Home | History | Annotate | Download | only in AArch64
      1 //===----- AArch64InstrInfo.td - AArch64 Instruction Info ----*- tablegen -*-=//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes the AArch64 scalar instructions in TableGen format.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 include "AArch64InstrFormats.td"
     15 
     16 //===----------------------------------------------------------------------===//
     17 // Target-specific ISD nodes and profiles
     18 //===----------------------------------------------------------------------===//
     19 
     20 def SDT_A64ret : SDTypeProfile<0, 0, []>;
     21 def A64ret : SDNode<"AArch64ISD::Ret", SDT_A64ret, [SDNPHasChain,
     22                                                     SDNPOptInGlue,
     23                                                     SDNPVariadic]>;
     24 
     25 // (ins NZCV, Condition, Dest)
     26 def SDT_A64br_cc : SDTypeProfile<0, 3, [SDTCisVT<0, i32>]>;
     27 def A64br_cc : SDNode<"AArch64ISD::BR_CC", SDT_A64br_cc, [SDNPHasChain]>;
     28 
     29 // (outs Result), (ins NZCV, IfTrue, IfFalse, Condition)
     30 def SDT_A64select_cc : SDTypeProfile<1, 4, [SDTCisVT<1, i32>,
     31                                             SDTCisSameAs<0, 2>,
     32                                             SDTCisSameAs<2, 3>]>;
     33 def A64select_cc : SDNode<"AArch64ISD::SELECT_CC", SDT_A64select_cc>;
     34 
     35 // (outs NZCV), (ins LHS, RHS, Condition)
     36 def SDT_A64setcc : SDTypeProfile<1, 3, [SDTCisVT<0, i32>,
     37                                         SDTCisSameAs<1, 2>]>;
     38 def A64setcc : SDNode<"AArch64ISD::SETCC", SDT_A64setcc>;
     39 
     40 
     41 // (outs GPR64), (ins)
     42 def A64threadpointer : SDNode<"AArch64ISD::THREAD_POINTER", SDTPtrLeaf>;
     43 
     44 // A64 compares don't care about the cond really (they set all flags) so a
     45 // simple binary operator is useful.
     46 def A64cmp : PatFrag<(ops node:$lhs, node:$rhs),
     47                      (A64setcc node:$lhs, node:$rhs, cond)>;
     48 
     49 
     50 // When matching a notional (CMP op1, (sub 0, op2)), we'd like to use a CMN
     51 // instruction on the grounds that "op1 - (-op2) == op1 + op2". However, the C
     52 // and V flags can be set differently by this operation. It comes down to
     53 // whether "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are
     54 // then everything is fine. If not then the optimization is wrong. Thus general
     55 // comparisons are only valid if op2 != 0.
     56 
     57 // So, finally, the only LLVM-native comparisons that don't mention C and V are
     58 // SETEQ and SETNE. They're the only ones we can safely use CMN for in the
     59 // absence of information about op2.
     60 def equality_cond : PatLeaf<(cond), [{
     61   return N->get() == ISD::SETEQ || N->get() == ISD::SETNE;
     62 }]>;
     63 
     64 def A64cmn : PatFrag<(ops node:$lhs, node:$rhs),
     65                      (A64setcc node:$lhs, (sub 0, node:$rhs), equality_cond)>;
     66 
     67 // There are two layers of indirection here, driven by the following
     68 // considerations.
     69 //     + TableGen does not know CodeModel or Reloc so that decision should be
     70 //       made for a variable/address at ISelLowering.
     71 //     + The output of ISelLowering should be selectable (hence the Wrapper,
     72 //       rather than a bare target opcode)
     73 def SDTAArch64Wrapper : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>,
     74                                              SDTCisSameAs<1, 2>,
     75                                              SDTCisVT<3, i32>,
     76                                              SDTCisPtrTy<0>]>;
     77 
     78 def A64WrapperSmall : SDNode<"AArch64ISD::WrapperSmall", SDTAArch64Wrapper>;
     79 
     80 
     81 def SDTAArch64GOTLoad : SDTypeProfile<1, 1, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>;
     82 def A64GOTLoad : SDNode<"AArch64ISD::GOTLoad", SDTAArch64GOTLoad,
     83                         [SDNPHasChain]>;
     84 
     85 
     86 // (A64BFI LHS, RHS, LSB, Width)
     87 def SDTA64BFI : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
     88                                      SDTCisSameAs<1, 2>,
     89                                      SDTCisVT<3, i64>,
     90                                      SDTCisVT<4, i64>]>;
     91 
     92 def A64Bfi : SDNode<"AArch64ISD::BFI", SDTA64BFI>;
     93 
     94 // (A64EXTR HiReg, LoReg, LSB)
     95 def SDTA64EXTR : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>,
     96                                       SDTCisVT<3, i64>]>;
     97 def A64Extr : SDNode<"AArch64ISD::EXTR", SDTA64EXTR>;
     98 
     99 // (A64[SU]BFX Field, ImmR, ImmS).
    100 //
    101 // Note that ImmR and ImmS are already encoded for the actual instructions. The
    102 // more natural LSB and Width mix together to form ImmR and ImmS, something
    103 // which TableGen can't handle.
    104 def SDTA64BFX : SDTypeProfile<1, 3, [SDTCisVT<2, i64>, SDTCisVT<3, i64>]>;
    105 def A64Sbfx : SDNode<"AArch64ISD::SBFX", SDTA64BFX>;
    106 
    107 def A64Ubfx : SDNode<"AArch64ISD::UBFX", SDTA64BFX>;
    108 
    109 //===----------------------------------------------------------------------===//
    110 // Call sequence pseudo-instructions
    111 //===----------------------------------------------------------------------===//
    112 
    113 
    114 def SDT_AArch64Call : SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>;
    115 def AArch64Call : SDNode<"AArch64ISD::Call", SDT_AArch64Call,
    116                      [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>;
    117 
    118 def AArch64tcret : SDNode<"AArch64ISD::TC_RETURN", SDT_AArch64Call,
    119                           [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
    120 
    121 // The TLSDESCCALL node is a variant call which goes to an indirectly calculated
    122 // destination but needs a relocation against a fixed symbol. As such it has two
    123 // certain operands: the callee and the relocated variable.
    124 //
    125 // The TLS ABI only allows it to be selected to a BLR instructin (with
    126 // appropriate relocation).
    127 def SDTTLSDescCall : SDTypeProfile<0, -2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>;
    128 
    129 def A64tlsdesc_blr : SDNode<"AArch64ISD::TLSDESCCALL", SDTTLSDescCall,
    130                             [SDNPInGlue, SDNPOutGlue, SDNPHasChain,
    131                              SDNPVariadic]>;
    132 
    133 
    134 def SDT_AArch64CallSeqStart : SDCallSeqStart<[ SDTCisPtrTy<0> ]>;
    135 def AArch64callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_AArch64CallSeqStart,
    136                                   [SDNPHasChain, SDNPOutGlue]>;
    137 
    138 def SDT_AArch64CallSeqEnd   : SDCallSeqEnd<[ SDTCisPtrTy<0>, SDTCisPtrTy<1> ]>;
    139 def AArch64callseq_end : SDNode<"ISD::CALLSEQ_END",   SDT_AArch64CallSeqEnd,
    140                                 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
    141 
    142 
    143 
    144 // These pseudo-instructions have special semantics by virtue of being passed to
    145 // the InstrInfo constructor. CALLSEQ_START/CALLSEQ_END are produced by
    146 // LowerCall to (in our case) tell the back-end about stack adjustments for
    147 // arguments passed on the stack. Here we select those markers to
    148 // pseudo-instructions which explicitly set the stack, and finally in the
    149 // RegisterInfo we convert them to a true stack adjustment.
    150 let Defs = [XSP], Uses = [XSP] in {
    151   def ADJCALLSTACKDOWN : PseudoInst<(outs), (ins i64imm:$amt),
    152                                     [(AArch64callseq_start timm:$amt)]>;
    153 
    154   def ADJCALLSTACKUP : PseudoInst<(outs), (ins i64imm:$amt1, i64imm:$amt2),
    155                                  [(AArch64callseq_end timm:$amt1, timm:$amt2)]>;
    156 }
    157 
    158 //===----------------------------------------------------------------------===//
    159 // Atomic operation pseudo-instructions
    160 //===----------------------------------------------------------------------===//
    161 
    162 let usesCustomInserter = 1 in {
    163 multiclass AtomicSizes<string opname> {
    164   def _I8 : PseudoInst<(outs GPR32:$dst), (ins GPR64:$ptr, GPR32:$incr),
    165     [(set GPR32:$dst, (!cast<SDNode>(opname # "_8") GPR64:$ptr, GPR32:$incr))]>;
    166   def _I16 : PseudoInst<(outs GPR32:$dst), (ins GPR64:$ptr, GPR32:$incr),
    167    [(set GPR32:$dst, (!cast<SDNode>(opname # "_16") GPR64:$ptr, GPR32:$incr))]>;
    168   def _I32 : PseudoInst<(outs GPR32:$dst), (ins GPR64:$ptr, GPR32:$incr),
    169    [(set GPR32:$dst, (!cast<SDNode>(opname # "_32") GPR64:$ptr, GPR32:$incr))]>;
    170   def _I64 : PseudoInst<(outs GPR64:$dst), (ins GPR64:$ptr, GPR64:$incr),
    171    [(set GPR64:$dst, (!cast<SDNode>(opname # "_64") GPR64:$ptr, GPR64:$incr))]>;
    172 }
    173 }
    174 
    175 defm ATOMIC_LOAD_ADD  : AtomicSizes<"atomic_load_add">;
    176 defm ATOMIC_LOAD_SUB  : AtomicSizes<"atomic_load_sub">;
    177 defm ATOMIC_LOAD_AND  : AtomicSizes<"atomic_load_and">;
    178 defm ATOMIC_LOAD_OR   : AtomicSizes<"atomic_load_or">;
    179 defm ATOMIC_LOAD_XOR  : AtomicSizes<"atomic_load_xor">;
    180 defm ATOMIC_LOAD_NAND : AtomicSizes<"atomic_load_nand">;
    181 defm ATOMIC_SWAP      : AtomicSizes<"atomic_swap">;
    182 let Defs = [NZCV] in {
    183   // These operations need a CMP to calculate the correct value
    184   defm ATOMIC_LOAD_MIN  : AtomicSizes<"atomic_load_min">;
    185   defm ATOMIC_LOAD_MAX  : AtomicSizes<"atomic_load_max">;
    186   defm ATOMIC_LOAD_UMIN : AtomicSizes<"atomic_load_umin">;
    187   defm ATOMIC_LOAD_UMAX : AtomicSizes<"atomic_load_umax">;
    188 }
    189 
    190 let usesCustomInserter = 1, Defs = [NZCV] in {
    191 def ATOMIC_CMP_SWAP_I8
    192   : PseudoInst<(outs GPR32:$dst), (ins GPR64:$ptr, GPR32:$old, GPR32:$new),
    193                [(set GPR32:$dst,
    194                      (atomic_cmp_swap_8 GPR64:$ptr, GPR32:$old, GPR32:$new))]>;
    195 def ATOMIC_CMP_SWAP_I16
    196   : PseudoInst<(outs GPR32:$dst), (ins GPR64:$ptr, GPR32:$old, GPR32:$new),
    197                [(set GPR32:$dst,
    198                      (atomic_cmp_swap_16 GPR64:$ptr, GPR32:$old, GPR32:$new))]>;
    199 def ATOMIC_CMP_SWAP_I32
    200   : PseudoInst<(outs GPR32:$dst), (ins GPR64:$ptr, GPR32:$old, GPR32:$new),
    201                [(set GPR32:$dst,
    202                      (atomic_cmp_swap_32 GPR64:$ptr, GPR32:$old, GPR32:$new))]>;
    203 def ATOMIC_CMP_SWAP_I64
    204   : PseudoInst<(outs GPR64:$dst), (ins GPR64:$ptr, GPR64:$old, GPR64:$new),
    205                [(set GPR64:$dst,
    206                      (atomic_cmp_swap_64 GPR64:$ptr, GPR64:$old, GPR64:$new))]>;
    207 }
    208 
    209 //===----------------------------------------------------------------------===//
    210 // Add-subtract (extended register) instructions
    211 //===----------------------------------------------------------------------===//
    212 // Contains: ADD, ADDS, SUB, SUBS + aliases CMN, CMP
    213 
    214 // The RHS of these operations is conceptually a sign/zero-extended
    215 // register, optionally shifted left by 1-4. The extension can be a
    216 // NOP (e.g. "sxtx" sign-extending a 64-bit register to 64-bits) but
    217 // must be specified with one exception:
    218 
    219 // If one of the registers is sp/wsp then LSL is an alias for UXTW in
    220 // 32-bit instructions and UXTX in 64-bit versions, the shift amount
    221 // is not optional in that case (but can explicitly be 0), and the
    222 // entire suffix can be skipped (e.g. "add sp, x3, x2").
    223 
    224 multiclass extend_operands<string PREFIX, string Diag> {
    225      def _asmoperand : AsmOperandClass {
    226          let Name = PREFIX;
    227          let RenderMethod = "addRegExtendOperands";
    228          let PredicateMethod = "isRegExtend<A64SE::" # PREFIX # ">";
    229          let DiagnosticType = "AddSubRegExtend" # Diag;
    230      }
    231 
    232      def _operand : Operand<i64>,
    233                     ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 4; }]> {
    234          let PrintMethod = "printRegExtendOperand<A64SE::" # PREFIX # ">";
    235          let DecoderMethod = "DecodeRegExtendOperand";
    236          let ParserMatchClass = !cast<AsmOperandClass>(PREFIX # "_asmoperand");
    237      }
    238 }
    239 
    240 defm UXTB : extend_operands<"UXTB", "Small">;
    241 defm UXTH : extend_operands<"UXTH", "Small">;
    242 defm UXTW : extend_operands<"UXTW", "Small">;
    243 defm UXTX : extend_operands<"UXTX", "Large">;
    244 defm SXTB : extend_operands<"SXTB", "Small">;
    245 defm SXTH : extend_operands<"SXTH", "Small">;
    246 defm SXTW : extend_operands<"SXTW", "Small">;
    247 defm SXTX : extend_operands<"SXTX", "Large">;
    248 
    249 def LSL_extasmoperand : AsmOperandClass {
    250     let Name = "RegExtendLSL";
    251     let RenderMethod = "addRegExtendOperands";
    252     let DiagnosticType = "AddSubRegExtendLarge";
    253 }
    254 
    255 def LSL_extoperand : Operand<i64> {
    256     let ParserMatchClass = LSL_extasmoperand;
    257 }
    258 
    259 
    260 // The patterns for various sign-extensions are a little ugly and
    261 // non-uniform because everything has already been promoted to the
    262 // legal i64 and i32 types. We'll wrap the various variants up in a
    263 // class for use later.
    264 class extend_types {
    265     dag uxtb; dag uxth; dag uxtw; dag uxtx;
    266     dag sxtb; dag sxth; dag sxtw; dag sxtx;
    267 }
    268 
    269 def extends_to_i64 : extend_types {
    270     let uxtb = (and (anyext GPR32:$Rm), 255);
    271     let uxth = (and (anyext GPR32:$Rm), 65535);
    272     let uxtw = (zext GPR32:$Rm);
    273     let uxtx = (i64 GPR64:$Rm);
    274 
    275     let sxtb = (sext_inreg (anyext GPR32:$Rm), i8);
    276     let sxth = (sext_inreg (anyext GPR32:$Rm), i16);
    277     let sxtw = (sext GPR32:$Rm);
    278     let sxtx = (i64 GPR64:$Rm);
    279 }
    280 
    281 
    282 def extends_to_i32 : extend_types {
    283     let uxtb = (and GPR32:$Rm, 255);
    284     let uxth = (and GPR32:$Rm, 65535);
    285     let uxtw = (i32 GPR32:$Rm);
    286     let uxtx = (i32 GPR32:$Rm);
    287 
    288     let sxtb = (sext_inreg GPR32:$Rm, i8);
    289     let sxth = (sext_inreg GPR32:$Rm, i16);
    290     let sxtw = (i32 GPR32:$Rm);
    291     let sxtx = (i32 GPR32:$Rm);
    292 }
    293 
    294 // Now, six of the extensions supported are easy and uniform: if the source size
    295 // is 32-bits or less, then Rm is always a 32-bit register. We'll instantiate
    296 // those instructions in one block.
    297 
    298 // The uxtx/sxtx could potentially be merged in, but three facts dissuaded me:
    299 //     + It would break the naming scheme: either ADDxx_uxtx or ADDww_uxtx would
    300 //       be impossible.
    301 //     + Patterns are very different as well.
    302 //     + Passing different registers would be ugly (more fields in extend_types
    303 //       would probably be the best option).
    304 multiclass addsub_exts<bit sf, bit op, bit S, string asmop,
    305                        SDPatternOperator opfrag,
    306                        dag outs, extend_types exts, RegisterClass GPRsp> {
    307     def w_uxtb : A64I_addsubext<sf, op, S, 0b00, 0b000,
    308                       outs,
    309                       (ins GPRsp:$Rn, GPR32:$Rm, UXTB_operand:$Imm3),
    310                       !strconcat(asmop, "$Rn, $Rm, $Imm3"),
    311                       [(opfrag GPRsp:$Rn, (shl exts.uxtb, UXTB_operand:$Imm3))],
    312                       NoItinerary>;
    313     def w_uxth : A64I_addsubext<sf, op, S, 0b00, 0b001,
    314                       outs,
    315                       (ins GPRsp:$Rn, GPR32:$Rm, UXTH_operand:$Imm3),
    316                       !strconcat(asmop, "$Rn, $Rm, $Imm3"),
    317                       [(opfrag GPRsp:$Rn, (shl exts.uxth, UXTH_operand:$Imm3))],
    318                       NoItinerary>;
    319     def w_uxtw : A64I_addsubext<sf, op, S, 0b00, 0b010,
    320                       outs,
    321                       (ins GPRsp:$Rn, GPR32:$Rm, UXTW_operand:$Imm3),
    322                       !strconcat(asmop, "$Rn, $Rm, $Imm3"),
    323                       [(opfrag GPRsp:$Rn, (shl exts.uxtw, UXTW_operand:$Imm3))],
    324                       NoItinerary>;
    325 
    326     def w_sxtb : A64I_addsubext<sf, op, S, 0b00, 0b100,
    327                       outs,
    328                       (ins GPRsp:$Rn, GPR32:$Rm, SXTB_operand:$Imm3),
    329                       !strconcat(asmop, "$Rn, $Rm, $Imm3"),
    330                       [(opfrag GPRsp:$Rn, (shl exts.sxtb, SXTB_operand:$Imm3))],
    331                       NoItinerary>;
    332     def w_sxth : A64I_addsubext<sf, op, S, 0b00, 0b101,
    333                       outs,
    334                       (ins GPRsp:$Rn, GPR32:$Rm, SXTH_operand:$Imm3),
    335                       !strconcat(asmop, "$Rn, $Rm, $Imm3"),
    336                       [(opfrag GPRsp:$Rn, (shl exts.sxth, SXTH_operand:$Imm3))],
    337                       NoItinerary>;
    338     def w_sxtw : A64I_addsubext<sf, op, S, 0b00, 0b110,
    339                       outs,
    340                       (ins GPRsp:$Rn, GPR32:$Rm, SXTW_operand:$Imm3),
    341                       !strconcat(asmop, "$Rn, $Rm, $Imm3"),
    342                       [(opfrag GPRsp:$Rn, (shl exts.sxtw, SXTW_operand:$Imm3))],
    343                       NoItinerary>;
    344 }
    345 
    346 // These two could be merge in with the above, but their patterns aren't really
    347 // necessary and the naming-scheme would necessarily break:
    348 multiclass addsub_xxtx<bit op, bit S, string asmop, SDPatternOperator opfrag,
    349                        dag outs> {
    350     def x_uxtx : A64I_addsubext<0b1, op, S, 0b00, 0b011,
    351                    outs,
    352                    (ins GPR64xsp:$Rn, GPR64:$Rm, UXTX_operand:$Imm3),
    353                    !strconcat(asmop, "$Rn, $Rm, $Imm3"),
    354                    [(opfrag GPR64xsp:$Rn, (shl GPR64:$Rm, UXTX_operand:$Imm3))],
    355                    NoItinerary>;
    356 
    357     def x_sxtx : A64I_addsubext<0b1, op, S, 0b00, 0b111,
    358                    outs,
    359                    (ins GPR64xsp:$Rn, GPR64:$Rm, SXTX_operand:$Imm3),
    360                    !strconcat(asmop, "$Rn, $Rm, $Imm3"),
    361                    [/* No Pattern: same as uxtx */],
    362                    NoItinerary>;
    363 }
    364 
    365 multiclass addsub_wxtx<bit op, bit S, string asmop, dag outs> {
    366     def w_uxtx : A64I_addsubext<0b0, op, S, 0b00, 0b011,
    367                               outs,
    368                               (ins GPR32wsp:$Rn, GPR32:$Rm, UXTX_operand:$Imm3),
    369                               !strconcat(asmop, "$Rn, $Rm, $Imm3"),
    370                               [/* No pattern: probably same as uxtw */],
    371                               NoItinerary>;
    372 
    373     def w_sxtx : A64I_addsubext<0b0, op, S, 0b00, 0b111,
    374                               outs,
    375                               (ins GPR32wsp:$Rn, GPR32:$Rm, SXTX_operand:$Imm3),
    376                               !strconcat(asmop, "$Rn, $Rm, $Imm3"),
    377                               [/* No Pattern: probably same as uxtw */],
    378                               NoItinerary>;
    379 }
    380 
    381 class SetRD<RegisterClass RC, SDPatternOperator op>
    382  : PatFrag<(ops node:$lhs, node:$rhs), (set RC:$Rd, (op node:$lhs, node:$rhs))>;
    383 class SetNZCV<SDPatternOperator op>
    384   : PatFrag<(ops node:$lhs, node:$rhs), (set NZCV, (op node:$lhs, node:$rhs))>;
    385 
    386 defm ADDxx :addsub_exts<0b1, 0b0, 0b0, "add\t$Rd, ", SetRD<GPR64xsp, add>,
    387                         (outs GPR64xsp:$Rd), extends_to_i64, GPR64xsp>,
    388             addsub_xxtx<     0b0, 0b0, "add\t$Rd, ", SetRD<GPR64xsp, add>,
    389                         (outs GPR64xsp:$Rd)>;
    390 defm ADDww :addsub_exts<0b0, 0b0, 0b0, "add\t$Rd, ", SetRD<GPR32wsp, add>,
    391                         (outs GPR32wsp:$Rd), extends_to_i32, GPR32wsp>,
    392             addsub_wxtx<     0b0, 0b0, "add\t$Rd, ",
    393                         (outs GPR32wsp:$Rd)>;
    394 defm SUBxx :addsub_exts<0b1, 0b1, 0b0, "sub\t$Rd, ", SetRD<GPR64xsp, sub>,
    395                         (outs GPR64xsp:$Rd), extends_to_i64, GPR64xsp>,
    396             addsub_xxtx<     0b1, 0b0, "sub\t$Rd, ", SetRD<GPR64xsp, sub>,
    397                         (outs GPR64xsp:$Rd)>;
    398 defm SUBww :addsub_exts<0b0, 0b1, 0b0, "sub\t$Rd, ", SetRD<GPR32wsp, sub>,
    399                         (outs GPR32wsp:$Rd), extends_to_i32, GPR32wsp>,
    400             addsub_wxtx<     0b1, 0b0, "sub\t$Rd, ",
    401                         (outs GPR32wsp:$Rd)>;
    402 
    403 let Defs = [NZCV] in {
    404 defm ADDSxx :addsub_exts<0b1, 0b0, 0b1, "adds\t$Rd, ", SetRD<GPR64, addc>,
    405                          (outs GPR64:$Rd), extends_to_i64, GPR64xsp>,
    406              addsub_xxtx<     0b0, 0b1, "adds\t$Rd, ", SetRD<GPR64, addc>,
    407                          (outs GPR64:$Rd)>;
    408 defm ADDSww :addsub_exts<0b0, 0b0, 0b1, "adds\t$Rd, ", SetRD<GPR32, addc>,
    409                          (outs GPR32:$Rd), extends_to_i32, GPR32wsp>,
    410              addsub_wxtx<     0b0, 0b1, "adds\t$Rd, ",
    411                          (outs GPR32:$Rd)>;
    412 defm SUBSxx :addsub_exts<0b1, 0b1, 0b1, "subs\t$Rd, ", SetRD<GPR64, subc>,
    413                          (outs GPR64:$Rd), extends_to_i64, GPR64xsp>,
    414              addsub_xxtx<     0b1, 0b1, "subs\t$Rd, ", SetRD<GPR64, subc>,
    415                          (outs GPR64:$Rd)>;
    416 defm SUBSww :addsub_exts<0b0, 0b1, 0b1, "subs\t$Rd, ", SetRD<GPR32, subc>,
    417                          (outs GPR32:$Rd), extends_to_i32, GPR32wsp>,
    418              addsub_wxtx<     0b1, 0b1, "subs\t$Rd, ",
    419                          (outs GPR32:$Rd)>;
    420 
    421 
    422 let Rd = 0b11111, isCompare = 1 in {
    423 defm CMNx : addsub_exts<0b1, 0b0, 0b1, "cmn\t", SetNZCV<A64cmn>,
    424                         (outs), extends_to_i64, GPR64xsp>,
    425             addsub_xxtx<     0b0, 0b1, "cmn\t", SetNZCV<A64cmn>, (outs)>;
    426 defm CMNw : addsub_exts<0b0, 0b0, 0b1, "cmn\t", SetNZCV<A64cmn>,
    427                         (outs), extends_to_i32, GPR32wsp>,
    428             addsub_wxtx<     0b0, 0b1, "cmn\t", (outs)>;
    429 defm CMPx : addsub_exts<0b1, 0b1, 0b1, "cmp\t", SetNZCV<A64cmp>,
    430                         (outs), extends_to_i64, GPR64xsp>,
    431             addsub_xxtx<     0b1, 0b1, "cmp\t", SetNZCV<A64cmp>, (outs)>;
    432 defm CMPw : addsub_exts<0b0, 0b1, 0b1, "cmp\t", SetNZCV<A64cmp>,
    433                         (outs), extends_to_i32, GPR32wsp>,
    434             addsub_wxtx<     0b1, 0b1, "cmp\t", (outs)>;
    435 }
    436 }
    437 
    438 // Now patterns for the operation without a shift being needed. No patterns are
    439 // created for uxtx/sxtx since they're non-uniform and it's expected that
    440 // add/sub (shifted register) will handle those cases anyway.
    441 multiclass addsubext_noshift_patterns<string prefix, SDPatternOperator nodeop,
    442                                       RegisterClass GPRsp, extend_types exts> {
    443     def : Pat<(nodeop GPRsp:$Rn, exts.uxtb),
    444               (!cast<Instruction>(prefix # "w_uxtb") GPRsp:$Rn, GPR32:$Rm, 0)>;
    445     def : Pat<(nodeop GPRsp:$Rn, exts.uxth),
    446               (!cast<Instruction>(prefix # "w_uxth") GPRsp:$Rn, GPR32:$Rm, 0)>;
    447     def : Pat<(nodeop GPRsp:$Rn, exts.uxtw),
    448               (!cast<Instruction>(prefix # "w_uxtw") GPRsp:$Rn, GPR32:$Rm, 0)>;
    449 
    450     def : Pat<(nodeop GPRsp:$Rn, exts.sxtb),
    451               (!cast<Instruction>(prefix # "w_sxtb") GPRsp:$Rn, GPR32:$Rm, 0)>;
    452     def : Pat<(nodeop GPRsp:$Rn, exts.sxth),
    453               (!cast<Instruction>(prefix # "w_sxth") GPRsp:$Rn, GPR32:$Rm, 0)>;
    454     def : Pat<(nodeop GPRsp:$Rn, exts.sxtw),
    455               (!cast<Instruction>(prefix # "w_sxtw") GPRsp:$Rn, GPR32:$Rm, 0)>;
    456 }
    457 
    458 defm : addsubext_noshift_patterns<"ADDxx", add, GPR64xsp, extends_to_i64>;
    459 defm : addsubext_noshift_patterns<"ADDww", add, GPR32wsp, extends_to_i32>;
    460 defm : addsubext_noshift_patterns<"SUBxx", sub, GPR64xsp, extends_to_i64>;
    461 defm : addsubext_noshift_patterns<"SUBww", sub, GPR32wsp, extends_to_i32>;
    462 
    463 defm : addsubext_noshift_patterns<"CMNx", A64cmn, GPR64xsp, extends_to_i64>;
    464 defm : addsubext_noshift_patterns<"CMNw", A64cmn, GPR32wsp, extends_to_i32>;
    465 defm : addsubext_noshift_patterns<"CMPx", A64cmp, GPR64xsp, extends_to_i64>;
    466 defm : addsubext_noshift_patterns<"CMPw", A64cmp, GPR32wsp, extends_to_i32>;
    467 
    468 // An extend of "lsl #imm" is valid if and only if one of Rn and Rd is
    469 // sp/wsp. It is synonymous with uxtx/uxtw depending on the size of the
    470 // operation. Also permitted in this case is complete omission of the argument,
    471 // which implies "lsl #0".
    472 multiclass lsl_aliases<string asmop, Instruction inst, RegisterClass GPR_Rd,
    473                        RegisterClass GPR_Rn, RegisterClass GPR_Rm> {
    474     def : InstAlias<!strconcat(asmop, " $Rd, $Rn, $Rm"),
    475                     (inst GPR_Rd:$Rd, GPR_Rn:$Rn, GPR_Rm:$Rm, 0)>;
    476 
    477     def : InstAlias<!strconcat(asmop, " $Rd, $Rn, $Rm, $LSL"),
    478                 (inst GPR_Rd:$Rd, GPR_Rn:$Rn, GPR_Rm:$Rm, LSL_extoperand:$LSL)>;
    479 
    480 }
    481 
    482 defm : lsl_aliases<"add",  ADDxxx_uxtx,  Rxsp, GPR64xsp, GPR64>;
    483 defm : lsl_aliases<"add",  ADDxxx_uxtx,  GPR64xsp, Rxsp, GPR64>;
    484 defm : lsl_aliases<"add",  ADDwww_uxtw,  Rwsp, GPR32wsp, GPR32>;
    485 defm : lsl_aliases<"add",  ADDwww_uxtw,  GPR32wsp, Rwsp, GPR32>;
    486 defm : lsl_aliases<"sub",  SUBxxx_uxtx,  Rxsp, GPR64xsp, GPR64>;
    487 defm : lsl_aliases<"sub",  SUBxxx_uxtx,  GPR64xsp, Rxsp, GPR64>;
    488 defm : lsl_aliases<"sub",  SUBwww_uxtw,  Rwsp, GPR32wsp, GPR32>;
    489 defm : lsl_aliases<"sub",  SUBwww_uxtw,  GPR32wsp, Rwsp, GPR32>;
    490 
    491 // Rd cannot be sp for flag-setting variants so only half of the aliases are
    492 // needed.
    493 defm : lsl_aliases<"adds", ADDSxxx_uxtx, GPR64, Rxsp, GPR64>;
    494 defm : lsl_aliases<"adds", ADDSwww_uxtw, GPR32, Rwsp, GPR32>;
    495 defm : lsl_aliases<"subs", SUBSxxx_uxtx, GPR64, Rxsp, GPR64>;
    496 defm : lsl_aliases<"subs", SUBSwww_uxtw, GPR32, Rwsp, GPR32>;
    497 
    498 // CMP unfortunately has to be different because the instruction doesn't have a
    499 // dest register.
    500 multiclass cmp_lsl_aliases<string asmop, Instruction inst,
    501                        RegisterClass GPR_Rn, RegisterClass GPR_Rm> {
    502     def : InstAlias<!strconcat(asmop, " $Rn, $Rm"),
    503                     (inst GPR_Rn:$Rn, GPR_Rm:$Rm, 0)>;
    504 
    505     def : InstAlias<!strconcat(asmop, " $Rn, $Rm, $LSL"),
    506                     (inst GPR_Rn:$Rn, GPR_Rm:$Rm, LSL_extoperand:$LSL)>;
    507 }
    508 
    509 defm : cmp_lsl_aliases<"cmp", CMPxx_uxtx, Rxsp, GPR64>;
    510 defm : cmp_lsl_aliases<"cmp", CMPww_uxtw, Rwsp, GPR32>;
    511 defm : cmp_lsl_aliases<"cmn", CMNxx_uxtx, Rxsp, GPR64>;
    512 defm : cmp_lsl_aliases<"cmn", CMNww_uxtw, Rwsp, GPR32>;
    513 
    514 //===----------------------------------------------------------------------===//
    515 // Add-subtract (immediate) instructions
    516 //===----------------------------------------------------------------------===//
    517 // Contains: ADD, ADDS, SUB, SUBS + aliases CMN, CMP, MOV
    518 
    519 // These instructions accept a 12-bit unsigned immediate, optionally shifted
    520 // left by 12 bits. Official assembly format specifies a 12 bit immediate with
    521 // one of "", "LSL #0", "LSL #12" supplementary operands.
    522 
    523 // There are surprisingly few ways to make this work with TableGen, so this
    524 // implementation has separate instructions for the "LSL #0" and "LSL #12"
    525 // variants.
    526 
    527 // If the MCInst retained a single combined immediate (which could be 0x123000,
    528 // for example) then both components (imm & shift) would have to be delegated to
    529 // a single assembly operand. This would entail a separate operand parser
    530 // (because the LSL would have to live in the same AArch64Operand as the
    531 // immediate to be accessible); assembly parsing is rather complex and
    532 // error-prone C++ code.
    533 //
    534 // By splitting the immediate, we can delegate handling this optional operand to
    535 // an InstAlias. Supporting functions to generate the correct MCInst are still
    536 // required, but these are essentially trivial and parsing can remain generic.
    537 //
    538 // Rejected plans with rationale:
    539 // ------------------------------
    540 //
    541 // In an ideal world you'de have two first class immediate operands (in
    542 // InOperandList, specifying imm12 and shift). Unfortunately this is not
    543 // selectable by any means I could discover.
    544 //
    545 // An Instruction with two MCOperands hidden behind a single entry in
    546 // InOperandList (expanded by ComplexPatterns and MIOperandInfo) was functional,
    547 // but required more C++ code to handle encoding/decoding. Parsing (the intended
    548 // main beneficiary) ended up equally complex because of the optional nature of
    549 // "LSL #0".
    550 //
    551 // Attempting to circumvent the need for a custom OperandParser above by giving
    552 // InstAliases without the "lsl #0" failed. add/sub could be accommodated but
    553 // the cmp/cmn aliases didn't use the MIOperandInfo to determine how operands
    554 // should be parsed: there was no way to accommodate an "lsl #12".
    555 
    556 let ParserMethod = "ParseImmWithLSLOperand",
    557     RenderMethod = "addImmWithLSLOperands" in {
    558   // Derived PredicateMethod fields are different for each
    559   def addsubimm_lsl0_asmoperand : AsmOperandClass {
    560     let Name = "AddSubImmLSL0";
    561     // If an error is reported against this operand, instruction could also be a
    562     // register variant.
    563     let DiagnosticType = "AddSubSecondSource";
    564   }
    565 
    566   def addsubimm_lsl12_asmoperand : AsmOperandClass {
    567     let Name = "AddSubImmLSL12";
    568     let DiagnosticType = "AddSubSecondSource";
    569   }
    570 }
    571 
    572 def shr_12_XFORM : SDNodeXForm<imm, [{
    573   return CurDAG->getTargetConstant(N->getSExtValue() >> 12, MVT::i32);
    574 }]>;
    575 
    576 def shr_12_neg_XFORM : SDNodeXForm<imm, [{
    577   return CurDAG->getTargetConstant((-N->getSExtValue()) >> 12, MVT::i32);
    578 }]>;
    579 
    580 def neg_XFORM : SDNodeXForm<imm, [{
    581   return CurDAG->getTargetConstant(-N->getSExtValue(), MVT::i32);
    582 }]>;
    583 
    584 
    585 multiclass addsub_imm_operands<ValueType ty> {
    586  let PrintMethod = "printAddSubImmLSL0Operand",
    587       EncoderMethod = "getAddSubImmOpValue",
    588       ParserMatchClass = addsubimm_lsl0_asmoperand in {
    589     def _posimm_lsl0 : Operand<ty>,
    590         ImmLeaf<ty, [{ return Imm >= 0 && (Imm & ~0xfff) == 0; }]>;
    591     def _negimm_lsl0 : Operand<ty>,
    592         ImmLeaf<ty, [{ return Imm < 0 && (-Imm & ~0xfff) == 0; }],
    593                 neg_XFORM>;
    594   }
    595 
    596   let PrintMethod = "printAddSubImmLSL12Operand",
    597       EncoderMethod = "getAddSubImmOpValue",
    598       ParserMatchClass = addsubimm_lsl12_asmoperand in {
    599     def _posimm_lsl12 : Operand<ty>,
    600         ImmLeaf<ty, [{ return Imm >= 0 && (Imm & ~0xfff000) == 0; }],
    601                 shr_12_XFORM>;
    602 
    603     def _negimm_lsl12 : Operand<ty>,
    604         ImmLeaf<ty, [{ return Imm < 0 && (-Imm & ~0xfff000) == 0; }],
    605                 shr_12_neg_XFORM>;
    606   }
    607 }
    608 
    609 // The add operands don't need any transformation
    610 defm addsubimm_operand_i32 : addsub_imm_operands<i32>;
    611 defm addsubimm_operand_i64 : addsub_imm_operands<i64>;
    612 
    613 multiclass addsubimm_varieties<string prefix, bit sf, bit op, bits<2> shift,
    614                                string asmop, string cmpasmop,
    615                                Operand imm_operand, Operand cmp_imm_operand,
    616                                RegisterClass GPR, RegisterClass GPRsp,
    617                                AArch64Reg ZR> {
    618     // All registers for non-S variants allow SP
    619   def _s : A64I_addsubimm<sf, op, 0b0, shift,
    620                          (outs GPRsp:$Rd),
    621                          (ins GPRsp:$Rn, imm_operand:$Imm12),
    622                          !strconcat(asmop, "\t$Rd, $Rn, $Imm12"),
    623                          [(set GPRsp:$Rd,
    624                                (add GPRsp:$Rn, imm_operand:$Imm12))],
    625                          NoItinerary>;
    626 
    627 
    628   // S variants can read SP but would write to ZR
    629   def _S : A64I_addsubimm<sf, op, 0b1, shift,
    630                          (outs GPR:$Rd),
    631                          (ins GPRsp:$Rn, imm_operand:$Imm12),
    632                          !strconcat(asmop, "s\t$Rd, $Rn, $Imm12"),
    633                          [(set GPR:$Rd, (addc GPRsp:$Rn, imm_operand:$Imm12))],
    634                          NoItinerary> {
    635     let Defs = [NZCV];
    636   }
    637 
    638   // Note that the pattern here for ADDS is subtle. Canonically CMP
    639   // a, b becomes SUBS a, b. If b < 0 then this is equivalent to
    640   // ADDS a, (-b). This is not true in general.
