1 //===- X86RegisterInfo.td - Describe the X86 Register File --*- tablegen -*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file describes the X86 Register file, defining the registers themselves, 11 // aliases between the registers, and the register classes built out of the 12 // registers. 13 // 14 //===----------------------------------------------------------------------===// 15 16 class X86Reg<string n, bits<16> Enc, list<Register> subregs = []> : Register<n> { 17 let Namespace = "X86"; 18 let HWEncoding = Enc; 19 let SubRegs = subregs; 20 } 21 22 // Subregister indices. 23 let Namespace = "X86" in { 24 def sub_8bit : SubRegIndex; 25 def sub_8bit_hi : SubRegIndex; 26 def sub_16bit : SubRegIndex; 27 def sub_32bit : SubRegIndex; 28 def sub_xmm : SubRegIndex; 29 } 30 31 //===----------------------------------------------------------------------===// 32 // Register definitions... 33 // 34 35 // In the register alias definitions below, we define which registers alias 36 // which others. We only specify which registers the small registers alias, 37 // because the register file generator is smart enough to figure out that 38 // AL aliases AX if we tell it that AX aliased AL (for example). 39 40 // Dwarf numbering is different for 32-bit and 64-bit, and there are 41 // variations by target as well. Currently the first entry is for X86-64, 42 // second - for EH on X86-32/Darwin and third is 'generic' one (X86-32/Linux 43 // and debug information on X86-32/Darwin) 44 45 // 8-bit registers 46 // Low registers 47 def AL : X86Reg<"al", 0>; 48 def DL : X86Reg<"dl", 2>; 49 def CL : X86Reg<"cl", 1>; 50 def BL : X86Reg<"bl", 3>; 51 52 // High registers. On x86-64, these cannot be used in any instruction 53 // with a REX prefix. 54 def AH : X86Reg<"ah", 4>; 55 def DH : X86Reg<"dh", 6>; 56 def CH : X86Reg<"ch", 5>; 57 def BH : X86Reg<"bh", 7>; 58 59 // X86-64 only, requires REX. 60 let CostPerUse = 1 in { 61 def SIL : X86Reg<"sil", 6>; 62 def DIL : X86Reg<"dil", 7>; 63 def BPL : X86Reg<"bpl", 5>; 64 def SPL : X86Reg<"spl", 4>; 65 def R8B : X86Reg<"r8b", 8>; 66 def R9B : X86Reg<"r9b", 9>; 67 def R10B : X86Reg<"r10b", 10>; 68 def R11B : X86Reg<"r11b", 11>; 69 def R12B : X86Reg<"r12b", 12>; 70 def R13B : X86Reg<"r13b", 13>; 71 def R14B : X86Reg<"r14b", 14>; 72 def R15B : X86Reg<"r15b", 15>; 73 } 74 75 // 16-bit registers 76 let SubRegIndices = [sub_8bit, sub_8bit_hi], CoveredBySubRegs = 1 in { 77 def AX : X86Reg<"ax", 0, [AL,AH]>; 78 def DX : X86Reg<"dx", 2, [DL,DH]>; 79 def CX : X86Reg<"cx", 1, [CL,CH]>; 80 def BX : X86Reg<"bx", 3, [BL,BH]>; 81 } 82 let SubRegIndices = [sub_8bit] in { 83 def SI : X86Reg<"si", 6, [SIL]>; 84 def DI : X86Reg<"di", 7, [DIL]>; 85 def BP : X86Reg<"bp", 5, [BPL]>; 86 def SP : X86Reg<"sp", 4, [SPL]>; 87 } 88 def IP : X86Reg<"ip", 0>; 89 90 // X86-64 only, requires REX. 91 let SubRegIndices = [sub_8bit], CostPerUse = 1 in { 92 def R8W : X86Reg<"r8w", 8, [R8B]>; 93 def R9W : X86Reg<"r9w", 9, [R9B]>; 94 def R10W : X86Reg<"r10w", 10, [R10B]>; 95 def R11W : X86Reg<"r11w", 11, [R11B]>; 96 def R12W : X86Reg<"r12w", 12, [R12B]>; 97 def R13W : X86Reg<"r13w", 13, [R13B]>; 98 def R14W : X86Reg<"r14w", 14, [R14B]>; 99 def R15W : X86Reg<"r15w", 15, [R15B]>; 100 } 101 102 // 32-bit registers 103 let SubRegIndices = [sub_16bit] in { 104 def EAX : X86Reg<"eax", 0, [AX]>, DwarfRegNum<[-2, 0, 0]>; 105 def EDX : X86Reg<"edx", 2, [DX]>, DwarfRegNum<[-2, 2, 2]>; 106 def ECX : X86Reg<"ecx", 1, [CX]>, DwarfRegNum<[-2, 1, 1]>; 107 def EBX : X86Reg<"ebx", 3, [BX]>, DwarfRegNum<[-2, 3, 3]>; 108 def ESI : X86Reg<"esi", 6, [SI]>, DwarfRegNum<[-2, 6, 6]>; 109 def EDI : X86Reg<"edi", 7, [DI]>, DwarfRegNum<[-2, 7, 7]>; 110 def EBP : X86Reg<"ebp", 5, [BP]>, DwarfRegNum<[-2, 4, 5]>; 111 def ESP : X86Reg<"esp", 4, [SP]>, DwarfRegNum<[-2, 5, 4]>; 112 def EIP : X86Reg<"eip", 0, [IP]>, DwarfRegNum<[-2, 8, 8]>; 113 114 // X86-64 only, requires REX 115 let CostPerUse = 1 in { 116 def R8D : X86Reg<"r8d", 8, [R8W]>; 117 def R9D : X86Reg<"r9d", 9, [R9W]>; 118 def R10D : X86Reg<"r10d", 10, [R10W]>; 119 def R11D : X86Reg<"r11d", 11, [R11W]>; 120 def R12D : X86Reg<"r12d", 12, [R12W]>; 121 def R13D : X86Reg<"r13d", 13, [R13W]>; 122 def R14D : X86Reg<"r14d", 14, [R14W]>; 123 def R15D : X86Reg<"r15d", 15, [R15W]>; 124 }} 125 126 // 64-bit registers, X86-64 only 127 let SubRegIndices = [sub_32bit] in { 128 def RAX : X86Reg<"rax", 0, [EAX]>, DwarfRegNum<[0, -2, -2]>; 129 def RDX : X86Reg<"rdx", 2, [EDX]>, DwarfRegNum<[1, -2, -2]>; 130 def RCX : X86Reg<"rcx", 1, [ECX]>, DwarfRegNum<[2, -2, -2]>; 131 def RBX : X86Reg<"rbx", 3, [EBX]>, DwarfRegNum<[3, -2, -2]>; 132 def RSI : X86Reg<"rsi", 6, [ESI]>, DwarfRegNum<[4, -2, -2]>; 133 def RDI : X86Reg<"rdi", 7, [EDI]>, DwarfRegNum<[5, -2, -2]>; 134 def RBP : X86Reg<"rbp", 5, [EBP]>, DwarfRegNum<[6, -2, -2]>; 135 def RSP : X86Reg<"rsp", 4, [ESP]>, DwarfRegNum<[7, -2, -2]>; 136 137 // These also require REX. 138 let CostPerUse = 1 in { 139 def R8 : X86Reg<"r8", 8, [R8D]>, DwarfRegNum<[ 8, -2, -2]>; 140 def R9 : X86Reg<"r9", 9, [R9D]>, DwarfRegNum<[ 9, -2, -2]>; 141 def R10 : X86Reg<"r10", 10, [R10D]>, DwarfRegNum<[10, -2, -2]>; 142 def R11 : X86Reg<"r11", 11, [R11D]>, DwarfRegNum<[11, -2, -2]>; 143 def R12 : X86Reg<"r12", 12, [R12D]>, DwarfRegNum<[12, -2, -2]>; 144 def R13 : X86Reg<"r13", 13, [R13D]>, DwarfRegNum<[13, -2, -2]>; 145 def R14 : X86Reg<"r14", 14, [R14D]>, DwarfRegNum<[14, -2, -2]>; 146 def R15 : X86Reg<"r15", 15, [R15D]>, DwarfRegNum<[15, -2, -2]>; 147 def RIP : X86Reg<"rip", 0, [EIP]>, DwarfRegNum<[16, -2, -2]>; 148 }} 149 150 // MMX Registers. These are actually aliased to ST0 .. ST7 151 def MM0 : X86Reg<"mm0", 0>, DwarfRegNum<[41, 29, 29]>; 152 def MM1 : X86Reg<"mm1", 1>, DwarfRegNum<[42, 30, 30]>; 153 def MM2 : X86Reg<"mm2", 2>, DwarfRegNum<[43, 31, 31]>; 154 def MM3 : X86Reg<"mm3", 3>, DwarfRegNum<[44, 32, 32]>; 155 def MM4 : X86Reg<"mm4", 4>, DwarfRegNum<[45, 33, 33]>; 156 def MM5 : X86Reg<"mm5", 5>, DwarfRegNum<[46, 34, 34]>; 157 def MM6 : X86Reg<"mm6", 6>, DwarfRegNum<[47, 35, 35]>; 158 def MM7 : X86Reg<"mm7", 7>, DwarfRegNum<[48, 36, 36]>; 159 160 // Pseudo Floating Point registers 161 def FP0 : X86Reg<"fp0", 0>; 162 def FP1 : X86Reg<"fp1", 0>; 163 def FP2 : X86Reg<"fp2", 0>; 164 def FP3 : X86Reg<"fp3", 0>; 165 def FP4 : X86Reg<"fp4", 0>; 166 def FP5 : X86Reg<"fp5", 0>; 167 def FP6 : X86Reg<"fp6", 0>; 168 169 // XMM Registers, used by the various SSE instruction set extensions. 