Home | History | Annotate | Download | only in Scalar
      1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This transformation analyzes and transforms the induction variables (and
     11 // computations derived from them) into simpler forms suitable for subsequent
     12 // analysis and transformation.
     13 //
     14 // If the trip count of a loop is computable, this pass also makes the following
     15 // changes:
     16 //   1. The exit condition for the loop is canonicalized to compare the
     17 //      induction value against the exit value.  This turns loops like:
     18 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
     19 //   2. Any use outside of the loop of an expression derived from the indvar
     20 //      is changed to compute the derived value outside of the loop, eliminating
     21 //      the dependence on the exit value of the induction variable.  If the only
     22 //      purpose of the loop is to compute the exit value of some derived
     23 //      expression, this transformation will make the loop dead.
     24 //
     25 //===----------------------------------------------------------------------===//
     26 
     27 #define DEBUG_TYPE "indvars"
     28 #include "llvm/Transforms/Scalar.h"
     29 #include "llvm/ADT/DenseMap.h"
     30 #include "llvm/ADT/SmallVector.h"
     31 #include "llvm/ADT/Statistic.h"
     32 #include "llvm/Analysis/Dominators.h"
     33 #include "llvm/Analysis/LoopInfo.h"
     34 #include "llvm/Analysis/LoopPass.h"
     35 #include "llvm/Analysis/ScalarEvolutionExpander.h"
     36 #include "llvm/IR/BasicBlock.h"
     37 #include "llvm/IR/Constants.h"
     38 #include "llvm/IR/DataLayout.h"
     39 #include "llvm/IR/Instructions.h"
     40 #include "llvm/IR/IntrinsicInst.h"
     41 #include "llvm/IR/LLVMContext.h"
     42 #include "llvm/IR/Type.h"
     43 #include "llvm/Support/CFG.h"
     44 #include "llvm/Support/CommandLine.h"
     45 #include "llvm/Support/Debug.h"
     46 #include "llvm/Support/raw_ostream.h"
     47 #include "llvm/Target/TargetLibraryInfo.h"
     48 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     49 #include "llvm/Transforms/Utils/Local.h"
     50 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
     51 using namespace llvm;
     52 
     53 STATISTIC(NumWidened     , "Number of indvars widened");
     54 STATISTIC(NumReplaced    , "Number of exit values replaced");
     55 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
     56 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
     57 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
     58 
     59 // Trip count verification can be enabled by default under NDEBUG if we
     60 // implement a strong expression equivalence checker in SCEV. Until then, we
     61 // use the verify-indvars flag, which may assert in some cases.
     62 static cl::opt<bool> VerifyIndvars(
     63   "verify-indvars", cl::Hidden,
     64   cl::desc("Verify the ScalarEvolution result after running indvars"));
     65 
     66 namespace {
     67   class IndVarSimplify : public LoopPass {
     68     LoopInfo        *LI;
     69     ScalarEvolution *SE;
     70     DominatorTree   *DT;
     71     DataLayout      *TD;
     72     TargetLibraryInfo *TLI;
     73 
     74     SmallVector<WeakVH, 16> DeadInsts;
     75     bool Changed;
     76   public:
     77 
     78     static char ID; // Pass identification, replacement for typeid
     79     IndVarSimplify() : LoopPass(ID), LI(0), SE(0), DT(0), TD(0),
     80                        Changed(false) {
     81       initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
     82     }
     83 
     84     virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
     85 
     86     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     87       AU.addRequired<DominatorTree>();
     88       AU.addRequired<LoopInfo>();
     89       AU.addRequired<ScalarEvolution>();
     90       AU.addRequiredID(LoopSimplifyID);
     91       AU.addRequiredID(LCSSAID);
     92       AU.addPreserved<ScalarEvolution>();
     93       AU.addPreservedID(LoopSimplifyID);
     94       AU.addPreservedID(LCSSAID);
     95       AU.setPreservesCFG();
     96     }
     97 
     98   private:
     99     virtual void releaseMemory() {
    100       DeadInsts.clear();
    101     }
    102 
    103     bool isValidRewrite(Value *FromVal, Value *ToVal);
    104 
    105     void HandleFloatingPointIV(Loop *L, PHINode *PH);
    106     void RewriteNonIntegerIVs(Loop *L);
    107 
    108     void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM);
    109 
    110     void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
    111 
    112     Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
    113                                      PHINode *IndVar, SCEVExpander &Rewriter);
    114 
    115     void SinkUnusedInvariants(Loop *L);
    116   };
    117 }
    118 
    119 char IndVarSimplify::ID = 0;
    120 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
    121                 "Induction Variable Simplification", false, false)
    122 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
    123 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
    124 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
    125 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
    126 INITIALIZE_PASS_DEPENDENCY(LCSSA)
    127 INITIALIZE_PASS_END(IndVarSimplify, "indvars",
    128                 "Induction Variable Simplification", false, false)
    129 
    130 Pass *llvm::createIndVarSimplifyPass() {
    131   return new IndVarSimplify();
    132 }
    133 
    134 /// isValidRewrite - Return true if the SCEV expansion generated by the
    135 /// rewriter can replace the original value. SCEV guarantees that it
    136 /// produces the same value, but the way it is produced may be illegal IR.
    137 /// Ideally, this function will only be called for verification.
    138 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
    139   // If an SCEV expression subsumed multiple pointers, its expansion could
    140   // reassociate the GEP changing the base pointer. This is illegal because the
    141   // final address produced by a GEP chain must be inbounds relative to its
    142   // underlying object. Otherwise basic alias analysis, among other things,
    143   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
    144   // producing an expression involving multiple pointers. Until then, we must
    145   // bail out here.
    146   //
    147   // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
    148   // because it understands lcssa phis while SCEV does not.
    149   Value *FromPtr = FromVal;
    150   Value *ToPtr = ToVal;
    151   if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
    152     FromPtr = GEP->getPointerOperand();
    153   }
    154   if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
    155     ToPtr = GEP->getPointerOperand();
    156   }
    157   if (FromPtr != FromVal || ToPtr != ToVal) {
    158     // Quickly check the common case
    159     if (FromPtr == ToPtr)
    160       return true;
    161 
    162     // SCEV may have rewritten an expression that produces the GEP's pointer
    163     // operand. That's ok as long as the pointer operand has the same base
    164     // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
    165     // base of a recurrence. This handles the case in which SCEV expansion
    166     // converts a pointer type recurrence into a nonrecurrent pointer base
    167     // indexed by an integer recurrence.
