Home | History | Annotate | Download | only in X86
      1 //===- X86InstrFPStack.td - FPU Instruction Set ------------*- tablegen -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes the X86 x87 FPU instruction set, defining the
     11 // instructions, and properties of the instructions which are needed for code
     12 // generation, machine code emission, and analysis.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 //===----------------------------------------------------------------------===//
     17 // FPStack specific DAG Nodes.
     18 //===----------------------------------------------------------------------===//
     19 
     20 def SDTX86FpGet2    : SDTypeProfile<2, 0, [SDTCisVT<0, f80>, 
     21                                            SDTCisVT<1, f80>]>;
     22 def SDTX86Fld       : SDTypeProfile<1, 2, [SDTCisFP<0>,
     23                                            SDTCisPtrTy<1>, 
     24                                            SDTCisVT<2, OtherVT>]>;
     25 def SDTX86Fst       : SDTypeProfile<0, 3, [SDTCisFP<0>,
     26                                            SDTCisPtrTy<1>, 
     27                                            SDTCisVT<2, OtherVT>]>;
     28 def SDTX86Fild      : SDTypeProfile<1, 2, [SDTCisFP<0>, SDTCisPtrTy<1>,
     29                                            SDTCisVT<2, OtherVT>]>;
     30 def SDTX86Fnstsw    : SDTypeProfile<1, 1, [SDTCisVT<0, i16>, SDTCisVT<1, i16>]>;
     31 def SDTX86FpToIMem  : SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisPtrTy<1>]>;
     32 
     33 def SDTX86CwdStore  : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
     34 
     35 def X86fld          : SDNode<"X86ISD::FLD", SDTX86Fld,
     36                              [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
     37 def X86fst          : SDNode<"X86ISD::FST", SDTX86Fst,
     38                              [SDNPHasChain, SDNPInGlue, SDNPMayStore,
     39                               SDNPMemOperand]>;
     40 def X86fild         : SDNode<"X86ISD::FILD", SDTX86Fild,
     41                              [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
     42 def X86fildflag     : SDNode<"X86ISD::FILD_FLAG", SDTX86Fild,
     43                              [SDNPHasChain, SDNPOutGlue, SDNPMayLoad,
     44                               SDNPMemOperand]>;
     45 def X86fp_stsw      : SDNode<"X86ISD::FNSTSW16r", SDTX86Fnstsw>;
     46 def X86fp_to_i16mem : SDNode<"X86ISD::FP_TO_INT16_IN_MEM", SDTX86FpToIMem,
     47                              [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
     48 def X86fp_to_i32mem : SDNode<"X86ISD::FP_TO_INT32_IN_MEM", SDTX86FpToIMem,
     49                              [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
     50 def X86fp_to_i64mem : SDNode<"X86ISD::FP_TO_INT64_IN_MEM", SDTX86FpToIMem,
     51                              [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
     52 def X86fp_cwd_get16 : SDNode<"X86ISD::FNSTCW16m",          SDTX86CwdStore,
     53                              [SDNPHasChain, SDNPMayStore, SDNPSideEffect,
     54                               SDNPMemOperand]>;
     55 
     56 //===----------------------------------------------------------------------===//
     57 // FPStack pattern fragments
     58 //===----------------------------------------------------------------------===//
     59 
     60 def fpimm0 : PatLeaf<(fpimm), [{
     61   return N->isExactlyValue(+0.0);
     62 }]>;
     63 
     64 def fpimmneg0 : PatLeaf<(fpimm), [{
     65   return N->isExactlyValue(-0.0);
     66 }]>;
     67 
     68 def fpimm1 : PatLeaf<(fpimm), [{
     69   return N->isExactlyValue(+1.0);
     70 }]>;
     71 
     72 def fpimmneg1 : PatLeaf<(fpimm), [{
     73   return N->isExactlyValue(-1.0);
     74 }]>;
     75 
     76 // Some 'special' instructions
     77 let usesCustomInserter = 1 in {  // Expanded after instruction selection.
     78   def FP32_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP32:$src),
     79                               [(X86fp_to_i16mem RFP32:$src, addr:$dst)]>;
     80   def FP32_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP32:$src),
     81                               [(X86fp_to_i32mem RFP32:$src, addr:$dst)]>;
     82   def FP32_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP32:$src),
     83                               [(X86fp_to_i64mem RFP32:$src, addr:$dst)]>;
     84   def FP64_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP64:$src),
     85                               [(X86fp_to_i16mem RFP64:$src, addr:$dst)]>;
     86   def FP64_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP64:$src),
     87                               [(X86fp_to_i32mem RFP64:$src, addr:$dst)]>;
     88   def FP64_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP64:$src),
     89                               [(X86fp_to_i64mem RFP64:$src, addr:$dst)]>;
     90   def FP80_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP80:$src),
     91                               [(X86fp_to_i16mem RFP80:$src, addr:$dst)]>;
     92   def FP80_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP80:$src),
     93                               [(X86fp_to_i32mem RFP80:$src, addr:$dst)]>;
     94   def FP80_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP80:$src),
     95                               [(X86fp_to_i64mem RFP80:$src, addr:$dst)]>;
     96 }
     97 
     98 // All FP Stack operations are represented with four instructions here.  The
     99 // first three instructions, generated by the instruction selector, use "RFP32"
    100 // "RFP64" or "RFP80" registers: traditional register files to reference 32-bit,
    101 // 64-bit or 80-bit floating point values.  These sizes apply to the values, 
    102 // not the registers, which are always 80 bits; RFP32, RFP64 and RFP80 can be
    103 // copied to each other without losing information.  These instructions are all
    104 // pseudo instructions and use the "_Fp" suffix.
    105 // In some cases there are additional variants with a mixture of different
    106 // register sizes.
    107 // The second instruction is defined with FPI, which is the actual instruction
    108 // emitted by the assembler.  These use "RST" registers, although frequently
    109 // the actual register(s) used are implicit.  These are always 80 bits.