170 def XMM0: X86Reg<"xmm0", 0>, DwarfRegNum<[17, 21, 21]>; 171 def XMM1: X86Reg<"xmm1", 1>, DwarfRegNum<[18, 22, 22]>; 172 def XMM2: X86Reg<"xmm2", 2>, DwarfRegNum<[19, 23, 23]>; 173 def XMM3: X86Reg<"xmm3", 3>, DwarfRegNum<[20, 24, 24]>; 174 def XMM4: X86Reg<"xmm4", 4>, DwarfRegNum<[21, 25, 25]>; 175 def XMM5: X86Reg<"xmm5", 5>, DwarfRegNum<[22, 26, 26]>; 176 def XMM6: X86Reg<"xmm6", 6>, DwarfRegNum<[23, 27, 27]>; 177 def XMM7: X86Reg<"xmm7", 7>, DwarfRegNum<[24, 28, 28]>; 178 179 // X86-64 only 180 let CostPerUse = 1 in { 181 def XMM8: X86Reg<"xmm8", 8>, DwarfRegNum<[25, -2, -2]>; 182 def XMM9: X86Reg<"xmm9", 9>, DwarfRegNum<[26, -2, -2]>; 183 def XMM10: X86Reg<"xmm10", 10>, DwarfRegNum<[27, -2, -2]>; 184 def XMM11: X86Reg<"xmm11", 11>, DwarfRegNum<[28, -2, -2]>; 185 def XMM12: X86Reg<"xmm12", 12>, DwarfRegNum<[29, -2, -2]>; 186 def XMM13: X86Reg<"xmm13", 13>, DwarfRegNum<[30, -2, -2]>; 187 def XMM14: X86Reg<"xmm14", 14>, DwarfRegNum<[31, -2, -2]>; 188 def XMM15: X86Reg<"xmm15", 15>, DwarfRegNum<[32, -2, -2]>; 189 } // CostPerUse 190 191 // YMM Registers, used by AVX instructions 192 let SubRegIndices = [sub_xmm] in { 193 def YMM0: X86Reg<"ymm0", 0, [XMM0]>, DwarfRegAlias<XMM0>; 194 def YMM1: X86Reg<"ymm1", 1, [XMM1]>, DwarfRegAlias<XMM1>; 195 def YMM2: X86Reg<"ymm2", 2, [XMM2]>, DwarfRegAlias<XMM2>; 196 def YMM3: X86Reg<"ymm3", 3, [XMM3]>, DwarfRegAlias<XMM3>; 197 def YMM4: X86Reg<"ymm4", 4, [XMM4]>, DwarfRegAlias<XMM4>; 198 def YMM5: X86Reg<"ymm5", 5, [XMM5]>, DwarfRegAlias<XMM5>; 199 def YMM6: X86Reg<"ymm6", 6, [XMM6]>, DwarfRegAlias<XMM6>; 200 def YMM7: X86Reg<"ymm7", 7, [XMM7]>, DwarfRegAlias<XMM7>; 201 def YMM8: X86Reg<"ymm8", 8, [XMM8]>, DwarfRegAlias<XMM8>; 202 def YMM9: X86Reg<"ymm9", 9, [XMM9]>, DwarfRegAlias<XMM9>; 203 def YMM10: X86Reg<"ymm10", 10, [XMM10]>, DwarfRegAlias<XMM10>; 204 def YMM11: X86Reg<"ymm11", 11, [XMM11]>, DwarfRegAlias<XMM11>; 205 def YMM12: X86Reg<"ymm12", 12, [XMM12]>, DwarfRegAlias<XMM12>; 206 def YMM13: X86Reg<"ymm13", 13, [XMM13]>, DwarfRegAlias<XMM13>; 207 def YMM14: X86Reg<"ymm14", 14, [XMM14]>, DwarfRegAlias<XMM14>; 208 def YMM15: X86Reg<"ymm15", 15, [XMM15]>, DwarfRegAlias<XMM15>; 209 } 210 211 class STRegister<string n, bits<16> Enc, list<Register> A> : X86Reg<n, Enc> { 212 let Aliases = A; 213 } 214 215 // Floating point stack registers. These don't map one-to-one to the FP 216 // pseudo registers, but we still mark them as aliasing FP registers. That 217 // way both kinds can be live without exceeding the stack depth. ST registers 218 // are only live around inline assembly. 