    168 
    169     // If the GEP base pointer is a vector of pointers, abort.
    170     if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
    171       return false;
    172 
    173     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
    174     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
    175     if (FromBase == ToBase)
    176       return true;
    177 
    178     DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
    179           << *FromBase << " != " << *ToBase << "\n");
    180 
    181     return false;
    182   }
    183   return true;
    184 }
    185 
    186 /// Determine the insertion point for this user. By default, insert immediately
    187 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
    188 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
    189 /// common dominator for the incoming blocks.
    190 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
    191                                           DominatorTree *DT) {
    192   PHINode *PHI = dyn_cast<PHINode>(User);
    193   if (!PHI)
    194     return User;
    195 
    196   Instruction *InsertPt = 0;
    197   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
    198     if (PHI->getIncomingValue(i) != Def)
    199       continue;
    200 
    201     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
    202     if (!InsertPt) {
    203       InsertPt = InsertBB->getTerminator();
    204       continue;
    205     }
    206     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
    207     InsertPt = InsertBB->getTerminator();
    208   }
    209   assert(InsertPt && "Missing phi operand");
    210   assert((!isa<Instruction>(Def) ||
    211           DT->dominates(cast<Instruction>(Def), InsertPt)) &&
    212          "def does not dominate all uses");
    213   return InsertPt;
    214 }
    215 
    216 //===----------------------------------------------------------------------===//
    217 // RewriteNonIntegerIVs and helpers. Prefer integer IVs.
    218 //===----------------------------------------------------------------------===//
    219 
    220 /// ConvertToSInt - Convert APF to an integer, if possible.
    221 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
    222   bool isExact = false;
    223   // See if we can convert this to an int64_t
    224   uint64_t UIntVal;
    225   if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
    226                            &isExact) != APFloat::opOK || !isExact)
    227     return false;
    228   IntVal = UIntVal;
    229   return true;
    230 }
    231 
    232 /// HandleFloatingPointIV - If the loop has floating induction variable
    233 /// then insert corresponding integer induction variable if possible.
    234 /// For example,
    235 /// for(double i = 0; i < 10000; ++i)
    236 ///   bar(i)
    237 /// is converted into
    238 /// for(int i = 0; i < 10000; ++i)
    239 ///   bar((double)i);
    240 ///
    241 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
    242   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
    243   unsigned BackEdge     = IncomingEdge^1;
    244 
    245   // Check incoming value.
    246   ConstantFP *InitValueVal =
    247     dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
    248 
    249   int64_t InitValue;
    250   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
    251     return;
    252 
    253   // Check IV increment. Reject this PN if increment operation is not
    254   // an add or increment value can not be represented by an integer.
    255   BinaryOperator *Incr =
    256     dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
    257   if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
    258 
    259   // If this is not an add of the PHI with a constantfp, or if the constant fp
    260   // is not an integer, bail out.
    261   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
    262   int64_t IncValue;
    263   if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
    264       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
    265     return;
    266 
    267   // Check Incr uses. One user is PN and the other user is an exit condition
    268   // used by the conditional terminator.
    269   Value::use_iterator IncrUse = Incr->use_begin();
    270   Instruction *U1 = cast<Instruction>(*IncrUse++);
    271   if (IncrUse == Incr->use_end()) return;
    272   Instruction *U2 = cast<Instruction>(*IncrUse++);
    273   if (IncrUse != Incr->use_end()) return;
    274 
    275   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
    276   // only used by a branch, we can't transform it.
    277   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
    278   if (!Compare)
    279     Compare = dyn_cast<FCmpInst>(U2);
    280   if (Compare == 0 || !Compare->hasOneUse() ||
    281       !isa<BranchInst>(Compare->use_back()))
    282     return;
    283 
    284   BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
    285 
    286   // We need to verify that the branch actually controls the iteration count
    287   // of the loop.  If not, the new IV can overflow and no one will notice.
    288   // The branch block must be in the loop and one of the successors must be out
    289   // of the loop.
    290   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
    291   if (!L->contains(TheBr->getParent()) ||
    292       (L->contains(TheBr->getSuccessor(0)) &&
    293        L->contains(TheBr->getSuccessor(1))))
    294     return;
    295 
    296 
    297   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
    298   // transform it.
    299   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
    300   int64_t ExitValue;
    301   if (ExitValueVal == 0 ||
    302       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
    303     return;
    304 
    305   // Find new predicate for integer comparison.
    306   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
    307   switch (Compare->getPredicate()) {
    308   default: return;  // Unknown comparison.
    309   case CmpInst::FCMP_OEQ:
    310   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
    311   case CmpInst::FCMP_ONE:
    312   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
    313   case CmpInst::FCMP_OGT:
    314   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
    315   case CmpInst::FCMP_OGE:
    316   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
    317   case CmpInst::FCMP_OLT:
    318   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
    319   case CmpInst::FCMP_OLE:
    320   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
    321   }
    322 
    323   // We convert the floating point induction variable to a signed i32 value if
    324   // we can.  This is only safe if the comparison will not overflow in a way
    325   // that won't be trapped by the integer equivalent operations.  Check for this
    326   // now.
    327   // TODO: We could use i64 if it is native and the range requires it.
    328 
    329   // The start/stride/exit values must all fit in signed i32.
    330   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
    331     return;
    332 
    333   // If not actually striding (add x, 0.0), avoid touching the code.
    334   if (IncValue == 0)
    335     return;
    336 
    337   // Positive and negative strides have different safety conditions.
    338   if (IncValue > 0) {
    339     // If we have a positive stride, we require the init to be less than the
    340     // exit value.
    341     if (InitValue >= ExitValue)
    342       return;
    343 
    344     uint32_t Range = uint32_t(ExitValue-InitValue);
    345     // Check for infinite loop, either:
    346     // while (i <= Exit) or until (i > Exit)
    347     if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
    348       if (++Range == 0) return;  // Range overflows.
