1 //===- X86InstrFPStack.td - FPU Instruction Set ------------*- tablegen -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file describes the X86 x87 FPU instruction set, defining the 11 // instructions, and properties of the instructions which are needed for code 12 // generation, machine code emission, and analysis. 13 // 14 //===----------------------------------------------------------------------===// 15 16 //===----------------------------------------------------------------------===// 17 // FPStack specific DAG Nodes. 18 //===----------------------------------------------------------------------===// 19 20 def SDTX86FpGet2 : SDTypeProfile<2, 0, [SDTCisVT<0, f80>, 21 SDTCisVT<1, f80>]>; 22 def SDTX86Fld : SDTypeProfile<1, 2, [SDTCisFP<0>, 23 SDTCisPtrTy<1>, 24 SDTCisVT<2, OtherVT>]>; 25 def SDTX86Fst : SDTypeProfile<0, 3, [SDTCisFP<0>, 26 SDTCisPtrTy<1>, 27 SDTCisVT<2, OtherVT>]>; 28 def SDTX86Fild : SDTypeProfile<1, 2, [SDTCisFP<0>, SDTCisPtrTy<1>, 29 SDTCisVT<2, OtherVT>]>; 30 def SDTX86Fnstsw : SDTypeProfile<1, 1, [SDTCisVT<0, i16>, SDTCisVT<1, i16>]>; 31 def SDTX86FpToIMem : SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisPtrTy<1>]>; 32 33 def SDTX86CwdStore : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>; 34 35 def X86fld : SDNode<"X86ISD::FLD", SDTX86Fld, 36 [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; 37 def X86fst : SDNode<"X86ISD::FST", SDTX86Fst, 38 [SDNPHasChain, SDNPInGlue, SDNPMayStore, 39 SDNPMemOperand]>; 40 def X86fild : SDNode<"X86ISD::FILD", SDTX86Fild, 41 [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; 42 def X86fildflag : SDNode<"X86ISD::FILD_FLAG", SDTX86Fild, 43 [SDNPHasChain, SDNPOutGlue, SDNPMayLoad, 44 SDNPMemOperand]>; 45 def X86fp_stsw : SDNode<"X86ISD::FNSTSW16r", SDTX86Fnstsw>; 46 def X86fp_to_i16mem : SDNode<"X86ISD::FP_TO_INT16_IN_MEM", SDTX86FpToIMem, 47 [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; 48 def X86fp_to_i32mem : SDNode<"X86ISD::FP_TO_INT32_IN_MEM", SDTX86FpToIMem, 49 [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; 50 def X86fp_to_i64mem : SDNode<"X86ISD::FP_TO_INT64_IN_MEM", SDTX86FpToIMem, 51 [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; 52 def X86fp_cwd_get16 : SDNode<"X86ISD::FNSTCW16m", SDTX86CwdStore, 53 [SDNPHasChain, SDNPMayStore, SDNPSideEffect, 54 SDNPMemOperand]>; 55 56 //===----------------------------------------------------------------------===// 57 // FPStack pattern fragments 58 //===----------------------------------------------------------------------===// 59 60 def fpimm0 : PatLeaf<(fpimm), [{ 61 return N->isExactlyValue(+0.0); 62 }]>; 63 64 def fpimmneg0 : PatLeaf<(fpimm), [{ 65 return N->isExactlyValue(-0.0); 66 }]>; 67 68 def fpimm1 : PatLeaf<(fpimm), [{ 69 return N->isExactlyValue(+1.0); 70 }]>; 71 72 def fpimmneg1 : PatLeaf<(fpimm), [{ 73 return N->isExactlyValue(-1.0); 74 }]>; 75 76 // Some 'special' instructions 77 let usesCustomInserter = 1 in { // Expanded after instruction selection. 78 def FP32_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP32:$src), 79 [(X86fp_to_i16mem RFP32:$src, addr:$dst)]>; 80 def FP32_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP32:$src), 81 [(X86fp_to_i32mem RFP32:$src, addr:$dst)]>; 82 def FP32_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP32:$src), 83 [(X86fp_to_i64mem RFP32:$src, addr:$dst)]>; 84 def FP64_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP64:$src), 85 [(X86fp_to_i16mem RFP64:$src, addr:$dst)]>; 86 def FP64_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP64:$src), 87 [(X86fp_to_i32mem RFP64:$src, addr:$dst)]>; 88 def FP64_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP64:$src), 89 [(X86fp_to_i64mem RFP64:$src, addr:$dst)]>; 90 def FP80_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP80:$src), 91 [(X86fp_to_i16mem RFP80:$src, addr:$dst)]>; 92 def FP80_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP80:$src), 93 [(X86fp_to_i32mem RFP80:$src, addr:$dst)]>; 94 def FP80_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP80:$src), 95 [(X86fp_to_i64mem RFP80:$src, addr:$dst)]>; 96 } 97 98 // All FP Stack operations are represented with four instructions here. The 99 // first three instructions, generated by the instruction selector, use "RFP32" 100 // "RFP64" or "RFP80" registers: traditional register files to reference 32-bit, 101 // 64-bit or 80-bit floating point values. These sizes apply to the values, 102 // not the registers, which are always 80 bits; RFP32, RFP64 and RFP80 can be 103 // copied to each other without losing information. These instructions are all 104 // pseudo instructions and use the "_Fp" suffix. 