219 def ST0 : STRegister<"st(0)", 0, []>, DwarfRegNum<[33, 12, 11]>; 220 def ST1 : STRegister<"st(1)", 1, [FP6]>, DwarfRegNum<[34, 13, 12]>; 221 def ST2 : STRegister<"st(2)", 2, [FP5]>, DwarfRegNum<[35, 14, 13]>; 222 def ST3 : STRegister<"st(3)", 3, [FP4]>, DwarfRegNum<[36, 15, 14]>; 223 def ST4 : STRegister<"st(4)", 4, [FP3]>, DwarfRegNum<[37, 16, 15]>; 224 def ST5 : STRegister<"st(5)", 5, [FP2]>, DwarfRegNum<[38, 17, 16]>; 225 def ST6 : STRegister<"st(6)", 6, [FP1]>, DwarfRegNum<[39, 18, 17]>; 226 def ST7 : STRegister<"st(7)", 7, [FP0]>, DwarfRegNum<[40, 19, 18]>; 227 228 // Floating-point status word 229 def FPSW : X86Reg<"fpsw", 0>; 230 231 // Status flags register 232 def EFLAGS : X86Reg<"flags", 0>; 233 234 // Segment registers 235 def CS : X86Reg<"cs", 1>; 236 def DS : X86Reg<"ds", 3>; 237 def SS : X86Reg<"ss", 2>; 238 def ES : X86Reg<"es", 0>; 239 def FS : X86Reg<"fs", 4>; 240 def GS : X86Reg<"gs", 5>; 241 242 // Debug registers 243 def DR0 : X86Reg<"dr0", 0>; 244 def DR1 : X86Reg<"dr1", 1>; 245 def DR2 : X86Reg<"dr2", 2>; 246 def DR3 : X86Reg<"dr3", 3>; 247 def DR4 : X86Reg<"dr4", 4>; 248 def DR5 : X86Reg<"dr5", 5>; 249 def DR6 : X86Reg<"dr6", 6>; 250 def DR7 : X86Reg<"dr7", 7>; 251 252 // Control registers 253 def CR0 : X86Reg<"cr0", 0>; 254 def CR1 : X86Reg<"cr1", 1>; 255 def CR2 : X86Reg<"cr2", 2>; 256 def CR3 : X86Reg<"cr3", 3>; 257 def CR4 : X86Reg<"cr4", 4>; 258 def CR5 : X86Reg<"cr5", 5>; 259 def CR6 : X86Reg<"cr6", 6>; 260 def CR7 : X86Reg<"cr7", 7>; 261 def CR8 : X86Reg<"cr8", 8>; 262 def CR9 : X86Reg<"cr9", 9>; 263 def CR10 : X86Reg<"cr10", 10>; 264 def CR11 : X86Reg<"cr11", 11>; 265 def CR12 : X86Reg<"cr12", 12>; 266 def CR13 : X86Reg<"cr13", 13>; 267 def CR14 : X86Reg<"cr14", 14>; 268 def CR15 : X86Reg<"cr15", 15>; 269 270 // Pseudo index registers 271 def EIZ : X86Reg<"eiz", 4>; 272 def RIZ : X86Reg<"riz", 4>; 273 274 275 //===----------------------------------------------------------------------===// 276 // Register Class Definitions... now that we have all of the pieces, define the 277 // top-level register classes. The order specified in the register list is 278 // implicitly defined to be the register allocation order. 279 // 280 281 // List call-clobbered registers before callee-save registers. RBX, RBP, (and 282 // R12, R13, R14, and R15 for X86-64) are callee-save registers. 283 // In 64-mode, there are 12 additional i8 registers, SIL, DIL, BPL, SPL, and 284 // R8B, ... R15B. 285 // Allocate R12 and R13 last, as these require an extra byte when 286 // encoded in x86_64 instructions. 287 // FIXME: Allow AH, CH, DH, BH to be used as general-purpose registers in 288 // 64-bit mode. The main complication is that they cannot be encoded in an 289 // instruction requiring a REX prefix, while SIL, DIL, BPL, R8D, etc. 290 // require a REX prefix. For example, "addb %ah, %dil" and "movzbl %ah, %r8d" 291 // cannot be encoded. 