    641   def _cmp : A64I_addsubimm<sf, op, 0b1, shift,
    642                             (outs), (ins GPRsp:$Rn, imm_operand:$Imm12),
    643                             !strconcat(cmpasmop, " $Rn, $Imm12"),
    644                             [(set NZCV,
    645                               (A64cmp GPRsp:$Rn, cmp_imm_operand:$Imm12))],
    646                             NoItinerary> {
    647     let Rd = 0b11111;
    648     let Defs = [NZCV];
    649     let isCompare = 1;
    650   }
    651 }
    652 
    653 
    654 multiclass addsubimm_shifts<string prefix, bit sf, bit op,
    655            string asmop, string cmpasmop, string operand, string cmpoperand,
    656            RegisterClass GPR, RegisterClass GPRsp, AArch64Reg ZR> {
    657   defm _lsl0 : addsubimm_varieties<prefix # "_lsl0", sf, op, 0b00,
    658                                    asmop, cmpasmop,
    659                                    !cast<Operand>(operand # "_lsl0"),
    660                                    !cast<Operand>(cmpoperand # "_lsl0"),
    661                                    GPR, GPRsp, ZR>;
    662 
    663   defm _lsl12 : addsubimm_varieties<prefix # "_lsl12", sf, op, 0b01,
    664                                     asmop, cmpasmop,
    665                                     !cast<Operand>(operand # "_lsl12"),
    666                                     !cast<Operand>(cmpoperand # "_lsl12"),
    667                                     GPR, GPRsp, ZR>;
    668 }
    669 
    670 defm ADDwwi : addsubimm_shifts<"ADDwi", 0b0, 0b0, "add", "cmn",
    671                               "addsubimm_operand_i32_posimm",
    672                               "addsubimm_operand_i32_negimm",
    673                               GPR32, GPR32wsp, WZR>;
    674 defm ADDxxi : addsubimm_shifts<"ADDxi", 0b1, 0b0, "add", "cmn",
    675                               "addsubimm_operand_i64_posimm",
    676                               "addsubimm_operand_i64_negimm",
    677                               GPR64, GPR64xsp, XZR>;
    678 defm SUBwwi : addsubimm_shifts<"SUBwi", 0b0, 0b1, "sub", "cmp",
    679                               "addsubimm_operand_i32_negimm",
    680                               "addsubimm_operand_i32_posimm",
    681                               GPR32, GPR32wsp, WZR>;
    682 defm SUBxxi : addsubimm_shifts<"SUBxi", 0b1, 0b1, "sub", "cmp",
    683                               "addsubimm_operand_i64_negimm",
    684                               "addsubimm_operand_i64_posimm",
    685                               GPR64, GPR64xsp, XZR>;
    686 
    687 multiclass MOVsp<RegisterClass GPRsp, RegisterClass SP, Instruction addop> {
    688   def _fromsp : InstAlias<"mov $Rd, $Rn",
    689                           (addop GPRsp:$Rd, SP:$Rn, 0),
    690                           0b1>;
    691 
    692   def _tosp : InstAlias<"mov $Rd, $Rn",
    693                         (addop SP:$Rd, GPRsp:$Rn, 0),
    694                         0b1>;
    695 }
    696 
    697 // Recall Rxsp is a RegisterClass containing *just* xsp.
    698 defm MOVxx : MOVsp<GPR64xsp, Rxsp, ADDxxi_lsl0_s>;
    699 defm MOVww : MOVsp<GPR32wsp, Rwsp, ADDwwi_lsl0_s>;
    700 
    701 //===----------------------------------------------------------------------===//
    702 // Add-subtract (shifted register) instructions
    703 //===----------------------------------------------------------------------===//
    704 // Contains: ADD, ADDS, SUB, SUBS + aliases CMN, CMP, NEG, NEGS
    705 
    706 //===-------------------------------
    707 // 1. The "shifed register" operands. Shared with logical insts.
    708 //===-------------------------------
    709 
    710 multiclass shift_operands<string prefix, string form> {
    711   def _asmoperand_i32 : AsmOperandClass {
    712     let Name = "Shift" # form # "i32";
    713     let RenderMethod = "addShiftOperands";
    714     let PredicateMethod = "isShift<A64SE::" # form # ", false>";
    715     let DiagnosticType = "AddSubRegShift32";
    716   }
    717 
    718   // Note that the operand type is intentionally i64 because the DAGCombiner
    719   // puts these into a canonical form.
    720   def _i32 : Operand<i64>, ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 31; }]> {
    721     let ParserMatchClass
    722           = !cast<AsmOperandClass>(prefix # "_asmoperand_i32");
    723     let PrintMethod = "printShiftOperand<A64SE::" # form # ">";
    724     let DecoderMethod = "Decode32BitShiftOperand";
    725   }
    726 
    727   def _asmoperand_i64 : AsmOperandClass {
    728       let Name = "Shift" # form # "i64";
    729       let RenderMethod = "addShiftOperands";
    730       let PredicateMethod = "isShift<A64SE::" # form # ", true>";
    731       let DiagnosticType = "AddSubRegShift64";
    732   }
    733 
    734   def _i64 : Operand<i64>, ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 63; }]> {
    735     let ParserMatchClass
    736           = !cast<AsmOperandClass>(prefix # "_asmoperand_i64");
    737     let PrintMethod = "printShiftOperand<A64SE::" # form # ">";
    738   }
    739 }
    740 
    741 defm lsl_operand : shift_operands<"lsl_operand", "LSL">;
    742 defm lsr_operand : shift_operands<"lsr_operand", "LSR">;
    743 defm asr_operand : shift_operands<"asr_operand", "ASR">;
    744 
    745 // Not used for add/sub, but defined here for completeness. The "logical
    746 // (shifted register)" instructions *do* have an ROR variant.
    747 defm ror_operand : shift_operands<"ror_operand", "ROR">;
    748 
    749 //===-------------------------------
    750 // 2. The basic 3.5-operand ADD/SUB/ADDS/SUBS instructions.
    751 //===-------------------------------
    752 
    753 // N.b. the commutable parameter is just !N. It will be first against the wall
    754 // when the revolution comes.
    755 multiclass addsub_shifts<string prefix, bit sf, bit op, bit s, bit commutable,
    756                          string asmop, SDPatternOperator opfrag, string sty,
    757                          RegisterClass GPR, list<Register> defs> {
    758   let isCommutable = commutable, Defs = defs in {
    759   def _lsl : A64I_addsubshift<sf, op, s, 0b00,
    760                        (outs GPR:$Rd),
    761                        (ins GPR:$Rn, GPR:$Rm,
    762                             !cast<Operand>("lsl_operand_" # sty):$Imm6),
    763                        !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"),
    764                        [(set GPR:$Rd, (opfrag GPR:$Rn, (shl GPR:$Rm,
    765                             !cast<Operand>("lsl_operand_" # sty):$Imm6))
    766                        )],
    767                        NoItinerary>;
    768 
    769   def _lsr : A64I_addsubshift<sf, op, s, 0b01,
    770                        (outs GPR:$Rd),
    771                        (ins GPR:$Rn, GPR:$Rm,
    772                             !cast<Operand>("lsr_operand_" # sty):$Imm6),
    773                        !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"),
    774                        [(set GPR:$Rd, (opfrag GPR:$Rn, (srl GPR:$Rm,
    775                             !cast<Operand>("lsr_operand_" # sty):$Imm6))
    776                        )],
    777                        NoItinerary>;
    778 
    779   def _asr : A64I_addsubshift<sf, op, s, 0b10,
    780                        (outs GPR:$Rd),
    781                        (ins GPR:$Rn, GPR:$Rm,
    782                             !cast<Operand>("asr_operand_" # sty):$Imm6),
    783                        !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"),
    784                        [(set GPR:$Rd, (opfrag GPR:$Rn, (sra GPR:$Rm,
    785                             !cast<Operand>("asr_operand_" # sty):$Imm6))
    786                        )],
    787                        NoItinerary>;
    788   }
    789 
    790   def _noshift
    791       : InstAlias<!strconcat(asmop, " $Rd, $Rn, $Rm"),
    792                  (!cast<Instruction>(prefix # "_lsl") GPR:$Rd, GPR:$Rn,
    793                                                       GPR:$Rm, 0)>;
    794 
    795   def : Pat<(opfrag GPR:$Rn, GPR:$Rm),
    796             (!cast<Instruction>(prefix # "_lsl") GPR:$Rn, GPR:$Rm, 0)>;
    797 }
    798 
    799 multiclass addsub_sizes<string prefix, bit op, bit s, bit commutable,
    800                          string asmop, SDPatternOperator opfrag,
    801                          list<Register> defs> {
    802   defm xxx : addsub_shifts<prefix # "xxx", 0b1, op, s,
    803                            commutable, asmop, opfrag, "i64", GPR64, defs>;
    804   defm www : addsub_shifts<prefix # "www", 0b0, op, s,
    805                            commutable, asmop, opfrag, "i32", GPR32, defs>;
    806 }
    807 
    808 
    809 defm ADD : addsub_sizes<"ADD", 0b0, 0b0, 0b1, "add", add, []>;
    810 defm SUB : addsub_sizes<"SUB", 0b1, 0b0, 0b0, "sub", sub, []>;
    811 
    812 defm ADDS : addsub_sizes<"ADDS", 0b0, 0b1, 0b1, "adds", addc, [NZCV]>;
    813 defm SUBS : addsub_sizes<"SUBS", 0b1, 0b1, 0b0, "subs", subc, [NZCV]>;
    814 
    815 //===-------------------------------
    816 // 1. The NEG/NEGS aliases
    817 //===-------------------------------
    818 
    819 multiclass neg_alias<Instruction INST, RegisterClass GPR,
    820                      Register ZR, Operand shift_operand, SDNode shiftop> {
    821    def : InstAlias<"neg $Rd, $Rm, $Imm6",
    822                    (INST GPR:$Rd, ZR, GPR:$Rm, shift_operand:$Imm6)>;
    823 
    824    def : Pat<(sub 0, (shiftop GPR:$Rm, shift_operand:$Imm6)),
    825              (INST ZR, GPR:$Rm, shift_operand:$Imm6)>;
    826 }
    827 
    828 defm : neg_alias<SUBwww_lsl, GPR32, WZR, lsl_operand_i32, shl>;
    829 defm : neg_alias<SUBwww_lsr, GPR32, WZR, lsr_operand_i32, srl>;
    830 defm : neg_alias<SUBwww_asr, GPR32, WZR, asr_operand_i32, sra>;
    831 def : InstAlias<"neg $Rd, $Rm", (SUBwww_lsl GPR32:$Rd, WZR, GPR32:$Rm, 0)>;
    832 def : Pat<(sub 0, GPR32:$Rm), (SUBwww_lsl WZR, GPR32:$Rm, 0)>;
    833 
    834 defm : neg_alias<SUBxxx_lsl, GPR64, XZR, lsl_operand_i64, shl>;
    835 defm : neg_alias<SUBxxx_lsr, GPR64, XZR, lsr_operand_i64, srl>;
    836 defm : neg_alias<SUBxxx_asr, GPR64, XZR, asr_operand_i64, sra>;
    837 def : InstAlias<"neg $Rd, $Rm", (SUBxxx_lsl GPR64:$Rd, XZR, GPR64:$Rm, 0)>;
    838 def : Pat<(sub 0, GPR64:$Rm), (SUBxxx_lsl XZR, GPR64:$Rm, 0)>;
    839 
    840 // NEGS doesn't get any patterns yet: defining multiple outputs means C++ has to
    841 // be involved.
    842 class negs_alias<Instruction INST, RegisterClass GPR,
    843                  Register ZR, Operand shift_operand, SDNode shiftop>
    844   : InstAlias<"negs $Rd, $Rm, $Imm6",
    845               (INST GPR:$Rd, ZR, GPR:$Rm, shift_operand:$Imm6)>;
    846 
    847 def : negs_alias<SUBSwww_lsl, GPR32, WZR, lsl_operand_i32, shl>;
    848 def : negs_alias<SUBSwww_lsr, GPR32, WZR, lsr_operand_i32, srl>;
    849 def : negs_alias<SUBSwww_asr, GPR32, WZR, asr_operand_i32, sra>;
    850 def : InstAlias<"negs $Rd, $Rm", (SUBSwww_lsl GPR32:$Rd, WZR, GPR32:$Rm, 0)>;
    851 
    852 def : negs_alias<SUBSxxx_lsl, GPR64, XZR, lsl_operand_i64, shl>;
    853 def : negs_alias<SUBSxxx_lsr, GPR64, XZR, lsr_operand_i64, srl>;
    854 def : negs_alias<SUBSxxx_asr, GPR64, XZR, asr_operand_i64, sra>;
    855 def : InstAlias<"negs $Rd, $Rm", (SUBSxxx_lsl GPR64:$Rd, XZR, GPR64:$Rm, 0)>;
    856 
    857 //===-------------------------------
    858 // 1. The CMP/CMN aliases
    859 //===-------------------------------
    860 
    861 multiclass cmp_shifts<string prefix, bit sf, bit op, bit commutable,
    862                       string asmop, SDPatternOperator opfrag, string sty,
    863                       RegisterClass GPR> {
    864   let isCommutable = commutable, Rd = 0b11111, Defs = [NZCV] in {
    865   def _lsl : A64I_addsubshift<sf, op, 0b1, 0b00,
    866                        (outs),
    867                        (ins GPR:$Rn, GPR:$Rm,
    868                             !cast<Operand>("lsl_operand_" # sty):$Imm6),
    869                        !strconcat(asmop, "\t$Rn, $Rm, $Imm6"),
    870                        [(set NZCV, (opfrag GPR:$Rn, (shl GPR:$Rm,
    871                             !cast<Operand>("lsl_operand_" # sty):$Imm6))
    872                        )],
    873                        NoItinerary>;
    874 
    875   def _lsr : A64I_addsubshift<sf, op, 0b1, 0b01,
    876                        (outs),
    877                        (ins GPR:$Rn, GPR:$Rm,
    878                             !cast<Operand>("lsr_operand_" # sty):$Imm6),
    879                        !strconcat(asmop, "\t$Rn, $Rm, $Imm6"),
    880                        [(set NZCV, (opfrag GPR:$Rn, (srl GPR:$Rm,
    881                             !cast<Operand>("lsr_operand_" # sty):$Imm6))
    882                        )],
    883                        NoItinerary>;
    884 
    885   def _asr : A64I_addsubshift<sf, op, 0b1, 0b10,
    886                        (outs),
    887                        (ins GPR:$Rn, GPR:$Rm,
    888                             !cast<Operand>("asr_operand_" # sty):$Imm6),
    889                        !strconcat(asmop, "\t$Rn, $Rm, $Imm6"),
    890                        [(set NZCV, (opfrag GPR:$Rn, (sra GPR:$Rm,
    891                             !cast<Operand>("asr_operand_" # sty):$Imm6))
    892                        )],
    893                        NoItinerary>;
    894   }
    895 
    896   def _noshift
    897       : InstAlias<!strconcat(asmop, " $Rn, $Rm"),
    898                  (!cast<Instruction>(prefix # "_lsl") GPR:$Rn, GPR:$Rm, 0)>;
    899 
    900   def : Pat<(opfrag GPR:$Rn, GPR:$Rm),
    901             (!cast<Instruction>(prefix # "_lsl") GPR:$Rn, GPR:$Rm, 0)>;
    902 }
    903 
    904 defm CMPww : cmp_shifts<"CMPww", 0b0, 0b1, 0b0, "cmp", A64cmp, "i32", GPR32>;
    905 defm CMPxx : cmp_shifts<"CMPxx", 0b1, 0b1, 0b0, "cmp", A64cmp, "i64", GPR64>;
    906 
    907 defm CMNww : cmp_shifts<"CMNww", 0b0, 0b0, 0b1, "cmn", A64cmn, "i32", GPR32>;
    908 defm CMNxx : cmp_shifts<"CMNxx", 0b1, 0b0, 0b1, "cmn", A64cmn, "i64", GPR64>;
    909 
    910 //===----------------------------------------------------------------------===//
    911 // Add-subtract (with carry) instructions
    912 //===----------------------------------------------------------------------===//
    913 // Contains: ADC, ADCS, SBC, SBCS + aliases NGC, NGCS
    914 
    915 multiclass A64I_addsubcarrySizes<bit op, bit s, string asmop> {
    916   let Uses = [NZCV] in {
    917     def www : A64I_addsubcarry<0b0, op, s, 0b000000,
    918                                (outs GPR32:$Rd), (ins GPR32:$Rn, GPR32:$Rm),
    919                                !strconcat(asmop, "\t$Rd, $Rn, $Rm"),
    920                                [], NoItinerary>;
    921 
    922     def xxx : A64I_addsubcarry<0b1, op, s, 0b000000,
    923                                (outs GPR64:$Rd), (ins GPR64:$Rn, GPR64:$Rm),
    924                                !strconcat(asmop, "\t$Rd, $Rn, $Rm"),
    925                                [], NoItinerary>;
    926   }
    927 }
    928 
    929 let isCommutable = 1 in {
    930   defm ADC : A64I_addsubcarrySizes<0b0, 0b0, "adc">;
    931 }
    932 
    933 defm SBC : A64I_addsubcarrySizes<0b1, 0b0, "sbc">;
    934 
    935 let Defs = [NZCV] in {
    936   let isCommutable = 1 in {
    937     defm ADCS : A64I_addsubcarrySizes<0b0, 0b1, "adcs">;
    938   }
    939 
    940   defm SBCS : A64I_addsubcarrySizes<0b1, 0b1, "sbcs">;
    941 }
    942 
    943 def : InstAlias<"ngc $Rd, $Rm", (SBCwww GPR32:$Rd, WZR, GPR32:$Rm)>;
    944 def : InstAlias<"ngc $Rd, $Rm", (SBCxxx GPR64:$Rd, XZR, GPR64:$Rm)>;
    945 def : InstAlias<"ngcs $Rd, $Rm", (SBCSwww GPR32:$Rd, WZR, GPR32:$Rm)>;
    946 def : InstAlias<"ngcs $Rd, $Rm", (SBCSxxx GPR64:$Rd, XZR, GPR64:$Rm)>;
    947 
    948 // Note that adde and sube can form a chain longer than two (e.g. for 256-bit
    949 // addition). So the flag-setting instructions are appropriate.
    950 def : Pat<(adde GPR32:$Rn, GPR32:$Rm), (ADCSwww GPR32:$Rn, GPR32:$Rm)>;
    951 def : Pat<(adde GPR64:$Rn, GPR64:$Rm), (ADCSxxx GPR64:$Rn, GPR64:$Rm)>;
    952 def : Pat<(sube GPR32:$Rn, GPR32:$Rm), (SBCSwww GPR32:$Rn, GPR32:$Rm)>;
    953 def : Pat<(sube GPR64:$Rn, GPR64:$Rm), (SBCSxxx GPR64:$Rn, GPR64:$Rm)>;
    954 
    955 //===----------------------------------------------------------------------===//
    956 // Bitfield
    957 //===----------------------------------------------------------------------===//
    958 // Contains: SBFM, BFM, UBFM, [SU]XT[BHW], ASR, LSR, LSL, SBFI[ZX], BFI, BFXIL,
    959 //     UBFIZ, UBFX
    960 
    961 // Because of the rather complicated nearly-overlapping aliases, the decoding of
    962 // this range of instructions is handled manually. The architectural
    963 // instructions are BFM, SBFM and UBFM but a disassembler should never produce
    964 // these.
    965 //
    966 // In the end, the best option was to use BFM instructions for decoding under
    967 // almost all circumstances, but to create aliasing *Instructions* for each of
    968 // the canonical forms and specify a completely custom decoder which would
    969 // substitute the correct MCInst as needed.
    970 //
    971 // This also simplifies instruction selection, parsing etc because the MCInsts
    972 // have a shape that's closer to their use in code.
    973 
    974 //===-------------------------------
    975 // 1. The architectural BFM instructions
    976 //===-------------------------------
    977 
    978 def uimm5_asmoperand : AsmOperandClass {
    979   let Name = "UImm5";
    980   let PredicateMethod = "isUImm<5>";
    981   let RenderMethod = "addImmOperands";
    982   let DiagnosticType = "UImm5";
    983 }
    984 
    985 def uimm6_asmoperand : AsmOperandClass {
    986   let Name = "UImm6";
    987   let PredicateMethod = "isUImm<6>";
    988   let RenderMethod = "addImmOperands";
    989   let DiagnosticType = "UImm6";
    990 }
    991 
    992 def bitfield32_imm : Operand<i64>,
    993                      ImmLeaf<i64, [{ return Imm >= 0 && Imm < 32; }]> {
    994   let ParserMatchClass = uimm5_asmoperand;
    995 
    996   let DecoderMethod = "DecodeBitfield32ImmOperand";
    997 }
    998 
    999 
   1000 def bitfield64_imm : Operand<i64>,
   1001                      ImmLeaf<i64, [{ return Imm >= 0 && Imm < 64; }]> {
   1002   let ParserMatchClass = uimm6_asmoperand;
   1003 
   1004   // Default decoder works in 64-bit case: the 6-bit field can take any value.
   1005 }
   1006 
   1007 multiclass A64I_bitfieldSizes<bits<2> opc, string asmop> {
   1008   def wwii : A64I_bitfield<0b0, opc, 0b0, (outs GPR32:$Rd),
   1009                     (ins GPR32:$Rn, bitfield32_imm:$ImmR, bitfield32_imm:$ImmS),
   1010                     !strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"),
   1011                     [], NoItinerary> {
   1012     let DecoderMethod = "DecodeBitfieldInstruction";
   1013   }
   1014 
   1015   def xxii : A64I_bitfield<0b1, opc, 0b1, (outs GPR64:$Rd),
   1016                     (ins GPR64:$Rn, bitfield64_imm:$ImmR, bitfield64_imm:$ImmS),
   1017                     !strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"),
   1018                     [], NoItinerary> {
   1019     let DecoderMethod = "DecodeBitfieldInstruction";
   1020   }
   1021 }
   1022 
   1023 defm SBFM : A64I_bitfieldSizes<0b00, "sbfm">;
   1024 defm UBFM : A64I_bitfieldSizes<0b10, "ubfm">;
   1025 
   1026 // BFM instructions modify the destination register rather than defining it
   1027 // completely.
   1028 def BFMwwii :
   1029   A64I_bitfield<0b0, 0b01, 0b0, (outs GPR32:$Rd),
   1030         (ins GPR32:$src, GPR32:$Rn, bitfield32_imm:$ImmR, bitfield32_imm:$ImmS),
   1031         "bfm\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary> {
   1032   let DecoderMethod = "DecodeBitfieldInstruction";
   1033   let Constraints = "$src = $Rd";
   1034 }
   1035 
   1036 def BFMxxii :
   1037   A64I_bitfield<0b1, 0b01, 0b1, (outs GPR64:$Rd),
   1038         (ins GPR64:$src, GPR64:$Rn, bitfield64_imm:$ImmR, bitfield64_imm:$ImmS),
   1039         "bfm\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary> {
   1040   let DecoderMethod = "DecodeBitfieldInstruction";
   1041   let Constraints = "$src = $Rd";
   1042 }
   1043 
   1044 
   1045 //===-------------------------------
   1046 // 2. Extend aliases to 64-bit dest
   1047 //===-------------------------------
   1048 
   1049 // Unfortunately the extensions that end up as 64-bits cannot be handled by an
   1050 // instruction alias: their syntax is (for example) "SXTB x0, w0", which needs
   1051 // to be mapped to "SBFM x0, x0, #0, 7" (changing the class of Rn). InstAlias is
   1052 // not capable of such a map as far as I'm aware
   1053 
   1054 // Note that these instructions are strictly more specific than the
   1055 // BFM ones (in ImmR) so they can handle their own decoding.
   1056 class A64I_bf_ext<bit sf, bits<2> opc, RegisterClass GPRDest, string asmop,
   1057                     bits<6> imms, dag pattern>
   1058   : A64I_bitfield<sf, opc, sf,
   1059                   (outs GPRDest:$Rd), (ins GPR32:$Rn),
   1060                   !strconcat(asmop, "\t$Rd, $Rn"),
   1061                   [(set GPRDest:$Rd, pattern)], NoItinerary> {
   1062   let ImmR = 0b000000;
   1063   let ImmS = imms;
   1064 }
   1065 
   1066 // Signed extensions
   1067 def SXTBxw : A64I_bf_ext<0b1, 0b00, GPR64, "sxtb", 7,
   1068                          (sext_inreg (anyext GPR32:$Rn), i8)>;
   1069 def SXTBww : A64I_bf_ext<0b0, 0b00, GPR32, "sxtb", 7,
   1070                          (sext_inreg GPR32:$Rn, i8)>;
   1071 def SXTHxw : A64I_bf_ext<0b1, 0b00, GPR64, "sxth", 15,
   1072                          (sext_inreg (anyext GPR32:$Rn), i16)>;
   1073 def SXTHww : A64I_bf_ext<0b0, 0b00, GPR32, "sxth", 15,
   1074                          (sext_inreg GPR32:$Rn, i16)>;
   1075 def SXTWxw : A64I_bf_ext<0b1, 0b00, GPR64, "sxtw", 31, (sext GPR32:$Rn)>;
   1076 
   1077 // Unsigned extensions
   1078 def UXTBww : A64I_bf_ext<0b0, 0b10, GPR32, "uxtb", 7,
   1079                          (and GPR32:$Rn, 255)>;
   1080 def UXTHww : A64I_bf_ext<0b0, 0b10, GPR32, "uxth", 15,
   1081                          (and GPR32:$Rn, 65535)>;
   1082 
   1083 // The 64-bit unsigned variants are not strictly architectural but recommended
   1084 // for consistency.
   1085 let isAsmParserOnly = 1 in {
   1086   def UXTBxw : A64I_bf_ext<0b0, 0b10, GPR64, "uxtb", 7,
   1087                            (and (anyext GPR32:$Rn), 255)>;
   1088   def UXTHxw : A64I_bf_ext<0b0, 0b10, GPR64, "uxth", 15,
   1089                            (and (anyext GPR32:$Rn), 65535)>;
   1090 }
   1091 
   1092 // Extra patterns for when the source register is actually 64-bits
   1093 // too. There's no architectural difference here, it's just LLVM
   1094 // shinanigans. There's no need for equivalent zero-extension patterns
   1095 // because they'll already be caught by logical (immediate) matching.
   1096 def : Pat<(sext_inreg GPR64:$Rn, i8),
   1097           (SXTBxw (EXTRACT_SUBREG GPR64:$Rn, sub_32))>;
   1098 def : Pat<(sext_inreg GPR64:$Rn, i16),
   1099           (SXTHxw (EXTRACT_SUBREG GPR64:$Rn, sub_32))>;
   1100 def : Pat<(sext_inreg GPR64:$Rn, i32),
   1101           (SXTWxw (EXTRACT_SUBREG GPR64:$Rn, sub_32))>;
   1102 
   1103 
   1104 //===-------------------------------
   1105 // 3. Aliases for ASR and LSR (the simple shifts)
   1106 //===-------------------------------
   1107 
   1108 // These also handle their own decoding because ImmS being set makes
   1109 // them take precedence over BFM.
   1110 multiclass A64I_shift<bits<2> opc, string asmop, SDNode opnode> {
   1111   def wwi : A64I_bitfield<0b0, opc, 0b0,
   1112                     (outs GPR32:$Rd), (ins GPR32:$Rn, bitfield32_imm:$ImmR),
   1113                     !strconcat(asmop, "\t$Rd, $Rn, $ImmR"),
   1114                     [(set GPR32:$Rd, (opnode GPR32:$Rn, bitfield32_imm:$ImmR))],
   1115                     NoItinerary> {
   1116     let ImmS = 31;
   1117   }
   1118 
   1119   def xxi : A64I_bitfield<0b1, opc, 0b1,
   1120                     (outs GPR64:$Rd), (ins GPR64:$Rn, bitfield64_imm:$ImmR),
   1121                     !strconcat(asmop, "\t$Rd, $Rn, $ImmR"),
   1122                     [(set GPR64:$Rd, (opnode GPR64:$Rn, bitfield64_imm:$ImmR))],
   1123                     NoItinerary> {
   1124     let ImmS = 63;
   1125   }
   1126 
   1127 }
   1128 
   1129 defm ASR : A64I_shift<0b00, "asr", sra>;
   1130 defm LSR : A64I_shift<0b10, "lsr", srl>;
   1131 
   1132 //===-------------------------------
   1133 // 4. Aliases for LSL
   1134 //===-------------------------------
   1135 
   1136 // Unfortunately LSL and subsequent aliases are much more complicated. We need
   1137 // to be able to say certain output instruction fields depend in a complex
   1138 // manner on combinations of input assembly fields).
   1139 //
   1140 // MIOperandInfo *might* have been able to do it, but at the cost of
   1141 // significantly more C++ code.
   1142 
   1143 // N.b. contrary to usual practice these operands store the shift rather than
   1144 // the machine bits in an MCInst. The complexity overhead of consistency
   1145 // outweighed the benefits in this case (custom asmparser, printer and selection
   1146 // vs custom encoder).
   1147 def bitfield32_lsl_imm : Operand<i64>,
   1148                          ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 31; }]> {
   1149   let ParserMatchClass = uimm5_asmoperand;
   1150   let EncoderMethod = "getBitfield32LSLOpValue";
   1151 }
   1152 
   1153 def bitfield64_lsl_imm : Operand<i64>,
   1154                          ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 63; }]> {
   1155   let ParserMatchClass = uimm6_asmoperand;
   1156   let EncoderMethod = "getBitfield64LSLOpValue";
   1157 }
   1158 
   1159 class A64I_bitfield_lsl<bit sf, RegisterClass GPR, Operand operand>
   1160   : A64I_bitfield<sf, 0b10, sf, (outs GPR:$Rd), (ins GPR:$Rn, operand:$FullImm),
   1161                   "lsl\t$Rd, $Rn, $FullImm",
   1162                   [(set GPR:$Rd, (shl GPR:$Rn, operand:$FullImm))],
   1163                   NoItinerary> {
   1164   bits<12> FullImm;
   1165   let ImmR = FullImm{5-0};
   1166   let ImmS = FullImm{11-6};
   1167 
   1168   // No disassembler allowed because it would overlap with BFM which does the
   1169   // actual work.
   1170   let isAsmParserOnly = 1;
   1171 }
   1172 
   1173 def LSLwwi : A64I_bitfield_lsl<0b0, GPR32, bitfield32_lsl_imm>;
   1174 def LSLxxi : A64I_bitfield_lsl<0b1, GPR64, bitfield64_lsl_imm>;
   1175 
   1176 //===-------------------------------
   1177 // 5. Aliases for bitfield extract instructions
   1178 //===-------------------------------
   1179 
   1180 def bfx32_width_asmoperand : AsmOperandClass {
   1181   let Name = "BFX32Width";
   1182   let PredicateMethod = "isBitfieldWidth<32>";
   1183   let RenderMethod = "addBFXWidthOperands";
   1184   let DiagnosticType = "Width32";
   1185 }
   1186 
   1187 def bfx32_width : Operand<i64>, ImmLeaf<i64, [{ return true; }]> {
   1188   let PrintMethod = "printBFXWidthOperand";
   1189   let ParserMatchClass = bfx32_width_asmoperand;
   1190 }
   1191 
   1192 def bfx64_width_asmoperand : AsmOperandClass {
   1193   let Name = "BFX64Width";
   1194   let PredicateMethod = "isBitfieldWidth<64>";
   1195   let RenderMethod = "addBFXWidthOperands";
   1196   let DiagnosticType = "Width64";
   1197 }
   1198 
   1199 def bfx64_width : Operand<i64> {
   1200   let PrintMethod = "printBFXWidthOperand";
   1201   let ParserMatchClass = bfx64_width_asmoperand;
   1202 }
   1203 
   1204 
   1205 multiclass A64I_bitfield_extract<bits<2> opc, string asmop, SDNode op> {
   1206   def wwii : A64I_bitfield<0b0, opc, 0b0, (outs GPR32:$Rd),
   1207                        (ins GPR32:$Rn, bitfield32_imm:$ImmR, bfx32_width:$ImmS),
   1208                        !strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"),
   1209                        [(set GPR32:$Rd, (op GPR32:$Rn, imm:$ImmR, imm:$ImmS))],
   1210                        NoItinerary> {
   1211     // As above, no disassembler allowed.
   1212     let isAsmParserOnly = 1;
   1213   }
   1214 
   1215   def xxii : A64I_bitfield<0b1, opc, 0b1, (outs GPR64:$Rd),
   1216                        (ins GPR64:$Rn, bitfield64_imm:$ImmR, bfx64_width:$ImmS),
   1217                        !strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"),
   1218                        [(set GPR64:$Rd, (op GPR64:$Rn, imm:$ImmR, imm:$ImmS))],
   1219                        NoItinerary> {
   1220     // As above, no disassembler allowed.
   1221     let isAsmParserOnly = 1;
   1222   }
   1223 }
   1224 
   1225 defm SBFX :  A64I_bitfield_extract<0b00, "sbfx", A64Sbfx>;
   1226 defm UBFX :  A64I_bitfield_extract<0b10, "ubfx", A64Ubfx>;
   1227 
   1228 // Again, variants based on BFM modify Rd so need it as an input too.
   1229 def BFXILwwii : A64I_bitfield<0b0, 0b01, 0b0, (outs GPR32:$Rd),
   1230            (ins GPR32:$src, GPR32:$Rn, bitfield32_imm:$ImmR, bfx32_width:$ImmS),
   1231            "bfxil\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary> {
   1232   // As above, no disassembler allowed.
   1233   let isAsmParserOnly = 1;
   1234   let Constraints = "$src = $Rd";
   1235 }
   1236 
   1237 def BFXILxxii : A64I_bitfield<0b1, 0b01, 0b1, (outs GPR64:$Rd),
   1238            (ins GPR64:$src, GPR64:$Rn, bitfield64_imm:$ImmR, bfx64_width:$ImmS),
   1239            "bfxil\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary> {
   1240   // As above, no disassembler allowed.
   1241   let isAsmParserOnly = 1;
   1242   let Constraints = "$src = $Rd";
   1243 }
   1244 
   1245 // SBFX instructions can do a 1-instruction sign-extension of boolean values.
   1246 def : Pat<(sext_inreg GPR64:$Rn, i1), (SBFXxxii GPR64:$Rn, 0, 0)>;
   1247 def : Pat<(sext_inreg GPR32:$Rn, i1), (SBFXwwii GPR32:$Rn, 0, 0)>;
   1248 def : Pat<(i64 (sext_inreg (anyext GPR32:$Rn), i1)),
   1249           (SBFXxxii (SUBREG_TO_REG (i64 0), GPR32:$Rn, sub_32), 0, 0)>;
   1250 
   1251 // UBFX makes sense as an implementation of a 64-bit zero-extension too. Could
   1252 // use either 64-bit or 32-bit variant, but 32-bit might be more efficient.
   1253 def : Pat<(zext GPR32:$Rn), (SUBREG_TO_REG (i64 0), (UBFXwwii GPR32:$Rn, 0, 31),
   1254                                            sub_32)>;
   1255 
   1256 //===-------------------------------
   1257 // 6. Aliases for bitfield insert instructions
   1258 //===-------------------------------
   1259 
   1260 def bfi32_lsb_asmoperand : AsmOperandClass {
   1261   let Name = "BFI32LSB";
   1262   let PredicateMethod = "isUImm<5>";
   1263   let RenderMethod = "addBFILSBOperands<32>";
   1264   let DiagnosticType = "UImm5";
   1265 }
   1266 
   1267 def bfi32_lsb : Operand<i64>,
   1268                 ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 31; }]> {
   1269   let PrintMethod = "printBFILSBOperand<32>";
   1270   let ParserMatchClass = bfi32_lsb_asmoperand;
   1271 }
   1272 
   1273 def bfi64_lsb_asmoperand : AsmOperandClass {
   1274   let Name = "BFI64LSB";
   1275   let PredicateMethod = "isUImm<6>";
   1276   let RenderMethod = "addBFILSBOperands<64>";
   1277   let DiagnosticType = "UImm6";
   1278 }
   1279 
   1280 def bfi64_lsb : Operand<i64>,
   1281                 ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 63; }]> {
   1282   let PrintMethod = "printBFILSBOperand<64>";
   1283   let ParserMatchClass = bfi64_lsb_asmoperand;
   1284 }
   1285 
   1286 // Width verification is performed during conversion so width operand can be
   1287 // shared between 32/64-bit cases. Still needed for the print method though
   1288 // because ImmR encodes "width - 1".
