assigns the value to a stack slot with the specified
   1381 size and alignment.  In the example below, the first parameter, 4, indicates
   1382 the size of the slot, and the second parameter, also 4, indicates the stack
   1383 alignment along 4-byte units.  (Special cases: if size is zero, then the ABI
   1384 size is used; if alignment is zero, then the ABI alignment is used.)
   1385 
   1386 .. code-block:: llvm
   1387 
   1388   def CC_Sparc32 : CallingConv<[
   1389     // All arguments get passed in integer registers if there is space.
   1390     CCIfType<[i32, f32, f64], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>,
   1391     CCAssignToStack<4, 4>
   1392   ]>;
   1393 
   1394 ``CCDelegateTo`` is another commonly used interface, which tries to find a
   1395 specified sub-calling convention, and, if a match is found, it is invoked.  In
   1396 the following example (in ``X86CallingConv.td``), the definition of
   1397 ``RetCC_X86_32_C`` ends with ``CCDelegateTo``.  After the current value is
   1398 assigned to the register ``ST0`` or ``ST1``, the ``RetCC_X86Common`` is
   1399 invoked.
   1400 
   1401 .. code-block:: llvm
   1402 
   1403   def RetCC_X86_32_C : CallingConv<[
   1404     CCIfType<[f32], CCAssignToReg<[ST0, ST1]>>,
   1405     CCIfType<[f64], CCAssignToReg<[ST0, ST1]>>,
   1406     CCDelegateTo<RetCC_X86Common>
   1407   ]>;
   1408 
   1409 ``CCIfCC`` is an interface that attempts to match the given name to the current
   1410 calling convention.  If the name identifies the current calling convention,
   1411 then a specified action is invoked.  In the following example (in
   1412 ``X86CallingConv.td``), if the ``Fast`` calling convention is in use, then
   1413 ``RetCC_X86_32_Fast`` is invoked.  If the ``SSECall`` calling convention is in
   1414 use, then ``RetCC_X86_32_SSE`` is invoked.
   1415 
   1416 .. code-block:: llvm
   1417 
   1418   def RetCC_X86_32 : CallingConv<[
   1419     CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
   1420     CCIfCC<"CallingConv::X86_SSECall", CCDelegateTo<RetCC_X86_32_SSE>>,
   1421     CCDelegateTo<RetCC_X86_32_C>
   1422   ]>;
   1423 
   1424 Other calling convention interfaces include:
   1425 
   1426 * ``CCIf <predicate, action>`` --- If the predicate matches, apply the action.
   1427 
   1428 * ``CCIfInReg <action>`` --- If the argument is marked with the "``inreg``"
   1429   attribute, then apply the action.
   1430 
   1431 * ``CCIfNest <action>`` --- If the argument is marked with the "``nest``"
   1432   attribute, then apply the action.
   1433 
   1434 * ``CCIfNotVarArg <action>`` --- If the current function does not take a
   1435   variable number of arguments, apply the action.
   1436 
   1437 * ``CCAssignToRegWithShadow <registerList, shadowList>`` --- similar to
   1438   ``CCAssignToReg``, but with a shadow list of registers.
   1439 
   1440 * ``CCPassByVal <size, align>`` --- Assign value to a stack slot with the
   1441   minimum specified size and alignment.
   1442 
   1443 * ``CCPromoteToType <type>`` --- Promote the current value to the specified
   1444   type.
   1445 
   1446 * ``CallingConv <[actions]>`` --- Define each calling convention that is
   1447   supported.
   1448 
   1449 Assembly Printer
   1450 ================
   1451 
   1452 During the code emission stage, the code generator may utilize an LLVM pass to
   1453 produce assembly output.  To do this, you want to implement the code for a
   1454 printer that converts LLVM IR to a GAS-format assembly language for your target
   1455 machine, using the following steps:
   1456 
   1457 * Define all the assembly strings for your target, adding them to the
   1458   instructions defined in the ``XXXInstrInfo.td`` file.  (See
   1459   :ref:`instruction-set`.)  TableGen will produce an output file
   1460   (``XXXGenAsmWriter.inc``) with an implementation of the ``printInstruction``
   1461   method for the ``XXXAsmPrinter`` class.