292 def GR8 : RegisterClass<"X86", [i8], 8, 293 (add AL, CL, DL, AH, CH, DH, BL, BH, SIL, DIL, BPL, SPL, 294 R8B, R9B, R10B, R11B, R14B, R15B, R12B, R13B)> { 295 let AltOrders = [(sub GR8, AH, BH, CH, DH)]; 296 let AltOrderSelect = [{ 297 return MF.getTarget().getSubtarget<X86Subtarget>().is64Bit(); 298 }]; 299 } 300 301 def GR16 : RegisterClass<"X86", [i16], 16, 302 (add AX, CX, DX, SI, DI, BX, BP, SP, 303 R8W, R9W, R10W, R11W, R14W, R15W, R12W, R13W)>; 304 305 def GR32 : RegisterClass<"X86", [i32], 32, 306 (add EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP, 307 R8D, R9D, R10D, R11D, R14D, R15D, R12D, R13D)>; 308 309 // GR64 - 64-bit GPRs. This oddly includes RIP, which isn't accurate, since 310 // RIP isn't really a register and it can't be used anywhere except in an 311 // address, but it doesn't cause trouble. 312 def GR64 : RegisterClass<"X86", [i64], 64, 313 (add RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11, 314 RBX, R14, R15, R12, R13, RBP, RSP, RIP)>; 315 316 // Segment registers for use by MOV instructions (and others) that have a 317 // segment register as one operand. Always contain a 16-bit segment 318 // descriptor. 319 def SEGMENT_REG : RegisterClass<"X86", [i16], 16, (add CS, DS, SS, ES, FS, GS)>; 320 321 // Debug registers. 322 def DEBUG_REG : RegisterClass<"X86", [i32], 32, (sequence "DR%u", 0, 7)>; 323 324 // Control registers. 325 def CONTROL_REG : RegisterClass<"X86", [i64], 64, (sequence "CR%u", 0, 15)>; 326 327 // GR8_ABCD_L, GR8_ABCD_H, GR16_ABCD, GR32_ABCD, GR64_ABCD - Subclasses of 328 // GR8, GR16, GR32, and GR64 which contain just the "a" "b", "c", and "d" 329 // registers. On x86-32, GR16_ABCD and GR32_ABCD are classes for registers 330 // that support 8-bit subreg operations. On x86-64, GR16_ABCD, GR32_ABCD, 331 // and GR64_ABCD are classes for registers that support 8-bit h-register 332 // operations. 333 def GR8_ABCD_L : RegisterClass<"X86", [i8], 8, (add AL, CL, DL, BL)>; 334 def GR8_ABCD_H : RegisterClass<"X86", [i8], 8, (add AH, CH, DH, BH)>; 335 def GR16_ABCD : RegisterClass<"X86", [i16], 16, (add AX, CX, DX, BX)>; 336 def GR32_ABCD : RegisterClass<"X86", [i32], 32, (add EAX, ECX, EDX, EBX)>; 337 def GR64_ABCD : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX, RBX)>; 338 def GR32_TC : RegisterClass<"X86", [i32], 32, (add EAX, ECX, EDX)>; 339 def GR64_TC : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX, RSI, RDI, 340 R8, R9, R11, RIP)>; 341 def GR64_TCW64 : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX, 342 R8, R9, R11)>; 343 344 // GR8_NOREX - GR8 registers which do not require a REX prefix. 345 def GR8_NOREX : RegisterClass<"X86", [i8], 8, 346 (add AL, CL, DL, AH, CH, DH, BL, BH)> { 347 let AltOrders = [(sub GR8_NOREX, AH, BH, CH, DH)]; 348 let AltOrderSelect = [{ 349 return MF.getTarget().getSubtarget<X86Subtarget>().is64Bit(); 350 }]; 351 } 352 // GR16_NOREX - GR16 registers which do not require a REX prefix. 353 def GR16_NOREX : RegisterClass<"X86", [i16], 16, 354 (add AX, CX, DX, SI, DI, BX, BP, SP)>; 355 // GR32_NOREX - GR32 registers which do not require a REX prefix. 356 def GR32_NOREX : RegisterClass<"X86", [i32], 32, 357 (add EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP)>; 358 // GR64_NOREX - GR64 registers which do not require a REX prefix. 