105 // In some cases there are additional variants with a mixture of different 106 // register sizes. 107 // The second instruction is defined with FPI, which is the actual instruction 108 // emitted by the assembler. These use "RST" registers, although frequently 109 // the actual register(s) used are implicit. These are always 80 bits. 110 // The FP stackifier pass converts one to the other after register allocation 111 // occurs. 112 // 113 // Note that the FpI instruction should have instruction selection info (e.g. 114 // a pattern) and the FPI instruction should have emission info (e.g. opcode 115 // encoding and asm printing info). 116 117 // Pseudo Instruction for FP stack return values. 118 def FpPOP_RETVAL : FpI_<(outs RFP80:$dst), (ins), SpecialFP, []>; 119 120 // FpIf32, FpIf64 - Floating Point Pseudo Instruction template. 121 // f32 instructions can use SSE1 and are predicated on FPStackf32 == !SSE1. 122 // f64 instructions can use SSE2 and are predicated on FPStackf64 == !SSE2. 123 // f80 instructions cannot use SSE and use neither of these. 124 class FpIf32<dag outs, dag ins, FPFormat fp, list<dag> pattern> : 125 FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32]>; 126 class FpIf64<dag outs, dag ins, FPFormat fp, list<dag> pattern> : 127 FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64]>; 128 129 // Factoring for arithmetic. 130 multiclass FPBinary_rr<SDNode OpNode> { 131 // Register op register -> register 132 // These are separated out because they have no reversed form. 133 def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), TwoArgFP, 134 [(set RFP32:$dst, (OpNode RFP32:$src1, RFP32:$src2))]>; 135 def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), TwoArgFP, 136 [(set RFP64:$dst, (OpNode RFP64:$src1, RFP64:$src2))]>; 137 def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), TwoArgFP, 138 [(set RFP80:$dst, (OpNode RFP80:$src1, RFP80:$src2))]>; 139 } 140 // The FopST0 series are not included here because of the irregularities 141 // in where the 'r' goes in assembly output. 142 // These instructions cannot address 80-bit memory. 143 multiclass FPBinary<SDNode OpNode, Format fp, string asmstring> { 144 // ST(0) = ST(0) + [mem] 145 def _Fp32m : FpIf32<(outs RFP32:$dst), 146 (ins RFP32:$src1, f32mem:$src2), OneArgFPRW, 147 [(set RFP32:$dst, 148 (OpNode RFP32:$src1, (loadf32 addr:$src2)))]>; 149 def _Fp64m : FpIf64<(outs RFP64:$dst), 150 (ins RFP64:$src1, f64mem:$src2), OneArgFPRW, 151 [(set RFP64:$dst, 152 (OpNode RFP64:$src1, (loadf64 addr:$src2)))]>; 153 def _Fp64m32: FpIf64<(outs RFP64:$dst), 154 (ins RFP64:$src1, f32mem:$src2), OneArgFPRW, 155 [(set RFP64:$dst, 156 (OpNode RFP64:$src1, (f64 (extloadf32 addr:$src2))))]>; 157 def _Fp80m32: FpI_<(outs RFP80:$dst), 158 (ins RFP80:$src1, f32mem:$src2), OneArgFPRW, 159 [(set RFP80:$dst, 160 (OpNode RFP80:$src1, (f80 (extloadf32 addr:$src2))))]>; 161 def _Fp80m64: FpI_<(outs RFP80:$dst), 162 (ins RFP80:$src1, f64mem:$src2), OneArgFPRW, 163 [(set RFP80:$dst, 164 (OpNode RFP80:$src1, (f80 (extloadf64 addr:$src2))))]>; 165 def _F32m : FPI<0xD8, fp, (outs), (ins f32mem:$src), 166 !strconcat("f", asmstring, "{s}\t$src")> { 167 let mayLoad = 1; 168 } 169 def _F64m : FPI<0xDC, fp, (outs), (ins f64mem:$src), 170 !strconcat("f", asmstring, "{l}\t$src")> { 171 let mayLoad = 1; 172 } 173 // ST(0) = ST(0) + [memint] 174 def _FpI16m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i16mem:$src2), 175 OneArgFPRW, 176 [(set RFP32:$dst, (OpNode RFP32:$src1, 177 (X86fild addr:$src2, i16)))]>; 