1 Target Independent Opportunities: 2 3 //===---------------------------------------------------------------------===// 4 5 We should recognized various "overflow detection" idioms and translate them into 6 llvm.uadd.with.overflow and similar intrinsics. Here is a multiply idiom: 7 8 unsigned int mul(unsigned int a,unsigned int b) { 9 if ((unsigned long long)a*b>0xffffffff) 10 exit(0); 11 return a*b; 12 } 13 14 The legalization code for mul-with-overflow needs to be made more robust before 15 this can be implemented though. 16 17 //===---------------------------------------------------------------------===// 18 19 Get the C front-end to expand hypot(x,y) -> llvm.sqrt(x*x+y*y) when errno and 20 precision don't matter (ffastmath). Misc/mandel will like this. :) This isn't 21 safe in general, even on darwin. See the libm implementation of hypot for 22 examples (which special case when x/y are exactly zero to get signed zeros etc 23 right). 24 25 //===---------------------------------------------------------------------===// 26 27 On targets with expensive 64-bit multiply, we could LSR this: 28 29 for (i = ...; ++i) { 30 x = 1ULL << i; 31 32 into: 33 long long tmp = 1; 34 for (i = ...; ++i, tmp+=tmp) 35 x = tmp; 36 37 This would be a win on ppc32, but not x86 or ppc64. 38 39 //===---------------------------------------------------------------------===// 40 41 Shrink: (setlt (loadi32 P), 0) -> (setlt (loadi8 Phi), 0) 42 43 //===---------------------------------------------------------------------===// 44 45 Reassociate should turn things like: 46 47 int factorial(int X) { 48 return X*X*X*X*X*X*X*X; 49 } 50 51 into llvm.powi calls, allowing the code generator to produce balanced 52 multiplication trees. 53 54 First, the intrinsic needs to be extended to support integers, and second the 55 code generator needs to be enhanced to lower these to multiplication trees. 56 57 //===---------------------------------------------------------------------===// 58 59 Interesting? testcase for add/shift/mul reassoc: 60 61 int bar(int x, int y) { 62 return x*x*x+y+x*x*x*x*x*y*y*y*y; 63 } 64 int foo(int z, int n) { 65 return bar(z, n) + bar(2*z, 2*n); 66 } 67 68 This is blocked on not handling X*X*X -> powi(X, 3) (see note above). The issue 69 is that we end up getting t = 2*X s = t*t and don't turn this into 4*X*X, 70 which is the same number of multiplies and is canonical, because the 2*X has 71 multiple uses. Here's a simple example: 72 73 define i32 @test15(i32 %X1) { 74 %B = mul i32 %X1, 47 ; X1*47 75 %C = mul i32 %B, %B 76 ret i32 %C 77 } 78 79 80 //===---------------------------------------------------------------------===// 81 82 Reassociate should handle the example in GCC PR16157: 83 84 extern int a0, a1, a2, a3, a4; extern int b0, b1, b2, b3, b4; 85 void f () { /* this can be optimized to four additions... */ 86 b4 = a4 + a3 + a2 + a1 + a0; 87 b3 = a3 + a2 + a1 + a0; 88 b2 = a2 + a1 + a0; 89 b1 = a1 + a0; 90 } 91 92 This requires reassociating to forms of expressions that are already available, 93 something that reassoc doesn't think about yet. 94 95 96 //===---------------------------------------------------------------------===// 97 98 This function: (derived from GCC PR19988) 99 double foo(double x, double y) { 100 return ((x + 0.1234 * y) * (x + -0.1234 * y)); 101 } 102 103 compiles to: 104 _foo: 105 movapd %xmm1, %xmm2 106 mulsd LCPI1_1(%rip), %xmm1 107 mulsd LCPI1_0(%rip), %xmm2 108 addsd %xmm0, %xmm1 109 addsd %xmm0, %xmm2 110 movapd %xmm1, %xmm0 111 mulsd %xmm2, %xmm0 112 ret 113 114 Reassociate should be able to turn it into: 115 116 double foo(double x, double y) { 117 return ((x + 0.1234 * y) * (x - 0.1234 * y)); 118 } 119 120 Which allows the multiply by constant to be CSE'd, producing: 121 122 _foo: 123 mulsd LCPI1_0(%rip), %xmm1 124 movapd %xmm1, %xmm2 125 addsd %xmm0, %xmm2 126 subsd %xmm1, %xmm0 127 mulsd %xmm2, %xmm0 128 ret 129 130 This doesn't need -ffast-math support at all. This is particularly bad because 131 the llvm-gcc frontend is canonicalizing the later into the former, but clang 132 doesn't have this problem. 133 134 //===---------------------------------------------------------------------===// 135 136 These two functions should generate the same code on big-endian systems: 137 138 int g(int *j,int *l) { return memcmp(j,l,4); } 139 int h(int *j, int *l) { return *j - *l; } 140 141 this could be done in SelectionDAGISel.cpp, along with other special cases, 142 for 1,2,4,8 bytes. 143 144 //===---------------------------------------------------------------------===// 145 146 It would be nice to revert this patch: 147 http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20060213/031986.html 148 149 And teach the dag combiner enough to simplify the code expanded before 150 legalize. It seems plausible that this knowledge would let it simplify other 151 stuff too. 152 153 //===---------------------------------------------------------------------===// 154 155 For vector types, DataLayout.cpp::getTypeInfo() returns alignment that is equal 156 to the type size. It works but can be overly conservative as the alignment of 157 specific vector types are target dependent. 158 159 //===---------------------------------------------------------------------===// 160 161 We should produce an unaligned load from code like this: 162 163 v4sf example(float *P) { 164 return (v4sf){P[0], P[1], P[2], P[3] }; 165 } 166 167 //===---------------------------------------------------------------------===// 168 169 Add support for conditional increments, and other related patterns. Instead 170 of: 171 172 movl 136(%esp), %eax 173 cmpl $0, %eax 174 je LBB16_2 #cond_next 175 LBB16_1: #cond_true 176 incl _foo 177 LBB16_2: #cond_next 178 179 emit: 180 movl _foo, %eax 181 cmpl $1, %edi 182 sbbl $-1, %eax 183 movl %eax, _foo 184 185 //===---------------------------------------------------------------------===// 186 187 Combine: a = sin(x), b = cos(x) into a,b = sincos(x). 188 189 Expand these to calls of sin/cos and stores: 190 double sincos(double x, double *sin, double *cos); 191 float sincosf(float x, float *sin, float *cos); 192 long double sincosl(long double x, long double *sin, long double *cos); 193 194 Doing so could allow SROA of the destination pointers. See also: 195 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=17687 196 197 This is now easily doable with MRVs. We could even make an intrinsic for this 198 if anyone cared enough about sincos. 199 200 //===---------------------------------------------------------------------===// 201 202 quantum_sigma_x in 462.libquantum contains the following loop: 203 204 for(i=0; i<reg->size; i++) 205 { 206 /* Flip the target bit of each basis state */ 207 reg->node[i].state ^= ((MAX_UNSIGNED) 1 << target); 208 } 209 210 Where MAX_UNSIGNED/state is a 64-bit int. On a 32-bit platform it would be just 211 so cool to turn it into something like: 212 213 long long Res = ((MAX_UNSIGNED) 1 << target); 214 if (target < 32) { 215 for(i=0; i<reg->size; i++) 216 reg->node[i].state ^= Res & 0xFFFFFFFFULL; 217 } else { 218 for(i=0; i<reg->size; i++) 219 reg->node[i].state ^= Res & 0xFFFFFFFF00000000ULL 220 } 221 222 ... which would only do one 32-bit XOR per loop iteration instead of two. 223 224 It would also be nice to recognize the reg->size doesn't alias reg->node[i], but 225 this requires TBAA. 226 227 //===---------------------------------------------------------------------===// 228 229 This isn't recognized as bswap by instcombine (yes, it really is bswap): 230 231 unsigned long reverse(unsigned v) { 232 unsigned t; 233 t = v ^ ((v << 16) | (v >> 16)); 234 t &= ~0xff0000; 235 v = (v << 24) | (v >> 8); 236 return v ^ (t >> 8); 237 } 238 239 //===---------------------------------------------------------------------===// 240 241 [LOOP DELETION] 242 243 We don't delete this output free loop, because trip count analysis doesn't 244 realize that it is finite (if it were infinite, it would be undefined). Not 245 having this blocks Loop Idiom from matching strlen and friends. 246 247 void foo(char *C) { 248 int x = 0; 249 while (*C) 250 ++x,++C; 251 } 252 253 //===---------------------------------------------------------------------===// 254 255 [LOOP RECOGNITION] 256 257 These idioms should be recognized as popcount (see PR1488): 258 259 unsigned countbits_slow(unsigned v) { 260 unsigned c; 261 for (c = 0; v; v >>= 1) 262 c += v & 1; 263 return c; 264 } 265 266 unsigned int popcount(unsigned int input) { 267 unsigned int count = 0; 268 for (unsigned int i = 0; i < 4 * 8; i++) 269 count += (input >> i) & i; 270 return count; 271 } 272 273 This should be recognized as CLZ: rdar://8459039 274 275 unsigned clz_a(unsigned a) { 276 int i; 277 for (i=0;i<32;i++) 278 if (a & (1<<(31-i))) 279 return i; 280 return 32; 281 } 282 283 This sort of thing should be added to the loop idiom pass. 284 285 //===---------------------------------------------------------------------===// 286 287 These should turn into single 16-bit (unaligned?) loads on little/big endian 288 processors. 289 290 unsigned short read_16_le(const unsigned char *adr) { 291 return adr[0] | (adr[1] << 8); 292 } 293 unsigned short read_16_be(const unsigned char *adr) { 294 return (adr[0] << 8) | adr[1]; 295 } 296 297 //===---------------------------------------------------------------------===// 298 299 -instcombine should handle this transform: 300 icmp pred (sdiv X / C1 ), C2 301 when X, C1, and C2 are unsigned. Similarly for udiv and signed operands. 302 303 Currently InstCombine avoids this transform but will do it when the signs of 304 the operands and the sign of the divide match. See the FIXME in 305 InstructionCombining.cpp in the visitSetCondInst method after the switch case 306 for Instruction::UDiv (around line 4447) for more details. 307 308 The SingleSource/Benchmarks/Shootout-C++/hash and hash2 tests have examples of 309 this construct. 