    349     }
    350 
    351     unsigned Leftover = Range % uint32_t(IncValue);
    352 
    353     // If this is an equality comparison, we require that the strided value
    354     // exactly land on the exit value, otherwise the IV condition will wrap
    355     // around and do things the fp IV wouldn't.
    356     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
    357         Leftover != 0)
    358       return;
    359 
    360     // If the stride would wrap around the i32 before exiting, we can't
    361     // transform the IV.
    362     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
    363       return;
    364 
    365   } else {
    366     // If we have a negative stride, we require the init to be greater than the
    367     // exit value.
    368     if (InitValue <= ExitValue)
    369       return;
    370 
    371     uint32_t Range = uint32_t(InitValue-ExitValue);
    372     // Check for infinite loop, either:
    373     // while (i >= Exit) or until (i < Exit)
    374     if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
    375       if (++Range == 0) return;  // Range overflows.
    376     }
    377 
    378     unsigned Leftover = Range % uint32_t(-IncValue);
    379 
    380     // If this is an equality comparison, we require that the strided value
    381     // exactly land on the exit value, otherwise the IV condition will wrap
    382     // around and do things the fp IV wouldn't.
    383     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
    384         Leftover != 0)
    385       return;
    386 
    387     // If the stride would wrap around the i32 before exiting, we can't
    388     // transform the IV.
    389     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
    390       return;
    391   }
    392 
    393   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
    394 
    395   // Insert new integer induction variable.
    396   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
    397   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
    398                       PN->getIncomingBlock(IncomingEdge));
    399 
    400   Value *NewAdd =
    401     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
    402                               Incr->getName()+".int", Incr);
    403   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
    404 
    405   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
    406                                       ConstantInt::get(Int32Ty, ExitValue),
    407                                       Compare->getName());
    408 
    409   // In the following deletions, PN may become dead and may be deleted.
    410   // Use a WeakVH to observe whether this happens.
    411   WeakVH WeakPH = PN;
    412 
    413   // Delete the old floating point exit comparison.  The branch starts using the
    414   // new comparison.
    415   NewCompare->takeName(Compare);
    416   Compare->replaceAllUsesWith(NewCompare);
    417   RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
    418 
    419   // Delete the old floating point increment.
    420   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
    421   RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
    422 
    423   // If the FP induction variable still has uses, this is because something else
    424   // in the loop uses its value.  In order to canonicalize the induction
    425   // variable, we chose to eliminate the IV and rewrite it in terms of an
    426   // int->fp cast.
    427   //
    428   // We give preference to sitofp over uitofp because it is faster on most
    429   // platforms.
    430   if (WeakPH) {
    431     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
    432                                  PN->getParent()->getFirstInsertionPt());
    433     PN->replaceAllUsesWith(Conv);
    434     RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
    435   }
    436   Changed = true;
    437 }
    438 
    439 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
    440   // First step.  Check to see if there are any floating-point recurrences.
    441   // If there are, change them into integer recurrences, permitting analysis by
    442   // the SCEV routines.
    443   //
    444   BasicBlock *Header = L->getHeader();
    445 
    446   SmallVector<WeakVH, 8> PHIs;
    447   for (BasicBlock::iterator I = Header->begin();
    448        PHINode *PN = dyn_cast<PHINode>(I); ++I)
    449     PHIs.push_back(PN);
    450 
    451   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
    452     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
    453       HandleFloatingPointIV(L, PN);
    454 
    455   // If the loop previously had floating-point IV, ScalarEvolution
    456   // may not have been able to compute a trip count. Now that we've done some
    457   // re-writing, the trip count may be computable.
    458   if (Changed)
    459     SE->forgetLoop(L);
    460 }
    461 
    462 //===----------------------------------------------------------------------===//
    463 // RewriteLoopExitValues - Optimize IV users outside the loop.
    464 // As a side effect, reduces the amount of IV processing within the loop.
    465 //===----------------------------------------------------------------------===//
    466 
    467 /// RewriteLoopExitValues - Check to see if this loop has a computable
    468 /// loop-invariant execution count.  If so, this means that we can compute the
    469 /// final value of any expressions that are recurrent in the loop, and
    470 /// substitute the exit values from the loop into any instructions outside of
    471 /// the loop that use the final values of the current expressions.
    472 ///
    473 /// This is mostly redundant with the regular IndVarSimplify activities that
    474 /// happen later, except that it's more powerful in some cases, because it's
    475 /// able to brute-force evaluate arbitrary instructions as long as they have
    476 /// constant operands at the beginning of the loop.
    477 void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
    478   // Verify the input to the pass in already in LCSSA form.
    479   assert(L->isLCSSAForm(*DT));
    480 
    481   SmallVector<BasicBlock*, 8> ExitBlocks;
    482   L->getUniqueExitBlocks(ExitBlocks);
    483 
    484   // Find all values that are computed inside the loop, but used outside of it.
    485   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
    486   // the exit blocks of the loop to find them.
    487   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
    488     BasicBlock *ExitBB = ExitBlocks[i];
    489 
    490     // If there are no PHI nodes in this exit block, then no values defined
    491     // inside the loop are used on this path, skip it.
    492     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
    493     if (!PN) continue;
    494 
    495     unsigned NumPreds = PN->getNumIncomingValues();
    496 
    497     // Iterate over all of the PHI nodes.
    498     BasicBlock::iterator BBI = ExitBB->begin();
    499     while ((PN = dyn_cast<PHINode>(BBI++))) {
    500       if (PN->use_empty())
    501         continue; // dead use, don't replace it
    502 
    503       // SCEV only supports integer expressions for now.
    504       if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
    505         continue;
    506 
    507       // It's necessary to tell ScalarEvolution about this explicitly so that
    508       // it can walk the def-use list and forget all SCEVs, as it may not be
    509       // watching the PHI itself. Once the new exit value is in place, there
    510       // may not be a def-use connection between the loop and every instruction
    511       // which got a SCEVAddRecExpr for that loop.
    512       SE->forgetValue(PN);
    513 
    514       // Iterate over all of the values in all the PHI nodes.
    515       for (unsigned i = 0; i != NumPreds; ++i) {
    516         // If the value being merged in is not integer or is not defined
    517         // in the loop, skip it.