    110 // The FP stackifier pass converts one to the other after register allocation 
    111 // occurs.
    112 //
    113 // Note that the FpI instruction should have instruction selection info (e.g.
    114 // a pattern) and the FPI instruction should have emission info (e.g. opcode
    115 // encoding and asm printing info).
    116 
    117 // Pseudo Instruction for FP stack return values.
    118 def FpPOP_RETVAL : FpI_<(outs RFP80:$dst), (ins), SpecialFP, []>;
    119 
    120 // FpIf32, FpIf64 - Floating Point Pseudo Instruction template.
    121 // f32 instructions can use SSE1 and are predicated on FPStackf32 == !SSE1.
    122 // f64 instructions can use SSE2 and are predicated on FPStackf64 == !SSE2.
    123 // f80 instructions cannot use SSE and use neither of these.
    124 class FpIf32<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
    125   FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32]>;
    126 class FpIf64<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
    127   FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64]>;
    128 
    129 // Factoring for arithmetic.
    130 multiclass FPBinary_rr<SDNode OpNode> {
    131 // Register op register -> register
    132 // These are separated out because they have no reversed form.
    133 def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), TwoArgFP,
    134                 [(set RFP32:$dst, (OpNode RFP32:$src1, RFP32:$src2))]>;
    135 def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), TwoArgFP,
    136                 [(set RFP64:$dst, (OpNode RFP64:$src1, RFP64:$src2))]>;
    137 def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), TwoArgFP,
    138                 [(set RFP80:$dst, (OpNode RFP80:$src1, RFP80:$src2))]>;
    139 }
    140 // The FopST0 series are not included here because of the irregularities
    141 // in where the 'r' goes in assembly output.
    142 // These instructions cannot address 80-bit memory.
    143 multiclass FPBinary<SDNode OpNode, Format fp, string asmstring> {
    144 // ST(0) = ST(0) + [mem]
    145 def _Fp32m  : FpIf32<(outs RFP32:$dst), 
    146                      (ins RFP32:$src1, f32mem:$src2), OneArgFPRW,
    147                   [(set RFP32:$dst, 
    148                     (OpNode RFP32:$src1, (loadf32 addr:$src2)))]>;
    149 def _Fp64m  : FpIf64<(outs RFP64:$dst), 
    150                      (ins RFP64:$src1, f64mem:$src2), OneArgFPRW,
    151                   [(set RFP64:$dst, 
    152                     (OpNode RFP64:$src1, (loadf64 addr:$src2)))]>;
    153 def _Fp64m32: FpIf64<(outs RFP64:$dst), 
    154                      (ins RFP64:$src1, f32mem:$src2), OneArgFPRW,
    155                   [(set RFP64:$dst, 
    156                     (OpNode RFP64:$src1, (f64 (extloadf32 addr:$src2))))]>;
    157 def _Fp80m32: FpI_<(outs RFP80:$dst), 
    158                    (ins RFP80:$src1, f32mem:$src2), OneArgFPRW,
    159                   [(set RFP80:$dst, 
    160                     (OpNode RFP80:$src1, (f80 (extloadf32 addr:$src2))))]>;
    161 def _Fp80m64: FpI_<(outs RFP80:$dst), 
    162                    (ins RFP80:$src1, f64mem:$src2), OneArgFPRW,
    163                   [(set RFP80:$dst, 
    164                     (OpNode RFP80:$src1, (f80 (extloadf64 addr:$src2))))]>;
    165 def _F32m  : FPI<0xD8, fp, (outs), (ins f32mem:$src), 
    166                  !strconcat("f", asmstring, "{s}\t$src")> { 
    167   let mayLoad = 1; 
    168 }
    169 def _F64m  : FPI<0xDC, fp, (outs), (ins f64mem:$src), 
    170                  !strconcat("f", asmstring, "{l}\t$src")> { 
    171   let mayLoad = 1; 
    172 }
    173 // ST(0) = ST(0) + [memint]
    174 def _FpI16m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i16mem:$src2), 
    175                        OneArgFPRW,
    176                     [(set RFP32:$dst, (OpNode RFP32:$src1,
    177                                        (X86fild addr:$src2, i16)))]>;
    178 def _FpI32m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i32mem:$src2), 
    179                        OneArgFPRW,
    180                     [(set RFP32:$dst, (OpNode RFP32:$src1,
    181                                        (X86fild addr:$src2, i32)))]>;
    182 def _FpI16m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i16mem:$src2), 
    183                        OneArgFPRW,
    184                     [(set RFP64:$dst, (OpNode RFP64:$src1,
    185                                        (X86fild addr:$src2, i16)))]>;
    186 def _FpI32m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i32mem:$src2), 
    187                        OneArgFPRW,
    188                     [(set RFP64:$dst, (OpNode RFP64:$src1,
    189                                        (X86fild addr:$src2, i32)))]>;
    190 def _FpI16m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i16mem:$src2), 
    191                        OneArgFPRW,
    192                     [(set RFP80:$dst, (OpNode RFP80:$src1,
    193                                        (X86fild addr:$src2, i16)))]>;
    194 def _FpI32m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i32mem:$src2), 
    195                        OneArgFPRW,
    196                     [(set RFP80:$dst, (OpNode RFP80:$src1,
    197                                        (X86fild addr:$src2, i32)))]>;
    198 def _FI16m  : FPI<0xDE, fp, (outs), (ins i16mem:$src), 
    199                   !strconcat("fi", asmstring, "{s}\t$src")> { 
    200   let mayLoad = 1; 
    201 }
    202 def _FI32m  : FPI<0xDA, fp, (outs), (ins i32mem:$src), 
    203                   !strconcat("fi", asmstring, "{l}\t$src")> { 
    204   let mayLoad = 1; 
    205 }
    206 }
    207 
    208 let Defs = [FPSW] in {
    209 defm ADD : FPBinary_rr<fadd>;
    210 defm SUB : FPBinary_rr<fsub>;
    211 defm MUL : FPBinary_rr<fmul>;
    212 defm DIV : FPBinary_rr<fdiv>;
    213 defm ADD : FPBinary<fadd, MRM0m, "add">;
    214 defm SUB : FPBinary<fsub, MRM4m, "sub">;
    215 defm SUBR: FPBinary<fsub ,MRM5m, "subr">;
    216 defm MUL : FPBinary<fmul, MRM1m, "mul">;
    217 defm DIV : FPBinary<fdiv, MRM6m, "div">;
    218 defm DIVR: FPBinary<fdiv, MRM7m, "divr">;
    219 }
    220 
    221 class FPST0rInst<bits<8> o, string asm>
    222   : FPI<o, AddRegFrm, (outs), (ins RST:$op), asm>, D8;
    223 class FPrST0Inst<bits<8> o, string asm>
    224   : FPI<o, AddRegFrm, (outs), (ins RST:$op), asm>, DC;
    225 class FPrST0PInst<bits<8> o, string asm>
    226   : FPI<o, AddRegFrm, (outs), (ins RST:$op), asm>, DE;
    227 
    228 // NOTE: GAS and apparently all other AT&T style assemblers have a broken notion
    229 // of some of the 'reverse' forms of the fsub and fdiv instructions.  As such,
    230 // we have to put some 'r's in and take them out of weird places.