178 def _FpI32m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i32mem:$src2), 179 OneArgFPRW, 180 [(set RFP32:$dst, (OpNode RFP32:$src1, 181 (X86fild addr:$src2, i32)))]>; 182 def _FpI16m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i16mem:$src2), 183 OneArgFPRW, 184 [(set RFP64:$dst, (OpNode RFP64:$src1, 185 (X86fild addr:$src2, i16)))]>; 186 def _FpI32m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i32mem:$src2), 187 OneArgFPRW, 188 [(set RFP64:$dst, (OpNode RFP64:$src1, 189 (X86fild addr:$src2, i32)))]>; 190 def _FpI16m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i16mem:$src2), 191 OneArgFPRW, 192 [(set RFP80:$dst, (OpNode RFP80:$src1, 193 (X86fild addr:$src2, i16)))]>; 194 def _FpI32m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i32mem:$src2), 195 OneArgFPRW, 196 [(set RFP80:$dst, (OpNode RFP80:$src1, 197 (X86fild addr:$src2, i32)))]>; 198 def _FI16m : FPI<0xDE, fp, (outs), (ins i16mem:$src), 199 !strconcat("fi", asmstring, "{s}\t$src")> { 200 let mayLoad = 1; 201 } 202 def _FI32m : FPI<0xDA, fp, (outs), (ins i32mem:$src), 203 !strconcat("fi", asmstring, "{l}\t$src")> { 204 let mayLoad = 1; 205 } 206 } 207 208 let Defs = [FPSW] in { 209 defm ADD : FPBinary_rr<fadd>; 210 defm SUB : FPBinary_rr<fsub>; 211 defm MUL : FPBinary_rr<fmul>; 212 defm DIV : FPBinary_rr<fdiv>; 213 defm ADD : FPBinary<fadd, MRM0m, "add">; 214 defm SUB : FPBinary<fsub, MRM4m, "sub">; 215 defm SUBR: FPBinary<fsub ,MRM5m, "subr">; 216 defm MUL : FPBinary<fmul, MRM1m, "mul">; 217 defm DIV : FPBinary<fdiv, MRM6m, "div">; 218 defm DIVR: FPBinary<fdiv, MRM7m, "divr">; 219 } 220 221 class FPST0rInst<bits<8> o, string asm> 222 : FPI<o, AddRegFrm, (outs), (ins RST:$op), asm>, D8; 223 class FPrST0Inst<bits<8> o, string asm> 224 : FPI<o, AddRegFrm, (outs), (ins RST:$op), asm>, DC; 225 class FPrST0PInst<bits<8> o, string asm> 226 : FPI<o, AddRegFrm, (outs), (ins RST:$op), asm>, DE; 227 228 // NOTE: GAS and apparently all other AT&T style assemblers have a broken notion 229 // of some of the 'reverse' forms of the fsub and fdiv instructions. As such, 230 // we have to put some 'r's in and take them out of weird places. 231 def ADD_FST0r : FPST0rInst <0xC0, "fadd\t$op">; 232 def ADD_FrST0 : FPrST0Inst <0xC0, "fadd\t{%st(0), $op|$op, ST(0)}">; 233 def ADD_FPrST0 : FPrST0PInst<0xC0, "faddp\t$op">; 234 def SUBR_FST0r : FPST0rInst <0xE8, "fsubr\t$op">; 235 def SUB_FrST0 : FPrST0Inst <0xE8, "fsub{r}\t{%st(0), $op|$op, ST(0)}">; 236 def SUB_FPrST0 : FPrST0PInst<0xE8, "fsub{r}p\t$op">; 237 def SUB_FST0r : FPST0rInst <0xE0, "fsub\t$op">; 238 def SUBR_FrST0 : FPrST0Inst <0xE0, "fsub{|r}\t{%st(0), $op|$op, ST(0)}">; 239 def SUBR_FPrST0 : FPrST0PInst<0xE0, "fsub{|r}p\t$op">; 240 def MUL_FST0r : FPST0rInst <0xC8, "fmul\t$op">; 241 def MUL_FrST0 : FPrST0Inst <0xC8, "fmul\t{%st(0), $op|$op, ST(0)}">; 242 def MUL_FPrST0 : FPrST0PInst<0xC8, "fmulp\t$op">; 243 def DIVR_FST0r : FPST0rInst <0xF8, "fdivr\t$op">; 244 def DIV_FrST0 : FPrST0Inst <0xF8, "fdiv{r}\t{%st(0), $op|$op, ST(0)}">; 245 def DIV_FPrST0 : FPrST0PInst<0xF8, "fdiv{r}p\t$op">; 246 def DIV_FST0r : FPST0rInst <0xF0, "fdiv\t$op">; 247 def DIVR_FrST0 : FPrST0Inst <0xF0, "fdiv{|r}\t{%st(0), $op|$op, ST(0)}">; 248 def DIVR_FPrST0 : FPrST0PInst<0xF0, "fdiv{|r}p\t$op">; 249 250 def COM_FST0r : FPST0rInst <0xD0, "fcom\t$op">; 251 def COMP_FST0r : FPST0rInst <0xD8, "fcomp\t$op">; 252 253 // Unary operations. 254 multiclass FPUnary<SDNode OpNode, bits<8> opcode, string asmstring> { 255 def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), OneArgFPRW, 256 [(set RFP32:$dst, (OpNode RFP32:$src))]>; 257 def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), OneArgFPRW, 258 [(set RFP64:$dst, (OpNode RFP64:$src))]>; 259 def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src), OneArgFPRW, 260 [(set RFP80:$dst, (OpNode RFP80:$src))]>; 261 def _F : FPI<opcode, RawFrm, (outs), (ins), asmstring>, D9; 262 } 263 264 let Defs = [FPSW] in { 265 defm CHS : FPUnary<fneg, 0xE0, "fchs">; 266 defm ABS : FPUnary<fabs, 0xE1, "fabs">; 267 defm SQRT: FPUnary<fsqrt,0xFA, "fsqrt">; 268 defm SIN : FPUnary<fsin, 0xFE, "fsin">; 269 defm COS : FPUnary<fcos, 0xFF, "fcos">; 270 271 let neverHasSideEffects = 1 in { 272 def TST_Fp32 : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>; 273 def TST_Fp64 : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>; 274 def TST_Fp80 : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>; 275 } 276 def TST_F : FPI<0xE4, RawFrm, (outs), (ins), "ftst">, D9; 277 } // Defs = [FPSW] 278 279 // Versions of FP instructions that take a single memory operand. Added for the 280 // disassembler; remove as they are included with patterns elsewhere. 