    518         Value *InVal = PN->getIncomingValue(i);
    519         if (!isa<Instruction>(InVal))
    520           continue;
    521 
    522         // If this pred is for a subloop, not L itself, skip it.
    523         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
    524           continue; // The Block is in a subloop, skip it.
    525 
    526         // Check that InVal is defined in the loop.
    527         Instruction *Inst = cast<Instruction>(InVal);
    528         if (!L->contains(Inst))
    529           continue;
    530 
    531         // Okay, this instruction has a user outside of the current loop
    532         // and varies predictably *inside* the loop.  Evaluate the value it
    533         // contains when the loop exits, if possible.
    534         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
    535         if (!SE->isLoopInvariant(ExitValue, L))
    536           continue;
    537 
    538         Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
    539 
    540         DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
    541                      << "  LoopVal = " << *Inst << "\n");
    542 
    543         if (!isValidRewrite(Inst, ExitVal)) {
    544           DeadInsts.push_back(ExitVal);
    545           continue;
    546         }
    547         Changed = true;
    548         ++NumReplaced;
    549 
    550         PN->setIncomingValue(i, ExitVal);
    551 
    552         // If this instruction is dead now, delete it. Don't do it now to avoid
    553         // invalidating iterators.
    554         if (isInstructionTriviallyDead(Inst, TLI))
    555           DeadInsts.push_back(Inst);
    556 
    557         if (NumPreds == 1) {
    558           // Completely replace a single-pred PHI. This is safe, because the
    559           // NewVal won't be variant in the loop, so we don't need an LCSSA phi
    560           // node anymore.
    561           PN->replaceAllUsesWith(ExitVal);
    562           PN->eraseFromParent();
    563         }
    564       }
    565       if (NumPreds != 1) {
    566         // Clone the PHI and delete the original one. This lets IVUsers and
    567         // any other maps purge the original user from their records.
    568         PHINode *NewPN = cast<PHINode>(PN->clone());
    569         NewPN->takeName(PN);
    570         NewPN->insertBefore(PN);
    571         PN->replaceAllUsesWith(NewPN);
    572         PN->eraseFromParent();
    573       }
    574     }
    575   }
    576 
    577   // The insertion point instruction may have been deleted; clear it out
    578   // so that the rewriter doesn't trip over it later.
    579   Rewriter.clearInsertPoint();
    580 }
    581 
    582 //===----------------------------------------------------------------------===//
    583 //  IV Widening - Extend the width of an IV to cover its widest uses.
    584 //===----------------------------------------------------------------------===//
    585 
    586 namespace {
    587   // Collect information about induction variables that are used by sign/zero
    588   // extend operations. This information is recorded by CollectExtend and
    589   // provides the input to WidenIV.
    590   struct WideIVInfo {
    591     PHINode *NarrowIV;
    592     Type *WidestNativeType; // Widest integer type created [sz]ext
    593     bool IsSigned;          // Was an sext user seen before a zext?
    594 
    595     WideIVInfo() : NarrowIV(0), WidestNativeType(0), IsSigned(false) {}
    596   };
    597 
    598   class WideIVVisitor : public IVVisitor {
    599     ScalarEvolution *SE;
    600     const DataLayout *TD;
    601 
    602   public:
    603     WideIVInfo WI;
    604 
    605     WideIVVisitor(PHINode *NarrowIV, ScalarEvolution *SCEV,
    606                   const DataLayout *TData) :
    607       SE(SCEV), TD(TData) { WI.NarrowIV = NarrowIV; }
    608 
    609     // Implement the interface used by simplifyUsersOfIV.
    610     virtual void visitCast(CastInst *Cast);
    611   };
    612 }
    613 
    614 /// visitCast - Update information about the induction variable that is
    615 /// extended by this sign or zero extend operation. This is used to determine
    616 /// the final width of the IV before actually widening it.
    617 void WideIVVisitor::visitCast(CastInst *Cast) {
    618   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
    619   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
    620     return;
    621 
    622   Type *Ty = Cast->getType();
    623   uint64_t Width = SE->getTypeSizeInBits(Ty);
    624   if (TD && !TD->isLegalInteger(Width))
    625     return;
    626 
    627   if (!WI.WidestNativeType) {
    628     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
    629     WI.IsSigned = IsSigned;
    630     return;
    631   }
    632 
    633   // We extend the IV to satisfy the sign of its first user, arbitrarily.
    634   if (WI.IsSigned != IsSigned)
    635     return;
    636 
    637   if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
    638     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
    639 }
    640 
    641 namespace {
    642 
    643 /// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
    644 /// WideIV that computes the same value as the Narrow IV def.  This avoids
    645 /// caching Use* pointers.
    646 struct NarrowIVDefUse {
    647   Instruction *NarrowDef;
    648   Instruction *NarrowUse;
    649   Instruction *WideDef;
    650 
    651   NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {}
    652 
    653   NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
    654     NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
    655 };
    656 
    657 /// WidenIV - The goal of this transform is to remove sign and zero extends
    658 /// without creating any new induction variables. To do this, it creates a new
    659 /// phi of the wider type and redirects all users, either removing extends or
    660 /// inserting truncs whenever we stop propagating the type.
    661 ///
    662 class WidenIV {
    663   // Parameters
    664   PHINode *OrigPhi;
    665   Type *WideType;
    666   bool IsSigned;
    667 
    668   // Context
    669   LoopInfo        *LI;
    670   Loop            *L;
    671   ScalarEvolution *SE;
    672   DominatorTree   *DT;
    673 
    674   // Result
    675   PHINode *WidePhi;
    676   Instruction *WideInc;
    677   const SCEV *WideIncExpr;
    678   SmallVectorImpl<WeakVH> &DeadInsts;
    679 
    680   SmallPtrSet<Instruction*,16> Widened;
    681   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
    682 
    683 public:
    684   WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
    685           ScalarEvolution *SEv, DominatorTree *DTree,
    686           SmallVectorImpl<WeakVH> &DI) :
    687     OrigPhi(WI.NarrowIV),
    688     WideType(WI.WidestNativeType),
    689     IsSigned(WI.IsSigned),
    690     LI(LInfo),
    691     L(LI->getLoopFor(OrigPhi->getParent())),
    692     SE(SEv),
    693     DT(DTree),
    694     WidePhi(0),
    695     WideInc(0),
    696     WideIncExpr(0),
    697     DeadInsts(DI) {
    698     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
    699   }
    700 
    701   PHINode *CreateWideIV(SCEVExpander &Rewriter);
    702 
    703 protected:
    704   Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
    705                    Instruction *Use);
    706 
    707   Instruction *CloneIVUser(NarrowIVDefUse DU);
    708 
    709   const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
    710 
    711   const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU);
    712 
    713   Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
    714 
    715   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
    716 };
    717 } // anonymous namespace
    718 
    719 /// isLoopInvariant - Perform a quick domtree based check for loop invariance
    720 /// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
    721 /// gratuitous for this purpose.