   1462 
   1463 * Write ``XXXTargetAsmInfo.h``, which contains the bare-bones declaration of
   1464   the ``XXXTargetAsmInfo`` class (a subclass of ``TargetAsmInfo``).
   1465 
   1466 * Write ``XXXTargetAsmInfo.cpp``, which contains target-specific values for
   1467   ``TargetAsmInfo`` properties and sometimes new implementations for methods.
   1468 
   1469 * Write ``XXXAsmPrinter.cpp``, which implements the ``AsmPrinter`` class that
   1470   performs the LLVM-to-assembly conversion.
   1471 
   1472 The code in ``XXXTargetAsmInfo.h`` is usually a trivial declaration of the
   1473 ``XXXTargetAsmInfo`` class for use in ``XXXTargetAsmInfo.cpp``.  Similarly,
   1474 ``XXXTargetAsmInfo.cpp`` usually has a few declarations of ``XXXTargetAsmInfo``
   1475 replacement values that override the default values in ``TargetAsmInfo.cpp``.
   1476 For example in ``SparcTargetAsmInfo.cpp``:
   1477 
   1478 .. code-block:: c++
   1479 
   1480   SparcTargetAsmInfo::SparcTargetAsmInfo(const SparcTargetMachine &TM) {
   1481     Data16bitsDirective = "\t.half\t";
   1482     Data32bitsDirective = "\t.word\t";
   1483     Data64bitsDirective = 0;  // .xword is only supported by V9.
   1484     ZeroDirective = "\t.skip\t";
   1485     CommentString = "!";
   1486     ConstantPoolSection = "\t.section \".rodata\",#alloc\n";
   1487   }
   1488 
   1489 The X86 assembly printer implementation (``X86TargetAsmInfo``) is an example
   1490 where the target specific ``TargetAsmInfo`` class uses an overridden methods:
   1491 ``ExpandInlineAsm``.
   1492 
   1493 A target-specific implementation of ``AsmPrinter`` is written in
   1494 ``XXXAsmPrinter.cpp``, which implements the ``AsmPrinter`` class that converts
   1495 the LLVM to printable assembly.  The implementation must include the following
   1496 headers that have declarations for the ``AsmPrinter`` and
   1497 ``MachineFunctionPass`` classes.  The ``MachineFunctionPass`` is a subclass of
   1498 ``FunctionPass``.
   1499 
   1500 .. code-block:: c++
   1501 
   1502   #include "llvm/CodeGen/AsmPrinter.h"
   1503   #include "llvm/CodeGen/MachineFunctionPass.h"
   1504 
   1505 As a ``FunctionPass``, ``AsmPrinter`` first calls ``doInitialization`` to set
   1506 up the ``AsmPrinter``.  In ``SparcAsmPrinter``, a ``Mangler`` object is
   1507 instantiated to process variable names.
   1508 
   1509 In ``XXXAsmPrinter.cpp``, the ``runOnMachineFunction`` method (declared in
   1510 ``MachineFunctionPass``) must be implemented for ``XXXAsmPrinter``.  In
   1511 ``MachineFunctionPass``, the ``runOnFunction`` method invokes
   1512 ``runOnMachineFunction``.  Target-specific implementations of
   1513 ``runOnMachineFunction`` differ, but generally do the following to process each
   1514 machine function:
   1515 
   1516 * Call ``SetupMachineFunction`` to perform initialization.
   1517 
   1518 * Call ``EmitConstantPool`` to print out (to the output stream) constants which
   1519   have been spilled to memory.
   1520 
   1521 * Call ``EmitJumpTableInfo`` to print out jump tables used by the current
   1522   function.
   1523 
   1524 * Print out the label for the current function.