    231 def ADD_FST0r   : FPST0rInst <0xC0, "fadd\t$op">;
    232 def ADD_FrST0   : FPrST0Inst <0xC0, "fadd\t{%st(0), $op|$op, ST(0)}">;
    233 def ADD_FPrST0  : FPrST0PInst<0xC0, "faddp\t$op">;
    234 def SUBR_FST0r  : FPST0rInst <0xE8, "fsubr\t$op">;
    235 def SUB_FrST0   : FPrST0Inst <0xE8, "fsub{r}\t{%st(0), $op|$op, ST(0)}">;
    236 def SUB_FPrST0  : FPrST0PInst<0xE8, "fsub{r}p\t$op">;
    237 def SUB_FST0r   : FPST0rInst <0xE0, "fsub\t$op">;
    238 def SUBR_FrST0  : FPrST0Inst <0xE0, "fsub{|r}\t{%st(0), $op|$op, ST(0)}">;
    239 def SUBR_FPrST0 : FPrST0PInst<0xE0, "fsub{|r}p\t$op">;
    240 def MUL_FST0r   : FPST0rInst <0xC8, "fmul\t$op">;
    241 def MUL_FrST0   : FPrST0Inst <0xC8, "fmul\t{%st(0), $op|$op, ST(0)}">;
    242 def MUL_FPrST0  : FPrST0PInst<0xC8, "fmulp\t$op">;
    243 def DIVR_FST0r  : FPST0rInst <0xF8, "fdivr\t$op">;
    244 def DIV_FrST0   : FPrST0Inst <0xF8, "fdiv{r}\t{%st(0), $op|$op, ST(0)}">;
    245 def DIV_FPrST0  : FPrST0PInst<0xF8, "fdiv{r}p\t$op">;
    246 def DIV_FST0r   : FPST0rInst <0xF0, "fdiv\t$op">;
    247 def DIVR_FrST0  : FPrST0Inst <0xF0, "fdiv{|r}\t{%st(0), $op|$op, ST(0)}">;
    248 def DIVR_FPrST0 : FPrST0PInst<0xF0, "fdiv{|r}p\t$op">;
    249 
    250 def COM_FST0r   : FPST0rInst <0xD0, "fcom\t$op">;
    251 def COMP_FST0r  : FPST0rInst <0xD8, "fcomp\t$op">;
    252 
    253 // Unary operations.
    254 multiclass FPUnary<SDNode OpNode, bits<8> opcode, string asmstring> {
    255 def _Fp32  : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), OneArgFPRW,
    256                  [(set RFP32:$dst, (OpNode RFP32:$src))]>;
    257 def _Fp64  : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), OneArgFPRW,
    258                  [(set RFP64:$dst, (OpNode RFP64:$src))]>;
    259 def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src), OneArgFPRW,
    260                  [(set RFP80:$dst, (OpNode RFP80:$src))]>;
    261 def _F     : FPI<opcode, RawFrm, (outs), (ins), asmstring>, D9;
    262 }
    263 
    264 let Defs = [FPSW] in {
    265 defm CHS : FPUnary<fneg, 0xE0, "fchs">;
    266 defm ABS : FPUnary<fabs, 0xE1, "fabs">;
    267 defm SQRT: FPUnary<fsqrt,0xFA, "fsqrt">;
    268 defm SIN : FPUnary<fsin, 0xFE, "fsin">;
    269 defm COS : FPUnary<fcos, 0xFF, "fcos">;
    270 
    271 let neverHasSideEffects = 1 in {
    272 def TST_Fp32  : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>;
    273 def TST_Fp64  : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>;
    274 def TST_Fp80  : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>;
    275 }
    276 def TST_F  : FPI<0xE4, RawFrm, (outs), (ins), "ftst">, D9;
    277 } // Defs = [FPSW]
    278 
    279 // Versions of FP instructions that take a single memory operand.  Added for the
    280 //   disassembler; remove as they are included with patterns elsewhere.