    722 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
    723   Instruction *Inst = dyn_cast<Instruction>(V);
    724   if (!Inst)
    725     return true;
    726 
    727   return DT->properlyDominates(Inst->getParent(), L->getHeader());
    728 }
    729 
    730 Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
    731                           Instruction *Use) {
    732   // Set the debug location and conservative insertion point.
    733   IRBuilder<> Builder(Use);
    734   // Hoist the insertion point into loop preheaders as far as possible.
    735   for (const Loop *L = LI->getLoopFor(Use->getParent());
    736        L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
    737        L = L->getParentLoop())
    738     Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
    739 
    740   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
    741                     Builder.CreateZExt(NarrowOper, WideType);
    742 }
    743 
    744 /// CloneIVUser - Instantiate a wide operation to replace a narrow
    745 /// operation. This only needs to handle operations that can evaluation to
    746 /// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
    747 Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
    748   unsigned Opcode = DU.NarrowUse->getOpcode();
    749   switch (Opcode) {
    750   default:
    751     return 0;
    752   case Instruction::Add:
    753   case Instruction::Mul:
    754   case Instruction::UDiv:
    755   case Instruction::Sub:
    756   case Instruction::And:
    757   case Instruction::Or:
    758   case Instruction::Xor:
    759   case Instruction::Shl:
    760   case Instruction::LShr:
    761   case Instruction::AShr:
    762     DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
    763 
    764     // Replace NarrowDef operands with WideDef. Otherwise, we don't know
    765     // anything about the narrow operand yet so must insert a [sz]ext. It is
    766     // probably loop invariant and will be folded or hoisted. If it actually
    767     // comes from a widened IV, it should be removed during a future call to
    768     // WidenIVUse.
    769     Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
    770       getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse);
    771     Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
    772       getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse);
    773 
    774     BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
    775     BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
    776                                                     LHS, RHS,
    777                                                     NarrowBO->getName());
    778     IRBuilder<> Builder(DU.NarrowUse);
    779     Builder.Insert(WideBO);
    780     if (const OverflowingBinaryOperator *OBO =
    781         dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
    782       if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
    783       if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
    784     }
    785     return WideBO;
    786   }
    787 }
    788 
    789 /// No-wrap operations can transfer sign extension of their result to their
    790 /// operands. Generate the SCEV value for the widened operation without
    791 /// actually modifying the IR yet. If the expression after extending the
    792 /// operands is an AddRec for this loop, return it.
    793 const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) {
    794   // Handle the common case of add<nsw/nuw>
    795   if (DU.NarrowUse->getOpcode() != Instruction::Add)
    796     return 0;
    797 
    798   // One operand (NarrowDef) has already been extended to WideDef. Now determine
    799   // if extending the other will lead to a recurrence.
    800   unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
    801   assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
    802 
    803   const SCEV *ExtendOperExpr = 0;
    804   const OverflowingBinaryOperator *OBO =
    805     cast<OverflowingBinaryOperator>(DU.NarrowUse);
    806   if (IsSigned && OBO->hasNoSignedWrap())
    807     ExtendOperExpr = SE->getSignExtendExpr(
    808       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
    809   else if(!IsSigned && OBO->hasNoUnsignedWrap())
    810     ExtendOperExpr = SE->getZeroExtendExpr(
    811       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
    812   else
    813     return 0;
    814 
    815   // When creating this AddExpr, don't apply the current operations NSW or NUW
    816   // flags. This instruction may be guarded by control flow that the no-wrap
    817   // behavior depends on. Non-control-equivalent instructions can be mapped to
    818   // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
    819   // semantics to those operations.
    820   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(
    821     SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr));
    822 
    823   if (!AddRec || AddRec->getLoop() != L)
    824     return 0;
    825   return AddRec;
    826 }
    827 
    828 /// GetWideRecurrence - Is this instruction potentially interesting from
    829 /// IVUsers' perspective after widening it's type? In other words, can the
    830 /// extend be safely hoisted out of the loop with SCEV reducing the value to a
    831 /// recurrence on the same loop. If so, return the sign or zero extended
    832 /// recurrence. Otherwise return NULL.
    833 const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
    834   if (!SE->isSCEVable(NarrowUse->getType()))
    835     return 0;
    836 
    837   const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
    838   if (SE->getTypeSizeInBits(NarrowExpr->getType())
    839       >= SE->getTypeSizeInBits(WideType)) {
    840     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
    841     // index. So don't follow this use.
    842     return 0;
    843   }
    844 
    845   const SCEV *WideExpr = IsSigned ?
    846     SE->getSignExtendExpr(NarrowExpr, WideType) :
    847     SE->getZeroExtendExpr(NarrowExpr, WideType);
    848   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
    849   if (!AddRec || AddRec->getLoop() != L)
    850     return 0;
    851   return AddRec;
    852 }
    853 
    854 /// WidenIVUse - Determine whether an individual user of the narrow IV can be
    855 /// widened. If so, return the wide clone of the user.
    856 Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
    857 
    858   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
    859   if (isa<PHINode>(DU.NarrowUse) &&
    860       LI->getLoopFor(DU.NarrowUse->getParent()) != L)
    861     return 0;
    862 
    863   // Our raison d'etre! Eliminate sign and zero extension.
    864   if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
    865     Value *NewDef = DU.WideDef;
    866     if (DU.NarrowUse->getType() != WideType) {
    867       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
    868       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
    869       if (CastWidth < IVWidth) {
    870         // The cast isn't as wide as the IV, so insert a Trunc.