281 def FCOM32m : FPI<0xD8, MRM2m, (outs), (ins f32mem:$src), "fcom{s}\t$src">; 282 def FCOMP32m : FPI<0xD8, MRM3m, (outs), (ins f32mem:$src), "fcomp{s}\t$src">; 283 284 def FLDENVm : FPI<0xD9, MRM4m, (outs), (ins f32mem:$src), "fldenv\t$src">; 285 def FSTENVm : FPI<0xD9, MRM6m, (outs f32mem:$dst), (ins), "fnstenv\t$dst">; 286 287 def FICOM32m : FPI<0xDA, MRM2m, (outs), (ins i32mem:$src), "ficom{l}\t$src">; 288 def FICOMP32m: FPI<0xDA, MRM3m, (outs), (ins i32mem:$src), "ficomp{l}\t$src">; 289 290 def FCOM64m : FPI<0xDC, MRM2m, (outs), (ins f64mem:$src), "fcom{l}\t$src">; 291 def FCOMP64m : FPI<0xDC, MRM3m, (outs), (ins f64mem:$src), "fcomp{l}\t$src">; 292 293 def FRSTORm : FPI<0xDD, MRM4m, (outs f32mem:$dst), (ins), "frstor\t$dst">; 294 def FSAVEm : FPI<0xDD, MRM6m, (outs f32mem:$dst), (ins), "fnsave\t$dst">; 295 def FNSTSWm : FPI<0xDD, MRM7m, (outs f32mem:$dst), (ins), "fnstsw\t$dst">; 296 297 def FICOM16m : FPI<0xDE, MRM2m, (outs), (ins i16mem:$src), "ficom{s}\t$src">; 298 def FICOMP16m: FPI<0xDE, MRM3m, (outs), (ins i16mem:$src), "ficomp{s}\t$src">; 299 300 def FBLDm : FPI<0xDF, MRM4m, (outs), (ins f32mem:$src), "fbld\t$src">; 301 def FBSTPm : FPI<0xDF, MRM6m, (outs f32mem:$dst), (ins), "fbstp\t$dst">; 302 303 // Floating point cmovs. 304 class FpIf32CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> : 305 FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32, HasCMov]>; 306 class FpIf64CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> : 307 FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64, HasCMov]>; 308 309 multiclass FPCMov<PatLeaf cc> { 310 def _Fp32 : FpIf32CMov<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), 311 CondMovFP, 312 [(set RFP32:$dst, (X86cmov RFP32:$src1, RFP32:$src2, 313 cc, EFLAGS))]>; 314 def _Fp64 : FpIf64CMov<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), 315 CondMovFP, 316 [(set RFP64:$dst, (X86cmov RFP64:$src1, RFP64:$src2, 317 cc, EFLAGS))]>; 318 def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), 319 CondMovFP, 320 [(set RFP80:$dst, (X86cmov RFP80:$src1, RFP80:$src2, 321 cc, EFLAGS))]>, 322 Requires<[HasCMov]>; 323 } 324 325 let Defs = [FPSW] in { 326 let Uses = [EFLAGS], Constraints = "$src1 = $dst" in { 327 defm CMOVB : FPCMov<X86_COND_B>; 328 defm CMOVBE : FPCMov<X86_COND_BE>; 329 defm CMOVE : FPCMov<X86_COND_E>; 330 defm CMOVP : FPCMov<X86_COND_P>; 331 defm CMOVNB : FPCMov<X86_COND_AE>; 332 defm CMOVNBE: FPCMov<X86_COND_A>; 333 defm CMOVNE : FPCMov<X86_COND_NE>; 334 defm CMOVNP : FPCMov<X86_COND_NP>; 335 } // Uses = [EFLAGS], Constraints = "$src1 = $dst" 336 337 let Predicates = [HasCMov] in { 338 // These are not factored because there's no clean way to pass DA/DB. 339 def CMOVB_F : FPI<0xC0, AddRegFrm, (outs RST:$op), (ins), 340 "fcmovb\t{$op, %st(0)|ST(0), $op}">, DA; 341 def CMOVBE_F : FPI<0xD0, AddRegFrm, (outs RST:$op), (ins), 342 "fcmovbe\t{$op, %st(0)|ST(0), $op}">, DA; 343 def CMOVE_F : FPI<0xC8, AddRegFrm, (outs RST:$op), (ins), 344 "fcmove\t{$op, %st(0)|ST(0), $op}">, DA; 345 def CMOVP_F : FPI<0xD8, AddRegFrm, (outs RST:$op), (ins), 346 "fcmovu\t {$op, %st(0)|ST(0), $op}">, DA; 347 def CMOVNB_F : FPI<0xC0, AddRegFrm, (outs RST:$op), (ins), 348 "fcmovnb\t{$op, %st(0)|ST(0), $op}">, DB; 349 def CMOVNBE_F: FPI<0xD0, AddRegFrm, (outs RST:$op), (ins), 350 "fcmovnbe\t{$op, %st(0)|ST(0), $op}">, DB; 351 def CMOVNE_F : FPI<0xC8, AddRegFrm, (outs RST:$op), (ins), 352 "fcmovne\t{$op, %st(0)|ST(0), $op}">, DB; 353 def CMOVNP_F : FPI<0xD8, AddRegFrm, (outs RST:$op), (ins), 354 "fcmovnu\t{$op, %st(0)|ST(0), $op}">, DB; 355 } // Predicates = [HasCMov] 356 357 // Floating point loads & stores. 