   1289 def bfi32_width_asmoperand : AsmOperandClass {
   1290   let Name = "BFI32Width";
   1291   let PredicateMethod = "isBitfieldWidth<32>";
   1292   let RenderMethod = "addBFIWidthOperands";
   1293   let DiagnosticType = "Width32";
   1294 }
   1295 
   1296 def bfi32_width : Operand<i64>,
   1297                   ImmLeaf<i64, [{ return Imm >= 1 && Imm <= 32; }]> {
   1298   let PrintMethod = "printBFIWidthOperand";
   1299   let ParserMatchClass = bfi32_width_asmoperand;
   1300 }
   1301 
   1302 def bfi64_width_asmoperand : AsmOperandClass {
   1303   let Name = "BFI64Width";
   1304   let PredicateMethod = "isBitfieldWidth<64>";
   1305   let RenderMethod = "addBFIWidthOperands";
   1306   let DiagnosticType = "Width64";
   1307 }
   1308 
   1309 def bfi64_width : Operand<i64>,
   1310                   ImmLeaf<i64, [{ return Imm >= 1 && Imm <= 64; }]> {
   1311   let PrintMethod = "printBFIWidthOperand";
   1312   let ParserMatchClass = bfi64_width_asmoperand;
   1313 }
   1314 
   1315 multiclass A64I_bitfield_insert<bits<2> opc, string asmop> {
   1316   def wwii : A64I_bitfield<0b0, opc, 0b0, (outs GPR32:$Rd),
   1317                            (ins GPR32:$Rn, bfi32_lsb:$ImmR, bfi32_width:$ImmS),
   1318                            !strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"),
   1319                            [], NoItinerary> {
   1320     // As above, no disassembler allowed.
   1321     let isAsmParserOnly = 1;
   1322   }
   1323 
   1324   def xxii : A64I_bitfield<0b1, opc, 0b1, (outs GPR64:$Rd),
   1325                            (ins GPR64:$Rn, bfi64_lsb:$ImmR, bfi64_width:$ImmS),
   1326                            !strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"),
   1327                            [], NoItinerary> {
   1328     // As above, no disassembler allowed.
   1329     let isAsmParserOnly = 1;
   1330   }
   1331 }
   1332 
   1333 defm SBFIZ :  A64I_bitfield_insert<0b00, "sbfiz">;
   1334 defm UBFIZ :  A64I_bitfield_insert<0b10, "ubfiz">;
   1335 
   1336 
   1337 def BFIwwii : A64I_bitfield<0b0, 0b01, 0b0, (outs GPR32:$Rd),
   1338                 (ins GPR32:$src, GPR32:$Rn, bfi32_lsb:$ImmR, bfi32_width:$ImmS),
   1339                 "bfi\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary> {
   1340   // As above, no disassembler allowed.
   1341   let isAsmParserOnly = 1;
   1342   let Constraints = "$src = $Rd";
   1343 }
   1344 
   1345 def BFIxxii : A64I_bitfield<0b1, 0b01, 0b1, (outs GPR64:$Rd),
   1346                 (ins GPR64:$src, GPR64:$Rn, bfi64_lsb:$ImmR, bfi64_width:$ImmS),
   1347                 "bfi\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary> {
   1348   // As above, no disassembler allowed.
   1349   let isAsmParserOnly = 1;
   1350   let Constraints = "$src = $Rd";
   1351 }
   1352 
   1353 //===----------------------------------------------------------------------===//
   1354 // Compare and branch (immediate)
   1355 //===----------------------------------------------------------------------===//
   1356 // Contains: CBZ, CBNZ
   1357 
   1358 class label_asmoperand<int width, int scale> : AsmOperandClass {
   1359   let Name = "Label" # width # "_" # scale;
   1360   let PredicateMethod = "isLabel<" # width # "," # scale # ">";
   1361   let RenderMethod = "addLabelOperands<" # width # ", " # scale # ">";
   1362   let DiagnosticType = "Label";
   1363 }
   1364 
   1365 def label_wid19_scal4_asmoperand : label_asmoperand<19, 4>;
   1366 
   1367 // All conditional immediate branches are the same really: 19 signed bits scaled
   1368 // by the instruction-size (4).
   1369 def bcc_target : Operand<OtherVT> {
   1370   // This label is a 19-bit offset from PC, scaled by the instruction-width: 4.
   1371   let ParserMatchClass = label_wid19_scal4_asmoperand;
   1372   let PrintMethod = "printLabelOperand<19, 4>";
   1373   let EncoderMethod = "getLabelOpValue<AArch64::fixup_a64_condbr>";
   1374   let OperandType = "OPERAND_PCREL";
   1375 }
   1376 
   1377 multiclass cmpbr_sizes<bit op, string asmop, ImmLeaf SETOP> {
   1378   let isBranch = 1, isTerminator = 1 in {
   1379   def x : A64I_cmpbr<0b1, op,
   1380                      (outs),
   1381                      (ins GPR64:$Rt, bcc_target:$Label),
   1382                      !strconcat(asmop,"\t$Rt, $Label"),
   1383                      [(A64br_cc (A64cmp GPR64:$Rt, 0), SETOP, bb:$Label)],
   1384                      NoItinerary>;
   1385 
   1386   def w : A64I_cmpbr<0b0, op,
   1387                      (outs),
   1388                      (ins GPR32:$Rt, bcc_target:$Label),
   1389                      !strconcat(asmop,"\t$Rt, $Label"),
   1390                      [(A64br_cc (A64cmp GPR32:$Rt, 0), SETOP, bb:$Label)],
   1391                      NoItinerary>;
   1392   }
   1393 }
   1394 
   1395 defm CBZ  : cmpbr_sizes<0b0, "cbz",  ImmLeaf<i32, [{
   1396   return Imm == A64CC::EQ;
   1397 }]> >;
   1398 defm CBNZ : cmpbr_sizes<0b1, "cbnz", ImmLeaf<i32, [{
   1399   return Imm == A64CC::NE;
   1400 }]> >;
   1401 
   1402 //===----------------------------------------------------------------------===//
   1403 // Conditional branch (immediate) instructions
   1404 //===----------------------------------------------------------------------===//
   1405 // Contains: B.cc
   1406 
   1407 def cond_code_asmoperand : AsmOperandClass {
   1408   let Name = "CondCode";
   1409   let DiagnosticType = "CondCode";
   1410 }
   1411 
   1412 def cond_code : Operand<i32>, ImmLeaf<i32, [{
   1413   return Imm >= 0 && Imm <= 15;
   1414 }]> {
   1415   let PrintMethod = "printCondCodeOperand";
   1416   let ParserMatchClass = cond_code_asmoperand;
   1417 }
   1418 
   1419 def Bcc : A64I_condbr<0b0, 0b0, (outs),
   1420                 (ins cond_code:$Cond, bcc_target:$Label),
   1421                 "b.$Cond $Label", [(A64br_cc NZCV, (i32 imm:$Cond), bb:$Label)],
   1422                 NoItinerary> {
   1423   let Uses = [NZCV];
   1424   let isBranch = 1;
   1425   let isTerminator = 1;
   1426 }
   1427 
   1428 //===----------------------------------------------------------------------===//
   1429 // Conditional compare (immediate) instructions
   1430 //===----------------------------------------------------------------------===//
   1431 // Contains: CCMN, CCMP
   1432 
   1433 def uimm4_asmoperand : AsmOperandClass {
   1434   let Name = "UImm4";
   1435   let PredicateMethod = "isUImm<4>";
   1436   let RenderMethod = "addImmOperands";
   1437   let DiagnosticType = "UImm4";
   1438 }
   1439 
   1440 def uimm4 : Operand<i32> {
   1441   let ParserMatchClass = uimm4_asmoperand;
   1442 }
   1443 
   1444 def uimm5 : Operand<i32> {
   1445   let ParserMatchClass = uimm5_asmoperand;
   1446 }
   1447 
   1448 // The only difference between this operand and the one for instructions like
   1449 // B.cc is that it's parsed manually. The other get parsed implicitly as part of
   1450 // the mnemonic handling.
   1451 def cond_code_op_asmoperand : AsmOperandClass {
   1452   let Name = "CondCodeOp";
   1453   let RenderMethod = "addCondCodeOperands";
   1454   let PredicateMethod = "isCondCode";
   1455   let ParserMethod = "ParseCondCodeOperand";
   1456   let DiagnosticType = "CondCode";
   1457 }
   1458 
   1459 def cond_code_op : Operand<i32> {
   1460   let PrintMethod = "printCondCodeOperand";
   1461   let ParserMatchClass = cond_code_op_asmoperand;
   1462 }
   1463 
   1464 class A64I_condcmpimmImpl<bit sf, bit op, RegisterClass GPR, string asmop>
   1465   : A64I_condcmpimm<sf, op, 0b0, 0b0, 0b1, (outs),
   1466                 (ins GPR:$Rn, uimm5:$UImm5, uimm4:$NZCVImm, cond_code_op:$Cond),
   1467                 !strconcat(asmop, "\t$Rn, $UImm5, $NZCVImm, $Cond"),
   1468                 [], NoItinerary> {
   1469   let Defs = [NZCV];
   1470 }
   1471 
   1472 def CCMNwi : A64I_condcmpimmImpl<0b0, 0b0, GPR32, "ccmn">;
   1473 def CCMNxi : A64I_condcmpimmImpl<0b1, 0b0, GPR64, "ccmn">;
   1474 def CCMPwi : A64I_condcmpimmImpl<0b0, 0b1, GPR32, "ccmp">;
   1475 def CCMPxi : A64I_condcmpimmImpl<0b1, 0b1, GPR64, "ccmp">;
   1476 
   1477 //===----------------------------------------------------------------------===//
   1478 // Conditional compare (register) instructions
   1479 //===----------------------------------------------------------------------===//
   1480 // Contains: CCMN, CCMP
   1481 
   1482 class A64I_condcmpregImpl<bit sf, bit op, RegisterClass GPR, string asmop>
   1483   : A64I_condcmpreg<sf, op, 0b0, 0b0, 0b1,
   1484                     (outs),
   1485                     (ins GPR:$Rn, GPR:$Rm, uimm4:$NZCVImm, cond_code_op:$Cond),
   1486                     !strconcat(asmop, "\t$Rn, $Rm, $NZCVImm, $Cond"),
   1487                     [], NoItinerary> {
   1488   let Defs = [NZCV];
   1489 }
   1490 
   1491 def CCMNww : A64I_condcmpregImpl<0b0, 0b0, GPR32, "ccmn">;
   1492 def CCMNxx : A64I_condcmpregImpl<0b1, 0b0, GPR64, "ccmn">;
   1493 def CCMPww : A64I_condcmpregImpl<0b0, 0b1, GPR32, "ccmp">;
   1494 def CCMPxx : A64I_condcmpregImpl<0b1, 0b1, GPR64, "ccmp">;
   1495 
   1496 //===----------------------------------------------------------------------===//
   1497 // Conditional select instructions
   1498 //===----------------------------------------------------------------------===//
   1499 // Contains: CSEL, CSINC, CSINV, CSNEG + aliases CSET, CSETM, CINC, CINV, CNEG
   1500 
   1501 // Condition code which is encoded as the inversion (semantically rather than
   1502 // bitwise) in the instruction.
   1503 def inv_cond_code_op_asmoperand : AsmOperandClass {
   1504   let Name = "InvCondCodeOp";
   1505   let RenderMethod = "addInvCondCodeOperands";
   1506   let PredicateMethod = "isCondCode";
   1507   let ParserMethod = "ParseCondCodeOperand";
   1508   let DiagnosticType = "CondCode";
   1509 }
   1510 
   1511 def inv_cond_code_op : Operand<i32> {
   1512   let ParserMatchClass = inv_cond_code_op_asmoperand;
   1513 }
   1514 
   1515 // Having a separate operand for the selectable use-case is debatable, but gives
   1516 // consistency with cond_code.
   1517 def inv_cond_XFORM : SDNodeXForm<imm, [{
   1518   A64CC::CondCodes CC = static_cast<A64CC::CondCodes>(N->getZExtValue());
   1519   return CurDAG->getTargetConstant(A64InvertCondCode(CC), MVT::i32);
   1520 }]>;
   1521 
   1522 def inv_cond_code
   1523   : ImmLeaf<i32, [{ return Imm >= 0 && Imm <= 15; }], inv_cond_XFORM>;
   1524 
   1525 
   1526 multiclass A64I_condselSizes<bit op, bits<2> op2, string asmop,
   1527                              SDPatternOperator select> {
   1528   let Uses = [NZCV] in {
   1529     def wwwc : A64I_condsel<0b0, op, 0b0, op2,
   1530                             (outs GPR32:$Rd),
   1531                             (ins GPR32:$Rn, GPR32:$Rm, cond_code_op:$Cond),
   1532                             !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Cond"),
   1533                             [(set GPR32:$Rd, (select GPR32:$Rn, GPR32:$Rm))],
   1534                             NoItinerary>;
   1535 
   1536 
   1537     def xxxc : A64I_condsel<0b1, op, 0b0, op2,
   1538                             (outs GPR64:$Rd),
   1539                             (ins GPR64:$Rn, GPR64:$Rm, cond_code_op:$Cond),
   1540                             !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Cond"),
   1541                             [(set GPR64:$Rd, (select GPR64:$Rn, GPR64:$Rm))],
   1542                             NoItinerary>;
   1543   }
   1544 }
   1545 
   1546 def simple_select
   1547   : PatFrag<(ops node:$lhs, node:$rhs),
   1548             (A64select_cc NZCV, node:$lhs, node:$rhs, (i32 imm:$Cond))>;
   1549 
   1550 class complex_select<SDPatternOperator opnode>
   1551   : PatFrag<(ops node:$lhs, node:$rhs),
   1552         (A64select_cc NZCV, node:$lhs, (opnode node:$rhs), (i32 imm:$Cond))>;
   1553 
   1554 
   1555 defm CSEL : A64I_condselSizes<0b0, 0b00, "csel", simple_select>;
   1556 defm CSINC : A64I_condselSizes<0b0, 0b01, "csinc",
   1557                                complex_select<PatFrag<(ops node:$val),
   1558                                                       (add node:$val, 1)>>>;
   1559 defm CSINV : A64I_condselSizes<0b1, 0b00, "csinv", complex_select<not>>;
   1560 defm CSNEG : A64I_condselSizes<0b1, 0b01, "csneg", complex_select<ineg>>;
   1561 
   1562 // Now the instruction aliases, which fit nicely into LLVM's model:
   1563 
   1564 def : InstAlias<"cset $Rd, $Cond",
   1565                 (CSINCwwwc GPR32:$Rd, WZR, WZR, inv_cond_code_op:$Cond)>;
   1566 def : InstAlias<"cset $Rd, $Cond",
   1567                 (CSINCxxxc GPR64:$Rd, XZR, XZR, inv_cond_code_op:$Cond)>;
   1568 def : InstAlias<"csetm $Rd, $Cond",
   1569                 (CSINVwwwc GPR32:$Rd, WZR, WZR, inv_cond_code_op:$Cond)>;
   1570 def : InstAlias<"csetm $Rd, $Cond",
   1571                 (CSINVxxxc GPR64:$Rd, XZR, XZR, inv_cond_code_op:$Cond)>;
   1572 def : InstAlias<"cinc $Rd, $Rn, $Cond",
   1573            (CSINCwwwc GPR32:$Rd, GPR32:$Rn, GPR32:$Rn, inv_cond_code_op:$Cond)>;
   1574 def : InstAlias<"cinc $Rd, $Rn, $Cond",
   1575            (CSINCxxxc GPR64:$Rd, GPR64:$Rn, GPR64:$Rn, inv_cond_code_op:$Cond)>;
   1576 def : InstAlias<"cinv $Rd, $Rn, $Cond",
   1577            (CSINVwwwc GPR32:$Rd, GPR32:$Rn, GPR32:$Rn, inv_cond_code_op:$Cond)>;
   1578 def : InstAlias<"cinv $Rd, $Rn, $Cond",
   1579            (CSINVxxxc GPR64:$Rd, GPR64:$Rn, GPR64:$Rn, inv_cond_code_op:$Cond)>;
   1580 def : InstAlias<"cneg $Rd, $Rn, $Cond",
   1581            (CSNEGwwwc GPR32:$Rd, GPR32:$Rn, GPR32:$Rn, inv_cond_code_op:$Cond)>;
   1582 def : InstAlias<"cneg $Rd, $Rn, $Cond",
   1583            (CSNEGxxxc GPR64:$Rd, GPR64:$Rn, GPR64:$Rn, inv_cond_code_op:$Cond)>;
   1584 
   1585 // Finally some helper patterns.
   1586 
   1587 // For CSET (a.k.a. zero-extension of icmp)
   1588 def : Pat<(A64select_cc NZCV, 0, 1, cond_code:$Cond),
   1589           (CSINCwwwc WZR, WZR, cond_code:$Cond)>;
   1590 def : Pat<(A64select_cc NZCV, 1, 0, inv_cond_code:$Cond),
   1591           (CSINCwwwc WZR, WZR, inv_cond_code:$Cond)>;
   1592 
   1593 def : Pat<(A64select_cc NZCV, 0, 1, cond_code:$Cond),
   1594           (CSINCxxxc XZR, XZR, cond_code:$Cond)>;
   1595 def : Pat<(A64select_cc NZCV, 1, 0, inv_cond_code:$Cond),
   1596           (CSINCxxxc XZR, XZR, inv_cond_code:$Cond)>;
   1597 
   1598 // For CSETM (a.k.a. sign-extension of icmp)
   1599 def : Pat<(A64select_cc NZCV, 0, -1, cond_code:$Cond),
   1600           (CSINVwwwc WZR, WZR, cond_code:$Cond)>;
   1601 def : Pat<(A64select_cc NZCV, -1, 0, inv_cond_code:$Cond),
   1602           (CSINVwwwc WZR, WZR, inv_cond_code:$Cond)>;
   1603 
   1604 def : Pat<(A64select_cc NZCV, 0, -1, cond_code:$Cond),
   1605           (CSINVxxxc XZR, XZR, cond_code:$Cond)>;
   1606 def : Pat<(A64select_cc NZCV, -1, 0, inv_cond_code:$Cond),
   1607           (CSINVxxxc XZR, XZR, inv_cond_code:$Cond)>;
   1608 
   1609 // CINC, CINV and CNEG get dealt with automatically, which leaves the issue of
   1610 // commutativity. The instructions are to complex for isCommutable to be used,
   1611 // so we have to create the patterns manually:
   1612 
   1613 // No commutable pattern for CSEL since the commuted version is isomorphic.
   1614 
   1615 // CSINC
   1616 def :Pat<(A64select_cc NZCV, (add GPR32:$Rm, 1), GPR32:$Rn,
   1617          inv_cond_code:$Cond),
   1618          (CSINCwwwc GPR32:$Rn, GPR32:$Rm, inv_cond_code:$Cond)>;
   1619 def :Pat<(A64select_cc NZCV, (add GPR64:$Rm, 1), GPR64:$Rn,
   1620          inv_cond_code:$Cond),
   1621          (CSINCxxxc GPR64:$Rn, GPR64:$Rm, inv_cond_code:$Cond)>;
   1622 
   1623 // CSINV
   1624 def :Pat<(A64select_cc NZCV, (not GPR32:$Rm), GPR32:$Rn, inv_cond_code:$Cond),
   1625          (CSINVwwwc GPR32:$Rn, GPR32:$Rm, inv_cond_code:$Cond)>;
   1626 def :Pat<(A64select_cc NZCV, (not GPR64:$Rm), GPR64:$Rn, inv_cond_code:$Cond),
   1627          (CSINVxxxc GPR64:$Rn, GPR64:$Rm, inv_cond_code:$Cond)>;
   1628 
   1629 // CSNEG
   1630 def :Pat<(A64select_cc NZCV, (ineg GPR32:$Rm), GPR32:$Rn, inv_cond_code:$Cond),
   1631          (CSNEGwwwc GPR32:$Rn, GPR32:$Rm, inv_cond_code:$Cond)>;
   1632 def :Pat<(A64select_cc NZCV, (ineg GPR64:$Rm), GPR64:$Rn, inv_cond_code:$Cond),
   1633          (CSNEGxxxc GPR64:$Rn, GPR64:$Rm, inv_cond_code:$Cond)>;
   1634 
   1635 //===----------------------------------------------------------------------===//
   1636 // Data Processing (1 source) instructions
   1637 //===----------------------------------------------------------------------===//
   1638 // Contains: RBIT, REV16, REV, REV32, CLZ, CLS.
   1639 
   1640 // We define an unary operator which always fails. We will use this to
   1641 // define unary operators that cannot be matched.
   1642 
   1643 class A64I_dp_1src_impl<bit sf, bits<6> opcode, string asmop,
   1644                    list<dag> patterns, RegisterClass GPRrc,
   1645                    InstrItinClass itin>:
   1646       A64I_dp_1src<sf,
   1647                    0,
   1648                    0b00000,
   1649                    opcode,
   1650                    !strconcat(asmop, "\t$Rd, $Rn"),
   1651                    (outs GPRrc:$Rd),
   1652                    (ins GPRrc:$Rn),
   1653                    patterns,
   1654                    itin>;
   1655 
   1656 multiclass A64I_dp_1src <bits<6> opcode, string asmop> {
   1657   let hasSideEffects = 0 in {
   1658     def ww : A64I_dp_1src_impl<0b0, opcode, asmop, [], GPR32, NoItinerary>;
   1659     def xx : A64I_dp_1src_impl<0b1, opcode, asmop, [], GPR64, NoItinerary>;
   1660   }
   1661 }
   1662 
   1663 defm RBIT  : A64I_dp_1src<0b000000, "rbit">;
   1664 defm CLS   : A64I_dp_1src<0b000101, "cls">;
   1665 defm CLZ   : A64I_dp_1src<0b000100, "clz">;
   1666 
   1667 def : Pat<(ctlz GPR32:$Rn), (CLZww GPR32:$Rn)>;
   1668 def : Pat<(ctlz GPR64:$Rn), (CLZxx GPR64:$Rn)>;
   1669 def : Pat<(ctlz_zero_undef GPR32:$Rn), (CLZww GPR32:$Rn)>;
   1670 def : Pat<(ctlz_zero_undef GPR64:$Rn), (CLZxx GPR64:$Rn)>;
   1671 
   1672 def : Pat<(cttz GPR32:$Rn), (CLZww (RBITww GPR32:$Rn))>;
   1673 def : Pat<(cttz GPR64:$Rn), (CLZxx (RBITxx GPR64:$Rn))>;
   1674 def : Pat<(cttz_zero_undef GPR32:$Rn), (CLZww (RBITww GPR32:$Rn))>;
   1675 def : Pat<(cttz_zero_undef GPR64:$Rn), (CLZxx (RBITxx GPR64:$Rn))>;
   1676 
   1677 
   1678 def REVww : A64I_dp_1src_impl<0b0, 0b000010, "rev",
   1679                               [(set GPR32:$Rd, (bswap GPR32:$Rn))],
   1680                               GPR32, NoItinerary>;
   1681 def REVxx : A64I_dp_1src_impl<0b1, 0b000011, "rev",
   1682                               [(set GPR64:$Rd, (bswap GPR64:$Rn))],
   1683                               GPR64, NoItinerary>;
   1684 def REV32xx : A64I_dp_1src_impl<0b1, 0b000010, "rev32",
   1685                           [(set GPR64:$Rd, (bswap (rotr GPR64:$Rn, (i64 32))))],
   1686                           GPR64, NoItinerary>;
   1687 def REV16ww : A64I_dp_1src_impl<0b0, 0b000001, "rev16",
   1688                           [(set GPR32:$Rd, (bswap (rotr GPR32:$Rn, (i64 16))))],
   1689                           GPR32,
   1690                           NoItinerary>;
   1691 def REV16xx : A64I_dp_1src_impl<0b1, 0b000001, "rev16", [], GPR64, NoItinerary>;
   1692 
   1693 //===----------------------------------------------------------------------===//
   1694 // Data Processing (2 sources) instructions
   1695 //===----------------------------------------------------------------------===//
   1696 // Contains: CRC32C?[BHWX], UDIV, SDIV, LSLV, LSRV, ASRV, RORV + aliases LSL,
   1697 //           LSR, ASR, ROR
   1698 
   1699 
   1700 class dp_2src_impl<bit sf, bits<6> opcode, string asmop, list<dag> patterns,
   1701                    RegisterClass GPRsp,
   1702                    InstrItinClass itin>:
   1703       A64I_dp_2src<sf,
   1704                    opcode,
   1705                    0,
   1706                    !strconcat(asmop, "\t$Rd, $Rn, $Rm"),
   1707                    (outs GPRsp:$Rd),
   1708                    (ins GPRsp:$Rn, GPRsp:$Rm),
   1709                    patterns,
   1710                    itin>;
   1711 
   1712 multiclass dp_2src_crc<bit c, string asmop> {
   1713   def B_www : dp_2src_impl<0b0, {0, 1, 0, c, 0, 0},
   1714                            !strconcat(asmop, "b"), [], GPR32, NoItinerary>;
   1715   def H_www : dp_2src_impl<0b0, {0, 1, 0, c, 0, 1},
   1716                            !strconcat(asmop, "h"), [], GPR32, NoItinerary>;
   1717   def W_www : dp_2src_impl<0b0, {0, 1, 0, c, 1, 0},
   1718                            !strconcat(asmop, "w"), [], GPR32, NoItinerary>;
   1719   def X_wwx : A64I_dp_2src<0b1, {0, 1, 0, c, 1, 1}, 0b0,
   1720                            !strconcat(asmop, "x\t$Rd, $Rn, $Rm"),
   1721                            (outs GPR32:$Rd), (ins GPR32:$Rn, GPR64:$Rm), [],
   1722                            NoItinerary>;
   1723 }
   1724 
   1725 multiclass dp_2src_zext <bits<6> opcode, string asmop, SDPatternOperator op> {
   1726    def www : dp_2src_impl<0b0,
   1727                          opcode,
   1728                          asmop,
   1729                          [(set GPR32:$Rd,
   1730                                (op GPR32:$Rn, (i64 (zext GPR32:$Rm))))],
   1731                          GPR32,
   1732                          NoItinerary>;
   1733    def xxx : dp_2src_impl<0b1,
   1734                          opcode,
   1735                          asmop,
   1736                          [(set GPR64:$Rd, (op GPR64:$Rn, GPR64:$Rm))],
   1737                          GPR64,
   1738                          NoItinerary>;
   1739 }
   1740 
   1741 
   1742 multiclass dp_2src <bits<6> opcode, string asmop, SDPatternOperator op> {
   1743     def www : dp_2src_impl<0b0,
   1744                          opcode,
   1745                          asmop,
   1746                          [(set GPR32:$Rd, (op GPR32:$Rn, GPR32:$Rm))],
   1747                          GPR32,
   1748                          NoItinerary>;
   1749    def xxx : dp_2src_impl<0b1,
   1750                          opcode,
   1751                          asmop,
   1752                          [(set GPR64:$Rd, (op GPR64:$Rn, GPR64:$Rm))],
   1753                          GPR64,
   1754                          NoItinerary>;
   1755 }
   1756 
   1757 // Here we define the data processing 2 source instructions.
   1758 defm CRC32  : dp_2src_crc<0b0, "crc32">;
   1759 defm CRC32C : dp_2src_crc<0b1, "crc32c">;
   1760 
   1761 defm UDIV : dp_2src<0b000010, "udiv", udiv>;
   1762 defm SDIV : dp_2src<0b000011, "sdiv", sdiv>;
   1763 
   1764 defm LSLV : dp_2src_zext<0b001000, "lsl", shl>;
   1765 defm LSRV : dp_2src_zext<0b001001, "lsr", srl>;
   1766 defm ASRV : dp_2src_zext<0b001010, "asr", sra>;
   1767 defm RORV : dp_2src_zext<0b001011, "ror", rotr>;
   1768 
   1769 // Extra patterns for an incoming 64-bit value for a 32-bit
   1770 // operation. Since the LLVM operations are undefined (as in C) if the
   1771 // RHS is out of range, it's perfectly permissible to discard the high
   1772 // bits of the GPR64.
   1773 def : Pat<(shl GPR32:$Rn, GPR64:$Rm),
   1774           (LSLVwww GPR32:$Rn, (EXTRACT_SUBREG GPR64:$Rm, sub_32))>;
   1775 def : Pat<(srl GPR32:$Rn, GPR64:$Rm),
   1776           (LSRVwww GPR32:$Rn, (EXTRACT_SUBREG GPR64:$Rm, sub_32))>;
   1777 def : Pat<(sra GPR32:$Rn, GPR64:$Rm),
   1778           (ASRVwww GPR32:$Rn, (EXTRACT_SUBREG GPR64:$Rm, sub_32))>;
   1779 def : Pat<(rotr GPR32:$Rn, GPR64:$Rm),
   1780           (RORVwww GPR32:$Rn, (EXTRACT_SUBREG GPR64:$Rm, sub_32))>;
   1781 
   1782 // Here we define the aliases for the data processing 2 source instructions.
   1783 def LSL_mnemonic : MnemonicAlias<"lslv", "lsl">;
   1784 def LSR_mnemonic : MnemonicAlias<"lsrv", "lsr">;
   1785 def ASR_menmonic : MnemonicAlias<"asrv", "asr">;
   1786 def ROR_menmonic : MnemonicAlias<"rorv", "ror">;
   1787 
   1788 //===----------------------------------------------------------------------===//
   1789 // Data Processing (3 sources) instructions
   1790 //===----------------------------------------------------------------------===//
   1791 // Contains: MADD, MSUB, SMADDL, SMSUBL, SMULH, UMADDL, UMSUBL, UMULH
   1792 //    + aliases MUL, MNEG, SMULL, SMNEGL, UMULL, UMNEGL
   1793 
   1794 class A64I_dp3_4operand<bit sf, bits<6> opcode, RegisterClass AccReg,
   1795                         RegisterClass SrcReg, string asmop, dag pattern>
   1796   : A64I_dp3<sf, opcode,
   1797              (outs AccReg:$Rd), (ins SrcReg:$Rn, SrcReg:$Rm, AccReg:$Ra),
   1798              !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Ra"),
   1799              [(set AccReg:$Rd, pattern)], NoItinerary> {
   1800   RegisterClass AccGPR = AccReg;
   1801   RegisterClass SrcGPR = SrcReg;
   1802 }
   1803 
   1804 def MADDwwww : A64I_dp3_4operand<0b0, 0b000000, GPR32, GPR32, "madd",
   1805                                  (add GPR32:$Ra, (mul GPR32:$Rn, GPR32:$Rm))>;
   1806 def MADDxxxx : A64I_dp3_4operand<0b1, 0b000000, GPR64, GPR64, "madd",
   1807                                  (add GPR64:$Ra, (mul GPR64:$Rn, GPR64:$Rm))>;
   1808 
   1809 def MSUBwwww : A64I_dp3_4operand<0b0, 0b000001, GPR32, GPR32, "msub",
   1810                                  (sub GPR32:$Ra, (mul GPR32:$Rn, GPR32:$Rm))>;
   1811 def MSUBxxxx : A64I_dp3_4operand<0b1, 0b000001, GPR64, GPR64, "msub",
   1812                                  (sub GPR64:$Ra, (mul GPR64:$Rn, GPR64:$Rm))>;
   1813 
   1814 def SMADDLxwwx : A64I_dp3_4operand<0b1, 0b000010, GPR64, GPR32, "smaddl",
   1815                (add GPR64:$Ra, (mul (i64 (sext GPR32:$Rn)), (sext GPR32:$Rm)))>;
   1816 def SMSUBLxwwx : A64I_dp3_4operand<0b1, 0b000011, GPR64, GPR32, "smsubl",
   1817                (sub GPR64:$Ra, (mul (i64 (sext GPR32:$Rn)), (sext GPR32:$Rm)))>;
   1818 
   1819 def UMADDLxwwx : A64I_dp3_4operand<0b1, 0b001010, GPR64, GPR32, "umaddl",
   1820                (add GPR64:$Ra, (mul (i64 (zext GPR32:$Rn)), (zext GPR32:$Rm)))>;
   1821 def UMSUBLxwwx : A64I_dp3_4operand<0b1, 0b001011, GPR64, GPR32, "umsubl",
   1822                (sub GPR64:$Ra, (mul (i64 (zext GPR32:$Rn)), (zext GPR32:$Rm)))>;
   1823 
   1824 let isCommutable = 1, PostEncoderMethod = "fixMulHigh" in {
   1825   def UMULHxxx : A64I_dp3<0b1, 0b001100, (outs GPR64:$Rd),
   1826                           (ins GPR64:$Rn, GPR64:$Rm),
   1827                           "umulh\t$Rd, $Rn, $Rm",
   1828                           [(set GPR64:$Rd, (mulhu GPR64:$Rn, GPR64:$Rm))],
   1829                           NoItinerary>;
   1830 
   1831   def SMULHxxx : A64I_dp3<0b1, 0b000100, (outs GPR64:$Rd),
   1832                           (ins GPR64:$Rn, GPR64:$Rm),
   1833                           "smulh\t$Rd, $Rn, $Rm",
   1834                           [(set GPR64:$Rd, (mulhs GPR64:$Rn, GPR64:$Rm))],
   1835                           NoItinerary>;
   1836 }
   1837 
   1838 multiclass A64I_dp3_3operand<string asmop, A64I_dp3_4operand INST,
   1839                              Register ZR, dag pattern> {
   1840   def : InstAlias<asmop # " $Rd, $Rn, $Rm",
   1841                   (INST INST.AccGPR:$Rd, INST.SrcGPR:$Rn, INST.SrcGPR:$Rm, ZR)>;
   1842 
   1843   def : Pat<pattern, (INST INST.SrcGPR:$Rn, INST.SrcGPR:$Rm, ZR)>;
   1844 }
   1845 
   1846 defm : A64I_dp3_3operand<"mul", MADDwwww, WZR, (mul GPR32:$Rn, GPR32:$Rm)>;
   1847 defm : A64I_dp3_3operand<"mul", MADDxxxx, XZR, (mul GPR64:$Rn, GPR64:$Rm)>;
   1848 
   1849 defm : A64I_dp3_3operand<"mneg", MSUBwwww, WZR,
   1850                          (sub 0, (mul GPR32:$Rn, GPR32:$Rm))>;
   1851 defm : A64I_dp3_3operand<"mneg", MSUBxxxx, XZR,
   1852                          (sub 0, (mul GPR64:$Rn, GPR64:$Rm))>;
   1853 
   1854 defm : A64I_dp3_3operand<"smull", SMADDLxwwx, XZR,
   1855                          (mul (i64 (sext GPR32:$Rn)), (sext GPR32:$Rm))>;
   1856 defm : A64I_dp3_3operand<"smnegl", SMSUBLxwwx, XZR,
   1857                        (sub 0, (mul (i64 (sext GPR32:$Rn)), (sext GPR32:$Rm)))>;
   1858 
   1859 defm : A64I_dp3_3operand<"umull", UMADDLxwwx, XZR,
   1860                          (mul (i64 (zext GPR32:$Rn)), (zext GPR32:$Rm))>;
   1861 defm : A64I_dp3_3operand<"umnegl", UMSUBLxwwx, XZR,
   1862                        (sub 0, (mul (i64 (zext GPR32:$Rn)), (zext GPR32:$Rm)))>;
   1863 
   1864 
   1865 //===----------------------------------------------------------------------===//
   1866 // Exception generation
   1867 //===----------------------------------------------------------------------===//
   1868 // Contains: SVC, HVC, SMC, BRK, HLT, DCPS1, DCPS2, DCPS3
   1869 
   1870 def uimm16_asmoperand : AsmOperandClass {
   1871   let Name = "UImm16";
   1872   let PredicateMethod = "isUImm<16>";
   1873   let RenderMethod = "addImmOperands";
   1874   let DiagnosticType = "UImm16";
   1875 }
   1876 
   1877 def uimm16 : Operand<i32> {
   1878   let ParserMatchClass = uimm16_asmoperand;
   1879 }
   1880 
   1881 class A64I_exceptImpl<bits<3> opc, bits<2> ll, string asmop>
   1882   : A64I_exception<opc, 0b000, ll, (outs), (ins uimm16:$UImm16),
   1883                    !strconcat(asmop, "\t$UImm16"), [], NoItinerary> {
   1884   let isBranch = 1;
   1885   let isTerminator = 1;
   1886 }
   1887 
   1888 def SVCi : A64I_exceptImpl<0b000, 0b01, "svc">;
   1889 def HVCi : A64I_exceptImpl<0b000, 0b10, "hvc">;
   1890 def SMCi : A64I_exceptImpl<0b000, 0b11, "smc">;
   1891 def BRKi : A64I_exceptImpl<0b001, 0b00, "brk">;
   1892 def HLTi : A64I_exceptImpl<0b010, 0b00, "hlt">;
   1893 
   1894 def DCPS1i : A64I_exceptImpl<0b101, 0b01, "dcps1">;
   1895 def DCPS2i : A64I_exceptImpl<0b101, 0b10, "dcps2">;
   1896 def DCPS3i : A64I_exceptImpl<0b101, 0b11, "dcps3">;
   1897 
   1898 // The immediate is optional for the DCPS instructions, defaulting to 0.