    871         IRBuilder<> Builder(DU.NarrowUse);
    872         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
    873       }
    874       else {
    875         // A wider extend was hidden behind a narrower one. This may induce
    876         // another round of IV widening in which the intermediate IV becomes
    877         // dead. It should be very rare.
    878         DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
    879               << " not wide enough to subsume " << *DU.NarrowUse << "\n");
    880         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
    881         NewDef = DU.NarrowUse;
    882       }
    883     }
    884     if (NewDef != DU.NarrowUse) {
    885       DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
    886             << " replaced by " << *DU.WideDef << "\n");
    887       ++NumElimExt;
    888       DU.NarrowUse->replaceAllUsesWith(NewDef);
    889       DeadInsts.push_back(DU.NarrowUse);
    890     }
    891     // Now that the extend is gone, we want to expose it's uses for potential
    892     // further simplification. We don't need to directly inform SimplifyIVUsers
    893     // of the new users, because their parent IV will be processed later as a
    894     // new loop phi. If we preserved IVUsers analysis, we would also want to
    895     // push the uses of WideDef here.
    896 
    897     // No further widening is needed. The deceased [sz]ext had done it for us.
    898     return 0;
    899   }
    900 
    901   // Does this user itself evaluate to a recurrence after widening?
    902   const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
    903   if (!WideAddRec) {
    904       WideAddRec = GetExtendedOperandRecurrence(DU);
    905   }
    906   if (!WideAddRec) {
    907     // This user does not evaluate to a recurence after widening, so don't
    908     // follow it. Instead insert a Trunc to kill off the original use,
    909     // eventually isolating the original narrow IV so it can be removed.
    910     IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
    911     Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
    912     DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
    913     return 0;
    914   }
    915   // Assume block terminators cannot evaluate to a recurrence. We can't to
    916   // insert a Trunc after a terminator if there happens to be a critical edge.
    917   assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
    918          "SCEV is not expected to evaluate a block terminator");
    919 
    920   // Reuse the IV increment that SCEVExpander created as long as it dominates
    921   // NarrowUse.
    922   Instruction *WideUse = 0;
    923   if (WideAddRec == WideIncExpr
    924       && Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
    925     WideUse = WideInc;
    926   else {
    927     WideUse = CloneIVUser(DU);
    928     if (!WideUse)
    929       return 0;
    930   }
    931   // Evaluation of WideAddRec ensured that the narrow expression could be
    932   // extended outside the loop without overflow. This suggests that the wide use
    933   // evaluates to the same expression as the extended narrow use, but doesn't
    934   // absolutely guarantee it. Hence the following failsafe check. In rare cases
    935   // where it fails, we simply throw away the newly created wide use.
    936   if (WideAddRec != SE->getSCEV(WideUse)) {
    937     DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
    938           << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
    939     DeadInsts.push_back(WideUse);
    940     return 0;
    941   }
    942 
    943   // Returning WideUse pushes it on the worklist.
    944   return WideUse;
    945 }
    946 
    947 /// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
    948 ///
    949 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
    950   for (Value::use_iterator UI = NarrowDef->use_begin(),
    951          UE = NarrowDef->use_end(); UI != UE; ++UI) {
    952     Instruction *NarrowUse = cast<Instruction>(*UI);
    953 
    954     // Handle data flow merges and bizarre phi cycles.
    955     if (!Widened.insert(NarrowUse))
    956       continue;
    957 
    958     NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef));
    959   }
    960 }
    961 
    962 /// CreateWideIV - Process a single induction variable. First use the
    963 /// SCEVExpander to create a wide induction variable that evaluates to the same
    964 /// recurrence as the original narrow IV. Then use a worklist to forward
    965 /// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
    966 /// interesting IV users, the narrow IV will be isolated for removal by
    967 /// DeleteDeadPHIs.
    968 ///
    969 /// It would be simpler to delete uses as they are processed, but we must avoid
    970 /// invalidating SCEV expressions.
    971 ///
    972 PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
    973   // Is this phi an induction variable?
    974   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
    975   if (!AddRec)
    976     return NULL;
    977 
    978   // Widen the induction variable expression.
    979   const SCEV *WideIVExpr = IsSigned ?
    980     SE->getSignExtendExpr(AddRec, WideType) :
    981     SE->getZeroExtendExpr(AddRec, WideType);
    982 
    983   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
    984          "Expect the new IV expression to preserve its type");
    985 
    986   // Can the IV be extended outside the loop without overflow?
    987   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
    988   if (!AddRec || AddRec->getLoop() != L)
    989     return NULL;
    990 
    991   // An AddRec must have loop-invariant operands. Since this AddRec is
    992   // materialized by a loop header phi, the expression cannot have any post-loop
    993   // operands, so they must dominate the loop header.
    994   assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
    995          SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
    996          && "Loop header phi recurrence inputs do not dominate the loop");
    997 
    998   // The rewriter provides a value for the desired IV expression. This may
    999   // either find an existing phi or materialize a new one. Either way, we
   1000   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
   1001   // of the phi-SCC dominates the loop entry.
   1002   Instruction *InsertPt = L->getHeader()->begin();
   1003   WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
   1004 
   1005   // Remembering the WideIV increment generated by SCEVExpander allows
   1006   // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
   1007   // employ a general reuse mechanism because the call above is the only call to
   1008   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
   1009   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
   1010     WideInc =
   1011       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
   1012     WideIncExpr = SE->getSCEV(WideInc);
   1013   }
   1014 
   1015   DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
   1016   ++NumWidened;
   1017 
   1018   // Traverse the def-use chain using a worklist starting at the original IV.
   1019   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
   1020 
   1021   Widened.insert(OrigPhi);
   1022   pushNarrowIVUsers(OrigPhi, WidePhi);
   1023 
   1024   while (!NarrowIVUsers.empty()) {
   1025     NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
   1026 
   1027     // Process a def-use edge. This may replace the use, so don't hold a
   1028     // use_iterator across it.
   1029     Instruction *WideUse = WidenIVUse(DU, Rewriter);
   1030 
   1031     // Follow all def-use edges from the previous narrow use.
   1032     if (WideUse)
   1033       pushNarrowIVUsers(DU.NarrowUse, WideUse);
   1034 
   1035     // WidenIVUse may have removed the def-use edge.