310 311 //===---------------------------------------------------------------------===// 312 313 [LOOP OPTIMIZATION] 314 315 SingleSource/Benchmarks/Misc/dt.c shows several interesting optimization 316 opportunities in its double_array_divs_variable function: it needs loop 317 interchange, memory promotion (which LICM already does), vectorization and 318 variable trip count loop unrolling (since it has a constant trip count). ICC 319 apparently produces this very nice code with -ffast-math: 320 321 ..B1.70: # Preds ..B1.70 ..B1.69 322 mulpd %xmm0, %xmm1 #108.2 323 mulpd %xmm0, %xmm1 #108.2 324 mulpd %xmm0, %xmm1 #108.2 325 mulpd %xmm0, %xmm1 #108.2 326 addl $8, %edx # 327 cmpl $131072, %edx #108.2 328 jb ..B1.70 # Prob 99% #108.2 329 330 It would be better to count down to zero, but this is a lot better than what we 331 do. 332 333 //===---------------------------------------------------------------------===// 334 335 Consider: 336 337 typedef unsigned U32; 338 typedef unsigned long long U64; 339 int test (U32 *inst, U64 *regs) { 340 U64 effective_addr2; 341 U32 temp = *inst; 342 int r1 = (temp >> 20) & 0xf; 343 int b2 = (temp >> 16) & 0xf; 344 effective_addr2 = temp & 0xfff; 345 if (b2) effective_addr2 += regs[b2]; 346 b2 = (temp >> 12) & 0xf; 347 if (b2) effective_addr2 += regs[b2]; 348 effective_addr2 &= regs[4]; 349 if ((effective_addr2 & 3) == 0) 350 return 1; 351 return 0; 352 } 353 354 Note that only the low 2 bits of effective_addr2 are used. On 32-bit systems, 355 we don't eliminate the computation of the top half of effective_addr2 because 356 we don't have whole-function selection dags. On x86, this means we use one 357 extra register for the function when effective_addr2 is declared as U64 than 358 when it is declared U32. 359 360 PHI Slicing could be extended to do this. 361 362 //===---------------------------------------------------------------------===// 363 364 Tail call elim should be more aggressive, checking to see if the call is 365 followed by an uncond branch to an exit block. 366 367 ; This testcase is due to tail-duplication not wanting to copy the return 368 ; instruction into the terminating blocks because there was other code 369 ; optimized out of the function after the taildup happened. 370 ; RUN: llvm-as < %s | opt -tailcallelim | llvm-dis | not grep call 371 372 define i32 @t4(i32 %a) { 373 entry: 374 %tmp.1 = and i32 %a, 1 ; <i32> [#uses=1] 375 %tmp.2 = icmp ne i32 %tmp.1, 0 ; <i1> [#uses=1] 376 br i1 %tmp.2, label %then.0, label %else.0 377 378 then.0: ; preds = %entry 379 %tmp.5 = add i32 %a, -1 ; <i32> [#uses=1] 380 %tmp.3 = call i32 @t4( i32 %tmp.5 ) ; <i32> [#uses=1] 381 br label %return 382 383 else.0: ; preds = %entry 384 %tmp.7 = icmp ne i32 %a, 0 ; <i1> [#uses=1] 385 br i1 %tmp.7, label %then.1, label %return 386 387 then.1: ; preds = %else.0 388 %tmp.11 = add i32 %a, -2 ; <i32> [#uses=1] 389 %tmp.9 = call i32 @t4( i32 %tmp.11 ) ; <i32> [#uses=1] 390 br label %return 391 392 return: ; preds = %then.1, %else.0, %then.0 393 %result.0 = phi i32 [ 0, %else.0 ], [ %tmp.3, %then.0 ], 394 [ %tmp.9, %then.1 ] 395 ret i32 %result.0 396 } 397 398 //===---------------------------------------------------------------------===// 399 400 Tail recursion elimination should handle: 401 402 int pow2m1(int n) { 403 if (n == 0) 404 return 0; 405 return 2 * pow2m1 (n - 1) + 1; 406 } 407 408 Also, multiplies can be turned into SHL's, so they should be handled as if 409 they were associative. "return foo() << 1" can be tail recursion eliminated. 410 411 //===---------------------------------------------------------------------===// 412 413 Argument promotion should promote arguments for recursive functions, like 414 this: 415 416 ; RUN: llvm-as < %s | opt -argpromotion | llvm-dis | grep x.val 417 418 define internal i32 @foo(i32* %x) { 419 entry: 420 %tmp = load i32* %x ; <i32> [#uses=0] 421 %tmp.foo = call i32 @foo( i32* %x ) ; <i32> [#uses=1] 422 ret i32 %tmp.foo 423 } 424 425 define i32 @bar(i32* %x) { 426 entry: 427 %tmp3 = call i32 @foo( i32* %x ) ; <i32> [#uses=1] 428 ret i32 %tmp3 429 } 430 431 //===---------------------------------------------------------------------===// 432 433 We should investigate an instruction sinking pass. Consider this silly 434 example in pic mode: 435 436 #include <assert.h> 437 void foo(int x) { 438 assert(x); 439 //... 440 } 441 442 we compile this to: 443 _foo: 444 subl $28, %esp 445 call "L1$pb" 446 "L1$pb": 447 popl %eax 448 cmpl $0, 32(%esp) 449 je LBB1_2 # cond_true 450 LBB1_1: # return 451 # ... 452 addl $28, %esp 453 ret 454 LBB1_2: # cond_true 455 ... 456 457 The PIC base computation (call+popl) is only used on one path through the 458 code, but is currently always computed in the entry block. It would be 459 better to sink the picbase computation down into the block for the 460 assertion, as it is the only one that uses it. This happens for a lot of 461 code with early outs. 462 463 Another example is loads of arguments, which are usually emitted into the 464 entry block on targets like x86. If not used in all paths through a 465 function, they should be sunk into the ones that do. 466 467 In this case, whole-function-isel would also handle this. 468 469 //===---------------------------------------------------------------------===// 470 471 Investigate lowering of sparse switch statements into perfect hash tables: 472 http://burtleburtle.net/bob/hash/perfect.html 473 474 //===---------------------------------------------------------------------===// 475 476 We should turn things like "load+fabs+store" and "load+fneg+store" into the 477 corresponding integer operations. On a yonah, this loop: 478 479 double a[256]; 480 void foo() { 481 int i, b; 482 for (b = 0; b < 10000000; b++) 483 for (i = 0; i < 256; i++) 484 a[i] = -a[i]; 485 } 486 487 is twice as slow as this loop: 488 489 long long a[256]; 490 void foo() { 491 int i, b; 492 for (b = 0; b < 10000000; b++) 493 for (i = 0; i < 256; i++) 494 a[i] ^= (1ULL << 63); 495 } 496 497 and I suspect other processors are similar. On X86 in particular this is a 498 big win because doing this with integers allows the use of read/modify/write 499 instructions. 500 501 //===---------------------------------------------------------------------===// 502 503 DAG Combiner should try to combine small loads into larger loads when 504 profitable. For example, we compile this C++ example: 505 506 struct THotKey { short Key; bool Control; bool Shift; bool Alt; }; 507 extern THotKey m_HotKey; 508 THotKey GetHotKey () { return m_HotKey; } 509 510 into (-m64 -O3 -fno-exceptions -static -fomit-frame-pointer): 511 512 __Z9GetHotKeyv: ## @_Z9GetHotKeyv 513 movq _m_HotKey@GOTPCREL(%rip), %rax 514 movzwl (%rax), %ecx 515 movzbl 2(%rax), %edx 516 shlq $16, %rdx 517 orq %rcx, %rdx 518 movzbl 3(%rax), %ecx 519 shlq $24, %rcx 520 orq %rdx, %rcx 521 movzbl 4(%rax), %eax 522 shlq $32, %rax 523 orq %rcx, %rax 524 ret 525 526 //===---------------------------------------------------------------------===// 527 528 We should add an FRINT node to the DAG to model targets that have legal 529 implementations of ceil/floor/rint. 530 531 //===---------------------------------------------------------------------===// 532 533 Consider: 534 535 int test() { 536 long long input[8] = {1,0,1,0,1,0,1,0}; 537 foo(input); 538 } 539 540 Clang compiles this into: 541 542 call void @llvm.memset.p0i8.i64(i8* %tmp, i8 0, i64 64, i32 16, i1 false) 543 %0 = getelementptr [8 x i64]* %input, i64 0, i64 0 544 store i64 1, i64* %0, align 16 545 %1 = getelementptr [8 x i64]* %input, i64 0, i64 2 546 store i64 1, i64* %1, align 16 547 %2 = getelementptr [8 x i64]* %input, i64 0, i64 4 548 store i64 1, i64* %2, align 16 549 %3 = getelementptr [8 x i64]* %input, i64 0, i64 6 550 store i64 1, i64* %3, align 16 551 552 Which gets codegen'd into: 553 554 pxor %xmm0, %xmm0 555 movaps %xmm0, -16(%rbp) 556 movaps %xmm0, -32(%rbp) 557 movaps %xmm0, -48(%rbp) 558 movaps %xmm0, -64(%rbp) 559 movq $1, -64(%rbp) 560 movq $1, -48(%rbp) 561 movq $1, -32(%rbp) 562 movq $1, -16(%rbp) 563 564 It would be better to have 4 movq's of 0 instead of the movaps's. 565 566 //===---------------------------------------------------------------------===// 567 568 http://llvm.org/PR717: 569 570 The following code should compile into "ret int undef". Instead, LLVM 571 produces "ret int 0": 572 573 int f() { 574 int x = 4; 575 int y; 576 if (x == 3) y = 0; 577 return y; 578 } 579 580 //===---------------------------------------------------------------------===// 581 582 The loop unroller should partially unroll loops (instead of peeling them) 583 when code growth isn't too bad and when an unroll count allows simplification 584 of some code within the loop. One trivial example is: 585 586 #include <stdio.h> 587 int main() { 588 int nRet = 17; 589 int nLoop; 590 for ( nLoop = 0; nLoop < 1000; nLoop++ ) { 591 if ( nLoop & 1 ) 592 nRet += 2; 593 else 594 nRet -= 1; 595 } 596 return nRet; 597 } 598 599 Unrolling by 2 would eliminate the '&1' in both copies, leading to a net 600 reduction in code size. The resultant code would then also be suitable for 601 exit value computation. 