   1899 def : InstAlias<"dcps1", (DCPS1i 0)>;
   1900 def : InstAlias<"dcps2", (DCPS2i 0)>;
   1901 def : InstAlias<"dcps3", (DCPS3i 0)>;
   1902 
   1903 //===----------------------------------------------------------------------===//
   1904 // Extract (immediate)
   1905 //===----------------------------------------------------------------------===//
   1906 // Contains: EXTR + alias ROR
   1907 
   1908 def EXTRwwwi : A64I_extract<0b0, 0b000, 0b0,
   1909                             (outs GPR32:$Rd),
   1910                             (ins GPR32:$Rn, GPR32:$Rm, bitfield32_imm:$LSB),
   1911                             "extr\t$Rd, $Rn, $Rm, $LSB",
   1912                             [(set GPR32:$Rd,
   1913                                   (A64Extr GPR32:$Rn, GPR32:$Rm, imm:$LSB))],
   1914                             NoItinerary>;
   1915 def EXTRxxxi : A64I_extract<0b1, 0b000, 0b1,
   1916                             (outs GPR64:$Rd),
   1917                             (ins GPR64:$Rn, GPR64:$Rm, bitfield64_imm:$LSB),
   1918                             "extr\t$Rd, $Rn, $Rm, $LSB",
   1919                             [(set GPR64:$Rd,
   1920                                   (A64Extr GPR64:$Rn, GPR64:$Rm, imm:$LSB))],
   1921                             NoItinerary>;
   1922 
   1923 def : InstAlias<"ror $Rd, $Rs, $LSB",
   1924                (EXTRwwwi GPR32:$Rd, GPR32:$Rs, GPR32:$Rs, bitfield32_imm:$LSB)>;
   1925 def : InstAlias<"ror $Rd, $Rs, $LSB",
   1926                (EXTRxxxi GPR64:$Rd, GPR64:$Rs, GPR64:$Rs, bitfield64_imm:$LSB)>;
   1927 
   1928 def : Pat<(rotr GPR32:$Rn, bitfield32_imm:$LSB),
   1929           (EXTRwwwi GPR32:$Rn, GPR32:$Rn, bitfield32_imm:$LSB)>;
   1930 def : Pat<(rotr GPR64:$Rn, bitfield64_imm:$LSB),
   1931           (EXTRxxxi GPR64:$Rn, GPR64:$Rn, bitfield64_imm:$LSB)>;
   1932 
   1933 //===----------------------------------------------------------------------===//
   1934 // Floating-point compare instructions
   1935 //===----------------------------------------------------------------------===//
   1936 // Contains: FCMP, FCMPE
   1937 
   1938 def fpzero_asmoperand : AsmOperandClass {
   1939   let Name = "FPZero";
   1940   let ParserMethod = "ParseFPImmOperand";
   1941   let DiagnosticType = "FPZero";
   1942 }
   1943 
   1944 def fpz32 : Operand<f32>,
   1945             ComplexPattern<f32, 1, "SelectFPZeroOperand", [fpimm]> {
   1946   let ParserMatchClass = fpzero_asmoperand;
   1947   let PrintMethod = "printFPZeroOperand";
   1948   let DecoderMethod = "DecodeFPZeroOperand";
   1949 }
   1950 
   1951 def fpz64 : Operand<f64>,
   1952             ComplexPattern<f64, 1, "SelectFPZeroOperand", [fpimm]> {
   1953   let ParserMatchClass = fpzero_asmoperand;
   1954   let PrintMethod = "printFPZeroOperand";
   1955   let DecoderMethod = "DecodeFPZeroOperand";
   1956 }
   1957 
   1958 multiclass A64I_fpcmpSignal<bits<2> type, bit imm, dag ins, dag pattern> {
   1959   def _quiet : A64I_fpcmp<0b0, 0b0, type, 0b00, {0b0, imm, 0b0, 0b0, 0b0},
   1960                           (outs), ins, "fcmp\t$Rn, $Rm", [pattern],
   1961                           NoItinerary> {
   1962     let Defs = [NZCV];
   1963   }
   1964 
   1965   def _sig : A64I_fpcmp<0b0, 0b0, type, 0b00, {0b1, imm, 0b0, 0b0, 0b0},
   1966                         (outs), ins, "fcmpe\t$Rn, $Rm", [], NoItinerary> {
   1967     let Defs = [NZCV];
   1968   }
   1969 }
   1970 
   1971 defm FCMPss : A64I_fpcmpSignal<0b00, 0b0, (ins FPR32:$Rn, FPR32:$Rm),
   1972                                (set NZCV, (A64cmp (f32 FPR32:$Rn), FPR32:$Rm))>;
   1973 defm FCMPdd : A64I_fpcmpSignal<0b01, 0b0, (ins FPR64:$Rn, FPR64:$Rm),
   1974                                (set NZCV, (A64cmp (f64 FPR64:$Rn), FPR64:$Rm))>;
   1975 
   1976 // What would be Rm should be written as 0; note that even though it's called
   1977 // "$Rm" here to fit in with the InstrFormats, it's actually an immediate.
   1978 defm FCMPsi : A64I_fpcmpSignal<0b00, 0b1, (ins FPR32:$Rn, fpz32:$Rm),
   1979                                (set NZCV, (A64cmp (f32 FPR32:$Rn), fpz32:$Rm))>;
   1980 
   1981 defm FCMPdi : A64I_fpcmpSignal<0b01, 0b1, (ins FPR64:$Rn, fpz64:$Rm),
   1982                                (set NZCV, (A64cmp (f64 FPR64:$Rn), fpz64:$Rm))>;
   1983 
   1984 
   1985 //===----------------------------------------------------------------------===//
   1986 // Floating-point conditional compare instructions
   1987 //===----------------------------------------------------------------------===//
   1988 // Contains: FCCMP, FCCMPE
   1989 
   1990 class A64I_fpccmpImpl<bits<2> type, bit op, RegisterClass FPR, string asmop>
   1991   : A64I_fpccmp<0b0, 0b0, type, op,
   1992                 (outs),
   1993                 (ins FPR:$Rn, FPR:$Rm, uimm4:$NZCVImm, cond_code_op:$Cond),
   1994                 !strconcat(asmop, "\t$Rn, $Rm, $NZCVImm, $Cond"),
   1995                 [], NoItinerary> {
   1996   let Defs = [NZCV];
   1997 }
   1998 
   1999 def FCCMPss : A64I_fpccmpImpl<0b00, 0b0, FPR32, "fccmp">;
   2000 def FCCMPEss : A64I_fpccmpImpl<0b00, 0b1, FPR32, "fccmpe">;
   2001 def FCCMPdd : A64I_fpccmpImpl<0b01, 0b0, FPR64, "fccmp">;
   2002 def FCCMPEdd : A64I_fpccmpImpl<0b01, 0b1, FPR64, "fccmpe">;
   2003 
   2004 //===----------------------------------------------------------------------===//
   2005 // Floating-point conditional select instructions
   2006 //===----------------------------------------------------------------------===//
   2007 // Contains: FCSEL
   2008 
   2009 let Uses = [NZCV] in {
   2010   def FCSELsssc : A64I_fpcondsel<0b0, 0b0, 0b00, (outs FPR32:$Rd),
   2011                                  (ins FPR32:$Rn, FPR32:$Rm, cond_code_op:$Cond),
   2012                                  "fcsel\t$Rd, $Rn, $Rm, $Cond",
   2013                                  [(set FPR32:$Rd,
   2014                                        (simple_select (f32 FPR32:$Rn),
   2015                                                       FPR32:$Rm))],
   2016                                  NoItinerary>;
   2017 
   2018 
   2019   def FCSELdddc : A64I_fpcondsel<0b0, 0b0, 0b01, (outs FPR64:$Rd),
   2020                                  (ins FPR64:$Rn, FPR64:$Rm, cond_code_op:$Cond),
   2021                                  "fcsel\t$Rd, $Rn, $Rm, $Cond",
   2022                                  [(set FPR64:$Rd,
   2023                                        (simple_select (f64 FPR64:$Rn),
   2024                                                       FPR64:$Rm))],
   2025                                  NoItinerary>;
   2026 }
   2027 
   2028 //===----------------------------------------------------------------------===//
   2029 // Floating-point data-processing (1 source)
   2030 //===----------------------------------------------------------------------===//
   2031 // Contains: FMOV, FABS, FNEG, FSQRT, FCVT, FRINT[NPMZAXI].
   2032 
   2033 def FPNoUnop : PatFrag<(ops node:$val), (fneg node:$val),
   2034                        [{ (void)N; return false; }]>;
   2035 
   2036 // First we do the fairly trivial bunch with uniform "OP s, s" and "OP d, d"
   2037 // syntax. Default to no pattern because most are odd enough not to have one.
   2038 multiclass A64I_fpdp1sizes<bits<6> opcode, string asmstr,
   2039                            SDPatternOperator opnode = FPNoUnop> {
   2040   def ss : A64I_fpdp1<0b0, 0b0, 0b00, opcode, (outs FPR32:$Rd), (ins FPR32:$Rn),
   2041                      !strconcat(asmstr, "\t$Rd, $Rn"),
   2042                      [(set (f32 FPR32:$Rd), (opnode FPR32:$Rn))],
   2043                      NoItinerary>;
   2044 
   2045   def dd : A64I_fpdp1<0b0, 0b0, 0b01, opcode, (outs FPR64:$Rd), (ins FPR64:$Rn),
   2046                      !strconcat(asmstr, "\t$Rd, $Rn"),
   2047                      [(set (f64 FPR64:$Rd), (opnode FPR64:$Rn))],
   2048                      NoItinerary>;
   2049 }
   2050 
   2051 defm FMOV   : A64I_fpdp1sizes<0b000000, "fmov">;
   2052 defm FABS   : A64I_fpdp1sizes<0b000001, "fabs", fabs>;
   2053 defm FNEG   : A64I_fpdp1sizes<0b000010, "fneg", fneg>;
   2054 defm FSQRT  : A64I_fpdp1sizes<0b000011, "fsqrt", fsqrt>;
   2055 
   2056 defm FRINTN : A64I_fpdp1sizes<0b001000, "frintn">;
   2057 defm FRINTP : A64I_fpdp1sizes<0b001001, "frintp", fceil>;
   2058 defm FRINTM : A64I_fpdp1sizes<0b001010, "frintm", ffloor>;
   2059 defm FRINTZ : A64I_fpdp1sizes<0b001011, "frintz", ftrunc>;
   2060 defm FRINTA : A64I_fpdp1sizes<0b001100, "frinta">;
   2061 defm FRINTX : A64I_fpdp1sizes<0b001110, "frintx", frint>;
   2062 defm FRINTI : A64I_fpdp1sizes<0b001111, "frinti", fnearbyint>;
   2063 
   2064 // The FCVT instrucitons have different source and destination register-types,
   2065 // but the fields are uniform everywhere a D-register (say) crops up. Package
   2066 // this information in a Record.
   2067 class FCVTRegType<RegisterClass rc, bits<2> fld, ValueType vt> {
   2068     RegisterClass Class = rc;
   2069     ValueType VT = vt;
   2070     bit t1 = fld{1};
   2071     bit t0 = fld{0};
   2072 }
   2073 
   2074 def FCVT16 : FCVTRegType<FPR16, 0b11, f16>;
   2075 def FCVT32 : FCVTRegType<FPR32, 0b00, f32>;
   2076 def FCVT64 : FCVTRegType<FPR64, 0b01, f64>;
   2077 
   2078 class A64I_fpdp1_fcvt<FCVTRegType DestReg, FCVTRegType SrcReg, SDNode opnode>
   2079   : A64I_fpdp1<0b0, 0b0, {SrcReg.t1, SrcReg.t0},
   2080                {0,0,0,1, DestReg.t1, DestReg.t0},
   2081                (outs DestReg.Class:$Rd), (ins SrcReg.Class:$Rn),
   2082                "fcvt\t$Rd, $Rn",
   2083                [(set (DestReg.VT DestReg.Class:$Rd),
   2084                      (opnode (SrcReg.VT SrcReg.Class:$Rn)))], NoItinerary>;
   2085 
   2086 def FCVTds : A64I_fpdp1_fcvt<FCVT64, FCVT32, fextend>;
   2087 def FCVThs : A64I_fpdp1_fcvt<FCVT16, FCVT32, fround>;
   2088 def FCVTsd : A64I_fpdp1_fcvt<FCVT32, FCVT64, fround>;
   2089 def FCVThd : A64I_fpdp1_fcvt<FCVT16, FCVT64, fround>;
   2090 def FCVTsh : A64I_fpdp1_fcvt<FCVT32, FCVT16, fextend>;
   2091 def FCVTdh : A64I_fpdp1_fcvt<FCVT64, FCVT16, fextend>;
   2092 
   2093 
   2094 //===----------------------------------------------------------------------===//
   2095 // Floating-point data-processing (2 sources) instructions
   2096 //===----------------------------------------------------------------------===//
   2097 // Contains: FMUL, FDIV, FADD, FSUB, FMAX, FMIN, FMAXNM, FMINNM, FNMUL
   2098 
   2099 def FPNoBinop : PatFrag<(ops node:$lhs, node:$rhs), (fadd node:$lhs, node:$rhs),
   2100                       [{ (void)N; return false; }]>;
   2101 
   2102 multiclass A64I_fpdp2sizes<bits<4> opcode, string asmstr,
   2103                            SDPatternOperator opnode> {
   2104   def sss : A64I_fpdp2<0b0, 0b0, 0b00, opcode,
   2105                       (outs FPR32:$Rd),
   2106                       (ins FPR32:$Rn, FPR32:$Rm),
   2107                       !strconcat(asmstr, "\t$Rd, $Rn, $Rm"),
   2108                       [(set (f32 FPR32:$Rd), (opnode FPR32:$Rn, FPR32:$Rm))],
   2109                       NoItinerary>;
   2110 
   2111   def ddd : A64I_fpdp2<0b0, 0b0, 0b01, opcode,
   2112                       (outs FPR64:$Rd),
   2113                       (ins FPR64:$Rn, FPR64:$Rm),
   2114                       !strconcat(asmstr, "\t$Rd, $Rn, $Rm"),
   2115                       [(set (f64 FPR64:$Rd), (opnode FPR64:$Rn, FPR64:$Rm))],
   2116                       NoItinerary>;
   2117 }
   2118 
   2119 let isCommutable = 1 in {
   2120   defm FMUL   : A64I_fpdp2sizes<0b0000, "fmul", fmul>;
   2121   defm FADD   : A64I_fpdp2sizes<0b0010, "fadd", fadd>;
   2122 
   2123   // No patterns for these.
   2124   defm FMAX   : A64I_fpdp2sizes<0b0100, "fmax", FPNoBinop>;
   2125   defm FMIN   : A64I_fpdp2sizes<0b0101, "fmin", FPNoBinop>;
   2126   defm FMAXNM : A64I_fpdp2sizes<0b0110, "fmaxnm", FPNoBinop>;
   2127   defm FMINNM : A64I_fpdp2sizes<0b0111, "fminnm", FPNoBinop>;
   2128 
   2129   defm FNMUL  : A64I_fpdp2sizes<0b1000, "fnmul",
   2130                                 PatFrag<(ops node:$lhs, node:$rhs),
   2131                                         (fneg (fmul node:$lhs, node:$rhs))> >;
   2132 }
   2133 
   2134 defm FDIV : A64I_fpdp2sizes<0b0001, "fdiv", fdiv>;
   2135 defm FSUB : A64I_fpdp2sizes<0b0011, "fsub", fsub>;
   2136 
   2137 //===----------------------------------------------------------------------===//
   2138 // Floating-point data-processing (3 sources) instructions
   2139 //===----------------------------------------------------------------------===//
   2140 // Contains: FMADD, FMSUB, FNMADD, FNMSUB
   2141 
   2142 def fmsub : PatFrag<(ops node:$Rn, node:$Rm, node:$Ra),
   2143                     (fma (fneg node:$Rn),  node:$Rm, node:$Ra)>;
   2144 def fnmadd : PatFrag<(ops node:$Rn, node:$Rm, node:$Ra),
   2145                      (fma node:$Rn,  node:$Rm, (fneg node:$Ra))>;
   2146 def fnmsub : PatFrag<(ops node:$Rn, node:$Rm, node:$Ra),
   2147                      (fma (fneg node:$Rn),  node:$Rm, (fneg node:$Ra))>;
   2148 
   2149 class A64I_fpdp3Impl<string asmop, RegisterClass FPR, ValueType VT,
   2150                      bits<2> type, bit o1, bit o0, SDPatternOperator fmakind>
   2151   : A64I_fpdp3<0b0, 0b0, type, o1, o0, (outs FPR:$Rd),
   2152                (ins FPR:$Rn, FPR:$Rm, FPR:$Ra),
   2153                !strconcat(asmop,"\t$Rd, $Rn, $Rm, $Ra"),
   2154                [(set FPR:$Rd, (fmakind (VT FPR:$Rn), FPR:$Rm, FPR:$Ra))],
   2155                NoItinerary>;
   2156 
   2157 def FMADDssss  : A64I_fpdp3Impl<"fmadd",  FPR32, f32, 0b00, 0b0, 0b0, fma>;
   2158 def FMSUBssss  : A64I_fpdp3Impl<"fmsub",  FPR32, f32, 0b00, 0b0, 0b1, fmsub>;
   2159 def FNMADDssss : A64I_fpdp3Impl<"fnmadd", FPR32, f32, 0b00, 0b1, 0b0, fnmadd>;
   2160 def FNMSUBssss : A64I_fpdp3Impl<"fnmsub", FPR32, f32, 0b00, 0b1, 0b1, fnmsub>;
   2161 
   2162 def FMADDdddd  : A64I_fpdp3Impl<"fmadd",  FPR64, f64, 0b01, 0b0, 0b0, fma>;
   2163 def FMSUBdddd  : A64I_fpdp3Impl<"fmsub",  FPR64, f64, 0b01, 0b0, 0b1, fmsub>;
   2164 def FNMADDdddd : A64I_fpdp3Impl<"fnmadd", FPR64, f64, 0b01, 0b1, 0b0, fnmadd>;
   2165 def FNMSUBdddd : A64I_fpdp3Impl<"fnmsub", FPR64, f64, 0b01, 0b1, 0b1, fnmsub>;
   2166 
   2167 //===----------------------------------------------------------------------===//
   2168 // Floating-point <-> fixed-point conversion instructions
   2169 //===----------------------------------------------------------------------===//
   2170 // Contains: FCVTZS, FCVTZU, SCVTF, UCVTF
   2171 
   2172 // #1-#32 allowed, encoded as "64 - <specified imm>
   2173 def fixedpos_asmoperand_i32 : AsmOperandClass {
   2174   let Name = "CVTFixedPos32";
   2175   let RenderMethod = "addCVTFixedPosOperands";
   2176   let PredicateMethod = "isCVTFixedPos<32>";
   2177   let DiagnosticType = "CVTFixedPos32";
   2178 }
   2179 
   2180 // Also encoded as "64 - <specified imm>" but #1-#64 allowed.
   2181 def fixedpos_asmoperand_i64 : AsmOperandClass {
   2182   let Name = "CVTFixedPos64";
   2183   let RenderMethod = "addCVTFixedPosOperands";
   2184   let PredicateMethod = "isCVTFixedPos<64>";
   2185   let DiagnosticType = "CVTFixedPos64";
   2186 }
   2187 
   2188 // We need the cartesian product of f32/f64 i32/i64 operands for
   2189 // conversions:
   2190 //   + Selection needs to use operands of correct floating type
   2191 //   + Assembly parsing and decoding depend on integer width
   2192 class cvtfix_i32_op<ValueType FloatVT>
   2193   : Operand<FloatVT>,
   2194     ComplexPattern<FloatVT, 1, "SelectCVTFixedPosOperand<32>", [fpimm]> {
   2195   let ParserMatchClass = fixedpos_asmoperand_i32;
   2196   let DecoderMethod = "DecodeCVT32FixedPosOperand";
   2197   let PrintMethod = "printCVTFixedPosOperand";
   2198 }
   2199 
   2200 class cvtfix_i64_op<ValueType FloatVT>
   2201   : Operand<FloatVT>,
   2202     ComplexPattern<FloatVT, 1, "SelectCVTFixedPosOperand<64>", [fpimm]> {
   2203   let ParserMatchClass = fixedpos_asmoperand_i64;
   2204   let PrintMethod = "printCVTFixedPosOperand";
   2205 }
   2206 
   2207 // Because of the proliferation of weird operands, it's not really
   2208 // worth going for a multiclass here. Oh well.
   2209 
   2210 class A64I_fptofix<bit sf, bits<2> type, bits<3> opcode,
   2211                    RegisterClass GPR, RegisterClass FPR, Operand scale_op,
   2212                    string asmop, SDNode cvtop>
   2213   : A64I_fpfixed<sf, 0b0, type, 0b11, opcode,
   2214                  (outs GPR:$Rd), (ins FPR:$Rn, scale_op:$Scale),
   2215                  !strconcat(asmop, "\t$Rd, $Rn, $Scale"),
   2216                  [(set GPR:$Rd, (cvtop (fmul FPR:$Rn, scale_op:$Scale)))],
   2217                  NoItinerary>;
   2218 
   2219 def FCVTZSwsi : A64I_fptofix<0b0, 0b00, 0b000, GPR32, FPR32,
   2220                              cvtfix_i32_op<f32>, "fcvtzs", fp_to_sint>;
   2221 def FCVTZSxsi : A64I_fptofix<0b1, 0b00, 0b000, GPR64, FPR32,
   2222                              cvtfix_i64_op<f32>, "fcvtzs", fp_to_sint>;
   2223 def FCVTZUwsi : A64I_fptofix<0b0, 0b00, 0b001, GPR32, FPR32,
   2224                              cvtfix_i32_op<f32>, "fcvtzu", fp_to_uint>;
   2225 def FCVTZUxsi : A64I_fptofix<0b1, 0b00, 0b001, GPR64, FPR32,
   2226                              cvtfix_i64_op<f32>, "fcvtzu", fp_to_uint>;
   2227 
   2228 def FCVTZSwdi : A64I_fptofix<0b0, 0b01, 0b000, GPR32, FPR64,
   2229                              cvtfix_i32_op<f64>, "fcvtzs", fp_to_sint>;
   2230 def FCVTZSxdi : A64I_fptofix<0b1, 0b01, 0b000, GPR64, FPR64,
   2231                              cvtfix_i64_op<f64>, "fcvtzs", fp_to_sint>;
   2232 def FCVTZUwdi : A64I_fptofix<0b0, 0b01, 0b001, GPR32, FPR64,
   2233                              cvtfix_i32_op<f64>, "fcvtzu", fp_to_uint>;
   2234 def FCVTZUxdi : A64I_fptofix<0b1, 0b01, 0b001, GPR64, FPR64,
   2235                              cvtfix_i64_op<f64>, "fcvtzu", fp_to_uint>;
   2236 
   2237 
   2238 class A64I_fixtofp<bit sf, bits<2> type, bits<3> opcode,
   2239                    RegisterClass FPR, RegisterClass GPR, Operand scale_op,
   2240                    string asmop, SDNode cvtop>
   2241   : A64I_fpfixed<sf, 0b0, type, 0b00, opcode,
   2242                  (outs FPR:$Rd), (ins GPR:$Rn, scale_op:$Scale),
   2243                  !strconcat(asmop, "\t$Rd, $Rn, $Scale"),
   2244                  [(set FPR:$Rd, (fdiv (cvtop GPR:$Rn), scale_op:$Scale))],
   2245                  NoItinerary>;
   2246 
   2247 def SCVTFswi : A64I_fixtofp<0b0, 0b00, 0b010, FPR32, GPR32,
   2248                             cvtfix_i32_op<f32>, "scvtf", sint_to_fp>;
   2249 def SCVTFsxi : A64I_fixtofp<0b1, 0b00, 0b010, FPR32, GPR64,
   2250                             cvtfix_i64_op<f32>, "scvtf", sint_to_fp>;
   2251 def UCVTFswi : A64I_fixtofp<0b0, 0b00, 0b011, FPR32, GPR32,
   2252                             cvtfix_i32_op<f32>, "ucvtf", uint_to_fp>;
   2253 def UCVTFsxi : A64I_fixtofp<0b1, 0b00, 0b011, FPR32, GPR64,
   2254                             cvtfix_i64_op<f32>, "ucvtf", uint_to_fp>;
   2255 def SCVTFdwi : A64I_fixtofp<0b0, 0b01, 0b010, FPR64, GPR32,
   2256                             cvtfix_i32_op<f64>, "scvtf", sint_to_fp>;
   2257 def SCVTFdxi : A64I_fixtofp<0b1, 0b01, 0b010, FPR64, GPR64,
   2258                             cvtfix_i64_op<f64>, "scvtf", sint_to_fp>;
   2259 def UCVTFdwi : A64I_fixtofp<0b0, 0b01, 0b011, FPR64, GPR32,
   2260                             cvtfix_i32_op<f64>, "ucvtf", uint_to_fp>;
   2261 def UCVTFdxi : A64I_fixtofp<0b1, 0b01, 0b011, FPR64, GPR64,
   2262                             cvtfix_i64_op<f64>, "ucvtf", uint_to_fp>;
   2263 
   2264 //===----------------------------------------------------------------------===//
   2265 // Floating-point <-> integer conversion instructions
   2266 //===----------------------------------------------------------------------===//
   2267 // Contains: FCVTZS, FCVTZU, SCVTF, UCVTF
   2268 
   2269 class A64I_fpintI<bit sf, bits<2> type, bits<2> rmode, bits<3> opcode,
   2270                    RegisterClass DestPR, RegisterClass SrcPR, string asmop>
   2271   : A64I_fpint<sf, 0b0, type, rmode, opcode, (outs DestPR:$Rd), (ins SrcPR:$Rn),
   2272                !strconcat(asmop, "\t$Rd, $Rn"), [], NoItinerary>;
   2273 
   2274 multiclass A64I_fptointRM<bits<2> rmode, bit o2, string asmop> {
   2275   def Sws : A64I_fpintI<0b0, 0b00, rmode, {o2, 0, 0},
   2276                         GPR32, FPR32, asmop # "s">;
   2277   def Sxs : A64I_fpintI<0b1, 0b00, rmode, {o2, 0, 0},
   2278                         GPR64, FPR32, asmop # "s">;
   2279   def Uws : A64I_fpintI<0b0, 0b00, rmode, {o2, 0, 1},
   2280                         GPR32, FPR32, asmop # "u">;
   2281   def Uxs : A64I_fpintI<0b1, 0b00, rmode, {o2, 0, 1},
   2282                         GPR64, FPR32, asmop # "u">;
   2283 
   2284   def Swd : A64I_fpintI<0b0, 0b01, rmode, {o2, 0, 0},
   2285                         GPR32, FPR64, asmop # "s">;
   2286   def Sxd : A64I_fpintI<0b1, 0b01, rmode, {o2, 0, 0},
   2287                         GPR64, FPR64, asmop # "s">;
   2288   def Uwd : A64I_fpintI<0b0, 0b01, rmode, {o2, 0, 1},
   2289                         GPR32, FPR64, asmop # "u">;
   2290   def Uxd : A64I_fpintI<0b1, 0b01, rmode, {o2, 0, 1},
   2291                         GPR64, FPR64, asmop # "u">;
   2292 }
   2293 
   2294 defm FCVTN : A64I_fptointRM<0b00, 0b0, "fcvtn">;
   2295 defm FCVTP : A64I_fptointRM<0b01, 0b0, "fcvtp">;
   2296 defm FCVTM : A64I_fptointRM<0b10, 0b0, "fcvtm">;
   2297 defm FCVTZ : A64I_fptointRM<0b11, 0b0, "fcvtz">;
   2298 defm FCVTA : A64I_fptointRM<0b00, 0b1, "fcvta">;
   2299 
   2300 def : Pat<(i32 (fp_to_sint FPR32:$Rn)), (FCVTZSws FPR32:$Rn)>;
   2301 def : Pat<(i64 (fp_to_sint FPR32:$Rn)), (FCVTZSxs FPR32:$Rn)>;
   2302 def : Pat<(i32 (fp_to_uint FPR32:$Rn)), (FCVTZUws FPR32:$Rn)>;
   2303 def : Pat<(i64 (fp_to_uint FPR32:$Rn)), (FCVTZUxs FPR32:$Rn)>;
   2304 def : Pat<(i32 (fp_to_sint (f64 FPR64:$Rn))), (FCVTZSwd FPR64:$Rn)>;
   2305 def : Pat<(i64 (fp_to_sint (f64 FPR64:$Rn))), (FCVTZSxd FPR64:$Rn)>;
   2306 def : Pat<(i32 (fp_to_uint (f64 FPR64:$Rn))), (FCVTZUwd FPR64:$Rn)>;
   2307 def : Pat<(i64 (fp_to_uint (f64 FPR64:$Rn))), (FCVTZUxd FPR64:$Rn)>;
   2308 
   2309 multiclass A64I_inttofp<bit o0, string asmop> {
   2310   def CVTFsw : A64I_fpintI<0b0, 0b00, 0b00, {0, 1, o0}, FPR32, GPR32, asmop>;
   2311   def CVTFsx : A64I_fpintI<0b1, 0b00, 0b00, {0, 1, o0}, FPR32, GPR64, asmop>;
   2312   def CVTFdw : A64I_fpintI<0b0, 0b01, 0b00, {0, 1, o0}, FPR64, GPR32, asmop>;
   2313   def CVTFdx : A64I_fpintI<0b1, 0b01, 0b00, {0, 1, o0}, FPR64, GPR64, asmop>;
   2314 }
   2315 
   2316 defm S : A64I_inttofp<0b0, "scvtf">;
   2317 defm U : A64I_inttofp<0b1, "ucvtf">;
   2318 
   2319 def : Pat<(f32 (sint_to_fp GPR32:$Rn)), (SCVTFsw GPR32:$Rn)>;
   2320 def : Pat<(f32 (sint_to_fp GPR64:$Rn)), (SCVTFsx GPR64:$Rn)>;
   2321 def : Pat<(f64 (sint_to_fp GPR32:$Rn)), (SCVTFdw GPR32:$Rn)>;
   2322 def : Pat<(f64 (sint_to_fp GPR64:$Rn)), (SCVTFdx GPR64:$Rn)>;
   2323 def : Pat<(f32 (uint_to_fp GPR32:$Rn)), (UCVTFsw GPR32:$Rn)>;
   2324 def : Pat<(f32 (uint_to_fp GPR64:$Rn)), (UCVTFsx GPR64:$Rn)>;
   2325 def : Pat<(f64 (uint_to_fp GPR32:$Rn)), (UCVTFdw GPR32:$Rn)>;
   2326 def : Pat<(f64 (uint_to_fp GPR64:$Rn)), (UCVTFdx GPR64:$Rn)>;
   2327 
   2328 def FMOVws : A64I_fpintI<0b0, 0b00, 0b00, 0b110, GPR32, FPR32, "fmov">;
   2329 def FMOVsw : A64I_fpintI<0b0, 0b00, 0b00, 0b111, FPR32, GPR32, "fmov">;
   2330 def FMOVxd : A64I_fpintI<0b1, 0b01, 0b00, 0b110, GPR64, FPR64, "fmov">;
   2331 def FMOVdx : A64I_fpintI<0b1, 0b01, 0b00, 0b111, FPR64, GPR64, "fmov">;
   2332 
   2333 def : Pat<(i32 (bitconvert (f32 FPR32:$Rn))), (FMOVws FPR32:$Rn)>;
   2334 def : Pat<(f32 (bitconvert (i32 GPR32:$Rn))), (FMOVsw GPR32:$Rn)>;
   2335 def : Pat<(i64 (bitconvert (f64 FPR64:$Rn))), (FMOVxd FPR64:$Rn)>;
   2336 def : Pat<(f64 (bitconvert (i64 GPR64:$Rn))), (FMOVdx GPR64:$Rn)>;
   2337 
   2338 def lane1_asmoperand : AsmOperandClass {
   2339   let Name = "Lane1";
   2340   let RenderMethod = "addImmOperands";
   2341   let DiagnosticType = "Lane1";
   2342 }
   2343 
   2344 def lane1 : Operand<i32> {
   2345   let ParserMatchClass = lane1_asmoperand;
   2346   let PrintMethod = "printBareImmOperand";
   2347 }
   2348 
   2349 let DecoderMethod =  "DecodeFMOVLaneInstruction" in {
   2350   def FMOVxv : A64I_fpint<0b1, 0b0, 0b10, 0b01, 0b110,
   2351                           (outs GPR64:$Rd), (ins VPR128:$Rn, lane1:$Lane),
   2352                           "fmov\t$Rd, $Rn.d[$Lane]", [], NoItinerary>;
   2353 
   2354   def FMOVvx : A64I_fpint<0b1, 0b0, 0b10, 0b01, 0b111,
   2355                           (outs VPR128:$Rd), (ins GPR64:$Rn, lane1:$Lane),
   2356                           "fmov\t$Rd.d[$Lane], $Rn", [], NoItinerary>;
   2357 }
   2358 
   2359 def : InstAlias<"fmov $Rd, $Rn.2d[$Lane]",
   2360                 (FMOVxv GPR64:$Rd, VPR128:$Rn, lane1:$Lane), 0b0>;
   2361 
   2362 def : InstAlias<"fmov $Rd.2d[$Lane], $Rn",
   2363                 (FMOVvx VPR128:$Rd, GPR64:$Rn, lane1:$Lane), 0b0>;
   2364 
   2365 //===----------------------------------------------------------------------===//
   2366 // Floating-point immediate instructions
   2367 //===----------------------------------------------------------------------===//
   2368 // Contains: FMOV
   2369 
   2370 def fpimm_asmoperand : AsmOperandClass {
   2371   let Name = "FMOVImm";
   2372   let ParserMethod = "ParseFPImmOperand";
   2373   let DiagnosticType = "FPImm";
   2374 }
   2375 
   2376 // The MCOperand for these instructions are the encoded 8-bit values.
   2377 def SDXF_fpimm : SDNodeXForm<fpimm, [{
   2378   uint32_t Imm8;
   2379   A64Imms::isFPImm(N->getValueAPF(), Imm8);
   2380   return CurDAG->getTargetConstant(Imm8, MVT::i32);
   2381 }]>;
   2382 
   2383 class fmov_operand<ValueType FT>
   2384   : Operand<i32>,
   2385     PatLeaf<(FT fpimm), [{ return A64Imms::isFPImm(N->getValueAPF()); }],
   2386             SDXF_fpimm> {
   2387   let PrintMethod = "printFPImmOperand";
   2388   let ParserMatchClass = fpimm_asmoperand;
   2389 }
   2390 
   2391 def fmov32_operand : fmov_operand<f32>;
   2392 def fmov64_operand : fmov_operand<f64>;
   2393 
   2394 class A64I_fpimm_impl<bits<2> type, RegisterClass Reg, ValueType VT,
   2395                       Operand fmov_operand>
   2396   : A64I_fpimm<0b0, 0b0, type, 0b00000,
   2397                (outs Reg:$Rd),
   2398                (ins fmov_operand:$Imm8),
   2399                "fmov\t$Rd, $Imm8",
   2400                [(set (VT Reg:$Rd), fmov_operand:$Imm8)],
   2401                NoItinerary>;
   2402 
   2403 def FMOVsi : A64I_fpimm_impl<0b00, FPR32, f32, fmov32_operand>;
   2404 def FMOVdi : A64I_fpimm_impl<0b01, FPR64, f64, fmov64_operand>;
   2405 
   2406 //===----------------------------------------------------------------------===//
   2407 // Load-register (literal) instructions
   2408 //===----------------------------------------------------------------------===//
   2409 // Contains: LDR, LDRSW, PRFM
   2410 
   2411 def ldrlit_label_asmoperand : AsmOperandClass {
   2412   let Name = "LoadLitLabel";
   2413   let RenderMethod = "addLabelOperands<19, 4>";
   2414   let DiagnosticType = "Label";
   2415 }
   2416 
   2417 def ldrlit_label : Operand<i64> {
   2418   let EncoderMethod = "getLoadLitLabelOpValue";
   2419 
   2420   // This label is a 19-bit offset from PC, scaled by the instruction-width: 4.
   2421   let PrintMethod = "printLabelOperand<19, 4>";
   2422   let ParserMatchClass = ldrlit_label_asmoperand;
   2423   let OperandType = "OPERAND_PCREL";
   2424 }
   2425 
   2426 // Various instructions take an immediate value (which can always be used),
   2427 // where some numbers have a symbolic name to make things easier. These operands
   2428 // and the associated functions abstract away the differences.