    281 def FCOM32m  : FPI<0xD8, MRM2m, (outs), (ins f32mem:$src), "fcom{s}\t$src">;
    282 def FCOMP32m : FPI<0xD8, MRM3m, (outs), (ins f32mem:$src), "fcomp{s}\t$src">;
    283 
    284 def FLDENVm  : FPI<0xD9, MRM4m, (outs), (ins f32mem:$src), "fldenv\t$src">;
    285 def FSTENVm  : FPI<0xD9, MRM6m, (outs f32mem:$dst), (ins), "fnstenv\t$dst">;
    286 
    287 def FICOM32m : FPI<0xDA, MRM2m, (outs), (ins i32mem:$src), "ficom{l}\t$src">;
    288 def FICOMP32m: FPI<0xDA, MRM3m, (outs), (ins i32mem:$src), "ficomp{l}\t$src">;
    289 
    290 def FCOM64m  : FPI<0xDC, MRM2m, (outs), (ins f64mem:$src), "fcom{l}\t$src">;
    291 def FCOMP64m : FPI<0xDC, MRM3m, (outs), (ins f64mem:$src), "fcomp{l}\t$src">;
    292 
    293 def FRSTORm  : FPI<0xDD, MRM4m, (outs f32mem:$dst), (ins), "frstor\t$dst">;
    294 def FSAVEm   : FPI<0xDD, MRM6m, (outs f32mem:$dst), (ins), "fnsave\t$dst">;
    295 def FNSTSWm  : FPI<0xDD, MRM7m, (outs f32mem:$dst), (ins), "fnstsw\t$dst">;
    296 
    297 def FICOM16m : FPI<0xDE, MRM2m, (outs), (ins i16mem:$src), "ficom{s}\t$src">;
    298 def FICOMP16m: FPI<0xDE, MRM3m, (outs), (ins i16mem:$src), "ficomp{s}\t$src">;
    299 
    300 def FBLDm    : FPI<0xDF, MRM4m, (outs), (ins f32mem:$src), "fbld\t$src">;
    301 def FBSTPm   : FPI<0xDF, MRM6m, (outs f32mem:$dst), (ins), "fbstp\t$dst">;
    302 
    303 // Floating point cmovs.
    304 class FpIf32CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
    305   FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32, HasCMov]>;
    306 class FpIf64CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
    307   FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64, HasCMov]>;
    308 
    309 multiclass FPCMov<PatLeaf cc> {
    310   def _Fp32  : FpIf32CMov<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2),
    311                        CondMovFP,
    312                      [(set RFP32:$dst, (X86cmov RFP32:$src1, RFP32:$src2,
    313                                         cc, EFLAGS))]>;
    314   def _Fp64  : FpIf64CMov<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2),
    315                        CondMovFP,
    316                      [(set RFP64:$dst, (X86cmov RFP64:$src1, RFP64:$src2,
    317                                         cc, EFLAGS))]>;
    318   def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2),
    319                      CondMovFP,
    320                      [(set RFP80:$dst, (X86cmov RFP80:$src1, RFP80:$src2,
    321                                         cc, EFLAGS))]>,
    322                                         Requires<[HasCMov]>;
    323 }
    324 
    325 let Defs = [FPSW] in {
    326 let Uses = [EFLAGS], Constraints = "$src1 = $dst" in {
    327 defm CMOVB  : FPCMov<X86_COND_B>;
    328 defm CMOVBE : FPCMov<X86_COND_BE>;
    329 defm CMOVE  : FPCMov<X86_COND_E>;
    330 defm CMOVP  : FPCMov<X86_COND_P>;
    331 defm CMOVNB : FPCMov<X86_COND_AE>;
    332 defm CMOVNBE: FPCMov<X86_COND_A>;
    333 defm CMOVNE : FPCMov<X86_COND_NE>;
    334 defm CMOVNP : FPCMov<X86_COND_NP>;
    335 } // Uses = [EFLAGS], Constraints = "$src1 = $dst"
    336 
    337 let Predicates = [HasCMov] in {
    338 // These are not factored because there's no clean way to pass DA/DB.
    339 def CMOVB_F  : FPI<0xC0, AddRegFrm, (outs RST:$op), (ins),
    340                   "fcmovb\t{$op, %st(0)|ST(0), $op}">, DA;
    341 def CMOVBE_F : FPI<0xD0, AddRegFrm, (outs RST:$op), (ins),
    342                   "fcmovbe\t{$op, %st(0)|ST(0), $op}">, DA;
    343 def CMOVE_F  : FPI<0xC8, AddRegFrm, (outs RST:$op), (ins),
    344                   "fcmove\t{$op, %st(0)|ST(0), $op}">, DA;
    345 def CMOVP_F  : FPI<0xD8, AddRegFrm, (outs RST:$op), (ins),
    346                   "fcmovu\t {$op, %st(0)|ST(0), $op}">, DA;
    347 def CMOVNB_F : FPI<0xC0, AddRegFrm, (outs RST:$op), (ins),
    348                   "fcmovnb\t{$op, %st(0)|ST(0), $op}">, DB;
    349 def CMOVNBE_F: FPI<0xD0, AddRegFrm, (outs RST:$op), (ins),
    350                   "fcmovnbe\t{$op, %st(0)|ST(0), $op}">, DB;
    351 def CMOVNE_F : FPI<0xC8, AddRegFrm, (outs RST:$op), (ins),
    352                   "fcmovne\t{$op, %st(0)|ST(0), $op}">, DB;
    353 def CMOVNP_F : FPI<0xD8, AddRegFrm, (outs RST:$op), (ins),
    354                   "fcmovnu\t{$op, %st(0)|ST(0), $op}">, DB;
    355 } // Predicates = [HasCMov]
    356 
    357 // Floating point loads & stores.