   1036     if (DU.NarrowDef->use_empty())
   1037       DeadInsts.push_back(DU.NarrowDef);
   1038   }
   1039   return WidePhi;
   1040 }
   1041 
   1042 //===----------------------------------------------------------------------===//
   1043 //  Simplification of IV users based on SCEV evaluation.
   1044 //===----------------------------------------------------------------------===//
   1045 
   1046 
   1047 /// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV
   1048 /// users. Each successive simplification may push more users which may
   1049 /// themselves be candidates for simplification.
   1050 ///
   1051 /// Sign/Zero extend elimination is interleaved with IV simplification.
   1052 ///
   1053 void IndVarSimplify::SimplifyAndExtend(Loop *L,
   1054                                        SCEVExpander &Rewriter,
   1055                                        LPPassManager &LPM) {
   1056   SmallVector<WideIVInfo, 8> WideIVs;
   1057 
   1058   SmallVector<PHINode*, 8> LoopPhis;
   1059   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
   1060     LoopPhis.push_back(cast<PHINode>(I));
   1061   }
   1062   // Each round of simplification iterates through the SimplifyIVUsers worklist
   1063   // for all current phis, then determines whether any IVs can be
   1064   // widened. Widening adds new phis to LoopPhis, inducing another round of
   1065   // simplification on the wide IVs.
   1066   while (!LoopPhis.empty()) {
   1067     // Evaluate as many IV expressions as possible before widening any IVs. This
   1068     // forces SCEV to set no-wrap flags before evaluating sign/zero
   1069     // extension. The first time SCEV attempts to normalize sign/zero extension,
   1070     // the result becomes final. So for the most predictable results, we delay
   1071     // evaluation of sign/zero extend evaluation until needed, and avoid running
   1072     // other SCEV based analysis prior to SimplifyAndExtend.
   1073     do {
   1074       PHINode *CurrIV = LoopPhis.pop_back_val();
   1075 
   1076       // Information about sign/zero extensions of CurrIV.
   1077       WideIVVisitor WIV(CurrIV, SE, TD);
   1078 
   1079       Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &WIV);
   1080 
   1081       if (WIV.WI.WidestNativeType) {
   1082         WideIVs.push_back(WIV.WI);
   1083       }
   1084     } while(!LoopPhis.empty());
   1085 
   1086     for (; !WideIVs.empty(); WideIVs.pop_back()) {
   1087       WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
   1088       if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
   1089         Changed = true;
   1090         LoopPhis.push_back(WidePhi);
   1091       }
   1092     }
   1093   }
   1094 }
   1095 
   1096 //===----------------------------------------------------------------------===//
   1097 //  LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
   1098 //===----------------------------------------------------------------------===//
   1099 
   1100 /// Check for expressions that ScalarEvolution generates to compute
   1101 /// BackedgeTakenInfo. If these expressions have not been reduced, then
   1102 /// expanding them may incur additional cost (albeit in the loop preheader).
   1103 static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
   1104                                 SmallPtrSet<const SCEV*, 8> &Processed,
   1105                                 ScalarEvolution *SE) {
   1106   if (!Processed.insert(S))
   1107     return false;
   1108 
   1109   // If the backedge-taken count is a UDiv, it's very likely a UDiv that
   1110   // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a
   1111   // precise expression, rather than a UDiv from the user's code. If we can't
   1112   // find a UDiv in the code with some simple searching, assume the former and
   1113   // forego rewriting the loop.
   1114   if (isa<SCEVUDivExpr>(S)) {
   1115     ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
   1116     if (!OrigCond) return true;
   1117     const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
   1118     R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
   1119     if (R != S) {
   1120       const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
   1121       L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
   1122       if (L != S)
   1123         return true;
   1124     }
   1125   }
   1126 
   1127   // Recurse past add expressions, which commonly occur in the
   1128   // BackedgeTakenCount. They may already exist in program code, and if not,
   1129   // they are not too expensive rematerialize.
   1130   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
   1131     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
   1132          I != E; ++I) {
   1133       if (isHighCostExpansion(*I, BI, Processed, SE))
   1134         return true;
   1135     }
   1136     return false;
   1137   }
   1138 
   1139   // HowManyLessThans uses a Max expression whenever the loop is not guarded by
   1140   // the exit condition.
   1141   if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
   1142     return true;
   1143 
   1144   // If we haven't recognized an expensive SCEV pattern, assume it's an
   1145   // expression produced by program code.
   1146   return false;
   1147 }
   1148 
   1149 /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
   1150 /// count expression can be safely and cheaply expanded into an instruction
   1151 /// sequence that can be used by LinearFunctionTestReplace.
   1152 ///
   1153 /// TODO: This fails for pointer-type loop counters with greater than one byte
   1154 /// strides, consequently preventing LFTR from running. For the purpose of LFTR
   1155 /// we could skip this check in the case that the LFTR loop counter (chosen by
   1156 /// FindLoopCounter) is also pointer type. Instead, we could directly convert
   1157 /// the loop test to an inequality test by checking the target data's alignment
   1158 /// of element types (given that the initial pointer value originates from or is
   1159 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
   1160 /// However, we don't yet have a strong motivation for converting loop tests
   1161 /// into inequality tests.
   1162 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
   1163   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
   1164   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
   1165       BackedgeTakenCount->isZero())
   1166     return false;
   1167 
   1168   if (!L->getExitingBlock())
   1169     return false;
   1170 
   1171   // Can't rewrite non-branch yet.
   1172   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
   1173   if (!BI)
   1174     return false;
   1175 
   1176   SmallPtrSet<const SCEV*, 8> Processed;
   1177   if (isHighCostExpansion(BackedgeTakenCount, BI, Processed, SE))
   1178     return false;
   1179 
   1180   return true;
   1181 }
   1182 
   1183 /// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
   1184 /// invariant value to the phi.
   1185 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
   1186   Instruction *IncI = dyn_cast<Instruction>(IncV);
   1187   if (!IncI)
   1188     return 0;
   1189 
   1190   switch (IncI->getOpcode()) {
   1191   case Instruction::Add:
   1192   case Instruction::Sub:
   1193     break;
   1194   case Instruction::GetElementPtr:
   1195     // An IV counter must preserve its type.