   2429 multiclass namedimm<string prefix, string mapper> {
   2430   def _asmoperand : AsmOperandClass {
   2431     let Name = "NamedImm" # prefix;
   2432     let PredicateMethod = "isUImm";
   2433     let RenderMethod = "addImmOperands";
   2434     let ParserMethod = "ParseNamedImmOperand<" # mapper # ">";
   2435     let DiagnosticType = "NamedImm_" # prefix;
   2436   }
   2437 
   2438   def _op : Operand<i32> {
   2439     let ParserMatchClass = !cast<AsmOperandClass>(prefix # "_asmoperand");
   2440     let PrintMethod = "printNamedImmOperand<" # mapper # ">";
   2441     let DecoderMethod = "DecodeNamedImmOperand<" # mapper # ">";
   2442   }
   2443 }
   2444 
   2445 defm prefetch : namedimm<"prefetch", "A64PRFM::PRFMMapper">;
   2446 
   2447 class A64I_LDRlitSimple<bits<2> opc, bit v, RegisterClass OutReg,
   2448                       list<dag> patterns = []>
   2449    : A64I_LDRlit<opc, v, (outs OutReg:$Rt), (ins ldrlit_label:$Imm19),
   2450                  "ldr\t$Rt, $Imm19", patterns, NoItinerary>;
   2451 
   2452 let mayLoad = 1 in {
   2453   def LDRw_lit : A64I_LDRlitSimple<0b00, 0b0, GPR32>;
   2454   def LDRx_lit : A64I_LDRlitSimple<0b01, 0b0, GPR64>;
   2455 }
   2456 
   2457 def LDRs_lit  : A64I_LDRlitSimple<0b00, 0b1, FPR32>;
   2458 def LDRd_lit  : A64I_LDRlitSimple<0b01, 0b1, FPR64>;
   2459 
   2460 let mayLoad = 1 in {
   2461   def LDRq_lit : A64I_LDRlitSimple<0b10, 0b1, FPR128>;
   2462 
   2463 
   2464   def LDRSWx_lit : A64I_LDRlit<0b10, 0b0,
   2465                                (outs GPR64:$Rt),
   2466                                (ins ldrlit_label:$Imm19),
   2467                                "ldrsw\t$Rt, $Imm19",
   2468                                [], NoItinerary>;
   2469 
   2470   def PRFM_lit : A64I_LDRlit<0b11, 0b0,
   2471                              (outs), (ins prefetch_op:$Rt, ldrlit_label:$Imm19),
   2472                              "prfm\t$Rt, $Imm19",
   2473                              [], NoItinerary>;
   2474 }
   2475 
   2476 //===----------------------------------------------------------------------===//
   2477 // Load-store exclusive instructions
   2478 //===----------------------------------------------------------------------===//
   2479 // Contains: STXRB, STXRH, STXR, LDXRB, LDXRH, LDXR. STXP, LDXP, STLXRB,
   2480 //           STLXRH, STLXR, LDAXRB, LDAXRH, LDAXR, STLXP, LDAXP, STLRB,
   2481 //           STLRH, STLR, LDARB, LDARH, LDAR
   2482 
   2483 // Since these instructions have the undefined register bits set to 1 in
   2484 // their canonical form, we need a post encoder method to set those bits
   2485 // to 1 when encoding these instructions. We do this using the
   2486 // fixLoadStoreExclusive function. This function has template parameters:
   2487 //
   2488 // fixLoadStoreExclusive<int hasRs, int hasRt2>
   2489 //
   2490 // hasRs indicates that the instruction uses the Rs field, so we won't set
   2491 // it to 1 (and the same for Rt2). We don't need template parameters for
   2492 // the other register fiels since Rt and Rn are always used.
   2493 
   2494 // This operand parses a GPR64xsp register, followed by an optional immediate
   2495 // #0.
   2496 def GPR64xsp0_asmoperand : AsmOperandClass {
   2497   let Name = "GPR64xsp0";
   2498   let PredicateMethod = "isWrappedReg";
   2499   let RenderMethod = "addRegOperands";
   2500   let ParserMethod = "ParseLSXAddressOperand";
   2501   // Diagnostics are provided by ParserMethod
   2502 }
   2503 
   2504 def GPR64xsp0 : RegisterOperand<GPR64xsp> {
   2505   let ParserMatchClass = GPR64xsp0_asmoperand;
   2506 }
   2507 
   2508 //===----------------------------------
   2509 // Store-exclusive (releasing & normal)
   2510 //===----------------------------------
   2511 
   2512 class A64I_SRexs_impl<bits<2> size, bits<3> opcode, string asm, dag outs,
   2513                         dag ins, list<dag> pat,
   2514                         InstrItinClass itin> :
   2515        A64I_LDSTex_stn <size,
   2516                         opcode{2}, 0, opcode{1}, opcode{0},
   2517                         outs, ins,
   2518                         !strconcat(asm, "\t$Rs, $Rt, [$Rn]"),
   2519                         pat, itin> {
   2520   let mayStore = 1;
   2521   let PostEncoderMethod = "fixLoadStoreExclusive<1,0>";
   2522 }
   2523 
   2524 multiclass A64I_SRex<string asmstr, bits<3> opcode, string prefix> {
   2525   def _byte:  A64I_SRexs_impl<0b00, opcode, !strconcat(asmstr, "b"),
   2526                               (outs GPR32:$Rs), (ins GPR32:$Rt, GPR64xsp0:$Rn),
   2527                               [], NoItinerary>;
   2528 
   2529   def _hword:  A64I_SRexs_impl<0b01, opcode, !strconcat(asmstr, "h"),
   2530                                (outs GPR32:$Rs), (ins GPR32:$Rt, GPR64xsp0:$Rn),
   2531                                [],NoItinerary>;
   2532 
   2533   def _word:  A64I_SRexs_impl<0b10, opcode, asmstr,
   2534                               (outs GPR32:$Rs), (ins GPR32:$Rt, GPR64xsp0:$Rn),
   2535                               [], NoItinerary>;
   2536 
   2537   def _dword: A64I_SRexs_impl<0b11, opcode, asmstr,
   2538                               (outs GPR32:$Rs), (ins GPR64:$Rt, GPR64xsp0:$Rn),
   2539                               [], NoItinerary>;
   2540 }
   2541 
   2542 defm STXR  : A64I_SRex<"stxr",  0b000, "STXR">;
   2543 defm STLXR : A64I_SRex<"stlxr", 0b001, "STLXR">;
   2544 
   2545 //===----------------------------------
   2546 // Loads
   2547 //===----------------------------------
   2548 
   2549 class A64I_LRexs_impl<bits<2> size, bits<3> opcode, string asm, dag outs,
   2550                         dag ins, list<dag> pat,
   2551                         InstrItinClass itin> :
   2552         A64I_LDSTex_tn <size,
   2553                         opcode{2}, 1, opcode{1}, opcode{0},
   2554                         outs, ins,
   2555                         !strconcat(asm, "\t$Rt, [$Rn]"),
   2556                         pat, itin> {
   2557   let mayLoad = 1;
   2558   let PostEncoderMethod = "fixLoadStoreExclusive<0,0>";
   2559 }
   2560 
   2561 multiclass A64I_LRex<string asmstr, bits<3> opcode> {
   2562   def _byte:  A64I_LRexs_impl<0b00, opcode, !strconcat(asmstr, "b"),
   2563                             (outs GPR32:$Rt), (ins GPR64xsp0:$Rn),
   2564                             [], NoItinerary>;
   2565 
   2566   def _hword:  A64I_LRexs_impl<0b01, opcode, !strconcat(asmstr, "h"),
   2567                             (outs GPR32:$Rt), (ins GPR64xsp0:$Rn),
   2568                             [], NoItinerary>;
   2569 
   2570   def _word:  A64I_LRexs_impl<0b10, opcode, asmstr,
   2571                             (outs GPR32:$Rt), (ins GPR64xsp0:$Rn),
   2572                             [], NoItinerary>;
   2573 
   2574   def _dword: A64I_LRexs_impl<0b11, opcode, asmstr,
   2575                             (outs GPR64:$Rt), (ins GPR64xsp0:$Rn),
   2576                             [], NoItinerary>;
   2577 }
   2578 
   2579 defm LDXR  : A64I_LRex<"ldxr",  0b000>;
   2580 defm LDAXR : A64I_LRex<"ldaxr", 0b001>;
   2581 defm LDAR  : A64I_LRex<"ldar",  0b101>;
   2582 
   2583 class acquiring_load<PatFrag base>
   2584   : PatFrag<(ops node:$ptr), (base node:$ptr), [{
   2585   return cast<AtomicSDNode>(N)->getOrdering() == Acquire;
   2586 }]>;
   2587 
   2588 def atomic_load_acquire_8  : acquiring_load<atomic_load_8>;
   2589 def atomic_load_acquire_16 : acquiring_load<atomic_load_16>;
   2590 def atomic_load_acquire_32 : acquiring_load<atomic_load_32>;
   2591 def atomic_load_acquire_64 : acquiring_load<atomic_load_64>;
   2592 
   2593 def : Pat<(atomic_load_acquire_8  GPR64xsp:$Rn), (LDAR_byte  GPR64xsp0:$Rn)>;
   2594 def : Pat<(atomic_load_acquire_16 GPR64xsp:$Rn), (LDAR_hword GPR64xsp0:$Rn)>;
   2595 def : Pat<(atomic_load_acquire_32 GPR64xsp:$Rn), (LDAR_word  GPR64xsp0:$Rn)>;
   2596 def : Pat<(atomic_load_acquire_64 GPR64xsp:$Rn), (LDAR_dword GPR64xsp0:$Rn)>;
   2597 
   2598 //===----------------------------------
   2599 // Store-release (no exclusivity)
   2600 //===----------------------------------
   2601 
   2602 class A64I_SLexs_impl<bits<2> size, bits<3> opcode, string asm, dag outs,
   2603                         dag ins, list<dag> pat,
   2604                         InstrItinClass itin> :
   2605         A64I_LDSTex_tn <size,
   2606                         opcode{2}, 0, opcode{1}, opcode{0},
   2607                         outs, ins,
   2608                         !strconcat(asm, "\t$Rt, [$Rn]"),
   2609                         pat, itin> {
   2610   let mayStore = 1;
   2611   let PostEncoderMethod = "fixLoadStoreExclusive<0,0>";
   2612 }
   2613 
   2614 class releasing_store<PatFrag base>
   2615   : PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val), [{
   2616   return cast<AtomicSDNode>(N)->getOrdering() == Release;
   2617 }]>;
   2618 
   2619 def atomic_store_release_8  : releasing_store<atomic_store_8>;
   2620 def atomic_store_release_16 : releasing_store<atomic_store_16>;
   2621 def atomic_store_release_32 : releasing_store<atomic_store_32>;
   2622 def atomic_store_release_64 : releasing_store<atomic_store_64>;
   2623 
   2624 multiclass A64I_SLex<string asmstr, bits<3> opcode, string prefix> {
   2625   def _byte:  A64I_SLexs_impl<0b00, opcode, !strconcat(asmstr, "b"),
   2626                             (outs), (ins GPR32:$Rt, GPR64xsp0:$Rn),
   2627                             [(atomic_store_release_8 GPR64xsp0:$Rn, GPR32:$Rt)],
   2628                             NoItinerary>;
   2629 
   2630   def _hword:  A64I_SLexs_impl<0b01, opcode, !strconcat(asmstr, "h"),
   2631                            (outs), (ins GPR32:$Rt, GPR64xsp0:$Rn),
   2632                            [(atomic_store_release_16 GPR64xsp0:$Rn, GPR32:$Rt)],
   2633                            NoItinerary>;
   2634 
   2635   def _word:  A64I_SLexs_impl<0b10, opcode, asmstr,
   2636                            (outs), (ins GPR32:$Rt, GPR64xsp0:$Rn),
   2637                            [(atomic_store_release_32 GPR64xsp0:$Rn, GPR32:$Rt)],
   2638                            NoItinerary>;
   2639 
   2640   def _dword: A64I_SLexs_impl<0b11, opcode, asmstr,
   2641                            (outs), (ins GPR64:$Rt, GPR64xsp0:$Rn),
   2642                            [(atomic_store_release_64 GPR64xsp0:$Rn, GPR64:$Rt)],
   2643                            NoItinerary>;
   2644 }
   2645 
   2646 defm STLR  : A64I_SLex<"stlr", 0b101, "STLR">;
   2647 
   2648 //===----------------------------------
   2649 // Store-exclusive pair (releasing & normal)
   2650 //===----------------------------------
   2651 
   2652 class A64I_SPexs_impl<bits<2> size, bits<3> opcode, string asm, dag outs,
   2653                         dag ins, list<dag> pat,
   2654                         InstrItinClass itin> :
   2655      A64I_LDSTex_stt2n <size,
   2656                         opcode{2}, 0, opcode{1}, opcode{0},
   2657                         outs, ins,
   2658                         !strconcat(asm, "\t$Rs, $Rt, $Rt2, [$Rn]"),
   2659                         pat, itin> {
   2660   let mayStore = 1;
   2661 }
   2662 
   2663 
   2664 multiclass A64I_SPex<string asmstr, bits<3> opcode> {
   2665   def _word:  A64I_SPexs_impl<0b10, opcode, asmstr, (outs),
   2666                             (ins GPR32:$Rs, GPR32:$Rt, GPR32:$Rt2,
   2667                                  GPR64xsp0:$Rn),
   2668                             [], NoItinerary>;
   2669 
   2670   def _dword: A64I_SPexs_impl<0b11, opcode, asmstr, (outs),
   2671                             (ins GPR32:$Rs, GPR64:$Rt, GPR64:$Rt2,
   2672                                             GPR64xsp0:$Rn),
   2673                             [], NoItinerary>;
   2674 }
   2675 
   2676 defm STXP  : A64I_SPex<"stxp", 0b010>;
   2677 defm STLXP : A64I_SPex<"stlxp", 0b011>;
   2678 
   2679 //===----------------------------------
   2680 // Load-exclusive pair (acquiring & normal)
   2681 //===----------------------------------
   2682 
   2683 class A64I_LPexs_impl<bits<2> size, bits<3> opcode, string asm, dag outs,
   2684                         dag ins, list<dag> pat,
   2685                         InstrItinClass itin> :
   2686       A64I_LDSTex_tt2n <size,
   2687                         opcode{2}, 1, opcode{1}, opcode{0},
   2688                         outs, ins,
   2689                         !strconcat(asm, "\t$Rt, $Rt2, [$Rn]"),
   2690                         pat, itin>{
   2691   let mayLoad = 1;
   2692   let DecoderMethod = "DecodeLoadPairExclusiveInstruction";
   2693   let PostEncoderMethod = "fixLoadStoreExclusive<0,1>";
   2694 }
   2695 
   2696 multiclass A64I_LPex<string asmstr, bits<3> opcode> {
   2697   def _word:  A64I_LPexs_impl<0b10, opcode, asmstr,
   2698                             (outs GPR32:$Rt, GPR32:$Rt2),
   2699                             (ins GPR64xsp0:$Rn),
   2700                             [], NoItinerary>;
   2701 
   2702   def _dword: A64I_LPexs_impl<0b11, opcode, asmstr,
   2703                             (outs GPR64:$Rt, GPR64:$Rt2),
   2704                             (ins GPR64xsp0:$Rn),
   2705                             [], NoItinerary>;
   2706 }
   2707 
   2708 defm LDXP  : A64I_LPex<"ldxp", 0b010>;
   2709 defm LDAXP : A64I_LPex<"ldaxp", 0b011>;
   2710 
   2711 //===----------------------------------------------------------------------===//
   2712 // Load-store register (unscaled immediate) instructions
   2713 //===----------------------------------------------------------------------===//
   2714 // Contains: LDURB, LDURH, LDRUSB, LDRUSH, LDRUSW, STUR, STURB, STURH and PRFUM
   2715 //
   2716 // and
   2717 //
   2718 //===----------------------------------------------------------------------===//
   2719 // Load-store register (register offset) instructions
   2720 //===----------------------------------------------------------------------===//
   2721 // Contains: LDRB, LDRH, LDRSB, LDRSH, LDRSW, STR, STRB, STRH and PRFM
   2722 //
   2723 // and
   2724 //
   2725 //===----------------------------------------------------------------------===//
   2726 // Load-store register (unsigned immediate) instructions
   2727 //===----------------------------------------------------------------------===//
   2728 // Contains: LDRB, LDRH, LDRSB, LDRSH, LDRSW, STR, STRB, STRH and PRFM
   2729 //
   2730 // and
   2731 //
   2732 //===----------------------------------------------------------------------===//
   2733 // Load-store register (immediate post-indexed) instructions
   2734 //===----------------------------------------------------------------------===//
   2735 // Contains: STRB, STRH, STR, LDRB, LDRH, LDR, LDRSB, LDRSH, LDRSW
   2736 //
   2737 // and
   2738 //
   2739 //===----------------------------------------------------------------------===//
   2740 // Load-store register (immediate pre-indexed) instructions
   2741 //===----------------------------------------------------------------------===//
   2742 // Contains: STRB, STRH, STR, LDRB, LDRH, LDR, LDRSB, LDRSH, LDRSW
   2743 
   2744 // Note that patterns are much later on in a completely separate section (they
   2745 // need ADRPxi to be defined).
   2746 
   2747 //===-------------------------------
   2748 // 1. Various operands needed
   2749 //===-------------------------------
   2750 
   2751 //===-------------------------------
   2752 // 1.1 Unsigned 12-bit immediate operands
   2753 //===-------------------------------
   2754 // The addressing mode for these instructions consists of an unsigned 12-bit
   2755 // immediate which is scaled by the size of the memory access.
   2756 //
   2757 // We represent this in the MC layer by two operands:
   2758 //     1. A base register.
   2759 //     2. A 12-bit immediate: not multiplied by access size, so "LDR x0,[x0,#8]"
   2760 //        would have '1' in this field.
   2761 // This means that separate functions are needed for converting representations
   2762 // which *are* aware of the intended access size.
   2763 
   2764 // Anything that creates an MCInst (Decoding, selection and AsmParsing) has to
   2765 // know the access size via some means. An isolated operand does not have this
   2766 // information unless told from here, which means we need separate tablegen
   2767 // Operands for each access size. This multiclass takes care of instantiating
   2768 // the correct template functions in the rest of the backend.
   2769 
   2770 //===-------------------------------
   2771 // 1.1 Unsigned 12-bit immediate operands
   2772 //===-------------------------------
   2773 
   2774 multiclass offsets_uimm12<int MemSize, string prefix> {
   2775   def uimm12_asmoperand : AsmOperandClass {
   2776     let Name = "OffsetUImm12_" # MemSize;
   2777     let PredicateMethod = "isOffsetUImm12<" # MemSize # ">";
   2778     let RenderMethod = "addOffsetUImm12Operands<" # MemSize # ">";
   2779     let DiagnosticType = "LoadStoreUImm12_" # MemSize;
   2780   }
   2781 
   2782   // Pattern is really no more than an ImmLeaf, but predicated on MemSize which
   2783   // complicates things beyond TableGen's ken.
   2784   def uimm12 : Operand<i64>,
   2785                ComplexPattern<i64, 1, "SelectOffsetUImm12<" # MemSize # ">"> {
   2786     let ParserMatchClass
   2787       = !cast<AsmOperandClass>(prefix # uimm12_asmoperand);
   2788 
   2789     let PrintMethod = "printOffsetUImm12Operand<" # MemSize # ">";
   2790     let EncoderMethod = "getOffsetUImm12OpValue<" # MemSize # ">";
   2791   }
   2792 }
   2793 
   2794 defm byte_  : offsets_uimm12<1, "byte_">;
   2795 defm hword_ : offsets_uimm12<2, "hword_">;
   2796 defm word_  : offsets_uimm12<4, "word_">;
   2797 defm dword_ : offsets_uimm12<8, "dword_">;
   2798 defm qword_ : offsets_uimm12<16, "qword_">;
   2799 
   2800 //===-------------------------------
   2801 // 1.1 Signed 9-bit immediate operands
   2802 //===-------------------------------
   2803 
   2804 // The MCInst is expected to store the bit-wise encoding of the value,
   2805 // which amounts to lopping off the extended sign bits.
   2806 def SDXF_simm9 : SDNodeXForm<imm, [{
   2807   return CurDAG->getTargetConstant(N->getZExtValue() & 0x1ff, MVT::i32);
   2808 }]>;
   2809 
   2810 def simm9_asmoperand : AsmOperandClass {
   2811   let Name = "SImm9";
   2812   let PredicateMethod = "isSImm<9>";
   2813   let RenderMethod = "addSImmOperands<9>";
   2814   let DiagnosticType = "LoadStoreSImm9";
   2815 }
   2816 
   2817 def simm9 : Operand<i64>,
   2818             ImmLeaf<i64, [{ return Imm >= -0x100 && Imm <= 0xff; }],
   2819             SDXF_simm9> {
   2820   let PrintMethod = "printOffsetSImm9Operand";
   2821   let ParserMatchClass = simm9_asmoperand;
   2822 }
   2823 
   2824 
   2825 //===-------------------------------
   2826 // 1.3 Register offset extensions
   2827 //===-------------------------------
   2828 
   2829 // The assembly-syntax for these addressing-modes is:
   2830 //    [<Xn|SP>, <R><m> {, <extend> {<amount>}}]
   2831 //
   2832 // The essential semantics are:
   2833 //     + <amount> is a shift: #<log(transfer size)> or #0
   2834 //     + <R> can be W or X.
   2835 //     + If <R> is W, <extend> can be UXTW or SXTW
   2836 //     + If <R> is X, <extend> can be LSL or SXTX
   2837 //
   2838 // The trickiest of those constraints is that Rm can be either GPR32 or GPR64,
   2839 // which will need separate instructions for LLVM type-consistency. We'll also
   2840 // need separate operands, of course.
   2841 multiclass regexts<int MemSize, int RmSize, RegisterClass GPR,
   2842                    string Rm, string prefix> {
   2843   def regext_asmoperand : AsmOperandClass {
   2844     let Name = "AddrRegExtend_" # MemSize # "_" #  Rm;
   2845     let PredicateMethod = "isAddrRegExtend<" # MemSize # "," # RmSize # ">";
   2846     let RenderMethod = "addAddrRegExtendOperands<" # MemSize # ">";
   2847     let DiagnosticType = "LoadStoreExtend" # RmSize # "_" # MemSize;
   2848   }
   2849 
   2850   def regext : Operand<i64> {
   2851     let PrintMethod
   2852       = "printAddrRegExtendOperand<" # MemSize # ", " # RmSize # ">";
   2853 
   2854     let DecoderMethod = "DecodeAddrRegExtendOperand";
   2855     let ParserMatchClass
   2856       = !cast<AsmOperandClass>(prefix # regext_asmoperand);
   2857   }
   2858 }
   2859 
   2860 multiclass regexts_wx<int MemSize, string prefix> {
   2861   // Rm is an X-register if LSL or SXTX are specified as the shift.
   2862   defm Xm_ : regexts<MemSize, 64, GPR64, "Xm", prefix # "Xm_">;
   2863 
   2864   // Rm is a W-register if UXTW or SXTW are specified as the shift.
   2865   defm Wm_ : regexts<MemSize, 32, GPR32, "Wm", prefix # "Wm_">;
   2866 }
   2867 
   2868 defm byte_  : regexts_wx<1, "byte_">;
   2869 defm hword_ : regexts_wx<2, "hword_">;
   2870 defm word_  : regexts_wx<4, "word_">;
   2871 defm dword_ : regexts_wx<8, "dword_">;
   2872 defm qword_ : regexts_wx<16, "qword_">;
   2873 
   2874 
   2875 //===------------------------------
   2876 // 2. The instructions themselves.
   2877 //===------------------------------
   2878 
   2879 // We have the following instructions to implement:
   2880 // |                 | B     | H     | W     | X      |
   2881 // |-----------------+-------+-------+-------+--------|
   2882 // | unsigned str    | STRB  | STRH  | STR   | STR    |
   2883 // | unsigned ldr    | LDRB  | LDRH  | LDR   | LDR    |
   2884 // | signed ldr to W | LDRSB | LDRSH | -     | -      |
   2885 // | signed ldr to X | LDRSB | LDRSH | LDRSW | (PRFM) |
   2886 
   2887 // This will instantiate the LDR/STR instructions you'd expect to use for an
   2888 // unsigned datatype (first two rows above) or floating-point register, which is
   2889 // reasonably uniform across all access sizes.
   2890 
   2891 
   2892 //===------------------------------
   2893 // 2.1 Regular instructions
   2894 //===------------------------------
   2895 
   2896 // This class covers the basic unsigned or irrelevantly-signed loads and stores,
   2897 // to general-purpose and floating-point registers.
   2898 
   2899 class AddrParams<string prefix> {
   2900   Operand uimm12 = !cast<Operand>(prefix # "_uimm12");
   2901 
   2902   Operand regextWm = !cast<Operand>(prefix # "_Wm_regext");
   2903   Operand regextXm = !cast<Operand>(prefix # "_Xm_regext");
   2904 }
   2905 
   2906 def byte_addrparams : AddrParams<"byte">;
   2907 def hword_addrparams : AddrParams<"hword">;
   2908 def word_addrparams : AddrParams<"word">;
   2909 def dword_addrparams : AddrParams<"dword">;
   2910 def qword_addrparams : AddrParams<"qword">;
   2911 
   2912 multiclass A64I_LDRSTR_unsigned<string prefix, bits<2> size, bit v,
   2913                                 bit high_opc, string asmsuffix,
   2914                                 RegisterClass GPR, AddrParams params> {
   2915   // Unsigned immediate
   2916   def _STR : A64I_LSunsigimm<size, v, {high_opc, 0b0},
   2917                      (outs), (ins GPR:$Rt, GPR64xsp:$Rn, params.uimm12:$UImm12),
   2918                      "str" # asmsuffix # "\t$Rt, [$Rn, $UImm12]",
   2919                      [], NoItinerary> {
   2920     let mayStore = 1;
   2921   }
   2922   def : InstAlias<"str" # asmsuffix # " $Rt, [$Rn]",
   2923                 (!cast<Instruction>(prefix # "_STR") GPR:$Rt, GPR64xsp:$Rn, 0)>;
   2924 
   2925   def _LDR : A64I_LSunsigimm<size, v, {high_opc, 0b1},
   2926                       (outs GPR:$Rt), (ins GPR64xsp:$Rn, params.uimm12:$UImm12),
   2927                       "ldr" #  asmsuffix # "\t$Rt, [$Rn, $UImm12]",
   2928                       [], NoItinerary> {
   2929     let mayLoad = 1;
   2930   }
   2931   def : InstAlias<"ldr" # asmsuffix # " $Rt, [$Rn]",
   2932                 (!cast<Instruction>(prefix # "_LDR") GPR:$Rt, GPR64xsp:$Rn, 0)>;
   2933 
   2934   // Register offset (four of these: load/store and Wm/Xm).
   2935   let mayLoad = 1 in {
   2936     def _Wm_RegOffset_LDR : A64I_LSregoff<size, v, {high_opc, 0b1}, 0b0,
   2937                             (outs GPR:$Rt),
   2938                             (ins GPR64xsp:$Rn, GPR32:$Rm, params.regextWm:$Ext),
   2939                             "ldr" # asmsuffix # "\t$Rt, [$Rn, $Rm, $Ext]",
   2940                             [], NoItinerary>;
   2941 
   2942     def _Xm_RegOffset_LDR : A64I_LSregoff<size, v, {high_opc, 0b1}, 0b1,
   2943                             (outs GPR:$Rt),
   2944                             (ins GPR64xsp:$Rn, GPR64:$Rm, params.regextXm:$Ext),
   2945                             "ldr" # asmsuffix # "\t$Rt, [$Rn, $Rm, $Ext]",
   2946                             [], NoItinerary>;
   2947   }
   2948   def : InstAlias<"ldr" # asmsuffix # " $Rt, [$Rn, $Rm]",
   2949         (!cast<Instruction>(prefix # "_Xm_RegOffset_LDR") GPR:$Rt, GPR64xsp:$Rn,
   2950                                                           GPR64:$Rm, 2)>;
   2951 
   2952   let mayStore = 1 in {
   2953     def _Wm_RegOffset_STR : A64I_LSregoff<size, v, {high_opc, 0b0}, 0b0,
   2954                                   (outs), (ins GPR:$Rt, GPR64xsp:$Rn, GPR32:$Rm,
   2955                                                params.regextWm:$Ext),
   2956                                   "str" # asmsuffix # "\t$Rt, [$Rn, $Rm, $Ext]",
   2957                                   [], NoItinerary>;
   2958 
   2959     def _Xm_RegOffset_STR : A64I_LSregoff<size, v, {high_opc, 0b0}, 0b1,
   2960                                   (outs), (ins GPR:$Rt, GPR64xsp:$Rn, GPR64:$Rm,
   2961                                                params.regextXm:$Ext),
   2962                                   "str" # asmsuffix # "\t$Rt, [$Rn, $Rm, $Ext]",
   2963                                   [], NoItinerary>;
   2964   }
   2965   def : InstAlias<"str" # asmsuffix # " $Rt, [$Rn, $Rm]",
   2966       (!cast<Instruction>(prefix # "_Xm_RegOffset_STR") GPR:$Rt, GPR64xsp:$Rn,
   2967                                                         GPR64:$Rm, 2)>;
   2968 
   2969   // Unaligned immediate
   2970   def _STUR : A64I_LSunalimm<size, v, {high_opc, 0b0},
   2971                              (outs), (ins GPR:$Rt, GPR64xsp:$Rn, simm9:$SImm9),
   2972                              "stur" # asmsuffix # "\t$Rt, [$Rn, $SImm9]",
   2973                              [], NoItinerary> {
   2974     let mayStore = 1;
   2975   }
   2976   def : InstAlias<"stur" # asmsuffix # " $Rt, [$Rn]",
   2977                (!cast<Instruction>(prefix # "_STUR") GPR:$Rt, GPR64xsp:$Rn, 0)>;
   2978 
   2979   def _LDUR : A64I_LSunalimm<size, v, {high_opc, 0b1},
   2980                              (outs GPR:$Rt), (ins GPR64xsp:$Rn, simm9:$SImm9),
   2981                              "ldur" # asmsuffix # "\t$Rt, [$Rn, $SImm9]",
   2982                              [], NoItinerary> {
   2983     let mayLoad = 1;
   2984   }
   2985   def : InstAlias<"ldur" # asmsuffix # " $Rt, [$Rn]",
   2986                (!cast<Instruction>(prefix # "_LDUR") GPR:$Rt, GPR64xsp:$Rn, 0)>;
   2987 
   2988   // Post-indexed
   2989   def _PostInd_STR : A64I_LSpostind<size, v, {high_opc, 0b0},
   2990                                (outs GPR64xsp:$Rn_wb),
   2991                                (ins GPR:$Rt, GPR64xsp:$Rn, simm9:$SImm9),
   2992                                "str" # asmsuffix # "\t$Rt, [$Rn], $SImm9",
   2993                                [], NoItinerary> {
   2994     let Constraints = "$Rn = $Rn_wb";
   2995     let mayStore = 1;
   2996 
   2997     // Decoder only needed for unpredictability checking (FIXME).
   2998     let DecoderMethod = "DecodeSingleIndexedInstruction";
   2999   }
   3000 
   3001   def _PostInd_LDR : A64I_LSpostind<size, v, {high_opc, 0b1},
   3002                                     (outs GPR:$Rt, GPR64xsp:$Rn_wb),
   3003                                     (ins GPR64xsp:$Rn, simm9:$SImm9),
   3004                                     "ldr" # asmsuffix # "\t$Rt, [$Rn], $SImm9",
   3005                                     [], NoItinerary> {
   3006     let mayLoad = 1;
   3007     let Constraints = "$Rn = $Rn_wb";
   3008     let DecoderMethod = "DecodeSingleIndexedInstruction";
   3009   }
   3010 
   3011   // Pre-indexed
   3012   def _PreInd_STR : A64I_LSpreind<size, v, {high_opc, 0b0},
   3013                                (outs GPR64xsp:$Rn_wb),
   3014                                (ins GPR:$Rt, GPR64xsp:$Rn, simm9:$SImm9),
   3015                                "str" # asmsuffix # "\t$Rt, [$Rn, $SImm9]!",
   3016                                [], NoItinerary> {
   3017     let Constraints = "$Rn = $Rn_wb";
   3018     let mayStore = 1;
   3019 
   3020     // Decoder only needed for unpredictability checking (FIXME).
   3021     let DecoderMethod = "DecodeSingleIndexedInstruction";
   3022   }
   3023 
   3024   def _PreInd_LDR : A64I_LSpreind<size, v, {high_opc, 0b1},
   3025                                     (outs GPR:$Rt, GPR64xsp:$Rn_wb),
   3026                                     (ins GPR64xsp:$Rn, simm9:$SImm9),
   3027                                     "ldr" # asmsuffix # "\t$Rt, [$Rn, $SImm9]!",
   3028                                     [], NoItinerary> {
   3029     let mayLoad = 1;
   3030     let Constraints = "$Rn = $Rn_wb";
   3031     let DecoderMethod = "DecodeSingleIndexedInstruction";
   3032   }
   3033 
   3034 }
   3035 
   3036 // STRB/LDRB: First define the instructions
   3037 defm LS8
   3038   : A64I_LDRSTR_unsigned<"LS8", 0b00, 0b0, 0b0, "b", GPR32, byte_addrparams>;
   3039 
   3040 // STRH/LDRH
   3041 defm LS16
   3042   : A64I_LDRSTR_unsigned<"LS16", 0b01, 0b0, 0b0, "h", GPR32, hword_addrparams>;
   3043 
   3044 
   3045 // STR/LDR to/from a W register
   3046 defm LS32
   3047   : A64I_LDRSTR_unsigned<"LS32", 0b10, 0b0, 0b0, "", GPR32, word_addrparams>;
   3048 
   3049 // STR/LDR to/from an X register
   3050 defm LS64
   3051   : A64I_LDRSTR_unsigned<"LS64", 0b11, 0b0, 0b0, "", GPR64, dword_addrparams>;
   3052 
   3053 // STR/LDR to/from a B register
   3054 defm LSFP8
   3055   : A64I_LDRSTR_unsigned<"LSFP8", 0b00, 0b1, 0b0, "", FPR8, byte_addrparams>;
   3056 
   3057 // STR/LDR to/from an H register
   3058 defm LSFP16
   3059   : A64I_LDRSTR_unsigned<"LSFP16", 0b01, 0b1, 0b0, "", FPR16, hword_addrparams>;
   3060 
   3061 // STR/LDR to/from an S register
   3062 defm LSFP32
   3063   : A64I_LDRSTR_unsigned<"LSFP32", 0b10, 0b1, 0b0, "", FPR32, word_addrparams>;
   3064 // STR/LDR to/from a D register
   3065 defm LSFP64
   3066   : A64I_LDRSTR_unsigned<"LSFP64", 0b11, 0b1, 0b0, "", FPR64, dword_addrparams>;
   3067 // STR/LDR to/from a Q register
   3068 defm LSFP128
   3069   : A64I_LDRSTR_unsigned<"LSFP128", 0b00, 0b1, 0b1, "", FPR128,
   3070                          qword_addrparams>;
   3071 
   3072 //===------------------------------
   3073 // 2.3 Signed loads
   3074 //===------------------------------
   3075 
   3076 // Byte and half-word signed loads can both go into either an X or a W register,
   3077 // so it's worth factoring out. Signed word loads don't fit because there is no
   3078 // W version.