359 def GR64_NOREX : RegisterClass<"X86", [i64], 64, 360 (add RAX, RCX, RDX, RSI, RDI, RBX, RBP, RSP, RIP)>; 361 362 // GR32_NOAX - GR32 registers except EAX. Used by AddRegFrm of XCHG32 in 64-bit 363 // mode to prevent encoding using the 0x90 NOP encoding. xchg %eax, %eax needs 364 // to clear upper 32-bits of RAX so is not a NOP. 365 def GR32_NOAX : RegisterClass<"X86", [i32], 32, (sub GR32, EAX)>; 366 367 // GR32_NOSP - GR32 registers except ESP. 368 def GR32_NOSP : RegisterClass<"X86", [i32], 32, (sub GR32, ESP)>; 369 370 // GR64_NOSP - GR64 registers except RSP (and RIP). 371 def GR64_NOSP : RegisterClass<"X86", [i64], 64, (sub GR64, RSP, RIP)>; 372 373 // GR32_NOREX_NOSP - GR32 registers which do not require a REX prefix except 374 // ESP. 375 def GR32_NOREX_NOSP : RegisterClass<"X86", [i32], 32, 376 (and GR32_NOREX, GR32_NOSP)>; 377 378 // GR64_NOREX_NOSP - GR64_NOREX registers except RSP. 379 def GR64_NOREX_NOSP : RegisterClass<"X86", [i64], 64, 380 (and GR64_NOREX, GR64_NOSP)>; 381 382 // A class to support the 'A' assembler constraint: EAX then EDX. 383 def GR32_AD : RegisterClass<"X86", [i32], 32, (add EAX, EDX)>; 384 385 // Scalar SSE2 floating point registers. 386 def FR32 : RegisterClass<"X86", [f32], 32, (sequence "XMM%u", 0, 15)>; 387 388 def FR64 : RegisterClass<"X86", [f64], 64, (add FR32)>; 389 390 391 // FIXME: This sets up the floating point register files as though they are f64 392 // values, though they really are f80 values. This will cause us to spill 393 // values as 64-bit quantities instead of 80-bit quantities, which is much much 394 // faster on common hardware. In reality, this should be controlled by a 395 // command line option or something. 396 397 def RFP32 : RegisterClass<"X86",[f32], 32, (sequence "FP%u", 0, 6)>; 398 def RFP64 : RegisterClass<"X86",[f64], 32, (add RFP32)>; 399 def RFP80 : RegisterClass<"X86",[f80], 32, (add RFP32)>; 400 401 // Floating point stack registers (these are not allocatable by the 402 // register allocator - the floating point stackifier is responsible 403 // for transforming FPn allocations to STn registers) 404 def RST : RegisterClass<"X86", [f80, f64, f32], 32, (sequence "ST%u", 0, 7)> { 405 let isAllocatable = 0; 406 } 407 408 // Generic vector registers: VR64 and VR128. 409 def VR64: RegisterClass<"X86", [x86mmx], 64, (sequence "MM%u", 0, 7)>; 410 def VR128 : RegisterClass<"X86", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 411 128, (add FR32)>; 412 def VR256 : RegisterClass<"X86", [v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], 413 256, (sequence "YMM%u", 0, 15)>; 414 415 // Status flags registers. 416 def CCR : RegisterClass<"X86", [i32], 32, (add EFLAGS)> { 417 let CopyCost = -1; // Don't allow copying of status registers. 418 let isAllocatable = 0; 419 } 420 def FPCCR : RegisterClass<"X86", [i16], 16, (add FPSW)> { 421 let CopyCost = -1; // Don't allow copying of status registers. 422 let isAllocatable = 0; 423 } 424