602 603 //===---------------------------------------------------------------------===// 604 605 We miss a bunch of rotate opportunities on various targets, including ppc, x86, 606 etc. On X86, we miss a bunch of 'rotate by variable' cases because the rotate 607 matching code in dag combine doesn't look through truncates aggressively 608 enough. Here are some testcases reduces from GCC PR17886: 609 610 unsigned long long f5(unsigned long long x, unsigned long long y) { 611 return (x << 8) | ((y >> 48) & 0xffull); 612 } 613 unsigned long long f6(unsigned long long x, unsigned long long y, int z) { 614 switch(z) { 615 case 1: 616 return (x << 8) | ((y >> 48) & 0xffull); 617 case 2: 618 return (x << 16) | ((y >> 40) & 0xffffull); 619 case 3: 620 return (x << 24) | ((y >> 32) & 0xffffffull); 621 case 4: 622 return (x << 32) | ((y >> 24) & 0xffffffffull); 623 default: 624 return (x << 40) | ((y >> 16) & 0xffffffffffull); 625 } 626 } 627 628 //===---------------------------------------------------------------------===// 629 630 This (and similar related idioms): 631 632 unsigned int foo(unsigned char i) { 633 return i | (i<<8) | (i<<16) | (i<<24); 634 } 635 636 compiles into: 637 638 define i32 @foo(i8 zeroext %i) nounwind readnone ssp noredzone { 639 entry: 640 %conv = zext i8 %i to i32 641 %shl = shl i32 %conv, 8 642 %shl5 = shl i32 %conv, 16 643 %shl9 = shl i32 %conv, 24 644 %or = or i32 %shl9, %conv 645 %or6 = or i32 %or, %shl5 646 %or10 = or i32 %or6, %shl 647 ret i32 %or10 648 } 649 650 it would be better as: 651 652 unsigned int bar(unsigned char i) { 653 unsigned int j=i | (i << 8); 654 return j | (j<<16); 655 } 656 657 aka: 658 659 define i32 @bar(i8 zeroext %i) nounwind readnone ssp noredzone { 660 entry: 661 %conv = zext i8 %i to i32 662 %shl = shl i32 %conv, 8 663 %or = or i32 %shl, %conv 664 %shl5 = shl i32 %or, 16 665 %or6 = or i32 %shl5, %or 666 ret i32 %or6 667 } 668 669 or even i*0x01010101, depending on the speed of the multiplier. The best way to 670 handle this is to canonicalize it to a multiply in IR and have codegen handle 671 lowering multiplies to shifts on cpus where shifts are faster. 672 673 //===---------------------------------------------------------------------===// 674 675 We do a number of simplifications in simplify libcalls to strength reduce 676 standard library functions, but we don't currently merge them together. For 677 example, it is useful to merge memcpy(a,b,strlen(b)) -> strcpy. This can only 678 be done safely if "b" isn't modified between the strlen and memcpy of course. 679 680 //===---------------------------------------------------------------------===// 681 682 We compile this program: (from GCC PR11680) 683 http://gcc.gnu.org/bugzilla/attachment.cgi?id=4487 684 685 Into code that runs the same speed in fast/slow modes, but both modes run 2x 686 slower than when compile with GCC (either 4.0 or 4.2): 687 688 $ llvm-g++ perf.cpp -O3 -fno-exceptions 689 $ time ./a.out fast 690 1.821u 0.003s 0:01.82 100.0% 0+0k 0+0io 0pf+0w 691 692 $ g++ perf.cpp -O3 -fno-exceptions 693 $ time ./a.out fast 694 0.821u 0.001s 0:00.82 100.0% 0+0k 0+0io 0pf+0w 695 696 It looks like we are making the same inlining decisions, so this may be raw 697 codegen badness or something else (haven't investigated). 698 699 //===---------------------------------------------------------------------===// 700 701 Divisibility by constant can be simplified (according to GCC PR12849) from 702 being a mulhi to being a mul lo (cheaper). Testcase: 703 704 void bar(unsigned n) { 705 if (n % 3 == 0) 706 true(); 707 } 708 709 This is equivalent to the following, where 2863311531 is the multiplicative 710 inverse of 3, and 1431655766 is ((2^32)-1)/3+1: 711 void bar(unsigned n) { 712 if (n * 2863311531U < 1431655766U) 713 true(); 714 } 715 716 The same transformation can work with an even modulo with the addition of a 717 rotate: rotate the result of the multiply to the right by the number of bits 718 which need to be zero for the condition to be true, and shrink the compare RHS 719 by the same amount. Unless the target supports rotates, though, that 720 transformation probably isn't worthwhile. 721 722 The transformation can also easily be made to work with non-zero equality 723 comparisons: just transform, for example, "n % 3 == 1" to "(n-1) % 3 == 0". 724 725 //===---------------------------------------------------------------------===// 726 727 Better mod/ref analysis for scanf would allow us to eliminate the vtable and a 728 bunch of other stuff from this example (see PR1604): 729 730 #include <cstdio> 731 struct test { 732 int val; 733 virtual ~test() {} 734 }; 735 736 int main() { 737 test t; 738 std::scanf("%d", &t.val); 739 std::printf("%d\n", t.val); 740 } 741 742 //===---------------------------------------------------------------------===// 743 744 These functions perform the same computation, but produce different assembly. 745 746 define i8 @select(i8 %x) readnone nounwind { 747 %A = icmp ult i8 %x, 250 748 %B = select i1 %A, i8 0, i8 1 749 ret i8 %B 750 } 751 752 define i8 @addshr(i8 %x) readnone nounwind { 753 %A = zext i8 %x to i9 754 %B = add i9 %A, 6 ;; 256 - 250 == 6 755 %C = lshr i9 %B, 8 756 %D = trunc i9 %C to i8 757 ret i8 %D 758 } 759 760 //===---------------------------------------------------------------------===// 761 762 From gcc bug 24696: 763 int 764 f (unsigned long a, unsigned long b, unsigned long c) 765 { 766 return ((a & (c - 1)) != 0) || ((b & (c - 1)) != 0); 767 } 768 int 769 f (unsigned long a, unsigned long b, unsigned long c) 770 { 771 return ((a & (c - 1)) != 0) | ((b & (c - 1)) != 0); 772 } 773 Both should combine to ((a|b) & (c-1)) != 0. Currently not optimized with 774 "clang -emit-llvm-bc | opt -std-compile-opts". 775 776 //===---------------------------------------------------------------------===// 777 778 From GCC Bug 20192: 779 #define PMD_MASK (~((1UL << 23) - 1)) 780 void clear_pmd_range(unsigned long start, unsigned long end) 781 { 782 if (!(start & ~PMD_MASK) && !(end & ~PMD_MASK)) 783 f(); 784 } 785 The expression should optimize to something like 786 "!((start|end)&~PMD_MASK). Currently not optimized with "clang 787 -emit-llvm-bc | opt -std-compile-opts". 788 789 //===---------------------------------------------------------------------===// 790 791 unsigned int f(unsigned int i, unsigned int n) {++i; if (i == n) ++i; return 792 i;} 793 unsigned int f2(unsigned int i, unsigned int n) {++i; i += i == n; return i;} 794 These should combine to the same thing. Currently, the first function 795 produces better code on X86. 796 797 //===---------------------------------------------------------------------===// 798 799 From GCC Bug 15784: 800 #define abs(x) x>0?x:-x 801 int f(int x, int y) 802 { 803 return (abs(x)) >= 0; 804 } 805 This should optimize to x == INT_MIN. (With -fwrapv.) Currently not 806 optimized with "clang -emit-llvm-bc | opt -std-compile-opts". 807 808 //===---------------------------------------------------------------------===// 809 810 From GCC Bug 14753: 811 void 812 rotate_cst (unsigned int a) 813 { 814 a = (a << 10) | (a >> 22); 815 if (a == 123) 816 bar (); 817 } 818 void 819 minus_cst (unsigned int a) 820 { 821 unsigned int tem; 822 823 tem = 20 - a; 824 if (tem == 5) 825 bar (); 826 } 827 void 828 mask_gt (unsigned int a) 829 { 830 /* This is equivalent to a > 15. */ 831 if ((a & ~7) > 8) 832 bar (); 833 } 834 void 835 rshift_gt (unsigned int a) 836 { 837 /* This is equivalent to a > 23. */ 838 if ((a >> 2) > 5) 839 bar (); 840 } 841 842 All should simplify to a single comparison. All of these are 843 currently not optimized with "clang -emit-llvm-bc | opt 844 -std-compile-opts". 845 846 //===---------------------------------------------------------------------===// 847 848 From GCC Bug 32605: 849 int c(int* x) {return (char*)x+2 == (char*)x;} 850 Should combine to 0. Currently not optimized with "clang 851 -emit-llvm-bc | opt -std-compile-opts" (although llc can optimize it). 852 853 //===---------------------------------------------------------------------===// 854 855 int a(unsigned b) {return ((b << 31) | (b << 30)) >> 31;} 856 Should be combined to "((b >> 1) | b) & 1". Currently not optimized 857 with "clang -emit-llvm-bc | opt -std-compile-opts". 858 859 //===---------------------------------------------------------------------===// 860 861 unsigned a(unsigned x, unsigned y) { return x | (y & 1) | (y & 2);} 862 Should combine to "x | (y & 3)". Currently not optimized with "clang 863 -emit-llvm-bc | opt -std-compile-opts". 864 865 //===---------------------------------------------------------------------===// 866 867 int a(int a, int b, int c) {return (~a & c) | ((c|a) & b);} 868 Should fold to "(~a & c) | (a & b)". Currently not optimized with 869 "clang -emit-llvm-bc | opt -std-compile-opts". 870 871 //===---------------------------------------------------------------------===// 872 873 int a(int a,int b) {return (~(a|b))|a;} 874 Should fold to "a|~b". Currently not optimized with "clang 875 -emit-llvm-bc | opt -std-compile-opts". 876 877 //===---------------------------------------------------------------------===// 878 879 int a(int a, int b) {return (a&&b) || (a&&!b);} 880 Should fold to "a". Currently not optimized with "clang -emit-llvm-bc 881 | opt -std-compile-opts". 882 883 //===---------------------------------------------------------------------===// 884 885 int a(int a, int b, int c) {return (a&&b) || (!a&&c);} 886 Should fold to "a ? b : c", or at least something sane. Currently not 887 optimized with "clang -emit-llvm-bc | opt -std-compile-opts". 888 889 //===---------------------------------------------------------------------===// 890 891 int a(int a, int b, int c) {return (a&&b) || (a&&c) || (a&&b&&c);} 892 Should fold to a && (b || c). Currently not optimized with "clang 893 -emit-llvm-bc | opt -std-compile-opts". 894 895 //===---------------------------------------------------------------------===// 896 897 int a(int x) {return x | ((x & 8) ^ 8);} 898 Should combine to x | 8. Currently not optimized with "clang 899 -emit-llvm-bc | opt -std-compile-opts". 900 901 //===---------------------------------------------------------------------===// 902 903 int a(int x) {return x ^ ((x & 8) ^ 8);} 904 Should also combine to x | 8. Currently not optimized with "clang 905 -emit-llvm-bc | opt -std-compile-opts". 906 907 //===---------------------------------------------------------------------===// 908 909 int a(int x) {return ((x | -9) ^ 8) & x;} 910 Should combine to x & -9. Currently not optimized with "clang 911 -emit-llvm-bc | opt -std-compile-opts". 