   3079 multiclass A64I_LDR_signed<bits<2> size, string asmopcode, AddrParams params,
   3080                            string prefix> {
   3081   // Unsigned offset
   3082   def w : A64I_LSunsigimm<size, 0b0, 0b11,
   3083                           (outs GPR32:$Rt),
   3084                           (ins GPR64xsp:$Rn, params.uimm12:$UImm12),
   3085                           "ldrs" # asmopcode # "\t$Rt, [$Rn, $UImm12]",
   3086                           [], NoItinerary> {
   3087     let mayLoad = 1;
   3088   }
   3089   def : InstAlias<"ldrs" # asmopcode # " $Rt, [$Rn]",
   3090                   (!cast<Instruction>(prefix # w) GPR32:$Rt, GPR64xsp:$Rn, 0)>;
   3091 
   3092   def x : A64I_LSunsigimm<size, 0b0, 0b10,
   3093                           (outs GPR64:$Rt),
   3094                           (ins GPR64xsp:$Rn, params.uimm12:$UImm12),
   3095                           "ldrs" # asmopcode # "\t$Rt, [$Rn, $UImm12]",
   3096                           [], NoItinerary> {
   3097     let mayLoad = 1;
   3098   }
   3099   def : InstAlias<"ldrs" # asmopcode # " $Rt, [$Rn]",
   3100                   (!cast<Instruction>(prefix # x) GPR64:$Rt, GPR64xsp:$Rn, 0)>;
   3101 
   3102   // Register offset
   3103   let mayLoad = 1 in {
   3104     def w_Wm_RegOffset : A64I_LSregoff<size, 0b0, 0b11, 0b0,
   3105                             (outs GPR32:$Rt),
   3106                             (ins GPR64xsp:$Rn, GPR32:$Rm, params.regextWm:$Ext),
   3107                             "ldrs" # asmopcode # "\t$Rt, [$Rn, $Rm, $Ext]",
   3108                             [], NoItinerary>;
   3109 
   3110     def w_Xm_RegOffset : A64I_LSregoff<size, 0b0, 0b11, 0b1,
   3111                             (outs GPR32:$Rt),
   3112                             (ins GPR64xsp:$Rn, GPR64:$Rm, params.regextXm:$Ext),
   3113                             "ldrs" # asmopcode # "\t$Rt, [$Rn, $Rm, $Ext]",
   3114                             [], NoItinerary>;
   3115 
   3116     def x_Wm_RegOffset : A64I_LSregoff<size, 0b0, 0b10, 0b0,
   3117                             (outs GPR64:$Rt),
   3118                             (ins GPR64xsp:$Rn, GPR32:$Rm, params.regextWm:$Ext),
   3119                             "ldrs" # asmopcode # "\t$Rt, [$Rn, $Rm, $Ext]",
   3120                             [], NoItinerary>;
   3121 
   3122     def x_Xm_RegOffset : A64I_LSregoff<size, 0b0, 0b10, 0b1,
   3123                             (outs GPR64:$Rt),
   3124                             (ins GPR64xsp:$Rn, GPR64:$Rm, params.regextXm:$Ext),
   3125                             "ldrs" # asmopcode # "\t$Rt, [$Rn, $Rm, $Ext]",
   3126                             [], NoItinerary>;
   3127   }
   3128   def : InstAlias<"ldrs" # asmopcode # " $Rt, [$Rn, $Rm]",
   3129         (!cast<Instruction>(prefix # "w_Xm_RegOffset") GPR32:$Rt, GPR64xsp:$Rn,
   3130                                                        GPR64:$Rm, 2)>;
   3131 
   3132   def : InstAlias<"ldrs" # asmopcode # " $Rt, [$Rn, $Rm]",
   3133         (!cast<Instruction>(prefix # "x_Xm_RegOffset") GPR64:$Rt, GPR64xsp:$Rn,
   3134                                                        GPR64:$Rm, 2)>;
   3135 
   3136 
   3137   let mayLoad = 1 in {
   3138     // Unaligned offset
   3139     def w_U : A64I_LSunalimm<size, 0b0, 0b11,
   3140                              (outs GPR32:$Rt),
   3141                              (ins GPR64xsp:$Rn, simm9:$SImm9),
   3142                              "ldurs" # asmopcode # "\t$Rt, [$Rn, $SImm9]",
   3143                              [], NoItinerary>;
   3144 
   3145     def x_U : A64I_LSunalimm<size, 0b0, 0b10,
   3146                              (outs GPR64:$Rt),
   3147                              (ins GPR64xsp:$Rn, simm9:$SImm9),
   3148                              "ldurs" # asmopcode # "\t$Rt, [$Rn, $SImm9]",
   3149                              [], NoItinerary>;
   3150 
   3151 
   3152     // Post-indexed
   3153     def w_PostInd : A64I_LSpostind<size, 0b0, 0b11,
   3154                                  (outs GPR32:$Rt, GPR64xsp:$Rn_wb),
   3155                                  (ins GPR64xsp:$Rn, simm9:$SImm9),
   3156                                  "ldrs" # asmopcode # "\t$Rt, [$Rn], $SImm9",
   3157                                  [], NoItinerary> {
   3158       let Constraints = "$Rn = $Rn_wb";
   3159       let DecoderMethod = "DecodeSingleIndexedInstruction";
   3160     }
   3161 
   3162     def x_PostInd : A64I_LSpostind<size, 0b0, 0b10,
   3163                                    (outs GPR64:$Rt, GPR64xsp:$Rn_wb),
   3164                                    (ins GPR64xsp:$Rn, simm9:$SImm9),
   3165                                    "ldrs" # asmopcode # "\t$Rt, [$Rn], $SImm9",
   3166                                    [], NoItinerary> {
   3167       let Constraints = "$Rn = $Rn_wb";
   3168       let DecoderMethod = "DecodeSingleIndexedInstruction";
   3169     }
   3170 
   3171     // Pre-indexed
   3172     def w_PreInd : A64I_LSpreind<size, 0b0, 0b11,
   3173                                  (outs GPR32:$Rt, GPR64xsp:$Rn_wb),
   3174                                  (ins GPR64xsp:$Rn, simm9:$SImm9),
   3175                                  "ldrs" # asmopcode # "\t$Rt, [$Rn, $SImm9]!",
   3176                                  [], NoItinerary> {
   3177       let Constraints = "$Rn = $Rn_wb";
   3178       let DecoderMethod = "DecodeSingleIndexedInstruction";
   3179     }
   3180 
   3181     def x_PreInd : A64I_LSpreind<size, 0b0, 0b10,
   3182                                  (outs GPR64:$Rt, GPR64xsp:$Rn_wb),
   3183                                  (ins GPR64xsp:$Rn, simm9:$SImm9),
   3184                                  "ldrs" # asmopcode # "\t$Rt, [$Rn, $SImm9]!",
   3185                                  [], NoItinerary> {
   3186       let Constraints = "$Rn = $Rn_wb";
   3187       let DecoderMethod = "DecodeSingleIndexedInstruction";
   3188     }
   3189   } // let mayLoad = 1
   3190 }
   3191 
   3192 // LDRSB
   3193 defm LDRSB : A64I_LDR_signed<0b00, "b", byte_addrparams, "LDRSB">;
   3194 // LDRSH
   3195 defm LDRSH : A64I_LDR_signed<0b01, "h", hword_addrparams, "LDRSH">;
   3196 
   3197 // LDRSW: load a 32-bit register, sign-extending to 64-bits.
   3198 def LDRSWx
   3199     : A64I_LSunsigimm<0b10, 0b0, 0b10,
   3200                     (outs GPR64:$Rt),
   3201                     (ins GPR64xsp:$Rn, word_uimm12:$UImm12),
   3202                     "ldrsw\t$Rt, [$Rn, $UImm12]",
   3203                     [], NoItinerary> {
   3204   let mayLoad = 1;
   3205 }
   3206 def : InstAlias<"ldrsw $Rt, [$Rn]", (LDRSWx GPR64:$Rt, GPR64xsp:$Rn, 0)>;
   3207 
   3208 let mayLoad = 1 in {
   3209   def LDRSWx_Wm_RegOffset : A64I_LSregoff<0b10, 0b0, 0b10, 0b0,
   3210                              (outs GPR64:$Rt),
   3211                              (ins GPR64xsp:$Rn, GPR32:$Rm, word_Wm_regext:$Ext),
   3212                              "ldrsw\t$Rt, [$Rn, $Rm, $Ext]",
   3213                              [], NoItinerary>;
   3214 
   3215   def LDRSWx_Xm_RegOffset : A64I_LSregoff<0b10, 0b0, 0b10, 0b1,
   3216                              (outs GPR64:$Rt),
   3217                              (ins GPR64xsp:$Rn, GPR64:$Rm, word_Xm_regext:$Ext),
   3218                              "ldrsw\t$Rt, [$Rn, $Rm, $Ext]",
   3219                              [], NoItinerary>;
   3220 }
   3221 def : InstAlias<"ldrsw $Rt, [$Rn, $Rm]",
   3222                 (LDRSWx_Xm_RegOffset GPR64:$Rt, GPR64xsp:$Rn, GPR64:$Rm, 2)>;
   3223 
   3224 
   3225 def LDURSWx
   3226     : A64I_LSunalimm<0b10, 0b0, 0b10,
   3227                     (outs GPR64:$Rt),
   3228                     (ins GPR64xsp:$Rn, simm9:$SImm9),
   3229                     "ldursw\t$Rt, [$Rn, $SImm9]",
   3230                     [], NoItinerary> {
   3231   let mayLoad = 1;
   3232 }
   3233 def : InstAlias<"ldursw $Rt, [$Rn]", (LDURSWx GPR64:$Rt, GPR64xsp:$Rn, 0)>;
   3234 
   3235 def LDRSWx_PostInd
   3236     : A64I_LSpostind<0b10, 0b0, 0b10,
   3237                     (outs GPR64:$Rt, GPR64xsp:$Rn_wb),
   3238                     (ins GPR64xsp:$Rn, simm9:$SImm9),
   3239                     "ldrsw\t$Rt, [$Rn], $SImm9",
   3240                     [], NoItinerary> {
   3241   let mayLoad = 1;
   3242   let Constraints = "$Rn = $Rn_wb";
   3243   let DecoderMethod = "DecodeSingleIndexedInstruction";
   3244 }
   3245 
   3246 def LDRSWx_PreInd : A64I_LSpreind<0b10, 0b0, 0b10,
   3247                                  (outs GPR64:$Rt, GPR64xsp:$Rn_wb),
   3248                                  (ins GPR64xsp:$Rn, simm9:$SImm9),
   3249                                  "ldrsw\t$Rt, [$Rn, $SImm9]!",
   3250                                  [], NoItinerary> {
   3251   let mayLoad = 1;
   3252   let Constraints = "$Rn = $Rn_wb";
   3253   let DecoderMethod = "DecodeSingleIndexedInstruction";
   3254 }
   3255 
   3256 //===------------------------------
   3257 // 2.4 Prefetch operations
   3258 //===------------------------------
   3259 
   3260 def PRFM : A64I_LSunsigimm<0b11, 0b0, 0b10, (outs),
   3261                  (ins prefetch_op:$Rt, GPR64xsp:$Rn, dword_uimm12:$UImm12),
   3262                  "prfm\t$Rt, [$Rn, $UImm12]",
   3263                  [], NoItinerary> {
   3264   let mayLoad = 1;
   3265 }
   3266 def : InstAlias<"prfm $Rt, [$Rn]",
   3267                 (PRFM prefetch_op:$Rt, GPR64xsp:$Rn, 0)>;
   3268 
   3269 let mayLoad = 1 in {
   3270   def PRFM_Wm_RegOffset : A64I_LSregoff<0b11, 0b0, 0b10, 0b0, (outs),
   3271                                         (ins prefetch_op:$Rt, GPR64xsp:$Rn,
   3272                                              GPR32:$Rm, dword_Wm_regext:$Ext),
   3273                                         "prfm\t$Rt, [$Rn, $Rm, $Ext]",
   3274                                         [], NoItinerary>;
   3275   def PRFM_Xm_RegOffset : A64I_LSregoff<0b11, 0b0, 0b10, 0b1, (outs),
   3276                                         (ins prefetch_op:$Rt, GPR64xsp:$Rn,
   3277                                              GPR64:$Rm, dword_Xm_regext:$Ext),
   3278                                         "prfm\t$Rt, [$Rn, $Rm, $Ext]",
   3279                                         [], NoItinerary>;
   3280 }
   3281 
   3282 def : InstAlias<"prfm $Rt, [$Rn, $Rm]",
   3283                 (PRFM_Xm_RegOffset prefetch_op:$Rt, GPR64xsp:$Rn,
   3284                                    GPR64:$Rm, 2)>;
   3285 
   3286 
   3287 def PRFUM : A64I_LSunalimm<0b11, 0b0, 0b10, (outs),
   3288                          (ins prefetch_op:$Rt, GPR64xsp:$Rn, simm9:$SImm9),
   3289                          "prfum\t$Rt, [$Rn, $SImm9]",
   3290                          [], NoItinerary> {
   3291   let mayLoad = 1;
   3292 }
   3293 def : InstAlias<"prfum $Rt, [$Rn]",
   3294                 (PRFUM prefetch_op:$Rt, GPR64xsp:$Rn, 0)>;
   3295 
   3296 //===----------------------------------------------------------------------===//
   3297 // Load-store register (unprivileged) instructions
   3298 //===----------------------------------------------------------------------===//
   3299 // Contains: LDTRB, LDTRH, LDTRSB, LDTRSH, LDTRSW, STTR, STTRB and STTRH
   3300 
   3301 // These instructions very much mirror the "unscaled immediate" loads, but since
   3302 // there are no floating-point variants we need to split them out into their own
   3303 // section to avoid instantiation of "ldtr d0, [sp]" etc.
   3304 
   3305 multiclass A64I_LDTRSTTR<bits<2> size, string asmsuffix, RegisterClass GPR,
   3306                          string prefix> {
   3307   def _UnPriv_STR : A64I_LSunpriv<size, 0b0, 0b00,
   3308                               (outs), (ins GPR:$Rt, GPR64xsp:$Rn, simm9:$SImm9),
   3309                               "sttr" # asmsuffix # "\t$Rt, [$Rn, $SImm9]",
   3310                               [], NoItinerary> {
   3311     let mayStore = 1;
   3312   }
   3313 
   3314   def : InstAlias<"sttr" # asmsuffix # " $Rt, [$Rn]",
   3315          (!cast<Instruction>(prefix # "_UnPriv_STR") GPR:$Rt, GPR64xsp:$Rn, 0)>;
   3316 
   3317   def _UnPriv_LDR : A64I_LSunpriv<size, 0b0, 0b01,
   3318                                (outs GPR:$Rt), (ins GPR64xsp:$Rn, simm9:$SImm9),
   3319                                "ldtr" # asmsuffix # "\t$Rt, [$Rn, $SImm9]",
   3320                                [], NoItinerary> {
   3321     let mayLoad = 1;
   3322   }
   3323 
   3324   def : InstAlias<"ldtr" # asmsuffix # " $Rt, [$Rn]",
   3325          (!cast<Instruction>(prefix # "_UnPriv_LDR") GPR:$Rt, GPR64xsp:$Rn, 0)>;
   3326 
   3327 }
   3328 
   3329 // STTRB/LDTRB: First define the instructions
   3330 defm LS8 : A64I_LDTRSTTR<0b00, "b", GPR32, "LS8">;
   3331 
   3332 // STTRH/LDTRH
   3333 defm LS16 : A64I_LDTRSTTR<0b01, "h", GPR32, "LS16">;
   3334 
   3335 // STTR/LDTR to/from a W register
   3336 defm LS32 : A64I_LDTRSTTR<0b10, "", GPR32, "LS32">;
   3337 
   3338 // STTR/LDTR to/from an X register
   3339 defm LS64 : A64I_LDTRSTTR<0b11, "", GPR64, "LS64">;
   3340 
   3341 // Now a class for the signed instructions that can go to either 32 or 64
   3342 // bits...
   3343 multiclass A64I_LDTR_signed<bits<2> size, string asmopcode, string prefix> {
   3344   let mayLoad = 1 in {
   3345     def w : A64I_LSunpriv<size, 0b0, 0b11,
   3346                           (outs GPR32:$Rt),
   3347                           (ins GPR64xsp:$Rn, simm9:$SImm9),
   3348                           "ldtrs" # asmopcode # "\t$Rt, [$Rn, $SImm9]",
   3349                           [], NoItinerary>;
   3350 
   3351     def x : A64I_LSunpriv<size, 0b0, 0b10,
   3352                           (outs GPR64:$Rt),
   3353                           (ins GPR64xsp:$Rn, simm9:$SImm9),
   3354                           "ldtrs" # asmopcode # "\t$Rt, [$Rn, $SImm9]",
   3355                           [], NoItinerary>;
   3356   }
   3357 
   3358   def : InstAlias<"ldtrs" # asmopcode # " $Rt, [$Rn]",
   3359                  (!cast<Instruction>(prefix # "w") GPR32:$Rt, GPR64xsp:$Rn, 0)>;
   3360 
   3361   def : InstAlias<"ldtrs" # asmopcode # " $Rt, [$Rn]",
   3362                  (!cast<Instruction>(prefix # "x") GPR64:$Rt, GPR64xsp:$Rn, 0)>;
   3363 
   3364 }
   3365 
   3366 // LDTRSB
   3367 defm LDTRSB : A64I_LDTR_signed<0b00, "b", "LDTRSB">;
   3368 // LDTRSH
   3369 defm LDTRSH : A64I_LDTR_signed<0b01, "h", "LDTRSH">;
   3370 
   3371 // And finally LDTRSW which only goes to 64 bits.
   3372 def LDTRSWx : A64I_LSunpriv<0b10, 0b0, 0b10,
   3373                             (outs GPR64:$Rt),
   3374                             (ins GPR64xsp:$Rn, simm9:$SImm9),
   3375                             "ldtrsw\t$Rt, [$Rn, $SImm9]",
   3376                             [], NoItinerary> {
   3377   let mayLoad = 1;
   3378 }
   3379 def : InstAlias<"ldtrsw $Rt, [$Rn]", (LDTRSWx GPR64:$Rt, GPR64xsp:$Rn, 0)>;
   3380 
   3381 //===----------------------------------------------------------------------===//
   3382 // Load-store register pair (offset) instructions
   3383 //===----------------------------------------------------------------------===//
   3384 //
   3385 // and
   3386 //
   3387 //===----------------------------------------------------------------------===//
   3388 // Load-store register pair (post-indexed) instructions
   3389 //===----------------------------------------------------------------------===//
   3390 // Contains: STP, LDP, LDPSW
   3391 //
   3392 // and
   3393 //
   3394 //===----------------------------------------------------------------------===//
   3395 // Load-store register pair (pre-indexed) instructions
   3396 //===----------------------------------------------------------------------===//
   3397 // Contains: STP, LDP, LDPSW
   3398 //
   3399 // and
   3400 //
   3401 //===----------------------------------------------------------------------===//
   3402 // Load-store non-temporal register pair (offset) instructions
   3403 //===----------------------------------------------------------------------===//
   3404 // Contains: STNP, LDNP
   3405 
   3406 
   3407 // Anything that creates an MCInst (Decoding, selection and AsmParsing) has to
   3408 // know the access size via some means. An isolated operand does not have this
   3409 // information unless told from here, which means we need separate tablegen
   3410 // Operands for each access size. This multiclass takes care of instantiating
   3411 // the correct template functions in the rest of the backend.
   3412 
   3413 multiclass offsets_simm7<string MemSize, string prefix> {
   3414   // The bare signed 7-bit immediate is used in post-indexed instructions, but
   3415   // because of the scaling performed a generic "simm7" operand isn't
   3416   // appropriate here either.
   3417   def simm7_asmoperand : AsmOperandClass {
   3418     let Name = "SImm7_Scaled" # MemSize;
   3419     let PredicateMethod = "isSImm7Scaled<" # MemSize # ">";
   3420     let RenderMethod = "addSImm7ScaledOperands<" # MemSize # ">";
   3421     let DiagnosticType = "LoadStoreSImm7_" # MemSize;
   3422   }
   3423 
   3424   def simm7 : Operand<i64> {
   3425     let PrintMethod = "printSImm7ScaledOperand<" # MemSize # ">";
   3426     let ParserMatchClass = !cast<AsmOperandClass>(prefix # "simm7_asmoperand");
   3427   }
   3428 }
   3429 
   3430 defm word_  : offsets_simm7<"4", "word_">;
   3431 defm dword_ : offsets_simm7<"8", "dword_">;
   3432 defm qword_ : offsets_simm7<"16", "qword_">;
   3433 
   3434 multiclass A64I_LSPsimple<bits<2> opc, bit v, RegisterClass SomeReg,
   3435                           Operand simm7, string prefix> {
   3436   def _STR : A64I_LSPoffset<opc, v, 0b0, (outs),
   3437                     (ins SomeReg:$Rt, SomeReg:$Rt2, GPR64xsp:$Rn, simm7:$SImm7),
   3438                     "stp\t$Rt, $Rt2, [$Rn, $SImm7]", [], NoItinerary> {
   3439     let mayStore = 1;
   3440     let DecoderMethod = "DecodeLDSTPairInstruction";
   3441   }
   3442   def : InstAlias<"stp $Rt, $Rt2, [$Rn]",
   3443                   (!cast<Instruction>(prefix # "_STR") SomeReg:$Rt,
   3444                                                 SomeReg:$Rt2, GPR64xsp:$Rn, 0)>;
   3445 
   3446   def _LDR : A64I_LSPoffset<opc, v, 0b1,
   3447                             (outs SomeReg:$Rt, SomeReg:$Rt2),
   3448                             (ins GPR64xsp:$Rn, simm7:$SImm7),
   3449                             "ldp\t$Rt, $Rt2, [$Rn, $SImm7]", [], NoItinerary> {
   3450     let mayLoad = 1;
   3451     let DecoderMethod = "DecodeLDSTPairInstruction";
   3452   }
   3453   def : InstAlias<"ldp $Rt, $Rt2, [$Rn]",
   3454                   (!cast<Instruction>(prefix # "_LDR") SomeReg:$Rt,
   3455                                                 SomeReg:$Rt2, GPR64xsp:$Rn, 0)>;
   3456 
   3457   def _PostInd_STR : A64I_LSPpostind<opc, v, 0b0,
   3458                                (outs GPR64xsp:$Rn_wb),
   3459                                (ins SomeReg:$Rt, SomeReg:$Rt2,
   3460                                     GPR64xsp:$Rn,
   3461                                     simm7:$SImm7),
   3462                                "stp\t$Rt, $Rt2, [$Rn], $SImm7",
   3463                                [], NoItinerary> {
   3464     let mayStore = 1;
   3465     let Constraints = "$Rn = $Rn_wb";
   3466 
   3467     // Decoder only needed for unpredictability checking (FIXME).
   3468     let DecoderMethod = "DecodeLDSTPairInstruction";
   3469   }
   3470 
   3471   def _PostInd_LDR : A64I_LSPpostind<opc, v, 0b1,
   3472                         (outs SomeReg:$Rt, SomeReg:$Rt2, GPR64xsp:$Rn_wb),
   3473                         (ins GPR64xsp:$Rn, simm7:$SImm7),
   3474                         "ldp\t$Rt, $Rt2, [$Rn], $SImm7",
   3475                         [], NoItinerary> {
   3476     let mayLoad = 1;
   3477     let Constraints = "$Rn = $Rn_wb";
   3478     let DecoderMethod = "DecodeLDSTPairInstruction";
   3479   }
   3480 
   3481   def _PreInd_STR : A64I_LSPpreind<opc, v, 0b0, (outs GPR64xsp:$Rn_wb),
   3482                     (ins SomeReg:$Rt, SomeReg:$Rt2, GPR64xsp:$Rn, simm7:$SImm7),
   3483                     "stp\t$Rt, $Rt2, [$Rn, $SImm7]!",
   3484                     [], NoItinerary> {
   3485     let mayStore = 1;
   3486     let Constraints = "$Rn = $Rn_wb";
   3487     let DecoderMethod = "DecodeLDSTPairInstruction";
   3488   }
   3489 
   3490   def _PreInd_LDR : A64I_LSPpreind<opc, v, 0b1,
   3491                               (outs SomeReg:$Rt, SomeReg:$Rt2, GPR64xsp:$Rn_wb),
   3492                               (ins GPR64xsp:$Rn, simm7:$SImm7),
   3493                               "ldp\t$Rt, $Rt2, [$Rn, $SImm7]!",
   3494                               [], NoItinerary> {
   3495     let mayLoad = 1;
   3496     let Constraints = "$Rn = $Rn_wb";
   3497     let DecoderMethod = "DecodeLDSTPairInstruction";
   3498   }
   3499 
   3500   def _NonTemp_STR : A64I_LSPnontemp<opc, v, 0b0, (outs),
   3501                     (ins SomeReg:$Rt, SomeReg:$Rt2, GPR64xsp:$Rn, simm7:$SImm7),
   3502                     "stnp\t$Rt, $Rt2, [$Rn, $SImm7]", [], NoItinerary> {
   3503     let mayStore = 1;
   3504     let DecoderMethod = "DecodeLDSTPairInstruction";
   3505   }
   3506   def : InstAlias<"stnp $Rt, $Rt2, [$Rn]",
   3507                   (!cast<Instruction>(prefix # "_NonTemp_STR") SomeReg:$Rt,
   3508                                                 SomeReg:$Rt2, GPR64xsp:$Rn, 0)>;
   3509 
   3510   def _NonTemp_LDR : A64I_LSPnontemp<opc, v, 0b1,
   3511                             (outs SomeReg:$Rt, SomeReg:$Rt2),
   3512                             (ins GPR64xsp:$Rn, simm7:$SImm7),
   3513                             "ldnp\t$Rt, $Rt2, [$Rn, $SImm7]", [], NoItinerary> {
   3514     let mayLoad = 1;
   3515     let DecoderMethod = "DecodeLDSTPairInstruction";
   3516   }
   3517   def : InstAlias<"ldnp $Rt, $Rt2, [$Rn]",
   3518                   (!cast<Instruction>(prefix # "_NonTemp_LDR") SomeReg:$Rt,
   3519                                                 SomeReg:$Rt2, GPR64xsp:$Rn, 0)>;
   3520 
   3521 }
   3522 
   3523 
   3524 defm LSPair32 : A64I_LSPsimple<0b00, 0b0, GPR32, word_simm7, "LSPair32">;
   3525 defm LSPair64 : A64I_LSPsimple<0b10, 0b0, GPR64, dword_simm7, "LSPair64">;
   3526 defm LSFPPair32 : A64I_LSPsimple<0b00, 0b1, FPR32, word_simm7, "LSFPPair32">;
   3527 defm LSFPPair64 : A64I_LSPsimple<0b01, 0b1, FPR64,  dword_simm7, "LSFPPair64">;
   3528 defm LSFPPair128 : A64I_LSPsimple<0b10, 0b1, FPR128, qword_simm7,
   3529                                   "LSFPPair128">;
   3530 
   3531 
   3532 def LDPSWx : A64I_LSPoffset<0b01, 0b0, 0b1,
   3533                            (outs GPR64:$Rt, GPR64:$Rt2),
   3534                            (ins GPR64xsp:$Rn, word_simm7:$SImm7),
   3535                            "ldpsw\t$Rt, $Rt2, [$Rn, $SImm7]", [], NoItinerary> {
   3536   let mayLoad = 1;
   3537   let DecoderMethod = "DecodeLDSTPairInstruction";
   3538 }
   3539 def : InstAlias<"ldpsw $Rt, $Rt2, [$Rn]",
   3540                 (LDPSWx GPR64:$Rt, GPR64:$Rt2, GPR64xsp:$Rn, 0)>;
   3541 
   3542 def LDPSWx_PostInd : A64I_LSPpostind<0b01, 0b0, 0b1,
   3543                                   (outs GPR64:$Rt, GPR64:$Rt2, GPR64:$Rn_wb),
   3544                                   (ins GPR64xsp:$Rn, word_simm7:$SImm7),
   3545                                   "ldpsw\t$Rt, $Rt2, [$Rn], $SImm7",
   3546                                   [], NoItinerary> {
   3547   let mayLoad = 1;
   3548   let Constraints = "$Rn = $Rn_wb";
   3549   let DecoderMethod = "DecodeLDSTPairInstruction";
   3550 }
   3551 
   3552 def LDPSWx_PreInd : A64I_LSPpreind<0b01, 0b0, 0b1,
   3553                                    (outs GPR64:$Rt, GPR64:$Rt2, GPR64:$Rn_wb),
   3554                                    (ins GPR64xsp:$Rn, word_simm7:$SImm7),
   3555                                    "ldpsw\t$Rt, $Rt2, [$Rn, $SImm7]!",
   3556                                    [], NoItinerary> {
   3557   let mayLoad = 1;
   3558   let Constraints = "$Rn = $Rn_wb";
   3559   let DecoderMethod = "DecodeLDSTPairInstruction";
   3560 }
   3561 
   3562 //===----------------------------------------------------------------------===//
   3563 // Logical (immediate) instructions
   3564 //===----------------------------------------------------------------------===//
   3565 // Contains: AND, ORR, EOR, ANDS, + aliases TST, MOV
   3566 
   3567 multiclass logical_imm_operands<string prefix, string note,
   3568                                 int size, ValueType VT> {
   3569   def _asmoperand : AsmOperandClass {
   3570     let Name = "LogicalImm" # note # size;
   3571     let PredicateMethod = "isLogicalImm" # note # "<" # size # ">";
   3572     let RenderMethod = "addLogicalImmOperands<" # size # ">";
   3573     let DiagnosticType = "LogicalSecondSource";
   3574   }
   3575 
   3576   def _operand
   3577         : Operand<VT>, ComplexPattern<VT, 1, "SelectLogicalImm", [imm]> {
   3578     let ParserMatchClass = !cast<AsmOperandClass>(prefix # "_asmoperand");
   3579     let PrintMethod = "printLogicalImmOperand<" # size # ">";
   3580     let DecoderMethod = "DecodeLogicalImmOperand<" # size # ">";
   3581   }
   3582 }
   3583 
   3584 defm logical_imm32 : logical_imm_operands<"logical_imm32", "", 32, i32>;
   3585 defm logical_imm64 : logical_imm_operands<"logical_imm64", "", 64, i64>;
   3586 
   3587 // The mov versions only differ in assembly parsing, where they
   3588 // exclude values representable with either MOVZ or MOVN.
   3589 defm logical_imm32_mov
   3590   : logical_imm_operands<"logical_imm32_mov", "MOV", 32, i32>;
   3591 defm logical_imm64_mov
   3592   : logical_imm_operands<"logical_imm64_mov", "MOV", 64, i64>;
   3593 
   3594 
   3595 multiclass A64I_logimmSizes<bits<2> opc, string asmop, SDNode opnode> {
   3596   def wwi : A64I_logicalimm<0b0, opc, (outs GPR32wsp:$Rd),
   3597                          (ins GPR32:$Rn, logical_imm32_operand:$Imm),
   3598                          !strconcat(asmop, "\t$Rd, $Rn, $Imm"),
   3599                          [(set GPR32wsp:$Rd,
   3600                                (opnode GPR32:$Rn, logical_imm32_operand:$Imm))],
   3601                          NoItinerary>;
   3602 
   3603   def xxi : A64I_logicalimm<0b1, opc, (outs GPR64xsp:$Rd),
   3604                          (ins GPR64:$Rn, logical_imm64_operand:$Imm),
   3605                          !strconcat(asmop, "\t$Rd, $Rn, $Imm"),
   3606                          [(set GPR64xsp:$Rd,
   3607                                (opnode GPR64:$Rn, logical_imm64_operand:$Imm))],
   3608                          NoItinerary>;
   3609 }
   3610 
   3611 defm AND : A64I_logimmSizes<0b00, "and", and>;
   3612 defm ORR : A64I_logimmSizes<0b01, "orr", or>;
   3613 defm EOR : A64I_logimmSizes<0b10, "eor", xor>;
   3614 
   3615 let Defs = [NZCV] in {
   3616   def ANDSwwi : A64I_logicalimm<0b0, 0b11, (outs GPR32:$Rd),
   3617                                 (ins GPR32:$Rn, logical_imm32_operand:$Imm),
   3618                                 "ands\t$Rd, $Rn, $Imm",
   3619                                 [], NoItinerary>;
   3620 
   3621   def ANDSxxi : A64I_logicalimm<0b1, 0b11, (outs GPR64:$Rd),
   3622                                 (ins GPR64:$Rn, logical_imm64_operand:$Imm),
   3623                                 "ands\t$Rd, $Rn, $Imm",
   3624                                 [], NoItinerary>;
   3625 }
   3626 
   3627 
   3628 def : InstAlias<"tst $Rn, $Imm",
   3629                 (ANDSwwi WZR, GPR32:$Rn, logical_imm32_operand:$Imm)>;
   3630 def : InstAlias<"tst $Rn, $Imm",
   3631                 (ANDSxxi XZR, GPR64:$Rn, logical_imm64_operand:$Imm)>;
   3632 def : InstAlias<"mov $Rd, $Imm",
   3633                 (ORRwwi GPR32wsp:$Rd, WZR, logical_imm32_mov_operand:$Imm)>;
   3634 def : InstAlias<"mov $Rd, $Imm",
   3635                 (ORRxxi GPR64xsp:$Rd, XZR, logical_imm64_mov_operand:$Imm)>;
   3636 
   3637 //===----------------------------------------------------------------------===//
   3638 // Logical (shifted register) instructions
   3639 //===----------------------------------------------------------------------===//
   3640 // Contains: AND, BIC, ORR, ORN, EOR, EON, ANDS, BICS + aliases TST, MVN, MOV
   3641 
   3642 // Operand for optimizing (icmp (and LHS, RHS), 0, SomeCode). In theory "ANDS"
   3643 // behaves differently for unsigned comparisons, so we defensively only allow
   3644 // signed or n/a as the operand. In practice "unsigned greater than 0" is "not
   3645 // equal to 0" and LLVM gives us this.
   3646 def signed_cond : PatLeaf<(cond), [{
   3647   return !isUnsignedIntSetCC(N->get());
   3648 }]>;
   3649 
   3650 
   3651 // These instructions share their "shift" operands with add/sub (shifted
   3652 // register instructions). They are defined there.
   3653 
   3654 // N.b. the commutable parameter is just !N. It will be first against the wall
   3655 // when the revolution comes.