358 let canFoldAsLoad = 1 in { 359 def LD_Fp32m : FpIf32<(outs RFP32:$dst), (ins f32mem:$src), ZeroArgFP, 360 [(set RFP32:$dst, (loadf32 addr:$src))]>; 361 let isReMaterializable = 1 in 362 def LD_Fp64m : FpIf64<(outs RFP64:$dst), (ins f64mem:$src), ZeroArgFP, 363 [(set RFP64:$dst, (loadf64 addr:$src))]>; 364 def LD_Fp80m : FpI_<(outs RFP80:$dst), (ins f80mem:$src), ZeroArgFP, 365 [(set RFP80:$dst, (loadf80 addr:$src))]>; 366 } 367 def LD_Fp32m64 : FpIf64<(outs RFP64:$dst), (ins f32mem:$src), ZeroArgFP, 368 [(set RFP64:$dst, (f64 (extloadf32 addr:$src)))]>; 369 def LD_Fp64m80 : FpI_<(outs RFP80:$dst), (ins f64mem:$src), ZeroArgFP, 370 [(set RFP80:$dst, (f80 (extloadf64 addr:$src)))]>; 371 def LD_Fp32m80 : FpI_<(outs RFP80:$dst), (ins f32mem:$src), ZeroArgFP, 372 [(set RFP80:$dst, (f80 (extloadf32 addr:$src)))]>; 373 def ILD_Fp16m32: FpIf32<(outs RFP32:$dst), (ins i16mem:$src), ZeroArgFP, 374 [(set RFP32:$dst, (X86fild addr:$src, i16))]>; 375 def ILD_Fp32m32: FpIf32<(outs RFP32:$dst), (ins i32mem:$src), ZeroArgFP, 376 [(set RFP32:$dst, (X86fild addr:$src, i32))]>; 377 def ILD_Fp64m32: FpIf32<(outs RFP32:$dst), (ins i64mem:$src), ZeroArgFP, 378 [(set RFP32:$dst, (X86fild addr:$src, i64))]>; 379 def ILD_Fp16m64: FpIf64<(outs RFP64:$dst), (ins i16mem:$src), ZeroArgFP, 380 [(set RFP64:$dst, (X86fild addr:$src, i16))]>; 381 def ILD_Fp32m64: FpIf64<(outs RFP64:$dst), (ins i32mem:$src), ZeroArgFP, 382 [(set RFP64:$dst, (X86fild addr:$src, i32))]>; 383 def ILD_Fp64m64: FpIf64<(outs RFP64:$dst), (ins i64mem:$src), ZeroArgFP, 384 [(set RFP64:$dst, (X86fild addr:$src, i64))]>; 385 def ILD_Fp16m80: FpI_<(outs RFP80:$dst), (ins i16mem:$src), ZeroArgFP, 386 [(set RFP80:$dst, (X86fild addr:$src, i16))]>; 387 def ILD_Fp32m80: FpI_<(outs RFP80:$dst), (ins i32mem:$src), ZeroArgFP, 388 [(set RFP80:$dst, (X86fild addr:$src, i32))]>; 389 def ILD_Fp64m80: FpI_<(outs RFP80:$dst), (ins i64mem:$src), ZeroArgFP, 390 [(set RFP80:$dst, (X86fild addr:$src, i64))]>; 391 392 def ST_Fp32m : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, 393 [(store RFP32:$src, addr:$op)]>; 394 def ST_Fp64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, 395 [(truncstoref32 RFP64:$src, addr:$op)]>; 396 def ST_Fp64m : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, 397 [(store RFP64:$src, addr:$op)]>; 398 def ST_Fp80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, 399 [(truncstoref32 RFP80:$src, addr:$op)]>; 400 def ST_Fp80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, 401 [(truncstoref64 RFP80:$src, addr:$op)]>; 402 // FST does not support 80-bit memory target; FSTP must be used. 403 404 let mayStore = 1, neverHasSideEffects = 1 in { 405 def ST_FpP32m : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, []>; 406 def ST_FpP64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, []>; 407 def ST_FpP64m : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, []>; 408 def ST_FpP80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, []>; 409 def ST_FpP80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, []>; 410 } 411 def ST_FpP80m : FpI_<(outs), (ins f80mem:$op, RFP80:$src), OneArgFP, 412 [(store RFP80:$src, addr:$op)]>; 413 let mayStore = 1, neverHasSideEffects = 1 in { 414 def IST_Fp16m32 : FpIf32<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, []>; 415 def IST_Fp32m32 : FpIf32<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, []>; 416 def IST_Fp64m32 : FpIf32<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, []>; 417 def IST_Fp16m64 : FpIf64<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, []>; 418 def IST_Fp32m64 : FpIf64<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, []>; 419 def IST_Fp64m64 : FpIf64<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, []>; 420 def IST_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, []>; 421 def IST_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, []>; 422 def IST_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, []>; 