    358 let canFoldAsLoad = 1 in {
    359 def LD_Fp32m   : FpIf32<(outs RFP32:$dst), (ins f32mem:$src), ZeroArgFP,
    360                   [(set RFP32:$dst, (loadf32 addr:$src))]>;
    361 let isReMaterializable = 1 in
    362   def LD_Fp64m : FpIf64<(outs RFP64:$dst), (ins f64mem:$src), ZeroArgFP,
    363                   [(set RFP64:$dst, (loadf64 addr:$src))]>;
    364 def LD_Fp80m   : FpI_<(outs RFP80:$dst), (ins f80mem:$src), ZeroArgFP,
    365                   [(set RFP80:$dst, (loadf80 addr:$src))]>;
    366 }
    367 def LD_Fp32m64 : FpIf64<(outs RFP64:$dst), (ins f32mem:$src), ZeroArgFP,
    368                   [(set RFP64:$dst, (f64 (extloadf32 addr:$src)))]>;
    369 def LD_Fp64m80 : FpI_<(outs RFP80:$dst), (ins f64mem:$src), ZeroArgFP,
    370                   [(set RFP80:$dst, (f80 (extloadf64 addr:$src)))]>;
    371 def LD_Fp32m80 : FpI_<(outs RFP80:$dst), (ins f32mem:$src), ZeroArgFP,
    372                   [(set RFP80:$dst, (f80 (extloadf32 addr:$src)))]>;
    373 def ILD_Fp16m32: FpIf32<(outs RFP32:$dst), (ins i16mem:$src), ZeroArgFP,
    374                   [(set RFP32:$dst, (X86fild addr:$src, i16))]>;
    375 def ILD_Fp32m32: FpIf32<(outs RFP32:$dst), (ins i32mem:$src), ZeroArgFP,
    376                   [(set RFP32:$dst, (X86fild addr:$src, i32))]>;
    377 def ILD_Fp64m32: FpIf32<(outs RFP32:$dst), (ins i64mem:$src), ZeroArgFP,
    378                   [(set RFP32:$dst, (X86fild addr:$src, i64))]>;
    379 def ILD_Fp16m64: FpIf64<(outs RFP64:$dst), (ins i16mem:$src), ZeroArgFP,
    380                   [(set RFP64:$dst, (X86fild addr:$src, i16))]>;
    381 def ILD_Fp32m64: FpIf64<(outs RFP64:$dst), (ins i32mem:$src), ZeroArgFP,
    382                   [(set RFP64:$dst, (X86fild addr:$src, i32))]>;
    383 def ILD_Fp64m64: FpIf64<(outs RFP64:$dst), (ins i64mem:$src), ZeroArgFP,
    384                   [(set RFP64:$dst, (X86fild addr:$src, i64))]>;
    385 def ILD_Fp16m80: FpI_<(outs RFP80:$dst), (ins i16mem:$src), ZeroArgFP,
    386                   [(set RFP80:$dst, (X86fild addr:$src, i16))]>;
    387 def ILD_Fp32m80: FpI_<(outs RFP80:$dst), (ins i32mem:$src), ZeroArgFP,
    388                   [(set RFP80:$dst, (X86fild addr:$src, i32))]>;
    389 def ILD_Fp64m80: FpI_<(outs RFP80:$dst), (ins i64mem:$src), ZeroArgFP,
    390                   [(set RFP80:$dst, (X86fild addr:$src, i64))]>;
    391 
    392 def ST_Fp32m   : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP,
    393                   [(store RFP32:$src, addr:$op)]>;
    394 def ST_Fp64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP,
    395                   [(truncstoref32 RFP64:$src, addr:$op)]>;
    396 def ST_Fp64m   : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP,
    397                   [(store RFP64:$src, addr:$op)]>;
    398 def ST_Fp80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP,
    399                   [(truncstoref32 RFP80:$src, addr:$op)]>;
    400 def ST_Fp80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP,
    401                   [(truncstoref64 RFP80:$src, addr:$op)]>;
    402 // FST does not support 80-bit memory target; FSTP must be used.
    403 
    404 let mayStore = 1, neverHasSideEffects = 1 in {
    405 def ST_FpP32m    : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, []>;
    406 def ST_FpP64m32  : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, []>;
    407 def ST_FpP64m    : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, []>;
    408 def ST_FpP80m32  : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, []>;
    409 def ST_FpP80m64  : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, []>;
    410 }
    411 def ST_FpP80m    : FpI_<(outs), (ins f80mem:$op, RFP80:$src), OneArgFP,
    412                     [(store RFP80:$src, addr:$op)]>;
    413 let mayStore = 1, neverHasSideEffects = 1 in {
    414 def IST_Fp16m32  : FpIf32<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, []>;
    415 def IST_Fp32m32  : FpIf32<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, []>;
    416 def IST_Fp64m32  : FpIf32<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, []>;
    417 def IST_Fp16m64  : FpIf64<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, []>;
    418 def IST_Fp32m64  : FpIf64<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, []>;
    419 def IST_Fp64m64  : FpIf64<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, []>;
    420 def IST_Fp16m80  : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, []>;
    421 def IST_Fp32m80  : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, []>;
    422 def IST_Fp64m80  : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, []>;
    423 }
    424 
    425 let mayLoad = 1 in {
    426 def LD_F32m   : FPI<0xD9, MRM0m, (outs), (ins f32mem:$src), "fld{s}\t$src",
    427                     IIC_FLD>;
    428 def LD_F64m   : FPI<0xDD, MRM0m, (outs), (ins f64mem:$src), "fld{l}\t$src",
    429                     IIC_FLD>;
    430 def LD_F80m   : FPI<0xDB, MRM5m, (outs), (ins f80mem:$src), "fld{t}\t$src",
    431                     IIC_FLD80>;
    432 def ILD_F16m  : FPI<0xDF, MRM0m, (outs), (ins i16mem:$src), "fild{s}\t$src",