912 913 //===---------------------------------------------------------------------===// 914 915 unsigned a(unsigned a) {return a * 0x11111111 >> 28 & 1;} 916 Should combine to "a * 0x88888888 >> 31". Currently not optimized 917 with "clang -emit-llvm-bc | opt -std-compile-opts". 918 919 //===---------------------------------------------------------------------===// 920 921 unsigned a(char* x) {if ((*x & 32) == 0) return b();} 922 There's an unnecessary zext in the generated code with "clang 923 -emit-llvm-bc | opt -std-compile-opts". 924 925 //===---------------------------------------------------------------------===// 926 927 unsigned a(unsigned long long x) {return 40 * (x >> 1);} 928 Should combine to "20 * (((unsigned)x) & -2)". Currently not 929 optimized with "clang -emit-llvm-bc | opt -std-compile-opts". 930 931 //===---------------------------------------------------------------------===// 932 933 int g(int x) { return (x - 10) < 0; } 934 Should combine to "x <= 9" (the sub has nsw). Currently not 935 optimized with "clang -emit-llvm-bc | opt -std-compile-opts". 936 937 //===---------------------------------------------------------------------===// 938 939 int g(int x) { return (x + 10) < 0; } 940 Should combine to "x < -10" (the add has nsw). Currently not 941 optimized with "clang -emit-llvm-bc | opt -std-compile-opts". 942 943 //===---------------------------------------------------------------------===// 944 945 int f(int i, int j) { return i < j + 1; } 946 int g(int i, int j) { return j > i - 1; } 947 Should combine to "i <= j" (the add/sub has nsw). Currently not 948 optimized with "clang -emit-llvm-bc | opt -std-compile-opts". 949 950 //===---------------------------------------------------------------------===// 951 952 unsigned f(unsigned x) { return ((x & 7) + 1) & 15; } 953 The & 15 part should be optimized away, it doesn't change the result. Currently 954 not optimized with "clang -emit-llvm-bc | opt -std-compile-opts". 955 956 //===---------------------------------------------------------------------===// 957 958 This was noticed in the entryblock for grokdeclarator in 403.gcc: 959 960 %tmp = icmp eq i32 %decl_context, 4 961 %decl_context_addr.0 = select i1 %tmp, i32 3, i32 %decl_context 962 %tmp1 = icmp eq i32 %decl_context_addr.0, 1 963 %decl_context_addr.1 = select i1 %tmp1, i32 0, i32 %decl_context_addr.0 964 965 tmp1 should be simplified to something like: 966 (!tmp || decl_context == 1) 967 968 This allows recursive simplifications, tmp1 is used all over the place in 969 the function, e.g. by: 970 971 %tmp23 = icmp eq i32 %decl_context_addr.1, 0 ; <i1> [#uses=1] 972 %tmp24 = xor i1 %tmp1, true ; <i1> [#uses=1] 973 %or.cond8 = and i1 %tmp23, %tmp24 ; <i1> [#uses=1] 974 975 later. 976 977 //===---------------------------------------------------------------------===// 978 979 [STORE SINKING] 980 981 Store sinking: This code: 982 983 void f (int n, int *cond, int *res) { 984 int i; 985 *res = 0; 986 for (i = 0; i < n; i++) 987 if (*cond) 988 *res ^= 234; /* (*) */ 989 } 990 991 On this function GVN hoists the fully redundant value of *res, but nothing 992 moves the store out. This gives us this code: 993 994 bb: ; preds = %bb2, %entry 995 %.rle = phi i32 [ 0, %entry ], [ %.rle6, %bb2 ] 996 %i.05 = phi i32 [ 0, %entry ], [ %indvar.next, %bb2 ] 997 %1 = load i32* %cond, align 4 998 %2 = icmp eq i32 %1, 0 999 br i1 %2, label %bb2, label %bb1 1000 1001 bb1: ; preds = %bb 1002 %3 = xor i32 %.rle, 234 1003 store i32 %3, i32* %res, align 4 1004 br label %bb2 1005 1006 bb2: ; preds = %bb, %bb1 1007 %.rle6 = phi i32 [ %3, %bb1 ], [ %.rle, %bb ] 1008 %indvar.next = add i32 %i.05, 1 1009 %exitcond = icmp eq i32 %indvar.next, %n 1010 br i1 %exitcond, label %return, label %bb 1011 1012 DSE should sink partially dead stores to get the store out of the loop. 1013 1014 Here's another partial dead case: 1015 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=12395 1016 1017 //===---------------------------------------------------------------------===// 1018 1019 Scalar PRE hoists the mul in the common block up to the else: 1020 1021 int test (int a, int b, int c, int g) { 1022 int d, e; 1023 if (a) 1024 d = b * c; 1025 else 1026 d = b - c; 1027 e = b * c + g; 1028 return d + e; 1029 } 1030 1031 It would be better to do the mul once to reduce codesize above the if. 1032 This is GCC PR38204. 1033 1034 1035 //===---------------------------------------------------------------------===// 1036 This simple function from 179.art: 1037 1038 int winner, numf2s; 1039 struct { double y; int reset; } *Y; 1040 1041 void find_match() { 1042 int i; 1043 winner = 0; 1044 for (i=0;i<numf2s;i++) 1045 if (Y[i].y > Y[winner].y) 1046 winner =i; 1047 } 1048 1049 Compiles into (with clang TBAA): 1050 1051 for.body: ; preds = %for.inc, %bb.nph 1052 %indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.inc ] 1053 %i.01718 = phi i32 [ 0, %bb.nph ], [ %i.01719, %for.inc ] 1054 %tmp4 = getelementptr inbounds %struct.anon* %tmp3, i64 %indvar, i32 0 1055 %tmp5 = load double* %tmp4, align 8, !tbaa !4 1056 %idxprom7 = sext i32 %i.01718 to i64 1057 %tmp10 = getelementptr inbounds %struct.anon* %tmp3, i64 %idxprom7, i32 0 1058 %tmp11 = load double* %tmp10, align 8, !tbaa !4 1059 %cmp12 = fcmp ogt double %tmp5, %tmp11 1060 br i1 %cmp12, label %if.then, label %for.inc 1061 1062 if.then: ; preds = %for.body 1063 %i.017 = trunc i64 %indvar to i32 1064 br label %for.inc 1065 1066 for.inc: ; preds = %for.body, %if.then 1067 %i.01719 = phi i32 [ %i.01718, %for.body ], [ %i.017, %if.then ] 1068 %indvar.next = add i64 %indvar, 1 1069 %exitcond = icmp eq i64 %indvar.next, %tmp22 1070 br i1 %exitcond, label %for.cond.for.end_crit_edge, label %for.body 1071 1072 1073 It is good that we hoisted the reloads of numf2's, and Y out of the loop and 1074 sunk the store to winner out. 1075 1076 However, this is awful on several levels: the conditional truncate in the loop 1077 (-indvars at fault? why can't we completely promote the IV to i64?). 1078 1079 Beyond that, we have a partially redundant load in the loop: if "winner" (aka 1080 %i.01718) isn't updated, we reload Y[winner].y the next time through the loop. 1081 Similarly, the addressing that feeds it (including the sext) is redundant. In 1082 the end we get this generated assembly: 1083 1084 LBB0_2: ## %for.body 1085 ## =>This Inner Loop Header: Depth=1 1086 movsd (%rdi), %xmm0 1087 movslq %edx, %r8 1088 shlq $4, %r8 1089 ucomisd (%rcx,%r8), %xmm0 1090 jbe LBB0_4 1091 movl %esi, %edx 1092 LBB0_4: ## %for.inc 1093 addq $16, %rdi 1094 incq %rsi 1095 cmpq %rsi, %rax 1096 jne LBB0_2 1097 1098 All things considered this isn't too bad, but we shouldn't need the movslq or 1099 the shlq instruction, or the load folded into ucomisd every time through the 1100 loop. 1101 1102 On an x86-specific topic, if the loop can't be restructure, the movl should be a 1103 cmov. 1104 1105 //===---------------------------------------------------------------------===// 1106 1107 [STORE SINKING] 1108 1109 GCC PR37810 is an interesting case where we should sink load/store reload 1110 into the if block and outside the loop, so we don't reload/store it on the 1111 non-call path. 1112 1113 for () { 1114 *P += 1; 1115 if () 1116 call(); 1117 else 1118 ... 1119 -> 1120 tmp = *P 1121 for () { 1122 tmp += 1; 1123 if () { 1124 *P = tmp; 1125 call(); 1126 tmp = *P; 1127 } else ... 1128 } 1129 *P = tmp; 1130 1131 We now hoist the reload after the call (Transforms/GVN/lpre-call-wrap.ll), but 1132 we don't sink the store. We need partially dead store sinking. 1133 1134 //===---------------------------------------------------------------------===// 1135 1136 [LOAD PRE CRIT EDGE SPLITTING] 1137 1138 GCC PR37166: Sinking of loads prevents SROA'ing the "g" struct on the stack 1139 leading to excess stack traffic. This could be handled by GVN with some crazy 1140 symbolic phi translation. The code we get looks like (g is on the stack): 1141 1142 bb2: ; preds = %bb1 1143 .. 1144 %9 = getelementptr %struct.f* %g, i32 0, i32 0 1145 store i32 %8, i32* %9, align bel %bb3 1146 1147 bb3: ; preds = %bb1, %bb2, %bb 1148 %c_addr.0 = phi %struct.f* [ %g, %bb2 ], [ %c, %bb ], [ %c, %bb1 ] 1149 %b_addr.0 = phi %struct.f* [ %b, %bb2 ], [ %g, %bb ], [ %b, %bb1 ] 1150 %10 = getelementptr %struct.f* %c_addr.0, i32 0, i32 0 1151 %11 = load i32* %10, align 4 1152 1153 %11 is partially redundant, an in BB2 it should have the value %8. 1154 1155 GCC PR33344 and PR35287 are similar cases. 1156 1157 1158 //===---------------------------------------------------------------------===// 1159 1160 [LOAD PRE] 1161 1162 There are many load PRE testcases in testsuite/gcc.dg/tree-ssa/loadpre* in the 1163 GCC testsuite, ones we don't get yet are (checked through loadpre25): 1164 1165 [CRIT EDGE BREAKING] 1166 loadpre3.c predcom-4.c 1167 1168 [PRE OF READONLY CALL] 1169 loadpre5.c 1170 1171 [TURN SELECT INTO BRANCH] 1172 loadpre14.c loadpre15.c 1173 1174 actually a conditional increment: loadpre18.c loadpre19.c 1175 1176 //===---------------------------------------------------------------------===// 1177 1178 [LOAD PRE / STORE SINKING / SPEC HACK] 1179 1180 This is a chunk of code from 456.hmmer: 1181 1182 int f(int M, int *mc, int *mpp, int *tpmm, int *ip, int *tpim, int *dpp, 1183 int *tpdm, int xmb, int *bp, int *ms) { 1184 int k, sc; 1185 for (k = 1; k <= M; k++) { 1186 mc[k] = mpp[k-1] + tpmm[k-1]; 1187 if ((sc = ip[k-1] + tpim[k-1]) > mc[k]) mc[k] = sc; 1188 if ((sc = dpp[k-1] + tpdm[k-1]) > mc[k]) mc[k] = sc; 1189 if ((sc = xmb + bp[k]) > mc[k]) mc[k] = sc; 1190 mc[k] += ms[k]; 1191 } 1192 } 1193 1194 It is very profitable for this benchmark to turn the conditional stores to mc[k] 1195 into a conditional move (select instr in IR) and allow the final store to do the 1196 store. See GCC PR27313 for more details. Note that this is valid to xform even 1197 with the new C++ memory model, since mc[k] is previously loaded and later 1198 stored. 