   1525 
   1526 * Print out the code for the function, including basic block labels and the
   1527   assembly for the instruction (using ``printInstruction``)
   1528 
   1529 The ``XXXAsmPrinter`` implementation must also include the code generated by
   1530 TableGen that is output in the ``XXXGenAsmWriter.inc`` file.  The code in
   1531 ``XXXGenAsmWriter.inc`` contains an implementation of the ``printInstruction``
   1532 method that may call these methods:
   1533 
   1534 * ``printOperand``
   1535 * ``printMemOperand``
   1536 * ``printCCOperand`` (for conditional statements)
   1537 * ``printDataDirective``
   1538 * ``printDeclare``
   1539 * ``printImplicitDef``
   1540 * ``printInlineAsm``
   1541 
   1542 The implementations of ``printDeclare``, ``printImplicitDef``,
   1543 ``printInlineAsm``, and ``printLabel`` in ``AsmPrinter.cpp`` are generally
   1544 adequate for printing assembly and do not need to be overridden.
   1545 
   1546 The ``printOperand`` method is implemented with a long ``switch``/``case``
   1547 statement for the type of operand: register, immediate, basic block, external
   1548 symbol, global address, constant pool index, or jump table index.  For an
   1549 instruction with a memory address operand, the ``printMemOperand`` method
   1550 should be implemented to generate the proper output.  Similarly,
   1551 ``printCCOperand`` should be used to print a conditional operand.
   1552 
   1553 ``doFinalization`` should be overridden in ``XXXAsmPrinter``, and it should be
   1554 called to shut down the assembly printer.  During ``doFinalization``, global
   1555 variables and constants are printed to output.
   1556 
   1557 Subtarget Support
   1558 =================
   1559 
   1560 Subtarget support is used to inform the code generation process of instruction
   1561 set variations for a given chip set.  For example, the LLVM SPARC
   1562 implementation provided covers three major versions of the SPARC microprocessor
   1563 architecture: Version 8 (V8, which is a 32-bit architecture), Version 9 (V9, a
   1564 64-bit architecture), and the UltraSPARC architecture.  V8 has 16
   1565 double-precision floating-point registers that are also usable as either 32
   1566 single-precision or 8 quad-precision registers.  V8 is also purely big-endian.
   1567 V9 has 32 double-precision floating-point registers that are also usable as 16
   1568 quad-precision registers, but cannot be used as single-precision registers.
   1569 The UltraSPARC architecture combines V9 with UltraSPARC Visual Instruction Set
   1570 extensions.
   1571 
   1572 If subtarget support is needed, you should implement a target-specific
   1573 ``XXXSubtarget`` class for your architecture.  This class should process the
   1574 command-line options ``-mcpu=`` and ``-mattr=``.
   1575 
   1576 TableGen uses definitions in the ``Target.td`` and ``Sparc.td`` files to
   1577 generate code in ``SparcGenSubtarget.inc``.  In ``Target.td``, shown below, the
   1578 ``SubtargetFeature`` interface is defined.  The first 4 string parameters of
   1579 the ``SubtargetFeature`` interface are a feature name, an attribute set by the
   1580 feature, the value of the attribute, and a description of the feature.  (The
   1581 fifth parameter is a list of features whose presence is implied, and its
   1582 default value is an empty array.)
   1583 
   1584 .. code-block:: llvm
   1585 
   1586   class SubtargetFeature<string n, string a, string v, string d,
   1587                          list<SubtargetFeature> i = []> {
   1588     string Name = n;
   1589     string Attribute = a;
   1590     string Value = v;
   1591     string Desc = d;
   1592     list<SubtargetFeature> Implies = i;
   1593   }
   1594 
   1595 In the ``Sparc.td`` file, the ``SubtargetFeature`` is used to define the
   1596 following features.
   1597 
   1598 .. code-block:: llvm
   1599 
   1600   def FeatureV9 : SubtargetFeature<"v9", "IsV9", "true",
   1601                        "Enable SPARC-V9 instructions">;
   1602   def FeatureV8Deprecated : SubtargetFeature<"deprecated-v8",
   1603                        "V8DeprecatedInsts", "true",
   1604                        "Enable deprecated V8 instructions in V9 mode">;
   1605   def FeatureVIS : SubtargetFeature<"vis", "IsVIS", "true",
   1606                        "Enable UltraSPARC Visual Instruction Set extensions">;
   1607 
   1608 Elsewhere in ``Sparc.td``, the ``Proc`` class is defined and then is used to
   1609 define particular SPARC processor subtypes that may have the previously
   1610 described features.