   3656 multiclass logical_shifts<string prefix, bit sf, bits<2> opc,
   3657                           bit N, bit commutable,
   3658                           string asmop, SDPatternOperator opfrag, string sty,
   3659                           RegisterClass GPR, list<Register> defs> {
   3660   let isCommutable = commutable, Defs = defs in {
   3661   def _lsl : A64I_logicalshift<sf, opc, 0b00, N,
   3662                        (outs GPR:$Rd),
   3663                        (ins GPR:$Rn, GPR:$Rm,
   3664                             !cast<Operand>("lsl_operand_" # sty):$Imm6),
   3665                        !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"),
   3666                        [(set GPR:$Rd, (opfrag GPR:$Rn, (shl GPR:$Rm,
   3667                             !cast<Operand>("lsl_operand_" # sty):$Imm6))
   3668                        )],
   3669                        NoItinerary>;
   3670 
   3671   def _lsr : A64I_logicalshift<sf, opc, 0b01, N,
   3672                        (outs GPR:$Rd),
   3673                        (ins GPR:$Rn, GPR:$Rm,
   3674                             !cast<Operand>("lsr_operand_" # sty):$Imm6),
   3675                        !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"),
   3676                        [(set GPR:$Rd, (opfrag GPR:$Rn, (srl GPR:$Rm,
   3677                             !cast<Operand>("lsr_operand_" # sty):$Imm6))
   3678                        )],
   3679                        NoItinerary>;
   3680 
   3681   def _asr : A64I_logicalshift<sf, opc, 0b10, N,
   3682                        (outs GPR:$Rd),
   3683                        (ins GPR:$Rn, GPR:$Rm,
   3684                             !cast<Operand>("asr_operand_" # sty):$Imm6),
   3685                        !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"),
   3686                        [(set GPR:$Rd, (opfrag GPR:$Rn, (sra GPR:$Rm,
   3687                             !cast<Operand>("asr_operand_" # sty):$Imm6))
   3688                        )],
   3689                        NoItinerary>;
   3690 
   3691   def _ror : A64I_logicalshift<sf, opc, 0b11, N,
   3692                        (outs GPR:$Rd),
   3693                        (ins GPR:$Rn, GPR:$Rm,
   3694                             !cast<Operand>("ror_operand_" # sty):$Imm6),
   3695                        !strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"),
   3696                        [(set GPR:$Rd, (opfrag GPR:$Rn, (rotr GPR:$Rm,
   3697                             !cast<Operand>("ror_operand_" # sty):$Imm6))
   3698                        )],
   3699                        NoItinerary>;
   3700   }
   3701 
   3702   def _noshift
   3703       : InstAlias<!strconcat(asmop, " $Rd, $Rn, $Rm"),
   3704                  (!cast<Instruction>(prefix # "_lsl") GPR:$Rd, GPR:$Rn,
   3705                                                       GPR:$Rm, 0)>;
   3706 
   3707   def : Pat<(opfrag GPR:$Rn, GPR:$Rm),
   3708             (!cast<Instruction>(prefix # "_lsl") GPR:$Rn, GPR:$Rm, 0)>;
   3709 }
   3710 
   3711 multiclass logical_sizes<string prefix, bits<2> opc, bit N, bit commutable,
   3712                          string asmop, SDPatternOperator opfrag,
   3713                          list<Register> defs> {
   3714   defm xxx : logical_shifts<prefix # "xxx", 0b1, opc, N,
   3715                             commutable, asmop, opfrag, "i64", GPR64, defs>;
   3716   defm www : logical_shifts<prefix # "www", 0b0, opc, N,
   3717                             commutable, asmop, opfrag, "i32", GPR32, defs>;
   3718 }
   3719 
   3720 
   3721 defm AND : logical_sizes<"AND", 0b00, 0b0, 0b1, "and", and, []>;
   3722 defm ORR : logical_sizes<"ORR", 0b01, 0b0, 0b1, "orr", or, []>;
   3723 defm EOR : logical_sizes<"EOR", 0b10, 0b0, 0b1, "eor", xor, []>;
   3724 defm ANDS : logical_sizes<"ANDS", 0b11, 0b0, 0b1, "ands",
   3725              PatFrag<(ops node:$lhs, node:$rhs), (and node:$lhs, node:$rhs),
   3726                      [{ (void)N; return false; }]>,
   3727              [NZCV]>;
   3728 
   3729 defm BIC : logical_sizes<"BIC", 0b00, 0b1, 0b0, "bic",
   3730                          PatFrag<(ops node:$lhs, node:$rhs),
   3731                                  (and node:$lhs, (not node:$rhs))>, []>;
   3732 defm ORN : logical_sizes<"ORN", 0b01, 0b1, 0b0, "orn",
   3733                          PatFrag<(ops node:$lhs, node:$rhs),
   3734                                  (or node:$lhs, (not node:$rhs))>, []>;
   3735 defm EON : logical_sizes<"EON", 0b10, 0b1, 0b0, "eon",
   3736                          PatFrag<(ops node:$lhs, node:$rhs),
   3737                                  (xor node:$lhs, (not node:$rhs))>, []>;
   3738 defm BICS : logical_sizes<"BICS", 0b11, 0b1, 0b0, "bics",
   3739                           PatFrag<(ops node:$lhs, node:$rhs),
   3740                                   (and node:$lhs, (not node:$rhs)),
   3741                                   [{ (void)N; return false; }]>,
   3742                           [NZCV]>;
   3743 
   3744 multiclass tst_shifts<string prefix, bit sf, string sty, RegisterClass GPR> {
   3745   let isCommutable = 1, Rd = 0b11111, Defs = [NZCV] in {
   3746   def _lsl : A64I_logicalshift<sf, 0b11, 0b00, 0b0,
   3747                        (outs),
   3748                        (ins GPR:$Rn, GPR:$Rm,
   3749                             !cast<Operand>("lsl_operand_" # sty):$Imm6),
   3750                        "tst\t$Rn, $Rm, $Imm6",
   3751                        [(set NZCV, (A64setcc (and GPR:$Rn, (shl GPR:$Rm,
   3752                            !cast<Operand>("lsl_operand_" # sty):$Imm6)),
   3753                                           0, signed_cond))],
   3754                        NoItinerary>;
   3755 
   3756 
   3757   def _lsr : A64I_logicalshift<sf, 0b11, 0b01, 0b0,
   3758                        (outs),
   3759                        (ins GPR:$Rn, GPR:$Rm,
   3760                             !cast<Operand>("lsr_operand_" # sty):$Imm6),
   3761                        "tst\t$Rn, $Rm, $Imm6",
   3762                        [(set NZCV, (A64setcc (and GPR:$Rn, (srl GPR:$Rm,
   3763                            !cast<Operand>("lsr_operand_" # sty):$Imm6)),
   3764                                           0, signed_cond))],
   3765                        NoItinerary>;
   3766 
   3767   def _asr : A64I_logicalshift<sf, 0b11, 0b10, 0b0,
   3768                        (outs),
   3769                        (ins GPR:$Rn, GPR:$Rm,
   3770                             !cast<Operand>("asr_operand_" # sty):$Imm6),
   3771                        "tst\t$Rn, $Rm, $Imm6",
   3772                        [(set NZCV, (A64setcc (and GPR:$Rn, (sra GPR:$Rm,
   3773                            !cast<Operand>("asr_operand_" # sty):$Imm6)),
   3774                                           0, signed_cond))],
   3775                        NoItinerary>;
   3776 
   3777   def _ror : A64I_logicalshift<sf, 0b11, 0b11, 0b0,
   3778                        (outs),
   3779                        (ins GPR:$Rn, GPR:$Rm,
   3780                             !cast<Operand>("ror_operand_" # sty):$Imm6),
   3781                        "tst\t$Rn, $Rm, $Imm6",
   3782                        [(set NZCV, (A64setcc (and GPR:$Rn, (rotr GPR:$Rm,
   3783                            !cast<Operand>("ror_operand_" # sty):$Imm6)),
   3784                                           0, signed_cond))],
   3785                        NoItinerary>;
   3786   }
   3787 
   3788   def _noshift : InstAlias<"tst $Rn, $Rm",
   3789                      (!cast<Instruction>(prefix # "_lsl") GPR:$Rn, GPR:$Rm, 0)>;
   3790 
   3791   def : Pat<(A64setcc (and GPR:$Rn, GPR:$Rm), 0, signed_cond),
   3792             (!cast<Instruction>(prefix # "_lsl") GPR:$Rn, GPR:$Rm, 0)>;
   3793 }
   3794 
   3795 defm TSTxx : tst_shifts<"TSTxx", 0b1, "i64", GPR64>;
   3796 defm TSTww : tst_shifts<"TSTww", 0b0, "i32", GPR32>;
   3797 
   3798 
   3799 multiclass mvn_shifts<string prefix, bit sf, string sty, RegisterClass GPR> {
   3800   let isCommutable = 0, Rn = 0b11111 in {
   3801   def _lsl : A64I_logicalshift<sf, 0b01, 0b00, 0b1,
   3802                        (outs GPR:$Rd),
   3803                        (ins GPR:$Rm,
   3804                             !cast<Operand>("lsl_operand_" # sty):$Imm6),
   3805                        "mvn\t$Rd, $Rm, $Imm6",
   3806                        [(set GPR:$Rd, (not (shl GPR:$Rm,
   3807                          !cast<Operand>("lsl_operand_" # sty):$Imm6)))],
   3808                        NoItinerary>;
   3809 
   3810 
   3811   def _lsr : A64I_logicalshift<sf, 0b01, 0b01, 0b1,
   3812                        (outs GPR:$Rd),
   3813                        (ins GPR:$Rm,
   3814                             !cast<Operand>("lsr_operand_" # sty):$Imm6),
   3815                        "mvn\t$Rd, $Rm, $Imm6",
   3816                        [(set GPR:$Rd, (not (srl GPR:$Rm,
   3817                          !cast<Operand>("lsr_operand_" # sty):$Imm6)))],
   3818                        NoItinerary>;
   3819 
   3820   def _asr : A64I_logicalshift<sf, 0b01, 0b10, 0b1,
   3821                        (outs GPR:$Rd),
   3822                        (ins GPR:$Rm,
   3823                             !cast<Operand>("asr_operand_" # sty):$Imm6),
   3824                        "mvn\t$Rd, $Rm, $Imm6",
   3825                        [(set GPR:$Rd, (not (sra GPR:$Rm,
   3826                          !cast<Operand>("asr_operand_" # sty):$Imm6)))],
   3827                        NoItinerary>;
   3828 
   3829   def _ror : A64I_logicalshift<sf, 0b01, 0b11, 0b1,
   3830                        (outs GPR:$Rd),
   3831                        (ins GPR:$Rm,
   3832                             !cast<Operand>("ror_operand_" # sty):$Imm6),
   3833                        "mvn\t$Rd, $Rm, $Imm6",
   3834                        [(set GPR:$Rd, (not (rotr GPR:$Rm,
   3835                          !cast<Operand>("lsl_operand_" # sty):$Imm6)))],
   3836                        NoItinerary>;
   3837   }
   3838 
   3839   def _noshift : InstAlias<"mvn $Rn, $Rm",
   3840                      (!cast<Instruction>(prefix # "_lsl") GPR:$Rn, GPR:$Rm, 0)>;
   3841 
   3842   def : Pat<(not GPR:$Rm),
   3843             (!cast<Instruction>(prefix # "_lsl") GPR:$Rm, 0)>;
   3844 }
   3845 
   3846 defm MVNxx : mvn_shifts<"MVNxx", 0b1, "i64", GPR64>;
   3847 defm MVNww : mvn_shifts<"MVNww", 0b0, "i32", GPR32>;
   3848 
   3849 def MOVxx :InstAlias<"mov $Rd, $Rm", (ORRxxx_lsl GPR64:$Rd, XZR, GPR64:$Rm, 0)>;
   3850 def MOVww :InstAlias<"mov $Rd, $Rm", (ORRwww_lsl GPR32:$Rd, WZR, GPR32:$Rm, 0)>;
   3851 
   3852 //===----------------------------------------------------------------------===//
   3853 // Move wide (immediate) instructions
   3854 //===----------------------------------------------------------------------===//
   3855 // Contains: MOVN, MOVZ, MOVK + MOV aliases
   3856 
   3857 // A wide variety of different relocations are needed for variants of these
   3858 // instructions, so it turns out that we need a different operand for all of
   3859 // them.
   3860 multiclass movw_operands<string prefix, string instname, int width> {
   3861   def _imm_asmoperand : AsmOperandClass {
   3862     let Name = instname # width # "Shifted" # shift;
   3863     let PredicateMethod = "is" # instname # width # "Imm";
   3864     let RenderMethod = "addMoveWideImmOperands";
   3865     let ParserMethod = "ParseImmWithLSLOperand";
   3866     let DiagnosticType = "MOVWUImm16";
   3867   }
   3868 
   3869   def _imm : Operand<i32> {
   3870     let ParserMatchClass = !cast<AsmOperandClass>(prefix # "_imm_asmoperand");
   3871     let PrintMethod = "printMoveWideImmOperand";
   3872     let EncoderMethod = "getMoveWideImmOpValue";
   3873     let DecoderMethod = "DecodeMoveWideImmOperand<" # width # ">";
   3874 
   3875     let MIOperandInfo = (ops uimm16:$UImm16, imm:$Shift);
   3876   }
   3877 }
   3878 
   3879 defm movn32 : movw_operands<"movn32", "MOVN", 32>;
   3880 defm movn64 : movw_operands<"movn64", "MOVN", 64>;
   3881 defm movz32 : movw_operands<"movz32", "MOVZ", 32>;
   3882 defm movz64 : movw_operands<"movz64", "MOVZ", 64>;
   3883 defm movk32 : movw_operands<"movk32", "MOVK", 32>;
   3884 defm movk64 : movw_operands<"movk64", "MOVK", 64>;
   3885 
   3886 multiclass A64I_movwSizes<bits<2> opc, string asmop, dag ins32bit,
   3887                           dag ins64bit> {
   3888 
   3889   def wii : A64I_movw<0b0, opc, (outs GPR32:$Rd), ins32bit,
   3890                       !strconcat(asmop, "\t$Rd, $FullImm"),
   3891                       [], NoItinerary> {
   3892     bits<18> FullImm;
   3893     let UImm16 = FullImm{15-0};
   3894     let Shift = FullImm{17-16};
   3895   }
   3896 
   3897   def xii : A64I_movw<0b1, opc, (outs GPR64:$Rd), ins64bit,
   3898                       !strconcat(asmop, "\t$Rd, $FullImm"),
   3899                       [], NoItinerary> {
   3900     bits<18> FullImm;
   3901     let UImm16 = FullImm{15-0};
   3902     let Shift = FullImm{17-16};
   3903   }
   3904 }
   3905 
   3906 let isMoveImm = 1, isReMaterializable = 1,
   3907     isAsCheapAsAMove = 1, hasSideEffects = 0 in {
   3908   defm MOVN : A64I_movwSizes<0b00, "movn",
   3909                              (ins movn32_imm:$FullImm),
   3910                              (ins movn64_imm:$FullImm)>;
   3911 
   3912   // Some relocations are able to convert between a MOVZ and a MOVN. If these
   3913   // are applied the instruction must be emitted with the corresponding bits as
   3914   // 0, which means a MOVZ needs to override that bit from the default.
   3915   let PostEncoderMethod = "fixMOVZ" in
   3916   defm MOVZ : A64I_movwSizes<0b10, "movz",
   3917                              (ins movz32_imm:$FullImm),
   3918                              (ins movz64_imm:$FullImm)>;
   3919 }
   3920 
   3921 let Constraints = "$src = $Rd" in
   3922 defm MOVK : A64I_movwSizes<0b11, "movk",
   3923                            (ins GPR32:$src, movk32_imm:$FullImm),
   3924                            (ins GPR64:$src, movk64_imm:$FullImm)>;
   3925 
   3926 
   3927 // And now the "MOV" aliases. These also need their own operands because what
   3928 // they accept is completely different to what the base instructions accept.
   3929 multiclass movalias_operand<string prefix, string basename,
   3930                             string immpredicate, int width> {
   3931   def _asmoperand : AsmOperandClass {
   3932     let Name = basename # width # "MovAlias";
   3933     let PredicateMethod
   3934           = "isMoveWideMovAlias<" # width # ", A64Imms::" # immpredicate # ">";
   3935     let RenderMethod
   3936       = "addMoveWideMovAliasOperands<" # width # ", "
   3937                                        # "A64Imms::" # immpredicate # ">";
   3938   }
   3939 
   3940   def _movimm : Operand<i32> {
   3941     let ParserMatchClass = !cast<AsmOperandClass>(prefix # "_asmoperand");
   3942 
   3943     let MIOperandInfo = (ops uimm16:$UImm16, imm:$Shift);
   3944   }
   3945 }
   3946 
   3947 defm movz32 : movalias_operand<"movz32", "MOVZ", "isMOVZImm", 32>;
   3948 defm movz64 : movalias_operand<"movz64", "MOVZ", "isMOVZImm", 64>;
   3949 defm movn32 : movalias_operand<"movn32", "MOVN", "isOnlyMOVNImm", 32>;
   3950 defm movn64 : movalias_operand<"movn64", "MOVN", "isOnlyMOVNImm", 64>;
   3951 
   3952 // FIXME: these are officially canonical aliases, but TableGen is too limited to
   3953 // print them at the moment. I believe in this case an "AliasPredicate" method
   3954 // will need to be implemented. to allow it, as well as the more generally
   3955 // useful handling of non-register, non-constant operands.
   3956 class movalias<Instruction INST, RegisterClass GPR, Operand operand>
   3957   : InstAlias<"mov $Rd, $FullImm", (INST GPR:$Rd, operand:$FullImm)>;
   3958 
   3959 def : movalias<MOVZwii, GPR32, movz32_movimm>;
   3960 def : movalias<MOVZxii, GPR64, movz64_movimm>;
   3961 def : movalias<MOVNwii, GPR32, movn32_movimm>;
   3962 def : movalias<MOVNxii, GPR64, movn64_movimm>;
   3963 
   3964 //===----------------------------------------------------------------------===//
   3965 // PC-relative addressing instructions
   3966 //===----------------------------------------------------------------------===//
   3967 // Contains: ADR, ADRP
   3968 
   3969 def adr_label : Operand<i64> {
   3970   let EncoderMethod = "getLabelOpValue<AArch64::fixup_a64_adr_prel>";
   3971 
   3972   // This label is a 21-bit offset from PC, unscaled
   3973   let PrintMethod = "printLabelOperand<21, 1>";
   3974   let ParserMatchClass = label_asmoperand<21, 1>;
   3975   let OperandType = "OPERAND_PCREL";
   3976 }
   3977 
   3978 def adrp_label_asmoperand : AsmOperandClass {
   3979   let Name = "AdrpLabel";
   3980   let RenderMethod = "addLabelOperands<21, 4096>";
   3981   let DiagnosticType = "Label";
   3982 }
   3983 
   3984 def adrp_label : Operand<i64> {
   3985   let EncoderMethod = "getAdrpLabelOpValue";
   3986 
   3987   // This label is a 21-bit offset from PC, scaled by the page-size: 4096.
   3988   let PrintMethod = "printLabelOperand<21, 4096>";
   3989   let ParserMatchClass = adrp_label_asmoperand;
   3990   let OperandType = "OPERAND_PCREL";
   3991 }
   3992 
   3993 let hasSideEffects = 0 in {
   3994   def ADRxi : A64I_PCADR<0b0, (outs GPR64:$Rd), (ins adr_label:$Label),
   3995                          "adr\t$Rd, $Label", [], NoItinerary>;
   3996 
   3997   def ADRPxi : A64I_PCADR<0b1, (outs GPR64:$Rd), (ins adrp_label:$Label),
   3998                           "adrp\t$Rd, $Label", [], NoItinerary>;
   3999 }
   4000 
   4001 //===----------------------------------------------------------------------===//
   4002 // System instructions
   4003 //===----------------------------------------------------------------------===//
   4004 // Contains: HINT, CLREX, DSB, DMB, ISB, MSR, SYS, SYSL, MRS
   4005 //    + aliases IC, DC, AT, TLBI, NOP, YIELD, WFE, WFI, SEV, SEVL
   4006 
   4007 // Op1 and Op2 fields are sometimes simple 3-bit unsigned immediate values.
   4008 def uimm3_asmoperand : AsmOperandClass {
   4009   let Name = "UImm3";
   4010   let PredicateMethod = "isUImm<3>";
   4011   let RenderMethod = "addImmOperands";
   4012   let DiagnosticType = "UImm3";
   4013 }
   4014 
   4015 def uimm3 : Operand<i32> {
   4016   let ParserMatchClass = uimm3_asmoperand;
   4017 }
   4018 
   4019 // The HINT alias can accept a simple unsigned 7-bit immediate.
   4020 def uimm7_asmoperand : AsmOperandClass {
   4021   let Name = "UImm7";
   4022   let PredicateMethod = "isUImm<7>";
   4023   let RenderMethod = "addImmOperands";
   4024   let DiagnosticType = "UImm7";
   4025 }
   4026 
   4027 def uimm7 : Operand<i32> {
   4028   let ParserMatchClass = uimm7_asmoperand;
   4029 }
   4030 
   4031 // Multiclass namedimm is defined with the prefetch operands. Most of these fit
   4032 // into the NamedImmMapper scheme well: they either accept a named operand or
   4033 // any immediate under a particular value (which may be 0, implying no immediate
   4034 // is allowed).
   4035 defm dbarrier : namedimm<"dbarrier", "A64DB::DBarrierMapper">;
   4036 defm isb : namedimm<"isb", "A64ISB::ISBMapper">;
   4037 defm ic : namedimm<"ic", "A64IC::ICMapper">;
   4038 defm dc : namedimm<"dc", "A64DC::DCMapper">;
   4039 defm at : namedimm<"at", "A64AT::ATMapper">;
   4040 defm tlbi : namedimm<"tlbi", "A64TLBI::TLBIMapper">;
   4041 
   4042 // However, MRS and MSR are more complicated for a few reasons:
   4043 //   * There are ~1000 generic names S3_<op1>_<CRn>_<CRm>_<Op2> which have an
   4044 //     implementation-defined effect
   4045 //   * Most registers are shared, but some are read-only or write-only.
   4046 //   * There is a variant of MSR which accepts the same register name (SPSel),
   4047 //     but which would have a different encoding.
   4048 
   4049 // In principle these could be resolved in with more complicated subclasses of
   4050 // NamedImmMapper, however that imposes an overhead on other "named
   4051 // immediates". Both in concrete terms with virtual tables and in unnecessary
   4052 // abstraction.
   4053 
   4054 // The solution adopted here is to take the MRS/MSR Mappers out of the usual
   4055 // hierarchy (they're not derived from NamedImmMapper) and to add logic for
   4056 // their special situation.
   4057 def mrs_asmoperand : AsmOperandClass {
   4058   let Name = "MRS";
   4059   let ParserMethod = "ParseSysRegOperand";
   4060   let DiagnosticType = "MRS";
   4061 }
   4062 
   4063 def mrs_op : Operand<i32> {
   4064   let ParserMatchClass = mrs_asmoperand;
   4065   let PrintMethod = "printMRSOperand";
   4066   let DecoderMethod = "DecodeMRSOperand";
   4067 }
   4068 
   4069 def msr_asmoperand : AsmOperandClass {
   4070   let Name = "MSRWithReg";
   4071 
   4072   // Note that SPSel is valid for both this and the pstate operands, but with
   4073   // different immediate encodings. This is why these operands provide a string
   4074   // AArch64Operand rather than an immediate. The overlap is small enough that
   4075   // it could be resolved with hackery now, but who can say in future?
   4076   let ParserMethod = "ParseSysRegOperand";
   4077   let DiagnosticType = "MSR";
   4078 }
   4079 
   4080 def msr_op : Operand<i32> {
   4081   let ParserMatchClass = msr_asmoperand;
   4082   let PrintMethod = "printMSROperand";
   4083   let DecoderMethod = "DecodeMSROperand";
   4084 }
   4085 
   4086 def pstate_asmoperand : AsmOperandClass {
   4087   let Name = "MSRPState";
   4088   // See comment above about parser.
   4089   let ParserMethod = "ParseSysRegOperand";
   4090   let DiagnosticType = "MSR";
   4091 }
   4092 
   4093 def pstate_op : Operand<i32> {
   4094   let ParserMatchClass = pstate_asmoperand;
   4095   let PrintMethod = "printNamedImmOperand<A64PState::PStateMapper>";
   4096   let DecoderMethod = "DecodeNamedImmOperand<A64PState::PStateMapper>";
   4097 }
   4098 
   4099 // When <CRn> is specified, an assembler should accept something like "C4", not
   4100 // the usual "#4" immediate.
   4101 def CRx_asmoperand : AsmOperandClass {
   4102   let Name = "CRx";
   4103   let PredicateMethod = "isUImm<4>";
   4104   let RenderMethod = "addImmOperands";
   4105   let ParserMethod = "ParseCRxOperand";
   4106   // Diagnostics are handled in all cases by ParseCRxOperand.
   4107 }
   4108 
   4109 def CRx : Operand<i32> {
   4110   let ParserMatchClass = CRx_asmoperand;
   4111   let PrintMethod = "printCRxOperand";
   4112 }
   4113 
   4114 
   4115 // Finally, we can start defining the instructions.
   4116 
   4117 // HINT is straightforward, with a few aliases.
   4118 def HINTi : A64I_system<0b0, (outs), (ins uimm7:$UImm7), "hint\t$UImm7",
   4119                         [], NoItinerary> {
   4120   bits<7> UImm7;
   4121   let CRm = UImm7{6-3};
   4122   let Op2 = UImm7{2-0};
   4123 
   4124   let Op0 = 0b00;
   4125   let Op1 = 0b011;
   4126   let CRn = 0b0010;
   4127   let Rt = 0b11111;
   4128 }
   4129 
   4130 def : InstAlias<"nop", (HINTi 0)>;
   4131 def : InstAlias<"yield", (HINTi 1)>;
   4132 def : InstAlias<"wfe", (HINTi 2)>;
   4133 def : InstAlias<"wfi", (HINTi 3)>;
   4134 def : InstAlias<"sev", (HINTi 4)>;
   4135 def : InstAlias<"sevl", (HINTi 5)>;
   4136 
   4137 // Quite a few instructions then follow a similar pattern of fixing common
   4138 // fields in the bitpattern, we'll define a helper-class for them.
   4139 class simple_sys<bits<2> op0, bits<3> op1, bits<4> crn, bits<3> op2,
   4140                  Operand operand, string asmop>
   4141   : A64I_system<0b0, (outs), (ins operand:$CRm), !strconcat(asmop, "\t$CRm"),
   4142                 [], NoItinerary> {
   4143   let Op0 = op0;
   4144   let Op1 = op1;
   4145   let CRn = crn;
   4146   let Op2 = op2;
   4147   let Rt = 0b11111;
   4148 }
   4149 
   4150 
   4151 def CLREXi : simple_sys<0b00, 0b011, 0b0011, 0b010, uimm4, "clrex">;
   4152 def DSBi : simple_sys<0b00, 0b011, 0b0011, 0b100, dbarrier_op, "dsb">;
   4153 def DMBi : simple_sys<0b00, 0b011, 0b0011, 0b101, dbarrier_op, "dmb">;
   4154 def ISBi : simple_sys<0b00, 0b011, 0b0011, 0b110, isb_op, "isb">;
   4155 
   4156 def : InstAlias<"clrex", (CLREXi 0b1111)>;
   4157 def : InstAlias<"isb", (ISBi 0b1111)>;
   4158 
   4159 // (DMBi 0xb) is a "DMB ISH" instruciton, appropriate for Linux SMP
   4160 // configurations at least.
   4161 def : Pat<(atomic_fence imm, imm), (DMBi 0xb)>;
   4162 
   4163 // Any SYS bitpattern can be represented with a complex and opaque "SYS"
   4164 // instruction.
   4165 def SYSiccix : A64I_system<0b0, (outs),
   4166                            (ins uimm3:$Op1, CRx:$CRn, CRx:$CRm,
   4167                                 uimm3:$Op2, GPR64:$Rt),
   4168                            "sys\t$Op1, $CRn, $CRm, $Op2, $Rt",
   4169                            [], NoItinerary> {
   4170   let Op0 = 0b01;
   4171 }
   4172 
   4173 // You can skip the Xt argument whether it makes sense or not for the generic
   4174 // SYS instruction.
   4175 def : InstAlias<"sys $Op1, $CRn, $CRm, $Op2",
   4176                 (SYSiccix uimm3:$Op1, CRx:$CRn, CRx:$CRm, uimm3:$Op2, XZR)>;
   4177 
   4178 
   4179 // But many have aliases, which obviously don't fit into
   4180 class SYSalias<dag ins, string asmstring>
   4181   : A64I_system<0b0, (outs), ins, asmstring, [], NoItinerary> {
   4182   let isAsmParserOnly = 1;
   4183 
   4184   bits<14> SysOp;
   4185   let Op0 = 0b01;
   4186   let Op1 = SysOp{13-11};
   4187   let CRn = SysOp{10-7};
   4188   let CRm = SysOp{6-3};
   4189   let Op2 = SysOp{2-0};
   4190 }
   4191 
   4192 def ICix : SYSalias<(ins ic_op:$SysOp, GPR64:$Rt), "ic\t$SysOp, $Rt">;
   4193 
   4194 def ICi : SYSalias<(ins ic_op:$SysOp), "ic\t$SysOp"> {
   4195   let Rt = 0b11111;
   4196 }
   4197 
   4198 def DCix : SYSalias<(ins dc_op:$SysOp, GPR64:$Rt), "dc\t$SysOp, $Rt">;
   4199 def ATix : SYSalias<(ins at_op:$SysOp, GPR64:$Rt), "at\t$SysOp, $Rt">;
   4200 
   4201 def TLBIix : SYSalias<(ins tlbi_op:$SysOp, GPR64:$Rt), "tlbi\t$SysOp, $Rt">;
   4202 
   4203 def TLBIi : SYSalias<(ins tlbi_op:$SysOp), "tlbi\t$SysOp"> {
   4204   let Rt = 0b11111;
   4205 }
   4206 
   4207 
   4208 def SYSLxicci : A64I_system<0b1, (outs GPR64:$Rt),
   4209                             (ins uimm3:$Op1, CRx:$CRn, CRx:$CRm, uimm3:$Op2),
   4210                             "sysl\t$Rt, $Op1, $CRn, $CRm, $Op2",
   4211                             [], NoItinerary> {
   4212   let Op0 = 0b01;
   4213 }
   4214 
   4215 // The instructions themselves are rather simple for MSR and MRS.
   4216 def MSRix : A64I_system<0b0, (outs), (ins msr_op:$SysReg, GPR64:$Rt),
   4217                         "msr\t$SysReg, $Rt", [], NoItinerary> {
   4218   bits<16> SysReg;
   4219   let Op0 = SysReg{15-14};
   4220   let Op1 = SysReg{13-11};
   4221   let CRn = SysReg{10-7};
   4222   let CRm = SysReg{6-3};
   4223   let Op2 = SysReg{2-0};
   4224 }
   4225 
   4226 def MRSxi : A64I_system<0b1, (outs GPR64:$Rt), (ins mrs_op:$SysReg),
   4227                         "mrs\t$Rt, $SysReg", [], NoItinerary> {
   4228   bits<16> SysReg;
   4229   let Op0 = SysReg{15-14};
   4230   let Op1 = SysReg{13-11};
   4231   let CRn = SysReg{10-7};
   4232   let CRm = SysReg{6-3};
   4233   let Op2 = SysReg{2-0};
   4234 }
   4235 
   4236 def MSRii : A64I_system<0b0, (outs), (ins pstate_op:$PState, uimm4:$CRm),
   4237                         "msr\t$PState, $CRm", [], NoItinerary> {
   4238   bits<6> PState;
   4239 
   4240   let Op0 = 0b00;
   4241   let Op1 = PState{5-3};
   4242   let CRn = 0b0100;
   4243   let Op2 = PState{2-0};
   4244   let Rt = 0b11111;
   4245 }
   4246 
   4247 //===----------------------------------------------------------------------===//
   4248 // Test & branch (immediate) instructions
   4249 //===----------------------------------------------------------------------===//
   4250 // Contains: TBZ, TBNZ
   4251 
   4252 // The bit to test is a simple unsigned 6-bit immediate in the X-register
   4253 // versions.
   4254 def uimm6 : Operand<i64> {
   4255   let ParserMatchClass = uimm6_asmoperand;
   4256 }
   4257 
   4258 def label_wid14_scal4_asmoperand : label_asmoperand<14, 4>;
   4259 
   4260 def tbimm_target : Operand<OtherVT> {
   4261   let EncoderMethod = "getLabelOpValue<AArch64::fixup_a64_tstbr>";
   4262 
   4263   // This label is a 14-bit offset from PC, scaled by the instruction-width: 4.
   4264   let PrintMethod = "printLabelOperand<14, 4>";
   4265   let ParserMatchClass = label_wid14_scal4_asmoperand;
   4266 
   4267   let OperandType = "OPERAND_PCREL";
   4268 }
   4269 
   4270 def A64eq : ImmLeaf<i32, [{ return Imm == A64CC::EQ; }]>;
   4271 def A64ne : ImmLeaf<i32, [{ return Imm == A64CC::NE; }]>;
   4272 
   4273 // These instructions correspond to patterns involving "and" with a power of
   4274 // two, which we need to be able to select.
   4275 def tstb64_pat : ComplexPattern<i64, 1, "SelectTSTBOperand<64>">;
   4276 def tstb32_pat : ComplexPattern<i32, 1, "SelectTSTBOperand<32>">;
   4277 
   4278 let isBranch = 1, isTerminator = 1 in {
   4279   def TBZxii : A64I_TBimm<0b0, (outs),
   4280                         (ins GPR64:$Rt, uimm6:$Imm, tbimm_target:$Label),
   4281                         "tbz\t$Rt, $Imm, $Label",
   4282                         [(A64br_cc (A64cmp (and GPR64:$Rt, tstb64_pat:$Imm), 0),
   4283                                    A64eq, bb:$Label)],
   4284                         NoItinerary>;
   4285 
   4286   def TBNZxii : A64I_TBimm<0b1, (outs),
   4287                         (ins GPR64:$Rt, uimm6:$Imm, tbimm_target:$Label),
   4288                         "tbnz\t$Rt, $Imm, $Label",
   4289                         [(A64br_cc (A64cmp (and GPR64:$Rt, tstb64_pat:$Imm), 0),
   4290                                    A64ne, bb:$Label)],
   4291                         NoItinerary>;
   4292 
   4293 
   4294   // Note, these instructions overlap with the above 64-bit patterns. This is
   4295   // intentional, "tbz x3, #1, somewhere" and "tbz w3, #1, somewhere" would both
   4296   // do the same thing and are both permitted assembly. They also both have
   4297   // sensible DAG patterns.
   4298   def TBZwii : A64I_TBimm<0b0, (outs),
   4299                         (ins GPR32:$Rt, uimm5:$Imm, tbimm_target:$Label),
   4300                         "tbz\t$Rt, $Imm, $Label",
   4301                         [(A64br_cc (A64cmp (and GPR32:$Rt, tstb32_pat:$Imm), 0),
   4302                                    A64eq, bb:$Label)],
   4303                         NoItinerary> {
   4304     let Imm{5} = 0b0;
   4305   }
   4306 
   4307   def TBNZwii : A64I_TBimm<0b1, (outs),
   4308                         (ins GPR32:$Rt, uimm5:$Imm, tbimm_target:$Label),
   4309                         "tbnz\t$Rt, $Imm, $Label",
   4310                         [(A64br_cc (A64cmp (and GPR32:$Rt, tstb32_pat:$Imm), 0),
   4311                                    A64ne, bb:$Label)],
   4312                         NoItinerary> {
   4313     let Imm{5} = 0b0;
   4314   }
   4315 }
   4316 
   4317 //===----------------------------------------------------------------------===//
   4318 // Unconditional branch (immediate) instructions
   4319 //===----------------------------------------------------------------------===//
   4320 // Contains: B, BL
   4321 
   4322 def label_wid26_scal4_asmoperand : label_asmoperand<26, 4>;
   4323 
   4324 def bimm_target : Operand<OtherVT> {
   4325   let EncoderMethod = "getLabelOpValue<AArch64::fixup_a64_uncondbr>";
   4326 
   4327   // This label is a 26-bit offset from PC, scaled by the instruction-width: 4.
   4328   let PrintMethod = "printLabelOperand<26, 4>";
   4329   let ParserMatchClass = label_wid26_scal4_asmoperand;
   4330 
   4331   let OperandType = "OPERAND_PCREL";
   4332 }
   4333 
   4334 def blimm_target : Operand<i64> {
   4335   let EncoderMethod = "getLabelOpValue<AArch64::fixup_a64_call>";
   4336 
   4337   // This label is a 26-bit offset from PC, scaled by the instruction-width: 4.
   4338   let PrintMethod = "printLabelOperand<26, 4>";
   4339   let ParserMatchClass = label_wid26_scal4_asmoperand;
   4340 
   4341   let OperandType = "OPERAND_PCREL";
   4342 }
   4343 
   4344 class A64I_BimmImpl<bit op, string asmop, list<dag> patterns, Operand lbl_type>
   4345   : A64I_Bimm<op, (outs), (ins lbl_type:$Label),
   4346               !strconcat(asmop, "\t$Label"), patterns,
   4347               NoItinerary>;
   4348 
   4349 let isBranch = 1 in {
   4350   def Bimm : A64I_BimmImpl<0b0, "b", [(br bb:$Label)], bimm_target> {
   4351     let isTerminator = 1;
   4352     let isBarrier = 1;
   4353   }
   4354 
   4355   def BLimm : A64I_BimmImpl<0b1, "bl",
   4356                             [(AArch64Call tglobaladdr:$Label)], blimm_target> {
   4357     let isCall = 1;
   4358     let Defs = [X30];
   4359   }
   4360 }
   4361 
   4362 def : Pat<(AArch64Call texternalsym:$Label), (BLimm texternalsym:$Label)>;
   4363 
   4364 //===----------------------------------------------------------------------===//
   4365 // Unconditional branch (register) instructions
   4366 //===----------------------------------------------------------------------===//
   4367 // Contains: BR, BLR, RET, ERET, DRP.
   4368 
   4369 // Most of the notional opcode fields in the A64I_Breg format are fixed in A64
   4370 // at the moment.
   4371 class A64I_BregImpl<bits<4> opc,
   4372                     dag outs, dag ins, string asmstr, list<dag> patterns,
   4373                     InstrItinClass itin = NoItinerary>
   4374   : A64I_Breg<opc, 0b11111, 0b000000, 0b00000,
   4375               outs, ins, asmstr, patterns, itin> {
   4376   let isBranch         = 1;
   4377   let isIndirectBranch = 1;
   4378 }
   4379 
   4380 // Note that these are not marked isCall or isReturn because as far as LLVM is
   4381 // concerned they're not. "ret" is just another jump unless it has been selected
   4382 // by LLVM as the function's return.
   4383 
   4384 let isBranch = 1 in {
   4385   def BRx : A64I_BregImpl<0b0000,(outs), (ins GPR64:$Rn),
   4386                           "br\t$Rn", [(brind GPR64:$Rn)]> {
   4387     let isBarrier = 1;
   4388     let isTerminator = 1;
   4389   }
   4390 
   4391   def BLRx : A64I_BregImpl<0b0001, (outs), (ins GPR64:$Rn),
   4392                            "blr\t$Rn", [(AArch64Call GPR64:$Rn)]> {
   4393     let isBarrier = 0;
   4394     let isCall = 1;
   4395     let Defs = [X30];
   4396   }
   4397 
   4398   def RETx : A64I_BregImpl<0b0010, (outs), (ins GPR64:$Rn),
   4399                            "ret\t$Rn", []> {
   4400     let isBarrier = 1;
   4401     let isTerminator = 1;
   4402     let isReturn = 1;
   4403   }
   4404 
   4405   // Create a separate pseudo-instruction for codegen to use so that we don't
   4406   // flag x30 as used in every function. It'll be restored before the RET by the
   4407   // epilogue if it's legitimately used.
   4408   def RET : A64PseudoExpand<(outs), (ins), [(A64ret)], (RETx (ops X30))> {
   4409     let isTerminator = 1;
   4410     let isBarrier = 1;
   4411     let isReturn = 1;
   4412   }
   4413 
   4414   def ERET : A64I_BregImpl<0b0100, (outs), (ins), "eret", []> {
   4415     let Rn = 0b11111;
   4416     let isBarrier = 1;
   4417     let isTerminator = 1;
   4418     let isReturn = 1;
   4419   }
   4420 
   4421   def DRPS : A64I_BregImpl<0b0101, (outs), (ins), "drps", []> {
   4422     let Rn = 0b11111;
   4423     let isBarrier = 1;
   4424   }
   4425 }
   4426 
   4427 def RETAlias : InstAlias<"ret", (RETx X30)>;
   4428 
   4429 
   4430 //===----------------------------------------------------------------------===//
   4431 // Address generation patterns
   4432 //===----------------------------------------------------------------------===//
   4433 
   4434 // Primary method of address generation for the small/absolute memory model is
   4435 // an ADRP/ADR pair:
   4436 //     ADRP x0, some_variable
   4437 //     ADD x0, x0, #:lo12:some_variable
   4438 //
   4439 // The load/store elision of the ADD is accomplished when selecting
   4440 // addressing-modes. This just mops up the cases where that doesn't work and we
   4441 // really need an address in some register.
   4442 
   4443 // This wrapper applies a LO12 modifier to the address. Otherwise we could just
   4444 // use the same address.