1199 1200 //===---------------------------------------------------------------------===// 1201 1202 [SCALAR PRE] 1203 There are many PRE testcases in testsuite/gcc.dg/tree-ssa/ssa-pre-*.c in the 1204 GCC testsuite. 1205 1206 //===---------------------------------------------------------------------===// 1207 1208 There are some interesting cases in testsuite/gcc.dg/tree-ssa/pred-comm* in the 1209 GCC testsuite. For example, we get the first example in predcom-1.c, but 1210 miss the second one: 1211 1212 unsigned fib[1000]; 1213 unsigned avg[1000]; 1214 1215 __attribute__ ((noinline)) 1216 void count_averages(int n) { 1217 int i; 1218 for (i = 1; i < n; i++) 1219 avg[i] = (((unsigned long) fib[i - 1] + fib[i] + fib[i + 1]) / 3) & 0xffff; 1220 } 1221 1222 which compiles into two loads instead of one in the loop. 1223 1224 predcom-2.c is the same as predcom-1.c 1225 1226 predcom-3.c is very similar but needs loads feeding each other instead of 1227 store->load. 1228 1229 1230 //===---------------------------------------------------------------------===// 1231 1232 [ALIAS ANALYSIS] 1233 1234 Type based alias analysis: 1235 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14705 1236 1237 We should do better analysis of posix_memalign. At the least it should 1238 no-capture its pointer argument, at best, we should know that the out-value 1239 result doesn't point to anything (like malloc). One example of this is in 1240 SingleSource/Benchmarks/Misc/dt.c 1241 1242 //===---------------------------------------------------------------------===// 1243 1244 Interesting missed case because of control flow flattening (should be 2 loads): 1245 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=26629 1246 With: llvm-gcc t2.c -S -o - -O0 -emit-llvm | llvm-as | 1247 opt -mem2reg -gvn -instcombine | llvm-dis 1248 we miss it because we need 1) CRIT EDGE 2) MULTIPLE DIFFERENT 1249 VALS PRODUCED BY ONE BLOCK OVER DIFFERENT PATHS 1250 1251 //===---------------------------------------------------------------------===// 1252 1253 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=19633 1254 We could eliminate the branch condition here, loading from null is undefined: 1255 1256 struct S { int w, x, y, z; }; 1257 struct T { int r; struct S s; }; 1258 void bar (struct S, int); 1259 void foo (int a, struct T b) 1260 { 1261 struct S *c = 0; 1262 if (a) 1263 c = &b.s; 1264 bar (*c, a); 1265 } 1266 1267 //===---------------------------------------------------------------------===// 1268 1269 simplifylibcalls should do several optimizations for strspn/strcspn: 1270 1271 strcspn(x, "a") -> inlined loop for up to 3 letters (similarly for strspn): 1272 1273 size_t __strcspn_c3 (__const char *__s, int __reject1, int __reject2, 1274 int __reject3) { 1275 register size_t __result = 0; 1276 while (__s[__result] != '\0' && __s[__result] != __reject1 && 1277 __s[__result] != __reject2 && __s[__result] != __reject3) 1278 ++__result; 1279 return __result; 1280 } 1281 1282 This should turn into a switch on the character. See PR3253 for some notes on 1283 codegen. 1284 1285 456.hmmer apparently uses strcspn and strspn a lot. 471.omnetpp uses strspn. 1286 1287 //===---------------------------------------------------------------------===// 1288 1289 simplifylibcalls should turn these snprintf idioms into memcpy (GCC PR47917) 1290 1291 char buf1[6], buf2[6], buf3[4], buf4[4]; 1292 int i; 1293 1294 int foo (void) { 1295 int ret = snprintf (buf1, sizeof buf1, "abcde"); 1296 ret += snprintf (buf2, sizeof buf2, "abcdef") * 16; 1297 ret += snprintf (buf3, sizeof buf3, "%s", i++ < 6 ? "abc" : "def") * 256; 1298 ret += snprintf (buf4, sizeof buf4, "%s", i++ > 10 ? "abcde" : "defgh")*4096; 1299 return ret; 1300 } 1301 1302 //===---------------------------------------------------------------------===// 1303 1304 "gas" uses this idiom: 1305 else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string)) 1306 .. 1307 else if (strchr ("<>", *intel_parser.op_string) 1308 1309 Those should be turned into a switch. 1310 1311 //===---------------------------------------------------------------------===// 1312 1313 252.eon contains this interesting code: 1314 1315 %3072 = getelementptr [100 x i8]* %tempString, i32 0, i32 0 1316 %3073 = call i8* @strcpy(i8* %3072, i8* %3071) nounwind 1317 %strlen = call i32 @strlen(i8* %3072) ; uses = 1 1318 %endptr = getelementptr [100 x i8]* %tempString, i32 0, i32 %strlen 1319 call void @llvm.memcpy.i32(i8* %endptr, 1320 i8* getelementptr ([5 x i8]* @"\01LC42", i32 0, i32 0), i32 5, i32 1) 1321 %3074 = call i32 @strlen(i8* %endptr) nounwind readonly 1322 1323 This is interesting for a couple reasons. First, in this: 1324 1325 The memcpy+strlen strlen can be replaced with: 1326 1327 %3074 = call i32 @strlen([5 x i8]* @"\01LC42") nounwind readonly 1328 1329 Because the destination was just copied into the specified memory buffer. This, 1330 in turn, can be constant folded to "4". 1331 1332 In other code, it contains: 1333 1334 %endptr6978 = bitcast i8* %endptr69 to i32* 1335 store i32 7107374, i32* %endptr6978, align 1 1336 %3167 = call i32 @strlen(i8* %endptr69) nounwind readonly 1337 1338 Which could also be constant folded. Whatever is producing this should probably 1339 be fixed to leave this as a memcpy from a string. 1340 1341 Further, eon also has an interesting partially redundant strlen call: 1342 1343 bb8: ; preds = %_ZN18eonImageCalculatorC1Ev.exit 1344 %682 = getelementptr i8** %argv, i32 6 ; <i8**> [#uses=2] 1345 %683 = load i8** %682, align 4 ; <i8*> [#uses=4] 1346 %684 = load i8* %683, align 1 ; <i8> [#uses=1] 1347 %685 = icmp eq i8 %684, 0 ; <i1> [#uses=1] 1348 br i1 %685, label %bb10, label %bb9 1349 1350 bb9: ; preds = %bb8 1351 %686 = call i32 @strlen(i8* %683) nounwind readonly 1352 %687 = icmp ugt i32 %686, 254 ; <i1> [#uses=1] 1353 br i1 %687, label %bb10, label %bb11 1354 1355 bb10: ; preds = %bb9, %bb8 1356 %688 = call i32 @strlen(i8* %683) nounwind readonly 1357 1358 This could be eliminated by doing the strlen once in bb8, saving code size and 1359 improving perf on the bb8->9->10 path. 1360 1361 //===---------------------------------------------------------------------===// 1362 1363 I see an interesting fully redundant call to strlen left in 186.crafty:InputMove 1364 which looks like: 1365 %movetext11 = getelementptr [128 x i8]* %movetext, i32 0, i32 0 1366 1367 1368 bb62: ; preds = %bb55, %bb53 1369 %promote.0 = phi i32 [ %169, %bb55 ], [ 0, %bb53 ] 1370 %171 = call i32 @strlen(i8* %movetext11) nounwind readonly align 1 1371 %172 = add i32 %171, -1 ; <i32> [#uses=1] 1372 %173 = getelementptr [128 x i8]* %movetext, i32 0, i32 %172 1373 1374 ... no stores ... 1375 br i1 %or.cond, label %bb65, label %bb72 1376 1377 bb65: ; preds = %bb62 1378 store i8 0, i8* %173, align 1 1379 br label %bb72 1380 1381 bb72: ; preds = %bb65, %bb62 1382 %trank.1 = phi i32 [ %176, %bb65 ], [ -1, %bb62 ] 1383 %177 = call i32 @strlen(i8* %movetext11) nounwind readonly align 1 1384 1385 Note that on the bb62->bb72 path, that the %177 strlen call is partially 1386 redundant with the %171 call. At worst, we could shove the %177 strlen call 1387 up into the bb65 block moving it out of the bb62->bb72 path. However, note 1388 that bb65 stores to the string, zeroing out the last byte. This means that on 1389 that path the value of %177 is actually just %171-1. A sub is cheaper than a 1390 strlen! 1391 1392 This pattern repeats several times, basically doing: 1393 1394 A = strlen(P); 1395 P[A-1] = 0; 1396 B = strlen(P); 1397 where it is "obvious" that B = A-1. 1398 1399 //===---------------------------------------------------------------------===// 1400 1401 186.crafty has this interesting pattern with the "out.4543" variable: 1402 1403 call void @llvm.memcpy.i32( 1404 i8* getelementptr ([10 x i8]* @out.4543, i32 0, i32 0), 1405 i8* getelementptr ([7 x i8]* @"\01LC28700", i32 0, i32 0), i32 7, i32 1) 1406 %101 = call@printf(i8* ... @out.4543, i32 0, i32 0)) nounwind 1407 1408 It is basically doing: 1409 1410 memcpy(globalarray, "string"); 1411 printf(..., globalarray); 1412 1413 Anyway, by knowing that printf just reads the memory and forward substituting 1414 the string directly into the printf, this eliminates reads from globalarray. 1415 Since this pattern occurs frequently in crafty (due to the "DisplayTime" and 1416 other similar functions) there are many stores to "out". Once all the printfs 1417 stop using "out", all that is left is the memcpy's into it. This should allow 1418 globalopt to remove the "stored only" global. 1419 1420 //===---------------------------------------------------------------------===// 1421 1422 This code: 1423 1424 define inreg i32 @foo(i8* inreg %p) nounwind { 1425 %tmp0 = load i8* %p 1426 %tmp1 = ashr i8 %tmp0, 5 1427 %tmp2 = sext i8 %tmp1 to i32 1428 ret i32 %tmp2 1429 } 1430 1431 could be dagcombine'd to a sign-extending load with a shift. 1432 For example, on x86 this currently gets this: 1433 1434 movb (%eax), %al 1435 sarb $5, %al 1436 movsbl %al, %eax 1437 1438 while it could get this: 1439 1440 movsbl (%eax), %eax 1441 sarl $5, %eax 1442 1443 //===---------------------------------------------------------------------===// 1444 1445 GCC PR31029: 1446 1447 int test(int x) { return 1-x == x; } // --> return false 1448 int test2(int x) { return 2-x == x; } // --> return x == 1 ? 1449 1450 Always foldable for odd constants, what is the rule for even? 1451 1452 //===---------------------------------------------------------------------===// 1453 1454 PR 3381: GEP to field of size 0 inside a struct could be turned into GEP 1455 for next field in struct (which is at same address). 1456 1457 For example: store of float into { {{}}, float } could be turned into a store to 1458 the float directly. 