   1611 
   1612 .. code-block:: llvm
   1613 
   1614   class Proc<string Name, list<SubtargetFeature> Features>
   1615     : Processor<Name, NoItineraries, Features>;
   1616 
   1617   def : Proc<"generic",         []>;
   1618   def : Proc<"v8",              []>;
   1619   def : Proc<"supersparc",      []>;
   1620   def : Proc<"sparclite",       []>;
   1621   def : Proc<"f934",            []>;
   1622   def : Proc<"hypersparc",      []>;
   1623   def : Proc<"sparclite86x",    []>;
   1624   def : Proc<"sparclet",        []>;
   1625   def : Proc<"tsc701",          []>;
   1626   def : Proc<"v9",              [FeatureV9]>;
   1627   def : Proc<"ultrasparc",      [FeatureV9, FeatureV8Deprecated]>;
   1628   def : Proc<"ultrasparc3",     [FeatureV9, FeatureV8Deprecated]>;
   1629   def : Proc<"ultrasparc3-vis", [FeatureV9, FeatureV8Deprecated, FeatureVIS]>;
   1630 
   1631 From ``Target.td`` and ``Sparc.td`` files, the resulting
   1632 ``SparcGenSubtarget.inc`` specifies enum values to identify the features,
   1633 arrays of constants to represent the CPU features and CPU subtypes, and the
   1634 ``ParseSubtargetFeatures`` method that parses the features string that sets
   1635 specified subtarget options.  The generated ``SparcGenSubtarget.inc`` file
   1636 should be included in the ``SparcSubtarget.cpp``.  The target-specific
   1637 implementation of the ``XXXSubtarget`` method should follow this pseudocode:
   1638 
   1639 .. code-block:: c++
   1640 
   1641   XXXSubtarget::XXXSubtarget(const Module &M, const std::string &FS) {
   1642     // Set the default features
   1643     // Determine default and user specified characteristics of the CPU
   1644     // Call ParseSubtargetFeatures(FS, CPU) to parse the features string
   1645     // Perform any additional operations
   1646   }
   1647 
   1648 JIT Support
   1649 ===========
   1650 
   1651 The implementation of a target machine optionally includes a Just-In-Time (JIT)
   1652 code generator that emits machine code and auxiliary structures as binary
   1653 output that can be written directly to memory.  To do this, implement JIT code
   1654 generation by performing the following steps:
   1655 
   1656 * Write an ``XXXCodeEmitter.cpp`` file that contains a machine function pass
   1657   that transforms target-machine instructions into relocatable machine
   1658   code.
   1659 
   1660 * Write an ``XXXJITInfo.cpp`` file that implements the JIT interfaces for
   1661   target-specific code-generation activities, such as emitting machine code and
   1662   stubs.
   1663 
   1664 * Modify ``XXXTargetMachine`` so that it provides a ``TargetJITInfo`` object
   1665   through its ``getJITInfo`` method.
   1666 
   1667 There are several different approaches to writing the JIT support code.  For
   1668 instance, TableGen and target descriptor files may be used for creating a JIT
   1669 code generator, but are not mandatory.  For the Alpha and PowerPC target
   1670 machines, TableGen is used to generate ``XXXGenCodeEmitter.inc``, which
   1671 contains the binary coding of machine instructions and the
   1672 ``getBinaryCodeForInstr`` method to access those codes.  Other JIT
   1673 implementations do not.
   1674 
   1675 Both ``XXXJITInfo.cpp`` and ``XXXCodeEmitter.cpp`` must include the
   1676 ``llvm/CodeGen/MachineCodeEmitter.h`` header file that defines the
   1677 ``MachineCodeEmitter`` class containing code for several callback functions
   1678 that write data (in bytes, words, strings, etc.) to the output stream.