   4445 
   4446 class ADRP_ADD<SDNode Wrapper, SDNode addrop>
   4447  : Pat<(Wrapper addrop:$Hi, addrop:$Lo12, (i32 imm)),
   4448        (ADDxxi_lsl0_s (ADRPxi addrop:$Hi), addrop:$Lo12)>;
   4449 
   4450 def : ADRP_ADD<A64WrapperSmall, tblockaddress>;
   4451 def : ADRP_ADD<A64WrapperSmall, texternalsym>;
   4452 def : ADRP_ADD<A64WrapperSmall, tglobaladdr>;
   4453 def : ADRP_ADD<A64WrapperSmall, tglobaltlsaddr>;
   4454 def : ADRP_ADD<A64WrapperSmall, tjumptable>;
   4455 
   4456 //===----------------------------------------------------------------------===//
   4457 // GOT access patterns
   4458 //===----------------------------------------------------------------------===//
   4459 
   4460 // FIXME: Wibble
   4461 
   4462 class GOTLoadSmall<SDNode addrfrag>
   4463   : Pat<(A64GOTLoad (A64WrapperSmall addrfrag:$Hi, addrfrag:$Lo12, 8)),
   4464         (LS64_LDR (ADRPxi addrfrag:$Hi), addrfrag:$Lo12)>;
   4465 
   4466 def : GOTLoadSmall<texternalsym>;
   4467 def : GOTLoadSmall<tglobaladdr>;
   4468 def : GOTLoadSmall<tglobaltlsaddr>;
   4469 
   4470 //===----------------------------------------------------------------------===//
   4471 // Tail call handling
   4472 //===----------------------------------------------------------------------===//
   4473 
   4474 let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [XSP] in {
   4475   def TC_RETURNdi
   4476     : PseudoInst<(outs), (ins i64imm:$dst, i32imm:$FPDiff),
   4477                  [(AArch64tcret tglobaladdr:$dst, (i32 timm:$FPDiff))]>;
   4478 
   4479   def TC_RETURNxi
   4480     : PseudoInst<(outs), (ins tcGPR64:$dst, i32imm:$FPDiff),
   4481                  [(AArch64tcret tcGPR64:$dst, (i32 timm:$FPDiff))]>;
   4482 }
   4483 
   4484 let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1,
   4485     Uses = [XSP] in {
   4486   def TAIL_Bimm : A64PseudoExpand<(outs), (ins bimm_target:$Label), [],
   4487                                   (Bimm bimm_target:$Label)>;
   4488 
   4489   def TAIL_BRx : A64PseudoExpand<(outs), (ins tcGPR64:$Rd), [],
   4490                                  (BRx GPR64:$Rd)>;
   4491 }
   4492 
   4493 
   4494 def : Pat<(AArch64tcret texternalsym:$dst, (i32 timm:$FPDiff)),
   4495           (TC_RETURNdi texternalsym:$dst, imm:$FPDiff)>;
   4496 
   4497 //===----------------------------------------------------------------------===//
   4498 // Thread local storage
   4499 //===----------------------------------------------------------------------===//
   4500 
   4501 // This is a pseudo-instruction representing the ".tlsdesccall" directive in
   4502 // assembly. Its effect is to insert an R_AARCH64_TLSDESC_CALL relocation at the
   4503 // current location. It should always be immediately followed by a BLR
   4504 // instruction, and is intended solely for relaxation by the linker.
   4505 
   4506 def : Pat<(A64threadpointer), (MRSxi 0xde82)>;
   4507 
   4508 def TLSDESCCALL : PseudoInst<(outs), (ins i64imm:$Lbl), []> {
   4509   let hasSideEffects = 1;
   4510 }
   4511 
   4512 def TLSDESC_BLRx : PseudoInst<(outs), (ins GPR64:$Rn, i64imm:$Var),
   4513                             [(A64tlsdesc_blr GPR64:$Rn, tglobaltlsaddr:$Var)]> {
   4514   let isCall = 1;
   4515   let Defs = [X30];
   4516 }
   4517 
   4518 def : Pat<(A64tlsdesc_blr GPR64:$Rn, texternalsym:$Var),
   4519           (TLSDESC_BLRx GPR64:$Rn, texternalsym:$Var)>;
   4520 
   4521 //===----------------------------------------------------------------------===//
   4522 // Bitfield patterns
   4523 //===----------------------------------------------------------------------===//
   4524 
   4525 def bfi32_lsb_to_immr : SDNodeXForm<imm, [{
   4526   return CurDAG->getTargetConstant((32 - N->getZExtValue()) % 32, MVT::i64);
   4527 }]>;
   4528 
   4529 def bfi64_lsb_to_immr : SDNodeXForm<imm, [{
   4530   return CurDAG->getTargetConstant((64 - N->getZExtValue()) % 64, MVT::i64);
   4531 }]>;
   4532 
   4533 def bfi_width_to_imms : SDNodeXForm<imm, [{
   4534   return CurDAG->getTargetConstant(N->getZExtValue() - 1, MVT::i64);
   4535 }]>;
   4536 
   4537 
   4538 // The simpler patterns deal with cases where no AND mask is actually needed
   4539 // (either all bits are used or the low 32 bits are used).
   4540 let AddedComplexity = 10 in {
   4541 
   4542 def : Pat<(A64Bfi GPR64:$src, GPR64:$Rn, imm:$ImmR, imm:$ImmS),
   4543            (BFIxxii GPR64:$src, GPR64:$Rn,
   4544                     (bfi64_lsb_to_immr (i64 imm:$ImmR)),
   4545                     (bfi_width_to_imms (i64 imm:$ImmS)))>;
   4546 
   4547 def : Pat<(A64Bfi GPR32:$src, GPR32:$Rn, imm:$ImmR, imm:$ImmS),
   4548           (BFIwwii GPR32:$src, GPR32:$Rn,
   4549                    (bfi32_lsb_to_immr (i64 imm:$ImmR)),
   4550                    (bfi_width_to_imms (i64 imm:$ImmS)))>;
   4551 
   4552 
   4553 def : Pat<(and (A64Bfi GPR64:$src, GPR64:$Rn, imm:$ImmR, imm:$ImmS),
   4554                (i64 4294967295)),
   4555           (SUBREG_TO_REG (i64 0),
   4556                          (BFIwwii (EXTRACT_SUBREG GPR64:$src, sub_32),
   4557                                   (EXTRACT_SUBREG GPR64:$Rn, sub_32),
   4558                                   (bfi32_lsb_to_immr (i64 imm:$ImmR)),
   4559                                   (bfi_width_to_imms (i64 imm:$ImmS))),
   4560                          sub_32)>;
   4561 
   4562 }
   4563 
   4564 //===----------------------------------------------------------------------===//
   4565 // Miscellaneous patterns
   4566 //===----------------------------------------------------------------------===//
   4567 
   4568 // Truncation from 64 to 32-bits just involves renaming your register.
   4569 def : Pat<(i32 (trunc (i64 GPR64:$val))), (EXTRACT_SUBREG GPR64:$val, sub_32)>;
   4570 
   4571 // Similarly, extension where we don't care about the high bits is
   4572 // just a rename.
   4573 def : Pat<(i64 (anyext (i32 GPR32:$val))),
   4574           (INSERT_SUBREG (IMPLICIT_DEF), GPR32:$val, sub_32)>;
   4575 
   4576 // SELECT instructions providing f128 types need to be handled by a
   4577 // pseudo-instruction since the eventual code will need to introduce basic
   4578 // blocks and control flow.
   4579 def F128CSEL : PseudoInst<(outs FPR128:$Rd),
   4580                           (ins FPR128:$Rn, FPR128:$Rm, cond_code_op:$Cond),
   4581                           [(set FPR128:$Rd, (simple_select (f128 FPR128:$Rn),
   4582                                                            FPR128:$Rm))]> {
   4583   let Uses = [NZCV];
   4584   let usesCustomInserter = 1;
   4585 }
   4586 
   4587 //===----------------------------------------------------------------------===//
   4588 // Load/store patterns
   4589 //===----------------------------------------------------------------------===//
   4590 
   4591 // There are lots of patterns here, because we need to allow at least three
   4592 // parameters to vary independently.
   4593 //   1. Instruction: "ldrb w9, [sp]", "ldrh w9, [sp]", ...
   4594 //   2. LLVM source: zextloadi8, anyextloadi8, ...
   4595 //   3. Address-generation: A64Wrapper, (add BASE, OFFSET), ...
   4596 //
   4597 // The biggest problem turns out to be the address-generation variable. At the
   4598 // point of instantiation we need to produce two DAGs, one for the pattern and
   4599 // one for the instruction. Doing this at the lowest level of classes doesn't
   4600 // work.
   4601 //
   4602 // Consider the simple uimm12 addressing mode, and the desire to match both (add
   4603 // GPR64xsp:$Rn, uimm12:$Offset) and GPR64xsp:$Rn, particularly on the
   4604 // instruction side. We'd need to insert either "GPR64xsp" and "uimm12" or
   4605 // "GPR64xsp" and "0" into an unknown dag. !subst is not capable of this
   4606 // operation, and PatFrags are for selection not output.
   4607 //
   4608 // As a result, the address-generation patterns are the final
   4609 // instantiations. However, we do still need to vary the operand for the address
   4610 // further down (At the point we're deciding A64WrapperSmall, we don't know
   4611 // the memory width of the operation).
   4612 
   4613 //===------------------------------
   4614 // 1. Basic infrastructural defs
   4615 //===------------------------------
   4616 
   4617 // First, some simple classes for !foreach and !subst to use:
   4618 class Decls {
   4619   dag pattern;
   4620 }
   4621 
   4622 def decls : Decls;
   4623 def ALIGN;
   4624 def INST;
   4625 def OFFSET;
   4626 def SHIFT;
   4627 
   4628 // You can't use !subst on an actual immediate, but you *can* use it on an
   4629 // operand record that happens to match a single immediate. So we do.
   4630 def imm_eq0 : ImmLeaf<i64, [{ return Imm == 0; }]>;
   4631 def imm_eq1 : ImmLeaf<i64, [{ return Imm == 1; }]>;
   4632 def imm_eq2 : ImmLeaf<i64, [{ return Imm == 2; }]>;
   4633 def imm_eq3 : ImmLeaf<i64, [{ return Imm == 3; }]>;
   4634 def imm_eq4 : ImmLeaf<i64, [{ return Imm == 4; }]>;
   4635 
   4636 // If the low bits of a pointer are known to be 0 then an "or" is just as good
   4637 // as addition for computing an offset. This fragment forwards that check for
   4638 // TableGen's use.
   4639 def add_like_or : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),
   4640 [{
   4641   return CurDAG->isBaseWithConstantOffset(SDValue(N, 0));
   4642 }]>;
   4643 
   4644 // Load/store (unsigned immediate) operations with relocations against global
   4645 // symbols (for lo12) are only valid if those symbols have correct alignment
   4646 // (since the immediate offset is divided by the access scale, it can't have a
   4647 // remainder).
   4648 //
   4649 // The guaranteed alignment is provided as part of the WrapperSmall
   4650 // operation, and checked against one of these.
   4651 def any_align   : ImmLeaf<i32, [{ (void)Imm; return true; }]>;
   4652 def min_align2  : ImmLeaf<i32, [{ return Imm >= 2; }]>;
   4653 def min_align4  : ImmLeaf<i32, [{ return Imm >= 4; }]>;
   4654 def min_align8  : ImmLeaf<i32, [{ return Imm >= 8; }]>;
   4655 def min_align16 : ImmLeaf<i32, [{ return Imm >= 16; }]>;
   4656 
   4657 // "Normal" load/store instructions can be used on atomic operations, provided
   4658 // the ordering parameter is at most "monotonic". Anything above that needs
   4659 // special handling with acquire/release instructions.
   4660 class simple_load<PatFrag base>
   4661   : PatFrag<(ops node:$ptr), (base node:$ptr), [{
   4662   return cast<AtomicSDNode>(N)->getOrdering() <= Monotonic;
   4663 }]>;
   4664 
   4665 def atomic_load_simple_i8  : simple_load<atomic_load_8>;
   4666 def atomic_load_simple_i16 : simple_load<atomic_load_16>;
   4667 def atomic_load_simple_i32 : simple_load<atomic_load_32>;
   4668 def atomic_load_simple_i64 : simple_load<atomic_load_64>;
   4669 
   4670 class simple_store<PatFrag base>
   4671   : PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val), [{
   4672   return cast<AtomicSDNode>(N)->getOrdering() <= Monotonic;
   4673 }]>;
   4674 
   4675 def atomic_store_simple_i8  : simple_store<atomic_store_8>;
   4676 def atomic_store_simple_i16 : simple_store<atomic_store_16>;
   4677 def atomic_store_simple_i32 : simple_store<atomic_store_32>;
   4678 def atomic_store_simple_i64 : simple_store<atomic_store_64>;
   4679 
   4680 //===------------------------------
   4681 // 2. UImm12 and SImm9
   4682 //===------------------------------
   4683 
   4684 // These instructions have two operands providing the address so they can be
   4685 // treated similarly for most purposes.
   4686 
   4687 //===------------------------------
   4688 // 2.1 Base patterns covering extend/truncate semantics
   4689 //===------------------------------
   4690 
   4691 // Atomic patterns can be shared between integer operations of all sizes, a
   4692 // quick multiclass here allows reuse.
   4693 multiclass ls_atomic_pats<Instruction LOAD, Instruction STORE, dag Base,
   4694                           dag Offset, dag address, RegisterClass TPR,
   4695                           ValueType sty> {
   4696   def : Pat<(!cast<PatFrag>("atomic_load_simple_" # sty) address),
   4697             (LOAD Base, Offset)>;
   4698 
   4699   def : Pat<(!cast<PatFrag>("atomic_store_simple_" # sty) address, TPR:$Rt),
   4700             (STORE TPR:$Rt, Base, Offset)>;
   4701 }
   4702 
   4703 // Instructions accessing a memory chunk smaller than a register (or, in a
   4704 // pinch, the same size) have a characteristic set of patterns they want to
   4705 // match: extending loads and truncating stores. This class deals with the
   4706 // sign-neutral version of those patterns.
   4707 //
   4708 // It will be instantiated across multiple addressing-modes.
   4709 multiclass ls_small_pats<Instruction LOAD, Instruction STORE,
   4710                          dag Base, dag Offset,
   4711                          dag address, ValueType sty>
   4712   : ls_atomic_pats<LOAD, STORE, Base, Offset, address, GPR32, sty> {
   4713   def : Pat<(!cast<SDNode>(zextload # sty) address), (LOAD Base, Offset)>;
   4714 
   4715   def : Pat<(!cast<SDNode>(extload # sty) address), (LOAD Base, Offset)>;
   4716 
   4717   // For zero-extension to 64-bits we have to tell LLVM that the whole 64-bit
   4718   // register was actually set.
   4719   def : Pat<(i64 (!cast<SDNode>(zextload # sty) address)),
   4720             (SUBREG_TO_REG (i64 0), (LOAD Base, Offset), sub_32)>;
   4721 
   4722   def : Pat<(i64 (!cast<SDNode>(extload # sty) address)),
   4723             (SUBREG_TO_REG (i64 0), (LOAD Base, Offset), sub_32)>;
   4724 
   4725   def : Pat<(!cast<SDNode>(truncstore # sty) GPR32:$Rt, address),
   4726             (STORE GPR32:$Rt, Base, Offset)>;
   4727 
   4728   // For truncating store from 64-bits, we have to manually tell LLVM to
   4729   // ignore the high bits of the x register.
   4730   def : Pat<(!cast<SDNode>(truncstore # sty) GPR64:$Rt, address),
   4731             (STORE (EXTRACT_SUBREG GPR64:$Rt, sub_32), Base, Offset)>;
   4732 }
   4733 
   4734 // Next come patterns for sign-extending loads.
   4735 multiclass load_signed_pats<string T, string U, dag Base, dag Offset,
   4736                             dag address, ValueType sty> {
   4737   def : Pat<(i32 (!cast<SDNode>("sextload" # sty) address)),
   4738             (!cast<Instruction>("LDRS" # T # "w" # U) Base, Offset)>;
   4739 
   4740   def : Pat<(i64 (!cast<SDNode>("sextload" # sty) address)),
   4741             (!cast<Instruction>("LDRS" # T # "x" # U) Base, Offset)>;
   4742 
   4743 }
   4744 
   4745 // and finally "natural-width" loads and stores come next.
   4746 multiclass ls_neutral_pats<Instruction LOAD, Instruction STORE, dag Base,
   4747                            dag Offset, dag address, RegisterClass TPR,
   4748                            ValueType sty> {
   4749   def : Pat<(sty (load address)), (LOAD Base, Offset)>;
   4750   def : Pat<(store (sty TPR:$Rt), address), (STORE TPR:$Rt, Base, Offset)>;
   4751 }
   4752 
   4753 // Integer operations also get atomic instructions to select for.
   4754 multiclass ls_int_neutral_pats<Instruction LOAD, Instruction STORE, dag Base,
   4755                            dag Offset, dag address, RegisterClass TPR,
   4756                            ValueType sty>
   4757   : ls_neutral_pats<LOAD, STORE, Base, Offset, address, TPR, sty>,
   4758     ls_atomic_pats<LOAD, STORE, Base, Offset, address, TPR, sty>;
   4759 
   4760 //===------------------------------
   4761 // 2.2. Addressing-mode instantiations
   4762 //===------------------------------
   4763 
   4764 multiclass uimm12_pats<dag address, dag Base, dag Offset> {
   4765   defm : ls_small_pats<LS8_LDR, LS8_STR, Base,
   4766                        !foreach(decls.pattern, Offset,
   4767                                 !subst(OFFSET, byte_uimm12, decls.pattern)),
   4768                        !foreach(decls.pattern, address,
   4769                                 !subst(OFFSET, byte_uimm12,
   4770                                 !subst(ALIGN, any_align, decls.pattern))),
   4771                        i8>;
   4772   defm : ls_small_pats<LS16_LDR, LS16_STR, Base,
   4773                        !foreach(decls.pattern, Offset,
   4774                                 !subst(OFFSET, hword_uimm12, decls.pattern)),
   4775                        !foreach(decls.pattern, address,
   4776                                 !subst(OFFSET, hword_uimm12,
   4777                                 !subst(ALIGN, min_align2, decls.pattern))),
   4778                        i16>;
   4779   defm : ls_small_pats<LS32_LDR, LS32_STR, Base,
   4780                        !foreach(decls.pattern, Offset,
   4781                                 !subst(OFFSET, word_uimm12, decls.pattern)),
   4782                        !foreach(decls.pattern, address,
   4783                                 !subst(OFFSET, word_uimm12,
   4784                                 !subst(ALIGN, min_align4, decls.pattern))),
   4785                        i32>;
   4786 
   4787   defm : ls_int_neutral_pats<LS32_LDR, LS32_STR, Base,
   4788                           !foreach(decls.pattern, Offset,
   4789                                    !subst(OFFSET, word_uimm12, decls.pattern)),
   4790                           !foreach(decls.pattern, address,
   4791                                    !subst(OFFSET, word_uimm12,
   4792                                    !subst(ALIGN, min_align4, decls.pattern))),
   4793                           GPR32, i32>;
   4794 
   4795   defm : ls_int_neutral_pats<LS64_LDR, LS64_STR, Base,
   4796                           !foreach(decls.pattern, Offset,
   4797                                    !subst(OFFSET, dword_uimm12, decls.pattern)),
   4798                           !foreach(decls.pattern, address,
   4799                                    !subst(OFFSET, dword_uimm12,
   4800                                    !subst(ALIGN, min_align8, decls.pattern))),
   4801                           GPR64, i64>;
   4802 
   4803   defm : ls_neutral_pats<LSFP16_LDR, LSFP16_STR, Base,
   4804                           !foreach(decls.pattern, Offset,
   4805                                    !subst(OFFSET, hword_uimm12, decls.pattern)),
   4806                           !foreach(decls.pattern, address,
   4807                                    !subst(OFFSET, hword_uimm12,
   4808                                    !subst(ALIGN, min_align2, decls.pattern))),
   4809                           FPR16, f16>;
   4810 
   4811   defm : ls_neutral_pats<LSFP32_LDR, LSFP32_STR, Base,
   4812                           !foreach(decls.pattern, Offset,
   4813                                    !subst(OFFSET, word_uimm12, decls.pattern)),
   4814                           !foreach(decls.pattern, address,
   4815                                    !subst(OFFSET, word_uimm12,
   4816                                    !subst(ALIGN, min_align4, decls.pattern))),
   4817                           FPR32, f32>;
   4818 
   4819   defm : ls_neutral_pats<LSFP64_LDR, LSFP64_STR, Base,
   4820                           !foreach(decls.pattern, Offset,
   4821                                    !subst(OFFSET, dword_uimm12, decls.pattern)),
   4822                           !foreach(decls.pattern, address,
   4823                                    !subst(OFFSET, dword_uimm12,
   4824                                    !subst(ALIGN, min_align8, decls.pattern))),
   4825                           FPR64, f64>;
   4826 
   4827   defm : ls_neutral_pats<LSFP128_LDR, LSFP128_STR, Base,
   4828                           !foreach(decls.pattern, Offset,
   4829                                    !subst(OFFSET, qword_uimm12, decls.pattern)),
   4830                           !foreach(decls.pattern, address,
   4831                                    !subst(OFFSET, qword_uimm12,
   4832                                    !subst(ALIGN, min_align16, decls.pattern))),
   4833                           FPR128, f128>;
   4834 
   4835   defm : load_signed_pats<"B", "", Base,
   4836                           !foreach(decls.pattern, Offset,
   4837                                    !subst(OFFSET, byte_uimm12, decls.pattern)),
   4838                           !foreach(decls.pattern, address,
   4839                                    !subst(OFFSET, byte_uimm12,
   4840                                    !subst(ALIGN, any_align, decls.pattern))),
   4841                           i8>;
   4842 
   4843   defm : load_signed_pats<"H", "", Base,
   4844                           !foreach(decls.pattern, Offset,
   4845                                    !subst(OFFSET, hword_uimm12, decls.pattern)),
   4846                           !foreach(decls.pattern, address,
   4847                                    !subst(OFFSET, hword_uimm12,
   4848                                    !subst(ALIGN, min_align2, decls.pattern))),
   4849                           i16>;
   4850 
   4851   def : Pat<(sextloadi32 !foreach(decls.pattern, address,
   4852                                   !subst(OFFSET, word_uimm12,
   4853                                   !subst(ALIGN, min_align4, decls.pattern)))),
   4854             (LDRSWx Base, !foreach(decls.pattern, Offset,
   4855                                   !subst(OFFSET, word_uimm12, decls.pattern)))>;
   4856 }
   4857 
   4858 // Straightforward patterns of last resort: a pointer with or without an
   4859 // appropriate offset.
   4860 defm : uimm12_pats<(i64 GPR64xsp:$Rn), (i64 GPR64xsp:$Rn), (i64 0)>;
   4861 defm : uimm12_pats<(add GPR64xsp:$Rn, OFFSET:$UImm12),
   4862                    (i64 GPR64xsp:$Rn), (i64 OFFSET:$UImm12)>;
   4863 
   4864 // The offset could be hidden behind an "or", of course:
   4865 defm : uimm12_pats<(add_like_or GPR64xsp:$Rn, OFFSET:$UImm12),
   4866                    (i64 GPR64xsp:$Rn), (i64 OFFSET:$UImm12)>;
   4867 
   4868 // Global addresses under the small-absolute model should use these
   4869 // instructions. There are ELF relocations specifically for it.
   4870 defm : uimm12_pats<(A64WrapperSmall tglobaladdr:$Hi, tglobaladdr:$Lo12, ALIGN),
   4871                    (ADRPxi tglobaladdr:$Hi), (i64 tglobaladdr:$Lo12)>;
   4872 
   4873 defm : uimm12_pats<(A64WrapperSmall tglobaltlsaddr:$Hi, tglobaltlsaddr:$Lo12,
   4874                                     ALIGN),
   4875                    (ADRPxi tglobaltlsaddr:$Hi), (i64 tglobaltlsaddr:$Lo12)>;
   4876 
   4877 // External symbols that make it this far should also get standard relocations.
   4878 defm : uimm12_pats<(A64WrapperSmall texternalsym:$Hi, texternalsym:$Lo12,
   4879                                     ALIGN),
   4880                    (ADRPxi texternalsym:$Hi), (i64 texternalsym:$Lo12)>;
   4881 
   4882 defm : uimm12_pats<(A64WrapperSmall tconstpool:$Hi, tconstpool:$Lo12, ALIGN),
   4883                    (ADRPxi tconstpool:$Hi), (i64 tconstpool:$Lo12)>;
   4884 
   4885 // We also want to use uimm12 instructions for local variables at the moment.
   4886 def tframeindex_XFORM : SDNodeXForm<frameindex, [{
   4887   int FI = cast<FrameIndexSDNode>(N)->getIndex();
   4888   return CurDAG->getTargetFrameIndex(FI, MVT::i64);
   4889 }]>;
   4890 
   4891 defm : uimm12_pats<(i64 frameindex:$Rn),
   4892                    (tframeindex_XFORM tframeindex:$Rn), (i64 0)>;
   4893 
   4894 // These can be much simpler than uimm12 because we don't to change the operand
   4895 // type (e.g. LDURB and LDURH take the same operands).
   4896 multiclass simm9_pats<dag address, dag Base, dag Offset> {
   4897   defm : ls_small_pats<LS8_LDUR, LS8_STUR, Base, Offset, address, i8>;
   4898   defm : ls_small_pats<LS16_LDUR, LS16_STUR, Base, Offset, address, i16>;
   4899 
   4900   defm : ls_int_neutral_pats<LS32_LDUR, LS32_STUR, Base, Offset, address,
   4901                              GPR32, i32>;
   4902   defm : ls_int_neutral_pats<LS64_LDUR, LS64_STUR, Base, Offset, address,
   4903                              GPR64, i64>;
   4904 
   4905   defm : ls_neutral_pats<LSFP16_LDUR, LSFP16_STUR, Base, Offset, address,
   4906                          FPR16, f16>;
   4907   defm : ls_neutral_pats<LSFP32_LDUR, LSFP32_STUR, Base, Offset, address,
   4908                          FPR32, f32>;
   4909   defm : ls_neutral_pats<LSFP64_LDUR, LSFP64_STUR, Base, Offset, address,
   4910                          FPR64, f64>;
   4911   defm : ls_neutral_pats<LSFP128_LDUR, LSFP128_STUR, Base, Offset, address,
   4912                          FPR128, f128>;
   4913 
   4914   def : Pat<(i64 (zextloadi32 address)),
   4915             (SUBREG_TO_REG (i64 0), (LS32_LDUR Base, Offset), sub_32)>;
   4916 
   4917   def : Pat<(truncstorei32 GPR64:$Rt, address),
   4918             (LS32_STUR (EXTRACT_SUBREG GPR64:$Rt, sub_32), Base, Offset)>;
   4919 
   4920   defm : load_signed_pats<"B", "_U", Base, Offset, address, i8>;
   4921   defm : load_signed_pats<"H", "_U", Base, Offset, address, i16>;
   4922   def : Pat<(sextloadi32 address), (LDURSWx Base, Offset)>;
   4923 }
   4924 
   4925 defm : simm9_pats<(add GPR64xsp:$Rn, simm9:$SImm9),
   4926                   (i64 GPR64xsp:$Rn), (SDXF_simm9 simm9:$SImm9)>;
   4927 
   4928 defm : simm9_pats<(add_like_or GPR64xsp:$Rn, simm9:$SImm9),
   4929                   (i64 GPR64xsp:$Rn), (SDXF_simm9 simm9:$SImm9)>;
   4930 
   4931 
   4932 //===------------------------------
   4933 // 3. Register offset patterns
   4934 //===------------------------------
   4935 
   4936 // Atomic patterns can be shared between integer operations of all sizes, a
   4937 // quick multiclass here allows reuse.
   4938 multiclass ro_atomic_pats<Instruction LOAD, Instruction STORE, dag Base,
   4939                           dag Offset, dag Extend, dag address,
   4940                           RegisterClass TPR, ValueType sty> {
   4941   def : Pat<(!cast<PatFrag>("atomic_load_simple_" # sty) address),
   4942             (LOAD Base, Offset, Extend)>;
   4943 
   4944   def : Pat<(!cast<PatFrag>("atomic_store_simple_" # sty) address, TPR:$Rt),
   4945             (STORE TPR:$Rt, Base, Offset, Extend)>;
   4946 }
   4947 
   4948 // The register offset instructions take three operands giving the instruction,
   4949 // and have an annoying split between instructions where Rm is 32-bit and
   4950 // 64-bit. So we need a special hierarchy to describe them. Other than that the
   4951 // same operations should be supported as for simm9 and uimm12 addressing.
   4952 
   4953 multiclass ro_small_pats<Instruction LOAD, Instruction STORE,
   4954                          dag Base, dag Offset, dag Extend,
   4955                          dag address, ValueType sty>
   4956   : ro_atomic_pats<LOAD, STORE, Base, Offset, Extend, address, GPR32, sty> {
   4957   def : Pat<(!cast<SDNode>(zextload # sty) address),
   4958             (LOAD Base, Offset, Extend)>;
   4959 
   4960   def : Pat<(!cast<SDNode>(extload # sty) address),
   4961             (LOAD Base, Offset, Extend)>;
   4962 
   4963   // For zero-extension to 64-bits we have to tell LLVM that the whole 64-bit
   4964   // register was actually set.
   4965   def : Pat<(i64 (!cast<SDNode>(zextload # sty) address)),
   4966             (SUBREG_TO_REG (i64 0), (LOAD Base, Offset, Extend), sub_32)>;
   4967 
   4968   def : Pat<(i64 (!cast<SDNode>(extload # sty) address)),
   4969             (SUBREG_TO_REG (i64 0), (LOAD Base, Offset, Extend), sub_32)>;
   4970 
   4971   def : Pat<(!cast<SDNode>(truncstore # sty) GPR32:$Rt, address),
   4972             (STORE GPR32:$Rt, Base, Offset, Extend)>;
   4973 
   4974   // For truncating store from 64-bits, we have to manually tell LLVM to
   4975   // ignore the high bits of the x register.
   4976   def : Pat<(!cast<SDNode>(truncstore # sty) GPR64:$Rt, address),
   4977             (STORE (EXTRACT_SUBREG GPR64:$Rt, sub_32), Base, Offset, Extend)>;
   4978 
   4979 }
   4980 
   4981 // Next come patterns for sign-extending loads.
   4982 multiclass ro_signed_pats<string T, string Rm, dag Base, dag Offset, dag Extend,
   4983                           dag address, ValueType sty> {
   4984   def : Pat<(i32 (!cast<SDNode>("sextload" # sty) address)),
   4985             (!cast<Instruction>("LDRS" # T # "w_" # Rm # "_RegOffset")
   4986               Base, Offset, Extend)>;
   4987 
   4988   def : Pat<(i64 (!cast<SDNode>("sextload" # sty) address)),
   4989             (!cast<Instruction>("LDRS" # T # "x_" # Rm # "_RegOffset")
   4990               Base, Offset, Extend)>;
   4991 }
   4992 
   4993 // and finally "natural-width" loads and stores come next.
   4994 multiclass ro_neutral_pats<Instruction LOAD, Instruction STORE,
   4995                            dag Base, dag Offset, dag Extend, dag address,
   4996                            RegisterClass TPR, ValueType sty> {
   4997   def : Pat<(sty (load address)), (LOAD Base, Offset, Extend)>;
   4998   def : Pat<(store (sty TPR:$Rt), address),
   4999             (STORE TPR:$Rt, Base, Offset, Extend)>;
   5000 }
   5001 
   5002 multiclass ro_int_neutral_pats<Instruction LOAD, Instruction STORE,
   5003                                dag Base, dag Offset, dag Extend, dag address,
   5004                                RegisterClass TPR, ValueType sty>
   5005   : ro_neutral_pats<LOAD, STORE, Base, Offset, Extend, address, TPR, sty>,
   5006     ro_atomic_pats<LOAD, STORE, Base, Offset, Extend, address, TPR, sty>;
   5007 
   5008 multiclass regoff_pats<string Rm, dag address, dag Base, dag Offset,
   5009                        dag Extend> {
   5010   defm : ro_small_pats<!cast<Instruction>("LS8_" # Rm # "_RegOffset_LDR"),
   5011                        !cast<Instruction>("LS8_" # Rm # "_RegOffset_STR"),
   5012                        Base, Offset, Extend,
   5013                        !foreach(decls.pattern, address,
   5014                                 !subst(SHIFT, imm_eq0, decls.pattern)),
   5015                        i8>;
   5016   defm : ro_small_pats<!cast<Instruction>("LS16_" # Rm # "_RegOffset_LDR"),
   5017                        !cast<Instruction>("LS16_" # Rm # "_RegOffset_STR"),
   5018                        Base, Offset, Extend,
   5019                        !foreach(decls.pattern, address,
   5020                                 !subst(SHIFT, imm_eq1, decls.pattern)),
   5021                        i16>;
   5022   defm : ro_small_pats<!cast<Instruction>("LS32_" # Rm # "_RegOffset_LDR"),
   5023                        !cast<Instruction>("LS32_" # Rm # "_RegOffset_STR"),
   5024                        Base, Offset, Extend,
   5025                        !foreach(decls.pattern, address,
   5026                                 !subst(SHIFT, imm_eq2, decls.pattern)),
   5027                        i32>;
   5028 
   5029   defm : ro_int_neutral_pats<
   5030                             !cast<Instruction>("LS32_" # Rm # "_RegOffset_LDR"),
   5031                             !cast<Instruction>("LS32_" # Rm # "_RegOffset_STR"),
   5032                             Base, Offset, Extend,
   5033                             !foreach(decls.pattern, address,
   5034                                      !subst(SHIFT, imm_eq2, decls.pattern)),
   5035                             GPR32, i32>;
   5036 
   5037   defm : ro_int_neutral_pats<
   5038                             !cast<Instruction>("LS64_" # Rm # "_RegOffset_LDR"),
   5039                             !cast<Instruction>("LS64_" # Rm # "_RegOffset_STR"),
   5040                             Base, Offset, Extend,
   5041                             !foreach(decls.pattern, address,
   5042                                      !subst(SHIFT, imm_eq3, decls.pattern)),
   5043                             GPR64, i64>;
   5044 
   5045   defm : ro_neutral_pats<!cast<Instruction>("LSFP16_" # Rm # "_RegOffset_LDR"),
   5046                          !cast<Instruction>("LSFP16_" # Rm # "_RegOffset_STR"),
   5047                          Base, Offset, Extend,
   5048                          !foreach(decls.pattern, address,
   5049                                   !subst(SHIFT, imm_eq1, decls.pattern)),
   5050                          FPR16, f16>;
   5051 
   5052   defm : ro_neutral_pats<!cast<Instruction>("LSFP32_" # Rm # "_RegOffset_LDR"),
   5053                          !cast<Instruction>("LSFP32_" # Rm # "_RegOffset_STR"),
   5054                          Base, Offset, Extend,
   5055                          !foreach(decls.pattern, address,
   5056                                   !subst(SHIFT, imm_eq2, decls.pattern)),
   5057                          FPR32, f32>;
   5058 
   5059   defm : ro_neutral_pats<!cast<Instruction>("LSFP64_" # Rm # "_RegOffset_LDR"),
   5060                          !cast<Instruction>("LSFP64_" # Rm # "_RegOffset_STR"),
   5061                          Base, Offset, Extend,
   5062                          !foreach(decls.pattern, address,
   5063                                   !subst(SHIFT, imm_eq3, decls.pattern)),
   5064                          FPR64, f64>;
   5065 
   5066   defm : ro_neutral_pats<!cast<Instruction>("LSFP128_" # Rm # "_RegOffset_LDR"),
   5067                          !cast<Instruction>("LSFP128_" # Rm # "_RegOffset_STR"),
   5068                          Base, Offset, Extend,
   5069                          !foreach(decls.pattern, address,
   5070                                   !subst(SHIFT, imm_eq4, decls.pattern)),
   5071                          FPR128, f128>;
   5072 
   5073   defm : ro_signed_pats<"B", Rm, Base, Offset, Extend,
   5074                           !foreach(decls.pattern, address,
   5075                                    !subst(SHIFT, imm_eq0, decls.pattern)),
   5076                           i8>;
   5077 
   5078   defm : ro_signed_pats<"H", Rm, Base, Offset, Extend,
   5079                           !foreach(decls.pattern, address,
   5080                                    !subst(SHIFT, imm_eq1, decls.pattern)),
   5081                           i16>;
   5082 
   5083   def : Pat<(sextloadi32 !foreach(decls.pattern, address,
   5084                                   !subst(SHIFT, imm_eq2, decls.pattern))),
   5085             (!cast<Instruction>("LDRSWx_" # Rm # "_RegOffset")
   5086               Base, Offset, Extend)>;
   5087 }
   5088 
   5089 
   5090 // Finally we're in a position to tell LLVM exactly what addresses are reachable
   5091 // using register-offset instructions. Essentially a base plus a possibly
   5092 // extended, possibly shifted (by access size) offset.
   5093 
   5094 defm : regoff_pats<"Wm", (add GPR64xsp:$Rn, (sext GPR32:$Rm)),
   5095                    (i64 GPR64xsp:$Rn), (i32 GPR32:$Rm), (i64 6)>;
   5096 
   5097 defm : regoff_pats<"Wm", (add GPR64xsp:$Rn, (shl (sext GPR32:$Rm), SHIFT)),
   5098                    (i64 GPR64xsp:$Rn), (i32 GPR32:$Rm), (i64 7)>;
   5099 
   5100 defm : regoff_pats<"Wm", (add GPR64xsp:$Rn, (zext GPR32:$Rm)),
   5101                    (i64 GPR64xsp:$Rn), (i32 GPR32:$Rm), (i64 2)>;
   5102 
   5103 defm : regoff_pats<"Wm", (add GPR64xsp:$Rn, (shl (zext GPR32:$Rm), SHIFT)),
   5104                    (i64 GPR64xsp:$Rn), (i32 GPR32:$Rm), (i64 3)>;
   5105 
   5106 defm : regoff_pats<"Xm", (add GPR64xsp:$Rn, GPR64:$Rm),
   5107                    (i64 GPR64xsp:$Rn), (i64 GPR64:$Rm), (i64 2)>;
   5108 
   5109 defm : regoff_pats<"Xm", (add GPR64xsp:$Rn, (shl GPR64:$Rm, SHIFT)),
   5110                    (i64 GPR64xsp:$Rn), (i64 GPR64:$Rm), (i64 3)>;
   5111