1459 1460 //===---------------------------------------------------------------------===// 1461 1462 The arg promotion pass should make use of nocapture to make its alias analysis 1463 stuff much more precise. 1464 1465 //===---------------------------------------------------------------------===// 1466 1467 The following functions should be optimized to use a select instead of a 1468 branch (from gcc PR40072): 1469 1470 char char_int(int m) {if(m>7) return 0; return m;} 1471 int int_char(char m) {if(m>7) return 0; return m;} 1472 1473 //===---------------------------------------------------------------------===// 1474 1475 int func(int a, int b) { if (a & 0x80) b |= 0x80; else b &= ~0x80; return b; } 1476 1477 Generates this: 1478 1479 define i32 @func(i32 %a, i32 %b) nounwind readnone ssp { 1480 entry: 1481 %0 = and i32 %a, 128 ; <i32> [#uses=1] 1482 %1 = icmp eq i32 %0, 0 ; <i1> [#uses=1] 1483 %2 = or i32 %b, 128 ; <i32> [#uses=1] 1484 %3 = and i32 %b, -129 ; <i32> [#uses=1] 1485 %b_addr.0 = select i1 %1, i32 %3, i32 %2 ; <i32> [#uses=1] 1486 ret i32 %b_addr.0 1487 } 1488 1489 However, it's functionally equivalent to: 1490 1491 b = (b & ~0x80) | (a & 0x80); 1492 1493 Which generates this: 1494 1495 define i32 @func(i32 %a, i32 %b) nounwind readnone ssp { 1496 entry: 1497 %0 = and i32 %b, -129 ; <i32> [#uses=1] 1498 %1 = and i32 %a, 128 ; <i32> [#uses=1] 1499 %2 = or i32 %0, %1 ; <i32> [#uses=1] 1500 ret i32 %2 1501 } 1502 1503 This can be generalized for other forms: 1504 1505 b = (b & ~0x80) | (a & 0x40) << 1; 1506 1507 //===---------------------------------------------------------------------===// 1508 1509 These two functions produce different code. They shouldn't: 1510 1511 #include <stdint.h> 1512 1513 uint8_t p1(uint8_t b, uint8_t a) { 1514 b = (b & ~0xc0) | (a & 0xc0); 1515 return (b); 1516 } 1517 1518 uint8_t p2(uint8_t b, uint8_t a) { 1519 b = (b & ~0x40) | (a & 0x40); 1520 b = (b & ~0x80) | (a & 0x80); 1521 return (b); 1522 } 1523 1524 define zeroext i8 @p1(i8 zeroext %b, i8 zeroext %a) nounwind readnone ssp { 1525 entry: 1526 %0 = and i8 %b, 63 ; <i8> [#uses=1] 1527 %1 = and i8 %a, -64 ; <i8> [#uses=1] 1528 %2 = or i8 %1, %0 ; <i8> [#uses=1] 1529 ret i8 %2 1530 } 1531 1532 define zeroext i8 @p2(i8 zeroext %b, i8 zeroext %a) nounwind readnone ssp { 1533 entry: 1534 %0 = and i8 %b, 63 ; <i8> [#uses=1] 1535 %.masked = and i8 %a, 64 ; <i8> [#uses=1] 1536 %1 = and i8 %a, -128 ; <i8> [#uses=1] 1537 %2 = or i8 %1, %0 ; <i8> [#uses=1] 1538 %3 = or i8 %2, %.masked ; <i8> [#uses=1] 1539 ret i8 %3 1540 } 1541 1542 //===---------------------------------------------------------------------===// 1543 1544 IPSCCP does not currently propagate argument dependent constants through 1545 functions where it does not not all of the callers. This includes functions 1546 with normal external linkage as well as templates, C99 inline functions etc. 1547 Specifically, it does nothing to: 1548 1549 define i32 @test(i32 %x, i32 %y, i32 %z) nounwind { 1550 entry: 1551 %0 = add nsw i32 %y, %z 1552 %1 = mul i32 %0, %x 1553 %2 = mul i32 %y, %z 1554 %3 = add nsw i32 %1, %2 1555 ret i32 %3 1556 } 1557 1558 define i32 @test2() nounwind { 1559 entry: 1560 %0 = call i32 @test(i32 1, i32 2, i32 4) nounwind 1561 ret i32 %0 1562 } 1563 1564 It would be interesting extend IPSCCP to be able to handle simple cases like 1565 this, where all of the arguments to a call are constant. Because IPSCCP runs 1566 before inlining, trivial templates and inline functions are not yet inlined. 1567 The results for a function + set of constant arguments should be memoized in a 1568 map. 1569 1570 //===---------------------------------------------------------------------===// 1571 1572 The libcall constant folding stuff should be moved out of SimplifyLibcalls into 1573 libanalysis' constantfolding logic. This would allow IPSCCP to be able to 1574 handle simple things like this: 1575 1576 static int foo(const char *X) { return strlen(X); } 1577 int bar() { return foo("abcd"); } 1578 1579 //===---------------------------------------------------------------------===// 1580 1581 functionattrs doesn't know much about memcpy/memset. This function should be 1582 marked readnone rather than readonly, since it only twiddles local memory, but 1583 functionattrs doesn't handle memset/memcpy/memmove aggressively: 1584 1585 struct X { int *p; int *q; }; 1586 int foo() { 1587 int i = 0, j = 1; 1588 struct X x, y; 1589 int **p; 1590 y.p = &i; 1591 x.q = &j; 1592 p = __builtin_memcpy (&x, &y, sizeof (int *)); 1593 return **p; 1594 } 1595 1596 This can be seen at: 1597 $ clang t.c -S -o - -mkernel -O0 -emit-llvm | opt -functionattrs -S 1598 1599 1600 //===---------------------------------------------------------------------===// 1601 1602 Missed instcombine transformation: 1603 define i1 @a(i32 %x) nounwind readnone { 1604 entry: 1605 %cmp = icmp eq i32 %x, 30 1606 %sub = add i32 %x, -30 1607 %cmp2 = icmp ugt i32 %sub, 9 1608 %or = or i1 %cmp, %cmp2 1609 ret i1 %or 1610 } 1611 This should be optimized to a single compare. Testcase derived from gcc. 1612 1613 //===---------------------------------------------------------------------===// 1614 1615 Missed instcombine or reassociate transformation: 1616 int a(int a, int b) { return (a==12)&(b>47)&(b<58); } 1617 1618 The sgt and slt should be combined into a single comparison. Testcase derived 1619 from gcc. 1620 1621 //===---------------------------------------------------------------------===// 1622 1623 Missed instcombine transformation: 1624 1625 %382 = srem i32 %tmp14.i, 64 ; [#uses=1] 1626 %383 = zext i32 %382 to i64 ; [#uses=1] 1627 %384 = shl i64 %381, %383 ; [#uses=1] 1628 %385 = icmp slt i32 %tmp14.i, 64 ; [#uses=1] 1629 1630 The srem can be transformed to an and because if %tmp14.i is negative, the 1631 shift is undefined. Testcase derived from 403.gcc. 1632 1633 //===---------------------------------------------------------------------===// 1634 1635 This is a range comparison on a divided result (from 403.gcc): 1636 1637 %1337 = sdiv i32 %1336, 8 ; [#uses=1] 1638 %.off.i208 = add i32 %1336, 7 ; [#uses=1] 1639 %1338 = icmp ult i32 %.off.i208, 15 ; [#uses=1] 1640 1641 We already catch this (removing the sdiv) if there isn't an add, we should 1642 handle the 'add' as well. This is a common idiom with it's builtin_alloca code. 1643 C testcase: 1644 1645 int a(int x) { return (unsigned)(x/16+7) < 15; } 1646 1647 Another similar case involves truncations on 64-bit targets: 1648 1649 %361 = sdiv i64 %.046, 8 ; [#uses=1] 1650 %362 = trunc i64 %361 to i32 ; [#uses=2] 1651 ... 1652 %367 = icmp eq i32 %362, 0 ; [#uses=1] 1653 1654 //===---------------------------------------------------------------------===// 1655 1656 Missed instcombine/dagcombine transformation: 1657 define void @lshift_lt(i8 zeroext %a) nounwind { 1658 entry: 1659 %conv = zext i8 %a to i32 1660 %shl = shl i32 %conv, 3 1661 %cmp = icmp ult i32 %shl, 33 1662 br i1 %cmp, label %if.then, label %if.end 1663 1664 if.then: 1665 tail call void @bar() nounwind 1666 ret void 1667 1668 if.end: 1669 ret void 1670 } 1671 declare void @bar() nounwind 1672 1673 The shift should be eliminated. Testcase derived from gcc. 1674 1675 //===---------------------------------------------------------------------===// 1676 1677 These compile into different code, one gets recognized as a switch and the 1678 other doesn't due to phase ordering issues (PR6212): 1679 1680 int test1(int mainType, int subType) { 1681 if (mainType == 7) 1682 subType = 4; 1683 else if (mainType == 9) 1684 subType = 6; 1685 else if (mainType == 11) 1686 subType = 9; 1687 return subType; 1688 } 1689 1690 int test2(int mainType, int subType) { 1691 if (mainType == 7) 1692 subType = 4; 1693 if (mainType == 9) 1694 subType = 6; 1695 if (mainType == 11) 1696 subType = 9; 1697 return subType; 1698 } 1699 1700 //===---------------------------------------------------------------------===// 1701 1702 The following test case (from PR6576): 1703 1704 define i32 @mul(i32 %a, i32 %b) nounwind readnone { 1705 entry: 1706 %cond1 = icmp eq i32 %b, 0 ; <i1> [#uses=1] 1707 br i1 %cond1, label %exit, label %bb.nph 1708 bb.nph: ; preds = %entry 1709 %tmp = mul i32 %b, %a ; <i32> [#uses=1] 1710 ret i32 %tmp 1711 exit: ; preds = %entry 1712 ret i32 0 1713 } 1714 1715 could be reduced to: 1716 1717 define i32 @mul(i32 %a, i32 %b) nounwind readnone { 1718 entry: 1719 %tmp = mul i32 %b, %a 1720 ret i32 %tmp 1721 } 1722 1723 //===---------------------------------------------------------------------===// 1724 1725 We should use DSE + llvm.lifetime.end to delete dead vtable pointer updates. 1726 See GCC PR34949 1727 1728 Another interesting case is that something related could be used for variables 1729 that go const after their ctor has finished. In these cases, globalopt (which 1730 can statically run the constructor) could mark the global const (so it gets put 1731 in the readonly section). A testcase would be: 1732 1733 #include <complex> 1734 using namespace std; 1735 const complex<char> should_be_in_rodata (42,-42); 1736 complex<char> should_be_in_data (42,-42); 1737 complex<char> should_be_in_bss; 1738 1739 Where we currently evaluate the ctors but the globals don't become const because 1740 the optimizer doesn't know they "become const" after the ctor is done. See 1741 GCC PR4131 for more examples. 1742 1743 //===---------------------------------------------------------------------===// 1744 1745 In this code: 1746 1747 long foo(long x) { 1748 return x > 1 ? x : 1; 1749 } 1750 1751 LLVM emits a comparison with 1 instead of 0. 0 would be equivalent 1752 and cheaper on most targets. 1753 1754 LLVM prefers comparisons with zero over non-zero in general, but in this 1755 case it choses instead to keep the max operation obvious. 