    433                     IIC_FILD>;
    434 def ILD_F32m  : FPI<0xDB, MRM0m, (outs), (ins i32mem:$src), "fild{l}\t$src",
    435                     IIC_FILD>;
    436 def ILD_F64m  : FPI<0xDF, MRM5m, (outs), (ins i64mem:$src), "fild{ll}\t$src",
    437                     IIC_FILD>;
    438 }
    439 let mayStore = 1 in {
    440 def ST_F32m   : FPI<0xD9, MRM2m, (outs), (ins f32mem:$dst), "fst{s}\t$dst",
    441                     IIC_FST>;
    442 def ST_F64m   : FPI<0xDD, MRM2m, (outs), (ins f64mem:$dst), "fst{l}\t$dst",
    443                     IIC_FST>;
    444 def ST_FP32m  : FPI<0xD9, MRM3m, (outs), (ins f32mem:$dst), "fstp{s}\t$dst",
    445                     IIC_FST>;
    446 def ST_FP64m  : FPI<0xDD, MRM3m, (outs), (ins f64mem:$dst), "fstp{l}\t$dst",
    447                     IIC_FST>;
    448 def ST_FP80m  : FPI<0xDB, MRM7m, (outs), (ins f80mem:$dst), "fstp{t}\t$dst",
    449                     IIC_FST80>;
    450 def IST_F16m  : FPI<0xDF, MRM2m, (outs), (ins i16mem:$dst), "fist{s}\t$dst",
    451                     IIC_FIST>;
    452 def IST_F32m  : FPI<0xDB, MRM2m, (outs), (ins i32mem:$dst), "fist{l}\t$dst",
    453                     IIC_FIST>;
    454 def IST_FP16m : FPI<0xDF, MRM3m, (outs), (ins i16mem:$dst), "fistp{s}\t$dst",
    455                     IIC_FIST>;
    456 def IST_FP32m : FPI<0xDB, MRM3m, (outs), (ins i32mem:$dst), "fistp{l}\t$dst",
    457                     IIC_FIST>;
    458 def IST_FP64m : FPI<0xDF, MRM7m, (outs), (ins i64mem:$dst), "fistp{ll}\t$dst",
    459                     IIC_FIST>;
    460 }
    461 
    462 // FISTTP requires SSE3 even though it's a FPStack op.
    463 let Predicates = [HasSSE3] in {
    464 def ISTT_Fp16m32 : FpI_<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP,
    465                     [(X86fp_to_i16mem RFP32:$src, addr:$op)]>;
    466 def ISTT_Fp32m32 : FpI_<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP,
    467                     [(X86fp_to_i32mem RFP32:$src, addr:$op)]>;
    468 def ISTT_Fp64m32 : FpI_<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP,
    469                     [(X86fp_to_i64mem RFP32:$src, addr:$op)]>;
    470 def ISTT_Fp16m64 : FpI_<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP,
    471                     [(X86fp_to_i16mem RFP64:$src, addr:$op)]>;
    472 def ISTT_Fp32m64 : FpI_<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP,
    473                     [(X86fp_to_i32mem RFP64:$src, addr:$op)]>;
    474 def ISTT_Fp64m64 : FpI_<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP,
    475                     [(X86fp_to_i64mem RFP64:$src, addr:$op)]>;
    476 def ISTT_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP,
    477                     [(X86fp_to_i16mem RFP80:$src, addr:$op)]>;
    478 def ISTT_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP,
    479                     [(X86fp_to_i32mem RFP80:$src, addr:$op)]>;
    480 def ISTT_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP,
    481                     [(X86fp_to_i64mem RFP80:$src, addr:$op)]>;
    482 } // Predicates = [HasSSE3]
    483 
    484 let mayStore = 1 in {
    485 def ISTT_FP16m : FPI<0xDF, MRM1m, (outs), (ins i16mem:$dst), "fisttp{s}\t$dst",
    486   IIC_FST>;
    487 def ISTT_FP32m : FPI<0xDB, MRM1m, (outs), (ins i32mem:$dst), "fisttp{l}\t$dst",
    488   IIC_FST>;
    489 def ISTT_FP64m : FPI<0xDD, MRM1m, (outs), (ins i64mem:$dst), 
    490   "fisttp{ll}\t$dst", IIC_FST>;
    491 }
    492 
    493 // FP Stack manipulation instructions.
    494 def LD_Frr   : FPI<0xC0, AddRegFrm, (outs), (ins RST:$op), "fld\t$op",
    495                    IIC_FLD>, D9;
    496 def ST_Frr   : FPI<0xD0, AddRegFrm, (outs), (ins RST:$op), "fst\t$op",
    497                    IIC_FST>, DD;
    498 def ST_FPrr  : FPI<0xD8, AddRegFrm, (outs), (ins RST:$op), "fstp\t$op",
    499                    IIC_FST>, DD;
    500 def XCH_F    : FPI<0xC8, AddRegFrm, (outs), (ins RST:$op), "fxch\t$op",
    501                    IIC_FXCH>, D9;
    502 
    503 // Floating point constant loads.
    504 let isReMaterializable = 1 in {
    505 def LD_Fp032 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
    506                 [(set RFP32:$dst, fpimm0)]>;
    507 def LD_Fp132 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
    508                 [(set RFP32:$dst, fpimm1)]>;
    509 def LD_Fp064 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
    510                 [(set RFP64:$dst, fpimm0)]>;
    511 def LD_Fp164 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
    512                 [(set RFP64:$dst, fpimm1)]>;
    513 def LD_Fp080 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
    514                 [(set RFP80:$dst, fpimm0)]>;
    515 def LD_Fp180 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
    516                 [(set RFP80:$dst, fpimm1)]>;
    517 }
    518 
    519 def LD_F0 : FPI<0xEE, RawFrm, (outs), (ins), "fldz", IIC_FLDZ>, D9;
    520 def LD_F1 : FPI<0xE8, RawFrm, (outs), (ins), "fld1", IIC_FIST>, D9;
    521 
    522 
    523 // Floating point compares.