   1679 
   1680 Machine Code Emitter
   1681 --------------------
   1682 
   1683 In ``XXXCodeEmitter.cpp``, a target-specific of the ``Emitter`` class is
   1684 implemented as a function pass (subclass of ``MachineFunctionPass``).  The
   1685 target-specific implementation of ``runOnMachineFunction`` (invoked by
   1686 ``runOnFunction`` in ``MachineFunctionPass``) iterates through the
   1687 ``MachineBasicBlock`` calls ``emitInstruction`` to process each instruction and
   1688 emit binary code.  ``emitInstruction`` is largely implemented with case
   1689 statements on the instruction types defined in ``XXXInstrInfo.h``.  For
   1690 example, in ``X86CodeEmitter.cpp``, the ``emitInstruction`` method is built
   1691 around the following ``switch``/``case`` statements:
   1692 
   1693 .. code-block:: c++
   1694 
   1695   switch (Desc->TSFlags & X86::FormMask) {
   1696   case X86II::Pseudo:  // for not yet implemented instructions
   1697      ...               // or pseudo-instructions
   1698      break;
   1699   case X86II::RawFrm:  // for instructions with a fixed opcode value
   1700      ...
   1701      break;
   1702   case X86II::AddRegFrm: // for instructions that have one register operand
   1703      ...                 // added to their opcode
   1704      break;
   1705   case X86II::MRMDestReg:// for instructions that use the Mod/RM byte
   1706      ...                 // to specify a destination (register)
   1707      break;
   1708   case X86II::MRMDestMem:// for instructions that use the Mod/RM byte
   1709      ...                 // to specify a destination (memory)
   1710      break;
   1711   case X86II::MRMSrcReg: // for instructions that use the Mod/RM byte
   1712      ...                 // to specify a source (register)
   1713      break;
   1714   case X86II::MRMSrcMem: // for instructions that use the Mod/RM byte
   1715      ...                 // to specify a source (memory)
   1716      break;
   1717   case X86II::MRM0r: case X86II::MRM1r:  // for instructions that operate on
   1718   case X86II::MRM2r: case X86II::MRM3r:  // a REGISTER r/m operand and
   1719   case X86II::MRM4r: case X86II::MRM5r:  // use the Mod/RM byte and a field
   1720   case X86II::MRM6r: case X86II::MRM7r:  // to hold extended opcode data
   1721      ...
   1722      break;
   1723   case X86II::MRM0m: case X86II::MRM1m:  // for instructions that operate on
   1724   case X86II::MRM2m: case X86II::MRM3m:  // a MEMORY r/m operand and
   1725   case X86II::MRM4m: case X86II::MRM5m:  // use the Mod/RM byte and a field
   1726   case X86II::MRM6m: case X86II::MRM7m:  // to hold extended opcode data
   1727      ...
   1728      break;
   1729   case X86II::MRMInitReg: // for instructions whose source and
   1730      ...                  // destination are the same register
   1731      break;
   1732   }
   1733 
   1734 The implementations of these case statements often first emit the opcode and
   1735 then get the operand(s).  Then depending upon the operand, helper methods may
   1736 be called to process the operand(s).  For example, in ``X86CodeEmitter.cpp``,
   1737 for the ``X86II::AddRegFrm`` case, the first data emitted (by ``emitByte``) is
   1738 the opcode added to the register operand.  Then an object representing the
   1739 machine operand, ``MO1``, is extracted.  The helper methods such as
   1740 ``isImmediate``, ``isGlobalAddress``, ``isExternalSymbol``,
   1741 ``isConstantPoolIndex``, and ``isJumpTableIndex`` determine the operand type.
   1742 (``X86CodeEmitter.cpp`` also has private methods such as ``emitConstant``,
   1743 ``emitGlobalAddress``, ``emitExternalSymbolAddress``, ``emitConstPoolAddress``,
   1744 and ``emitJumpTableAddress`` that emit the data into the output stream.)
   1745 
   1746 .. code-block:: c++
   1747 
   1748   case X86II::AddRegFrm:
   1749     MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg()));
   1750 
   1751     if (CurOp != NumOps) {
   1752       const MachineOperand &MO1 = MI.getOperand(CurOp++);
   1753       unsigned Size = X86InstrInfo::sizeOfImm(Desc);
   1754       if (MO1.isImmediate())
   1755         emitConstant(MO1.getImm(), Size);
   1756       else {
   1757         unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
   1758           : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
   1759         if (Opcode == X86::MOV64ri)
   1760           rt = X86::reloc_absolute_dword;  // FIXME: add X86II flag?