1756 1757 //===---------------------------------------------------------------------===// 1758 1759 define void @a(i32 %x) nounwind { 1760 entry: 1761 switch i32 %x, label %if.end [ 1762 i32 0, label %if.then 1763 i32 1, label %if.then 1764 i32 2, label %if.then 1765 i32 3, label %if.then 1766 i32 5, label %if.then 1767 ] 1768 if.then: 1769 tail call void @foo() nounwind 1770 ret void 1771 if.end: 1772 ret void 1773 } 1774 declare void @foo() 1775 1776 Generated code on x86-64 (other platforms give similar results): 1777 a: 1778 cmpl $5, %edi 1779 ja LBB2_2 1780 cmpl $4, %edi 1781 jne LBB2_3 1782 .LBB0_2: 1783 ret 1784 .LBB0_3: 1785 jmp foo # TAILCALL 1786 1787 If we wanted to be really clever, we could simplify the whole thing to 1788 something like the following, which eliminates a branch: 1789 xorl $1, %edi 1790 cmpl $4, %edi 1791 ja .LBB0_2 1792 ret 1793 .LBB0_2: 1794 jmp foo # TAILCALL 1795 1796 //===---------------------------------------------------------------------===// 1797 1798 We compile this: 1799 1800 int foo(int a) { return (a & (~15)) / 16; } 1801 1802 Into: 1803 1804 define i32 @foo(i32 %a) nounwind readnone ssp { 1805 entry: 1806 %and = and i32 %a, -16 1807 %div = sdiv i32 %and, 16 1808 ret i32 %div 1809 } 1810 1811 but this code (X & -A)/A is X >> log2(A) when A is a power of 2, so this case 1812 should be instcombined into just "a >> 4". 1813 1814 We do get this at the codegen level, so something knows about it, but 1815 instcombine should catch it earlier: 1816 1817 _foo: ## @foo 1818 ## BB#0: ## %entry 1819 movl %edi, %eax 1820 sarl $4, %eax 1821 ret 1822 1823 //===---------------------------------------------------------------------===// 1824 1825 This code (from GCC PR28685): 1826 1827 int test(int a, int b) { 1828 int lt = a < b; 1829 int eq = a == b; 1830 if (lt) 1831 return 1; 1832 return eq; 1833 } 1834 1835 Is compiled to: 1836 1837 define i32 @test(i32 %a, i32 %b) nounwind readnone ssp { 1838 entry: 1839 %cmp = icmp slt i32 %a, %b 1840 br i1 %cmp, label %return, label %if.end 1841 1842 if.end: ; preds = %entry 1843 %cmp5 = icmp eq i32 %a, %b 1844 %conv6 = zext i1 %cmp5 to i32 1845 ret i32 %conv6 1846 1847 return: ; preds = %entry 1848 ret i32 1 1849 } 1850 1851 it could be: 1852 1853 define i32 @test__(i32 %a, i32 %b) nounwind readnone ssp { 1854 entry: 1855 %0 = icmp sle i32 %a, %b 1856 %retval = zext i1 %0 to i32 1857 ret i32 %retval 1858 } 1859 1860 //===---------------------------------------------------------------------===// 1861 1862 This code can be seen in viterbi: 1863 1864 %64 = call noalias i8* @malloc(i64 %62) nounwind 1865 ... 1866 %67 = call i64 @llvm.objectsize.i64(i8* %64, i1 false) nounwind 1867 %68 = call i8* @__memset_chk(i8* %64, i32 0, i64 %62, i64 %67) nounwind 1868 1869 llvm.objectsize.i64 should be taught about malloc/calloc, allowing it to 1870 fold to %62. This is a security win (overflows of malloc will get caught) 1871 and also a performance win by exposing more memsets to the optimizer. 1872 1873 This occurs several times in viterbi. 1874 1875 Note that this would change the semantics of @llvm.objectsize which by its 1876 current definition always folds to a constant. We also should make sure that 1877 we remove checking in code like 1878 1879 char *p = malloc(strlen(s)+1); 1880 __strcpy_chk(p, s, __builtin_objectsize(p, 0)); 1881 1882 //===---------------------------------------------------------------------===// 1883 1884 This code (from Benchmarks/Dhrystone/dry.c): 1885 1886 define i32 @Func1(i32, i32) nounwind readnone optsize ssp { 1887 entry: 1888 %sext = shl i32 %0, 24 1889 %conv = ashr i32 %sext, 24 1890 %sext6 = shl i32 %1, 24 1891 %conv4 = ashr i32 %sext6, 24 1892 %cmp = icmp eq i32 %conv, %conv4 1893 %. = select i1 %cmp, i32 10000, i32 0 1894 ret i32 %. 1895 } 1896 1897 Should be simplified into something like: 1898 1899 define i32 @Func1(i32, i32) nounwind readnone optsize ssp { 1900 entry: 1901 %sext = shl i32 %0, 24 1902 %conv = and i32 %sext, 0xFF000000 1903 %sext6 = shl i32 %1, 24 1904 %conv4 = and i32 %sext6, 0xFF000000 1905 %cmp = icmp eq i32 %conv, %conv4 1906 %. = select i1 %cmp, i32 10000, i32 0 1907 ret i32 %. 1908 } 1909 1910 and then to: 1911 1912 define i32 @Func1(i32, i32) nounwind readnone optsize ssp { 1913 entry: 1914 %conv = and i32 %0, 0xFF 1915 %conv4 = and i32 %1, 0xFF 1916 %cmp = icmp eq i32 %conv, %conv4 1917 %. = select i1 %cmp, i32 10000, i32 0 1918 ret i32 %. 1919 } 1920 //===---------------------------------------------------------------------===// 1921 1922 clang -O3 currently compiles this code 1923 1924 int g(unsigned int a) { 1925 unsigned int c[100]; 1926 c[10] = a; 1927 c[11] = a; 1928 unsigned int b = c[10] + c[11]; 1929 if(b > a*2) a = 4; 1930 else a = 8; 1931 return a + 7; 1932 } 1933 1934 into 1935 1936 define i32 @g(i32 a) nounwind readnone { 1937 %add = shl i32 %a, 1 1938 %mul = shl i32 %a, 1 1939 %cmp = icmp ugt i32 %add, %mul 1940 %a.addr.0 = select i1 %cmp, i32 11, i32 15 1941 ret i32 %a.addr.0 1942 } 1943 1944 The icmp should fold to false. This CSE opportunity is only available 1945 after GVN and InstCombine have run. 1946 1947 //===---------------------------------------------------------------------===// 1948 1949 memcpyopt should turn this: 1950 1951 define i8* @test10(i32 %x) { 1952 %alloc = call noalias i8* @malloc(i32 %x) nounwind 1953 call void @llvm.memset.p0i8.i32(i8* %alloc, i8 0, i32 %x, i32 1, i1 false) 1954 ret i8* %alloc 1955 } 1956 1957 into a call to calloc. We should make sure that we analyze calloc as 1958 aggressively as malloc though. 1959 1960 //===---------------------------------------------------------------------===// 1961 1962 clang -O3 doesn't optimize this: 1963 1964 void f1(int* begin, int* end) { 1965 std::fill(begin, end, 0); 1966 } 1967 1968 into a memset. This is PR8942. 1969 1970 //===---------------------------------------------------------------------===// 1971 1972 clang -O3 -fno-exceptions currently compiles this code: 1973 1974 void f(int N) { 1975 std::vector<int> v(N); 1976 1977 extern void sink(void*); sink(&v); 1978 } 1979 1980 into 1981 1982 define void @_Z1fi(i32 %N) nounwind { 1983 entry: 1984 %v2 = alloca [3 x i32*], align 8 1985 %v2.sub = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 0 1986 %tmpcast = bitcast [3 x i32*]* %v2 to %"class.std::vector"* 1987 %conv = sext i32 %N to i64 1988 store i32* null, i32** %v2.sub, align 8, !tbaa !0 1989 %tmp3.i.i.i.i.i = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 1 1990 store i32* null, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0 1991 %tmp4.i.i.i.i.i = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 2 1992 store i32* null, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0 1993 %cmp.i.i.i.i = icmp eq i32 %N, 0 1994 br i1 %cmp.i.i.i.i, label %_ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.thread.i.i, label %cond.true.i.i.i.i 1995 1996 _ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.thread.i.i: ; preds = %entry 1997 store i32* null, i32** %v2.sub, align 8, !tbaa !0 1998 store i32* null, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0 1999 %add.ptr.i5.i.i = getelementptr inbounds i32* null, i64 %conv 2000 store i32* %add.ptr.i5.i.i, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0 2001 br label %_ZNSt6vectorIiSaIiEEC1EmRKiRKS0_.exit 2002 2003 cond.true.i.i.i.i: ; preds = %entry 2004 %cmp.i.i.i.i.i = icmp slt i32 %N, 0 2005 br i1 %cmp.i.i.i.i.i, label %if.then.i.i.i.i.i, label %_ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.i.i 2006 2007 if.then.i.i.i.i.i: ; preds = %cond.true.i.i.i.i 2008 call void @_ZSt17__throw_bad_allocv() noreturn nounwind 2009 unreachable 2010 2011 _ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.i.i: ; preds = %cond.true.i.i.i.i 2012 %mul.i.i.i.i.i = shl i64 %conv, 2 2013 %call3.i.i.i.i.i = call noalias i8* @_Znwm(i64 %mul.i.i.i.i.i) nounwind 2014 %0 = bitcast i8* %call3.i.i.i.i.i to i32* 2015 store i32* %0, i32** %v2.sub, align 8, !tbaa !0 2016 store i32* %0, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0 2017 %add.ptr.i.i.i = getelementptr inbounds i32* %0, i64 %conv 2018 store i32* %add.ptr.i.i.i, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0 2019 call void @llvm.memset.p0i8.i64(i8* %call3.i.i.i.i.i, i8 0, i64 %mul.i.i.i.i.i, i32 4, i1 false) 2020 br label %_ZNSt6vectorIiSaIiEEC1EmRKiRKS0_.exit 2021 2022 This is just the handling the construction of the vector. Most surprising here 2023 is the fact that all three null stores in %entry are dead (because we do no 2024 cross-block DSE). 2025 2026 Also surprising is that %conv isn't simplified to 0 in %....exit.thread.i.i. 2027 This is a because the client of LazyValueInfo doesn't simplify all instruction 2028 operands, just selected ones. 2029 2030 //===---------------------------------------------------------------------===// 2031 2032 clang -O3 -fno-exceptions currently compiles this code: 2033 2034 void f(char* a, int n) { 2035 __builtin_memset(a, 0, n); 2036 for (int i = 0; i < n; ++i) 2037 a[i] = 0; 2038 } 2039 2040 into: 2041 2042 define void @_Z1fPci(i8* nocapture %a, i32 %n) nounwind { 2043 entry: 2044 %conv = sext i32 %n to i64 2045 tail call void @llvm.memset.p0i8.i64(i8* %a, i8 0, i64 %conv, i32 1, i1 false) 2046 %cmp8 = icmp sgt i32 %n, 0 2047 br i1 %cmp8, label %for.body.lr.ph, label %for.end 2048 2049 for.body.lr.ph: ; preds = %entry 2050 %tmp10 = add i32 %n, -1 2051 %tmp11 = zext i32 %tmp10 to i64 2052 %tmp12 = add i64 %tmp11, 1 2053 call void @llvm.memset.p0i8.i64(i8* %a, i8 0, i64 %tmp12, i32 1, i1 false) 2054 ret void 2055 2056 for.end: ; preds = %entry 2057 ret void 2058 } 2059 2060 This shouldn't need the ((zext (%n - 1)) + 1) game, and it should ideally fold 2061 the two memset's together. 2062 2063 The issue with the addition only occurs in 64-bit mode, and appears to be at 2064 least partially caused by Scalar Evolution not keeping its cache updated: it 2065 returns the "wrong" result immediately after indvars runs, but figures out the 2066 expected result if it is run from scratch on IR resulting from running indvars. 