    524 def UCOM_Fpr32 : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
    525                         [(set FPSW, (trunc (X86cmp RFP32:$lhs, RFP32:$rhs)))]>;
    526 def UCOM_Fpr64 : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
    527                         [(set FPSW, (trunc (X86cmp RFP64:$lhs, RFP64:$rhs)))]>;
    528 def UCOM_Fpr80 : FpI_  <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
    529                         [(set FPSW, (trunc (X86cmp RFP80:$lhs, RFP80:$rhs)))]>;
    530 } // Defs = [FPSW]
    531 
    532 // CC = ST(0) cmp ST(i)
    533 let Defs = [EFLAGS, FPSW] in {
    534 def UCOM_FpIr32: FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
    535                   [(set EFLAGS, (X86cmp RFP32:$lhs, RFP32:$rhs))]>;
    536 def UCOM_FpIr64: FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
    537                   [(set EFLAGS, (X86cmp RFP64:$lhs, RFP64:$rhs))]>;
    538 def UCOM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
    539                   [(set EFLAGS, (X86cmp RFP80:$lhs, RFP80:$rhs))]>;
    540 }
    541 
    542 let Defs = [FPSW], Uses = [ST0] in {
    543 def UCOM_Fr    : FPI<0xE0, AddRegFrm,    // FPSW = cmp ST(0) with ST(i)
    544                     (outs), (ins RST:$reg),
    545                     "fucom\t$reg", IIC_FUCOM>, DD;
    546 def UCOM_FPr   : FPI<0xE8, AddRegFrm,    // FPSW = cmp ST(0) with ST(i), pop
    547                     (outs), (ins RST:$reg),
    548                     "fucomp\t$reg", IIC_FUCOM>, DD;
    549 def UCOM_FPPr  : FPI<0xE9, RawFrm,       // cmp ST(0) with ST(1), pop, pop
    550                     (outs), (ins),
    551                     "fucompp", IIC_FUCOM>, DA;
    552 }
    553 
    554 let Defs = [EFLAGS, FPSW], Uses = [ST0] in {
    555 def UCOM_FIr   : FPI<0xE8, AddRegFrm,     // CC = cmp ST(0) with ST(i)
    556                     (outs), (ins RST:$reg),
    557                     "fucomi\t$reg", IIC_FUCOMI>, DB;
    558 def UCOM_FIPr  : FPI<0xE8, AddRegFrm,     // CC = cmp ST(0) with ST(i), pop
    559                     (outs), (ins RST:$reg),
    560                     "fucompi\t$reg", IIC_FUCOMI>, DF;
    561 }
    562 
    563 let Defs = [EFLAGS, FPSW] in {
    564 def COM_FIr : FPI<0xF0, AddRegFrm, (outs), (ins RST:$reg),
    565                   "fcomi\t$reg", IIC_FCOMI>, DB;
    566 def COM_FIPr : FPI<0xF0, AddRegFrm, (outs), (ins RST:$reg),
    567                    "fcompi\t$reg", IIC_FCOMI>, DF;
    568 }
    569 
    570 // Floating point flag ops.
    571 let Defs = [AX], Uses = [FPSW] in
    572 def FNSTSW16r : I<0xE0, RawFrm,                  // AX = fp flags
    573                   (outs), (ins), "fnstsw %ax",
    574                   [(set AX, (X86fp_stsw FPSW))], IIC_FNSTSW>, DF;
    575 
    576 def FNSTCW16m : I<0xD9, MRM7m,                   // [mem16] = X87 control world
    577                   (outs), (ins i16mem:$dst), "fnstcw\t$dst",
    578                   [(X86fp_cwd_get16 addr:$dst)], IIC_FNSTCW>;
    579                   
    580 let mayLoad = 1 in
    581 def FLDCW16m  : I<0xD9, MRM5m,                   // X87 control world = [mem16]
    582                   (outs), (ins i16mem:$dst), "fldcw\t$dst", [], IIC_FLDCW>;
    583 
    584 // FPU control instructions
    585 let Defs = [FPSW] in
    586 def FNINIT : I<0xE3, RawFrm, (outs), (ins), "fninit", [], IIC_FNINIT>, DB;
    587 def FFREE : FPI<0xC0, AddRegFrm, (outs), (ins RST:$reg),
    588                 "ffree\t$reg", IIC_FFREE>, DD;
    589 
    590 // Clear exceptions
    591 
    592 let Defs = [FPSW] in
    593 def FNCLEX : I<0xE2, RawFrm, (outs), (ins), "fnclex", [], IIC_FNCLEX>, DB;
    594 
    595 // Operandless floating-point instructions for the disassembler.