   1761         if (MO1.isGlobalAddress()) {
   1762           bool NeedStub = isa<Function>(MO1.getGlobal());
   1763           bool isLazy = gvNeedsLazyPtr(MO1.getGlobal());
   1764           emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
   1765                             NeedStub, isLazy);
   1766         } else if (MO1.isExternalSymbol())
   1767           emitExternalSymbolAddress(MO1.getSymbolName(), rt);
   1768         else if (MO1.isConstantPoolIndex())
   1769           emitConstPoolAddress(MO1.getIndex(), rt);
   1770         else if (MO1.isJumpTableIndex())
   1771           emitJumpTableAddress(MO1.getIndex(), rt);
   1772       }
   1773     }
   1774     break;
   1775 
   1776 In the previous example, ``XXXCodeEmitter.cpp`` uses the variable ``rt``, which
   1777 is a ``RelocationType`` enum that may be used to relocate addresses (for
   1778 example, a global address with a PIC base offset).  The ``RelocationType`` enum
   1779 for that target is defined in the short target-specific ``XXXRelocations.h``
   1780 file.  The ``RelocationType`` is used by the ``relocate`` method defined in
   1781 ``XXXJITInfo.cpp`` to rewrite addresses for referenced global symbols.
   1782 
   1783 For example, ``X86Relocations.h`` specifies the following relocation types for
   1784 the X86 addresses.  In all four cases, the relocated value is added to the
   1785 value already in memory.  For ``reloc_pcrel_word`` and ``reloc_picrel_word``,
   1786 there is an additional initial adjustment.
   1787 
   1788 .. code-block:: c++
   1789 
   1790   enum RelocationType {
   1791     reloc_pcrel_word = 0,    // add reloc value after adjusting for the PC loc
   1792     reloc_picrel_word = 1,   // add reloc value after adjusting for the PIC base
   1793     reloc_absolute_word = 2, // absolute relocation; no additional adjustment
   1794     reloc_absolute_dword = 3 // absolute relocation; no additional adjustment
   1795   };
   1796 
   1797 Target JIT Info
   1798 ---------------
   1799 
   1800 ``XXXJITInfo.cpp`` implements the JIT interfaces for target-specific
   1801 code-generation activities, such as emitting machine code and stubs.  At
   1802 minimum, a target-specific version of ``XXXJITInfo`` implements the following:
   1803 
   1804 * ``getLazyResolverFunction`` --- Initializes the JIT, gives the target a
   1805   function that is used for compilation.
   1806 
   1807 * ``emitFunctionStub`` --- Returns a native function with a specified address
   1808   for a callback function.
   1809 
   1810 * ``relocate`` --- Changes the addresses of referenced globals, based on
   1811   relocation types.
   1812 
   1813 * Callback function that are wrappers to a function stub that is used when the
   1814   real target is not initially known.
   1815 
   1816 ``getLazyResolverFunction`` is generally trivial to implement.  It makes the
   1817 incoming parameter as the global ``JITCompilerFunction`` and returns the
   1818 callback function that will be used a function wrapper.  For the Alpha target
   1819 (in ``AlphaJITInfo.cpp``), the ``getLazyResolverFunction`` implementation is
   1820 simply:
   1821 
   1822 .. code-block:: c++
   1823 
   1824   TargetJITInfo::LazyResolverFn AlphaJITInfo::getLazyResolverFunction(
   1825                                               JITCompilerFn F) {
   1826     JITCompilerFunction = F;
   1827     return AlphaCompilationCallback;
   1828   }
   1829 
   1830 For the X86 target, the ``getLazyResolverFunction`` implementation is a little
   1831 more complicated, because it returns a different callback function for
   1832 processors with SSE instructions and XMM registers.
   1833 
   1834 The callback function initially saves and later restores the callee register
   1835 values, incoming arguments, and frame and return address.  The callback
   1836 function needs low-level access to the registers or stack, so it is typically
   1837 implemented with assembler.
   1838 
   1839