2067 2068 //===---------------------------------------------------------------------===// 2069 2070 clang -O3 -fno-exceptions currently compiles this code: 2071 2072 struct S { 2073 unsigned short m1, m2; 2074 unsigned char m3, m4; 2075 }; 2076 2077 void f(int N) { 2078 std::vector<S> v(N); 2079 extern void sink(void*); sink(&v); 2080 } 2081 2082 into poor code for zero-initializing 'v' when N is >0. The problem is that 2083 S is only 6 bytes, but each element is 8 byte-aligned. We generate a loop and 2084 4 stores on each iteration. If the struct were 8 bytes, this gets turned into 2085 a memset. 2086 2087 In order to handle this we have to: 2088 A) Teach clang to generate metadata for memsets of structs that have holes in 2089 them. 2090 B) Teach clang to use such a memset for zero init of this struct (since it has 2091 a hole), instead of doing elementwise zeroing. 2092 2093 //===---------------------------------------------------------------------===// 2094 2095 clang -O3 currently compiles this code: 2096 2097 extern const int magic; 2098 double f() { return 0.0 * magic; } 2099 2100 into 2101 2102 @magic = external constant i32 2103 2104 define double @_Z1fv() nounwind readnone { 2105 entry: 2106 %tmp = load i32* @magic, align 4, !tbaa !0 2107 %conv = sitofp i32 %tmp to double 2108 %mul = fmul double %conv, 0.000000e+00 2109 ret double %mul 2110 } 2111 2112 We should be able to fold away this fmul to 0.0. More generally, fmul(x,0.0) 2113 can be folded to 0.0 if we can prove that the LHS is not -0.0, not a NaN, and 2114 not an INF. The CannotBeNegativeZero predicate in value tracking should be 2115 extended to support general "fpclassify" operations that can return 2116 yes/no/unknown for each of these predicates. 2117 2118 In this predicate, we know that uitofp is trivially never NaN or -0.0, and 2119 we know that it isn't +/-Inf if the floating point type has enough exponent bits 2120 to represent the largest integer value as < inf. 2121 2122 //===---------------------------------------------------------------------===// 2123 2124 When optimizing a transformation that can change the sign of 0.0 (such as the 2125 0.0*val -> 0.0 transformation above), it might be provable that the sign of the 2126 expression doesn't matter. For example, by the above rules, we can't transform 2127 fmul(sitofp(x), 0.0) into 0.0, because x might be -1 and the result of the 2128 expression is defined to be -0.0. 2129 2130 If we look at the uses of the fmul for example, we might be able to prove that 2131 all uses don't care about the sign of zero. For example, if we have: 2132 2133 fadd(fmul(sitofp(x), 0.0), 2.0) 2134 2135 Since we know that x+2.0 doesn't care about the sign of any zeros in X, we can 2136 transform the fmul to 0.0, and then the fadd to 2.0. 2137 2138 //===---------------------------------------------------------------------===// 2139 2140 We should enhance memcpy/memcpy/memset to allow a metadata node on them 2141 indicating that some bytes of the transfer are undefined. This is useful for 2142 frontends like clang when lowering struct copies, when some elements of the 2143 struct are undefined. Consider something like this: 2144 2145 struct x { 2146 char a; 2147 int b[4]; 2148 }; 2149 void foo(struct x*P); 2150 struct x testfunc() { 2151 struct x V1, V2; 2152 foo(&V1); 2153 V2 = V1; 2154 2155 return V2; 2156 } 2157 2158 We currently compile this to: 2159 $ clang t.c -S -o - -O0 -emit-llvm | opt -scalarrepl -S 2160 2161 2162 %struct.x = type { i8, [4 x i32] } 2163 2164 define void @testfunc(%struct.x* sret %agg.result) nounwind ssp { 2165 entry: 2166 %V1 = alloca %struct.x, align 4 2167 call void @foo(%struct.x* %V1) 2168 %tmp1 = bitcast %struct.x* %V1 to i8* 2169 %0 = bitcast %struct.x* %V1 to i160* 2170 %srcval1 = load i160* %0, align 4 2171 %tmp2 = bitcast %struct.x* %agg.result to i8* 2172 %1 = bitcast %struct.x* %agg.result to i160* 2173 store i160 %srcval1, i160* %1, align 4 2174 ret void 2175 } 2176 2177 This happens because SRoA sees that the temp alloca has is being memcpy'd into 2178 and out of and it has holes and it has to be conservative. If we knew about the 2179 holes, then this could be much much better. 2180 2181 Having information about these holes would also improve memcpy (etc) lowering at 2182 llc time when it gets inlined, because we can use smaller transfers. This also 2183 avoids partial register stalls in some important cases. 2184 2185 //===---------------------------------------------------------------------===// 2186 2187 We don't fold (icmp (add) (add)) unless the two adds only have a single use. 2188 There are a lot of cases that we're refusing to fold in (e.g.) 256.bzip2, for 2189 example: 2190 2191 %indvar.next90 = add i64 %indvar89, 1 ;; Has 2 uses 2192 %tmp96 = add i64 %tmp95, 1 ;; Has 1 use 2193 %exitcond97 = icmp eq i64 %indvar.next90, %tmp96 2194 2195 We don't fold this because we don't want to introduce an overlapped live range 2196 of the ivar. However if we can make this more aggressive without causing 2197 performance issues in two ways: 2198 2199 1. If *either* the LHS or RHS has a single use, we can definitely do the 2200 transformation. In the overlapping liverange case we're trading one register 2201 use for one fewer operation, which is a reasonable trade. Before doing this 2202 we should verify that the llc output actually shrinks for some benchmarks. 2203 2. If both ops have multiple uses, we can still fold it if the operations are 2204 both sinkable to *after* the icmp (e.g. in a subsequent block) which doesn't 2205 increase register pressure. 2206 2207 There are a ton of icmp's we aren't simplifying because of the reg pressure 2208 concern. Care is warranted here though because many of these are induction 2209 variables and other cases that matter a lot to performance, like the above. 2210 Here's a blob of code that you can drop into the bottom of visitICmp to see some 2211 missed cases: 2212 2213 { Value *A, *B, *C, *D; 2214 if (match(Op0, m_Add(m_Value(A), m_Value(B))) && 2215 match(Op1, m_Add(m_Value(C), m_Value(D))) && 2216 (A == C || A == D || B == C || B == D)) { 2217 errs() << "OP0 = " << *Op0 << " U=" << Op0->getNumUses() << "\n"; 2218 errs() << "OP1 = " << *Op1 << " U=" << Op1->getNumUses() << "\n"; 2219 errs() << "CMP = " << I << "\n\n"; 2220 } 2221 } 2222 2223 //===---------------------------------------------------------------------===// 2224 2225 define i1 @test1(i32 %x) nounwind { 2226 %and = and i32 %x, 3 2227 %cmp = icmp ult i32 %and, 2 2228 ret i1 %cmp 2229 } 2230 2231 Can be folded to (x & 2) == 0. 2232 2233 define i1 @test2(i32 %x) nounwind { 2234 %and = and i32 %x, 3 2235 %cmp = icmp ugt i32 %and, 1 2236 ret i1 %cmp 2237 } 2238 2239 Can be folded to (x & 2) != 0. 2240 2241 SimplifyDemandedBits shrinks the "and" constant to 2 but instcombine misses the 2242 icmp transform. 2243 2244 //===---------------------------------------------------------------------===// 2245 2246 This code: 2247 2248 typedef struct { 2249 int f1:1; 2250 int f2:1; 2251 int f3:1; 2252 int f4:29; 2253 } t1; 2254 2255 typedef struct { 2256 int f1:1; 2257 int f2:1; 2258 int f3:30; 2259 } t2; 2260 2261 t1 s1; 2262 t2 s2; 2263 2264 void func1(void) 2265 { 2266 s1.f1 = s2.f1; 2267 s1.f2 = s2.f2; 2268 } 2269 2270 Compiles into this IR (on x86-64 at least): 2271 2272 %struct.t1 = type { i8, [3 x i8] } 2273 @s2 = global %struct.t1 zeroinitializer, align 4 2274 @s1 = global %struct.t1 zeroinitializer, align 4 2275 define void @func1() nounwind ssp noredzone { 2276 entry: 2277 %0 = load i32* bitcast (%struct.t1* @s2 to i32*), align 4 2278 %bf.val.sext5 = and i32 %0, 1 2279 %1 = load i32* bitcast (%struct.t1* @s1 to i32*), align 4 2280 %2 = and i32 %1, -4 2281 %3 = or i32 %2, %bf.val.sext5 2282 %bf.val.sext26 = and i32 %0, 2 2283 %4 = or i32 %3, %bf.val.sext26 2284 store i32 %4, i32* bitcast (%struct.t1* @s1 to i32*), align 4 2285 ret void 2286 } 2287 2288 The two or/and's should be merged into one each. 2289 2290 //===---------------------------------------------------------------------===// 2291 2292 Machine level code hoisting can be useful in some cases. For example, PR9408 2293 is about: 2294 2295 typedef union { 2296 void (*f1)(int); 2297 void (*f2)(long); 2298 } funcs; 2299 2300 void foo(funcs f, int which) { 2301 int a = 5; 2302 if (which) { 2303 f.f1(a); 2304 } else { 2305 f.f2(a); 2306 } 2307 } 2308 2309 which we compile to: 2310 2311 foo: # @foo 2312 # BB#0: # %entry 2313 pushq %rbp 2314 movq %rsp, %rbp 2315 testl %esi, %esi 2316 movq %rdi, %rax 2317 je .LBB0_2 2318 # BB#1: # %if.then 2319 movl $5, %edi 2320 callq *%rax 2321 popq %rbp 2322 ret 2323 .LBB0_2: # %if.else 2324 movl $5, %edi 2325 callq *%rax 2326 popq %rbp 2327 ret 2328 2329 Note that bb1 and bb2 are the same. This doesn't happen at the IR level 2330 because one call is passing an i32 and the other is passing an i64. 2331 2332 //===---------------------------------------------------------------------===// 2333 2334 I see this sort of pattern in 176.gcc in a few places (e.g. the start of 2335 store_bit_field). The rem should be replaced with a multiply and subtract: 2336 2337 %3 = sdiv i32 %A, %B 2338 %4 = srem i32 %A, %B 2339 2340 Similarly for udiv/urem. Note that this shouldn't be done on X86 or ARM, 2341 which can do this in a single operation (instruction or libcall). It is 2342 probably best to do this in the code generator. 2343 2344 //===---------------------------------------------------------------------===// 2345 2346 unsigned foo(unsigned x, unsigned y) { return (x & y) == 0 || x == 0; } 2347 should fold to (x & y) == 0. 2348 2349 //===---------------------------------------------------------------------===// 2350 2351 unsigned foo(unsigned x, unsigned y) { return x > y && x != 0; } 2352 should fold to x > y. 2353 2354 //===---------------------------------------------------------------------===// 2355