423 } 424 425 let mayLoad = 1 in { 426 def LD_F32m : FPI<0xD9, MRM0m, (outs), (ins f32mem:$src), "fld{s}\t$src", 427 IIC_FLD>; 428 def LD_F64m : FPI<0xDD, MRM0m, (outs), (ins f64mem:$src), "fld{l}\t$src", 429 IIC_FLD>; 430 def LD_F80m : FPI<0xDB, MRM5m, (outs), (ins f80mem:$src), "fld{t}\t$src", 431 IIC_FLD80>; 432 def ILD_F16m : FPI<0xDF, MRM0m, (outs), (ins i16mem:$src), "fild{s}\t$src", 433 IIC_FILD>; 434 def ILD_F32m : FPI<0xDB, MRM0m, (outs), (ins i32mem:$src), "fild{l}\t$src", 435 IIC_FILD>; 436 def ILD_F64m : FPI<0xDF, MRM5m, (outs), (ins i64mem:$src), "fild{ll}\t$src", 437 IIC_FILD>; 438 } 439 let mayStore = 1 in { 440 def ST_F32m : FPI<0xD9, MRM2m, (outs), (ins f32mem:$dst), "fst{s}\t$dst", 441 IIC_FST>; 442 def ST_F64m : FPI<0xDD, MRM2m, (outs), (ins f64mem:$dst), "fst{l}\t$dst", 443 IIC_FST>; 444 def ST_FP32m : FPI<0xD9, MRM3m, (outs), (ins f32mem:$dst), "fstp{s}\t$dst", 445 IIC_FST>; 446 def ST_FP64m : FPI<0xDD, MRM3m, (outs), (ins f64mem:$dst), "fstp{l}\t$dst", 447 IIC_FST>; 448 def ST_FP80m : FPI<0xDB, MRM7m, (outs), (ins f80mem:$dst), "fstp{t}\t$dst", 449 IIC_FST80>; 450 def IST_F16m : FPI<0xDF, MRM2m, (outs), (ins i16mem:$dst), "fist{s}\t$dst", 451 IIC_FIST>; 452 def IST_F32m : FPI<0xDB, MRM2m, (outs), (ins i32mem:$dst), "fist{l}\t$dst", 453 IIC_FIST>; 454 def IST_FP16m : FPI<0xDF, MRM3m, (outs), (ins i16mem:$dst), "fistp{s}\t$dst", 455 IIC_FIST>; 456 def IST_FP32m : FPI<0xDB, MRM3m, (outs), (ins i32mem:$dst), "fistp{l}\t$dst", 457 IIC_FIST>; 458 def IST_FP64m : FPI<0xDF, MRM7m, (outs), (ins i64mem:$dst), "fistp{ll}\t$dst", 459 IIC_FIST>; 460 } 461 462 // FISTTP requires SSE3 even though it's a FPStack op. 463 let Predicates = [HasSSE3] in { 464 def ISTT_Fp16m32 : FpI_<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, 465 [(X86fp_to_i16mem RFP32:$src, addr:$op)]>; 466 def ISTT_Fp32m32 : FpI_<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, 467 [(X86fp_to_i32mem RFP32:$src, addr:$op)]>; 468 def ISTT_Fp64m32 : FpI_<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, 469 [(X86fp_to_i64mem RFP32:$src, addr:$op)]>; 470 def ISTT_Fp16m64 : FpI_<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, 471 [(X86fp_to_i16mem RFP64:$src, addr:$op)]>; 472 def ISTT_Fp32m64 : FpI_<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, 473 [(X86fp_to_i32mem RFP64:$src, addr:$op)]>; 474 def ISTT_Fp64m64 : FpI_<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, 475 [(X86fp_to_i64mem RFP64:$src, addr:$op)]>; 476 def ISTT_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, 477 [(X86fp_to_i16mem RFP80:$src, addr:$op)]>; 478 def ISTT_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, 479 [(X86fp_to_i32mem RFP80:$src, addr:$op)]>; 480 def ISTT_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, 481 [(X86fp_to_i64mem RFP80:$src, addr:$op)]>; 482 } // Predicates = [HasSSE3] 483 484 let mayStore = 1 in { 485 def ISTT_FP16m : FPI<0xDF, MRM1m, (outs), (ins i16mem:$dst), "fisttp{s}\t$dst", 486 IIC_FST>; 487 def ISTT_FP32m : FPI<0xDB, MRM1m, (outs), (ins i32mem:$dst), "fisttp{l}\t$dst", 488 IIC_FST>; 489 def ISTT_FP64m : FPI<0xDD, MRM1m, (outs), (ins i64mem:$dst), 490 "fisttp{ll}\t$dst", IIC_FST>; 491 } 492 493 // FP Stack manipulation instructions. 494 def LD_Frr : FPI<0xC0, AddRegFrm, (outs), (ins RST:$op), "fld\t$op", 495 IIC_FLD>, D9; 496 def ST_Frr : FPI<0xD0, AddRegFrm, (outs), (ins RST:$op), "fst\t$op", 497 IIC_FST>, DD; 498 def ST_FPrr : FPI<0xD8, AddRegFrm, (outs), (ins RST:$op), "fstp\t$op", 499 IIC_FST>, DD; 500 def XCH_F : FPI<0xC8, AddRegFrm, (outs), (ins RST:$op), "fxch\t$op", 501 IIC_FXCH>, D9; 502 503 // Floating point constant loads. 504 let isReMaterializable = 1 in { 505 def LD_Fp032 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP, 506 [(set RFP32:$dst, fpimm0)]>; 507 def LD_Fp132 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP, 508 [(set RFP32:$dst, fpimm1)]>; 509 def LD_Fp064 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP, 510 [(set RFP64:$dst, fpimm0)]>; 511 def LD_Fp164 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP, 512 [(set RFP64:$dst, fpimm1)]>; 513 def LD_Fp080 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP, 514 [(set RFP80:$dst, fpimm0)]>; 515 def LD_Fp180 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP, 516 [(set RFP80:$dst, fpimm1)]>; 517 } 518 519 def LD_F0 : FPI<0xEE, RawFrm, (outs), (ins), "fldz", IIC_FLDZ>, D9; 520 def LD_F1 : FPI<0xE8, RawFrm, (outs), (ins), "fld1", IIC_FIST>, D9; 521 522 523 // Floating point compares. 