    596 def WAIT : I<0x9B, RawFrm, (outs), (ins), "wait", [], IIC_WAIT>;
    597 
    598 def FNOP : I<0xD0, RawFrm, (outs), (ins), "fnop", [], IIC_FNOP>, D9;
    599 def FXAM : I<0xE5, RawFrm, (outs), (ins), "fxam", [], IIC_FXAM>, D9;
    600 def FLDL2T : I<0xE9, RawFrm, (outs), (ins), "fldl2t", [], IIC_FLDL>, D9;
    601 def FLDL2E : I<0xEA, RawFrm, (outs), (ins), "fldl2e", [], IIC_FLDL>, D9;
    602 def FLDPI : I<0xEB, RawFrm, (outs), (ins), "fldpi", [], IIC_FLDL>, D9;
    603 def FLDLG2 : I<0xEC, RawFrm, (outs), (ins), "fldlg2", [], IIC_FLDL>, D9;
    604 def FLDLN2 : I<0xED, RawFrm, (outs), (ins), "fldln2", [], IIC_FLDL>, D9;
    605 def F2XM1 : I<0xF0, RawFrm, (outs), (ins), "f2xm1", [], IIC_F2XM1>, D9;
    606 def FYL2X : I<0xF1, RawFrm, (outs), (ins), "fyl2x", [], IIC_FYL2X>, D9;
    607 def FPTAN : I<0xF2, RawFrm, (outs), (ins), "fptan", [], IIC_FPTAN>, D9;
    608 def FPATAN : I<0xF3, RawFrm, (outs), (ins), "fpatan", [], IIC_FPATAN>, D9;
    609 def FXTRACT : I<0xF4, RawFrm, (outs), (ins), "fxtract", [], IIC_FXTRACT>, D9;
    610 def FPREM1 : I<0xF5, RawFrm, (outs), (ins), "fprem1", [], IIC_FPREM1>, D9;
    611 def FDECSTP : I<0xF6, RawFrm, (outs), (ins), "fdecstp", [], IIC_FPSTP>, D9;
    612 def FINCSTP : I<0xF7, RawFrm, (outs), (ins), "fincstp", [], IIC_FPSTP>, D9;
    613 def FPREM : I<0xF8, RawFrm, (outs), (ins), "fprem", [], IIC_FPREM>, D9;
    614 def FYL2XP1 : I<0xF9, RawFrm, (outs), (ins), "fyl2xp1", [], IIC_FYL2XP1>, D9;
    615 def FSINCOS : I<0xFB, RawFrm, (outs), (ins), "fsincos", [], IIC_FSINCOS>, D9;
    616 def FRNDINT : I<0xFC, RawFrm, (outs), (ins), "frndint", [], IIC_FRNDINT>, D9;
    617 def FSCALE : I<0xFD, RawFrm, (outs), (ins), "fscale", [], IIC_FSCALE>, D9;
    618 def FCOMPP : I<0xD9, RawFrm, (outs), (ins), "fcompp", [], IIC_FCOMPP>, DE;
    619 
    620 def FXSAVE : I<0xAE, MRM0m, (outs opaque512mem:$dst), (ins),
    621                "fxsave\t$dst", [], IIC_FXSAVE>, TB;
    622 def FXSAVE64 : I<0xAE, MRM0m, (outs opaque512mem:$dst), (ins),
    623                  "fxsaveq\t$dst", [], IIC_FXSAVE>, TB, REX_W,
    624                  Requires<[In64BitMode]>;
    625 def FXRSTOR : I<0xAE, MRM1m, (outs), (ins opaque512mem:$src),
    626                 "fxrstor\t$src", [], IIC_FXRSTOR>, TB;
    627 def FXRSTOR64 : I<0xAE, MRM1m, (outs), (ins opaque512mem:$src),
    628                   "fxrstorq\t$src", [], IIC_FXRSTOR>, TB, REX_W,
    629                   Requires<[In64BitMode]>;
    630 
    631 //===----------------------------------------------------------------------===//
    632 // Non-Instruction Patterns
    633 //===----------------------------------------------------------------------===//
    634 
    635 // Required for RET of f32 / f64 / f80 values.
    636 def : Pat<(X86fld addr:$src, f32), (LD_Fp32m addr:$src)>;
    637 def : Pat<(X86fld addr:$src, f64), (LD_Fp64m addr:$src)>;
    638 def : Pat<(X86fld addr:$src, f80), (LD_Fp80m addr:$src)>;
    639 
    640 // Required for CALL which return f32 / f64 / f80 values.
    641 def : Pat<(X86fst RFP32:$src, addr:$op, f32), (ST_Fp32m addr:$op, RFP32:$src)>;
    642 def : Pat<(X86fst RFP64:$src, addr:$op, f32), (ST_Fp64m32 addr:$op, 
    643                                                           RFP64:$src)>;
    644 def : Pat<(X86fst RFP64:$src, addr:$op, f64), (ST_Fp64m addr:$op, RFP64:$src)>;
    645 def : Pat<(X86fst RFP80:$src, addr:$op, f32), (ST_Fp80m32 addr:$op, 
    646                                                           RFP80:$src)>;
    647 def : Pat<(X86fst RFP80:$src, addr:$op, f64), (ST_Fp80m64 addr:$op, 
    648                                                           RFP80:$src)>;
    649 def : Pat<(X86fst RFP80:$src, addr:$op, f80), (ST_FpP80m addr:$op,
    650                                                          RFP80:$src)>;
    651 
    652 // Floating point constant -0.0 and -1.0
    653 def : Pat<(f32 fpimmneg0), (CHS_Fp32 (LD_Fp032))>, Requires<[FPStackf32]>;
    654 def : Pat<(f32 fpimmneg1), (CHS_Fp32 (LD_Fp132))>, Requires<[FPStackf32]>;
    655 def : Pat<(f64 fpimmneg0), (CHS_Fp64 (LD_Fp064))>, Requires<[FPStackf64]>;
    656 def : Pat<(f64 fpimmneg1), (CHS_Fp64 (LD_Fp164))>, Requires<[FPStackf64]>;
    657 def : Pat<(f80 fpimmneg0), (CHS_Fp80 (LD_Fp080))>;
    658 def : Pat<(f80 fpimmneg1), (CHS_Fp80 (LD_Fp180))>;
    659 
    660 // Used to conv. i64 to f64 since there isn't a SSE version.
    661 def : Pat<(X86fildflag addr:$src, i64), (ILD_Fp64m64 addr:$src)>;
    662 
    663 // FP extensions map onto simple pseudo-value conversions if they are to/from
    664 // the FP stack.
    665 def : Pat<(f64 (fextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP64)>,
    666           Requires<[FPStackf32]>;
    667 def : Pat<(f80 (fextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP80)>,
    668            Requires<[FPStackf32]>;
    669 def : Pat<(f80 (fextend RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP80)>,
    670            Requires<[FPStackf64]>;
    671 
    672 // FP truncations map onto simple pseudo-value conversions if they are to/from
    673 // the FP stack.  We have validated that only value-preserving truncations make
    674 // it through isel.
    675 def : Pat<(f32 (fround RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP32)>,
    676           Requires<[FPStackf32]>;
    677 def : Pat<(f32 (fround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP32)>,
    678            Requires<[FPStackf32]>;
    679 def : Pat<(f64 (fround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP64)>,
    680            Requires<[FPStackf64]>;
    681