524 def UCOM_Fpr32 : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, 525 [(set FPSW, (trunc (X86cmp RFP32:$lhs, RFP32:$rhs)))]>; 526 def UCOM_Fpr64 : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP, 527 [(set FPSW, (trunc (X86cmp RFP64:$lhs, RFP64:$rhs)))]>; 528 def UCOM_Fpr80 : FpI_ <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP, 529 [(set FPSW, (trunc (X86cmp RFP80:$lhs, RFP80:$rhs)))]>; 530 } // Defs = [FPSW] 531 532 // CC = ST(0) cmp ST(i) 533 let Defs = [EFLAGS, FPSW] in { 534 def UCOM_FpIr32: FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, 535 [(set EFLAGS, (X86cmp RFP32:$lhs, RFP32:$rhs))]>; 536 def UCOM_FpIr64: FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP, 537 [(set EFLAGS, (X86cmp RFP64:$lhs, RFP64:$rhs))]>; 538 def UCOM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP, 539 [(set EFLAGS, (X86cmp RFP80:$lhs, RFP80:$rhs))]>; 540 } 541 542 let Defs = [FPSW], Uses = [ST0] in { 543 def UCOM_Fr : FPI<0xE0, AddRegFrm, // FPSW = cmp ST(0) with ST(i) 544 (outs), (ins RST:$reg), 545 "fucom\t$reg", IIC_FUCOM>, DD; 546 def UCOM_FPr : FPI<0xE8, AddRegFrm, // FPSW = cmp ST(0) with ST(i), pop 547 (outs), (ins RST:$reg), 548 "fucomp\t$reg", IIC_FUCOM>, DD; 549 def UCOM_FPPr : FPI<0xE9, RawFrm, // cmp ST(0) with ST(1), pop, pop 550 (outs), (ins), 551 "fucompp", IIC_FUCOM>, DA; 552 } 553 554 let Defs = [EFLAGS, FPSW], Uses = [ST0] in { 555 def UCOM_FIr : FPI<0xE8, AddRegFrm, // CC = cmp ST(0) with ST(i) 556 (outs), (ins RST:$reg), 557 "fucomi\t$reg", IIC_FUCOMI>, DB; 558 def UCOM_FIPr : FPI<0xE8, AddRegFrm, // CC = cmp ST(0) with ST(i), pop 559 (outs), (ins RST:$reg), 560 "fucompi\t$reg", IIC_FUCOMI>, DF; 561 } 562 563 let Defs = [EFLAGS, FPSW] in { 564 def COM_FIr : FPI<0xF0, AddRegFrm, (outs), (ins RST:$reg), 565 "fcomi\t$reg", IIC_FCOMI>, DB; 566 def COM_FIPr : FPI<0xF0, AddRegFrm, (outs), (ins RST:$reg), 567 "fcompi\t$reg", IIC_FCOMI>, DF; 568 } 569 570 // Floating point flag ops. 571 let Defs = [AX], Uses = [FPSW] in 572 def FNSTSW16r : I<0xE0, RawFrm, // AX = fp flags 573 (outs), (ins), "fnstsw %ax", 574 [(set AX, (X86fp_stsw FPSW))], IIC_FNSTSW>, DF; 575 576 def FNSTCW16m : I<0xD9, MRM7m, // [mem16] = X87 control world 577 (outs), (ins i16mem:$dst), "fnstcw\t$dst", 578 [(X86fp_cwd_get16 addr:$dst)], IIC_FNSTCW>; 579 580 let mayLoad = 1 in 581 def FLDCW16m : I<0xD9, MRM5m, // X87 control world = [mem16] 582 (outs), (ins i16mem:$dst), "fldcw\t$dst", [], IIC_FLDCW>; 583 584 // FPU control instructions 585 let Defs = [FPSW] in 586 def FNINIT : I<0xE3, RawFrm, (outs), (ins), "fninit", [], IIC_FNINIT>, DB; 587 def FFREE : FPI<0xC0, AddRegFrm, (outs), (ins RST:$reg), 588 "ffree\t$reg", IIC_FFREE>, DD; 589 590 // Clear exceptions 591 592 let Defs = [FPSW] in 593 def FNCLEX : I<0xE2, RawFrm, (outs), (ins), "fnclex", [], IIC_FNCLEX>, DB; 594 595 // Operandless floating-point instructions for the disassembler. 596 def WAIT : I<0x9B, RawFrm, (outs), (ins), "wait", [], IIC_WAIT>; 597 598 def FNOP : I<0xD0, RawFrm, (outs), (ins), "fnop", [], IIC_FNOP>, D9; 599 def FXAM : I<0xE5, RawFrm, (outs), (ins), "fxam", [], IIC_FXAM>, D9; 600 def FLDL2T : I<0xE9, RawFrm, (outs), (ins), "fldl2t", [], IIC_FLDL>, D9; 601 def FLDL2E : I<0xEA, RawFrm, (outs), (ins), "fldl2e", [], IIC_FLDL>, D9; 602 def FLDPI : I<0xEB, RawFrm, (outs), (ins), "fldpi", [], IIC_FLDL>, D9; 603 def FLDLG2 : I<0xEC, RawFrm, (outs), (ins), "fldlg2", [], IIC_FLDL>, D9; 604 def FLDLN2 : I<0xED, RawFrm, (outs), (ins), "fldln2", [], IIC_FLDL>, D9; 605 def F2XM1 : I<0xF0, RawFrm, (outs), (ins), "f2xm1", [], IIC_F2XM1>, D9; 606 def FYL2X : I<0xF1, RawFrm, (outs), (ins), "fyl2x", [], IIC_FYL2X>, D9; 607 def FPTAN : I<0xF2, RawFrm, (outs), (ins), "fptan", [], IIC_FPTAN>, D9; 608 def FPATAN : I<0xF3, RawFrm, (outs), (ins), "fpatan", [], IIC_FPATAN>, D9; 609 def FXTRACT : I<0xF4, RawFrm, (outs), (ins), "fxtract", [], IIC_FXTRACT>, D9; 610 def FPREM1 : I<0xF5, RawFrm, (outs), (ins), "fprem1", [], IIC_FPREM1>, D9; 611 def FDECSTP : I<0xF6, RawFrm, (outs), (ins), "fdecstp", [], IIC_FPSTP>, D9; 612 def FINCSTP : I<0xF7, RawFrm, (outs), (ins), "fincstp", [], IIC_FPSTP>, D9; 613 def FPREM : I<0xF8, RawFrm, (outs), (ins), "fprem", [], IIC_FPREM>, D9; 614 def FYL2XP1 : I<0xF9, RawFrm, (outs), (ins), "fyl2xp1", [], IIC_FYL2XP1>, D9; 615 def FSINCOS : I<0xFB, RawFrm, (outs), (ins), "fsincos", [], IIC_FSINCOS>, D9; 616 def FRNDINT : I<0xFC, RawFrm, (outs), (ins), "frndint", [], IIC_FRNDINT>, D9; 617 def FSCALE : I<0xFD, RawFrm, (outs), (ins), "fscale", [], IIC_FSCALE>, D9; 618 def FCOMPP : I<0xD9, RawFrm, (outs), (ins), "fcompp", [], IIC_FCOMPP>, DE; 619 620 def FXSAVE : I<0xAE, MRM0m, (outs opaque512mem:$dst), (ins), 621 "fxsave\t$dst", [], IIC_FXSAVE>, TB; 622 def FXSAVE64 : I<0xAE, MRM0m, (outs opaque512mem:$dst), (ins), 623 "fxsaveq\t$dst", [], IIC_FXSAVE>, TB, REX_W, 624 Requires<[In64BitMode]>; 625 def FXRSTOR : I<0xAE, MRM1m, (outs), (ins opaque512mem:$src), 626 "fxrstor\t$src", [], IIC_FXRSTOR>, TB; 627 def FXRSTOR64 : I<0xAE, MRM1m, (outs), (ins opaque512mem:$src), 628 "fxrstorq\t$src", [], IIC_FXRSTOR>, TB, REX_W, 629 Requires<[In64BitMode]>; 630 631 //===----------------------------------------------------------------------===// 632 // Non-Instruction Patterns 633 //===----------------------------------------------------------------------===// 634 635 // Required for RET of f32 / f64 / f80 values. 636 def : Pat<(X86fld addr:$src, f32), (LD_Fp32m addr:$src)>; 637 def : Pat<(X86fld addr:$src, f64), (LD_Fp64m addr:$src)>; 638 def : Pat<(X86fld addr:$src, f80), (LD_Fp80m addr:$src)>; 639 640 // Required for CALL which return f32 / f64 / f80 values. 641 def : Pat<(X86fst RFP32:$src, addr:$op, f32), (ST_Fp32m addr:$op, RFP32:$src)>; 642 def : Pat<(X86fst RFP64:$src, addr:$op, f32), (ST_Fp64m32 addr:$op, 643 RFP64:$src)>; 644 def : Pat<(X86fst RFP64:$src, addr:$op, f64), (ST_Fp64m addr:$op, RFP64:$src)>; 645 def : Pat<(X86fst RFP80:$src, addr:$op, f32), (ST_Fp80m32 addr:$op, 646 RFP80:$src)>; 647 def : Pat<(X86fst RFP80:$src, addr:$op, f64), (ST_Fp80m64 addr:$op, 648 RFP80:$src)>; 649 def : Pat<(X86fst RFP80:$src, addr:$op, f80), (ST_FpP80m addr:$op, 650 RFP80:$src)>; 651 652 // Floating point constant -0.0 and -1.0 653 def : Pat<(f32 fpimmneg0), (CHS_Fp32 (LD_Fp032))>, Requires<[FPStackf32]>; 654 def : Pat<(f32 fpimmneg1), (CHS_Fp32 (LD_Fp132))>, Requires<[FPStackf32]>; 655 def : Pat<(f64 fpimmneg0), (CHS_Fp64 (LD_Fp064))>, Requires<[FPStackf64]>; 656 def : Pat<(f64 fpimmneg1), (CHS_Fp64 (LD_Fp164))>, Requires<[FPStackf64]>; 657 def : Pat<(f80 fpimmneg0), (CHS_Fp80 (LD_Fp080))>; 658 def : Pat<(f80 fpimmneg1), (CHS_Fp80 (LD_Fp180))>; 659 660 // Used to conv. i64 to f64 since there isn't a SSE version. 661 def : Pat<(X86fildflag addr:$src, i64), (ILD_Fp64m64 addr:$src)>; 662 663 // FP extensions map onto simple pseudo-value conversions if they are to/from 664 // the FP stack. 665 def : Pat<(f64 (fextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP64)>, 666 Requires<[FPStackf32]>; 667 def : Pat<(f80 (fextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP80)>, 668 Requires<[FPStackf32]>; 669 def : Pat<(f80 (fextend RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP80)>, 670 Requires<[FPStackf64]>; 671 672 // FP truncations map onto simple pseudo-value conversions if they are to/from 673 // the FP stack. We have validated that only value-preserving truncations make 674 // it through isel. 675 def : Pat<(f32 (fround RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP32)>, 676 Requires<[FPStackf32]>; 677 def : Pat<(f32 (fround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP32)>, 678 Requires<[FPStackf32]>; 679 def : Pat<(f64 (fround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP64)>, 680 Requires<[FPStackf64]>; 681