   1196     if (IncI->getNumOperands() == 2)
   1197       break;
   1198   default:
   1199     return 0;
   1200   }
   1201 
   1202   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
   1203   if (Phi && Phi->getParent() == L->getHeader()) {
   1204     if (isLoopInvariant(IncI->getOperand(1), L, DT))
   1205       return Phi;
   1206     return 0;
   1207   }
   1208   if (IncI->getOpcode() == Instruction::GetElementPtr)
   1209     return 0;
   1210 
   1211   // Allow add/sub to be commuted.
   1212   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
   1213   if (Phi && Phi->getParent() == L->getHeader()) {
   1214     if (isLoopInvariant(IncI->getOperand(0), L, DT))
   1215       return Phi;
   1216   }
   1217   return 0;
   1218 }
   1219 
   1220 /// Return the compare guarding the loop latch, or NULL for unrecognized tests.
   1221 static ICmpInst *getLoopTest(Loop *L) {
   1222   assert(L->getExitingBlock() && "expected loop exit");
   1223 
   1224   BasicBlock *LatchBlock = L->getLoopLatch();
   1225   // Don't bother with LFTR if the loop is not properly simplified.
   1226   if (!LatchBlock)
   1227     return 0;
   1228 
   1229   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
   1230   assert(BI && "expected exit branch");
   1231 
   1232   return dyn_cast<ICmpInst>(BI->getCondition());
   1233 }
   1234 
   1235 /// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
   1236 /// that the current exit test is already sufficiently canonical.
   1237 static bool needsLFTR(Loop *L, DominatorTree *DT) {
   1238   // Do LFTR to simplify the exit condition to an ICMP.
   1239   ICmpInst *Cond = getLoopTest(L);
   1240   if (!Cond)
   1241     return true;
   1242 
   1243   // Do LFTR to simplify the exit ICMP to EQ/NE
   1244   ICmpInst::Predicate Pred = Cond->getPredicate();
   1245   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
   1246     return true;
   1247 
   1248   // Look for a loop invariant RHS
   1249   Value *LHS = Cond->getOperand(0);
   1250   Value *RHS = Cond->getOperand(1);
   1251   if (!isLoopInvariant(RHS, L, DT)) {
   1252     if (!isLoopInvariant(LHS, L, DT))
   1253       return true;
   1254     std::swap(LHS, RHS);
   1255   }
   1256   // Look for a simple IV counter LHS
   1257   PHINode *Phi = dyn_cast<PHINode>(LHS);
   1258   if (!Phi)
   1259     Phi = getLoopPhiForCounter(LHS, L, DT);
   1260 
   1261   if (!Phi)
   1262     return true;
   1263 
   1264   // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
   1265   int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
   1266   if (Idx < 0)
   1267     return true;
   1268 
   1269   // Do LFTR if the exit condition's IV is *not* a simple counter.
   1270   Value *IncV = Phi->getIncomingValue(Idx);
   1271   return Phi != getLoopPhiForCounter(IncV, L, DT);
   1272 }
   1273 
   1274 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
   1275 /// down to checking that all operands are constant and listing instructions
   1276 /// that may hide undef.
   1277 static bool hasConcreteDefImpl(Value *V, SmallPtrSet<Value*, 8> &Visited,
   1278                                unsigned Depth) {
   1279   if (isa<Constant>(V))
   1280     return !isa<UndefValue>(V);
   1281 
   1282   if (Depth >= 6)
   1283     return false;
   1284 
   1285   // Conservatively handle non-constant non-instructions. For example, Arguments
   1286   // may be undef.
   1287   Instruction *I = dyn_cast<Instruction>(V);
   1288   if (!I)
   1289     return false;
   1290 
   1291   // Load and return values may be undef.
   1292   if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
   1293     return false;
   1294 
   1295   // Optimistically handle other instructions.
   1296   for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) {
   1297     if (!Visited.insert(*OI))
   1298       continue;
   1299     if (!hasConcreteDefImpl(*OI, Visited, Depth+1))
   1300       return false;
   1301   }
   1302   return true;
   1303 }
   1304 
   1305 /// Return true if the given value is concrete. We must prove that undef can
   1306 /// never reach it.
   1307 ///
   1308 /// TODO: If we decide that this is a good approach to checking for undef, we
   1309 /// may factor it into a common location.
   1310 static bool hasConcreteDef(Value *V) {
   1311   SmallPtrSet<Value*, 8> Visited;
   1312   Visited.insert(V);
   1313   return hasConcreteDefImpl(V, Visited, 0);
   1314 }
   1315 
   1316 /// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
   1317 /// be rewritten) loop exit test.
   1318 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
   1319   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
   1320   Value *IncV = Phi->getIncomingValue(LatchIdx);
   1321 
   1322   for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end();
   1323        UI != UE; ++UI) {
   1324     if (*UI != Cond && *UI != IncV) return false;
   1325   }
   1326 
   1327   for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end();
   1328        UI != UE; ++UI) {
   1329     if (*UI != Cond && *UI != Phi) return false;
   1330   }
   1331   return true;
   1332 }
   1333 
   1334 /// FindLoopCounter - Find an affine IV in canonical form.
   1335 ///
   1336 /// BECount may be an i8* pointer type. The pointer difference is already
   1337 /// valid count without scaling the address stride, so it remains a pointer
   1338 /// expression as far as SCEV is concerned.
   1339 ///
   1340 /// Currently only valid for LFTR. See the comments on hasConcreteDef below.
   1341 ///
   1342 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
   1343 ///
   1344 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
   1345 /// This is difficult in general for SCEV because of potential overflow. But we
   1346 /// could at least handle constant BECounts.
   1347 static PHINode *
   1348 FindLoopCounter(Loop *L, const SCEV *BECount,
   1349                 ScalarEvolution *SE, DominatorTree *DT, const DataLayout *TD) {
   1350   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
   1351 
   1352   Value *Cond =
   1353     cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
   1354 
   1355   // Loop over all of the PHI nodes, looking for a simple counter.
   1356   PHINode *BestPhi = 0;
   1357   const SCEV *BestInit = 0;
   1358   BasicBlock *LatchBlock = L->getLoopLatch();
   1359   assert(LatchBlock && "needsLFTR should guarantee a loop latch");
   1360 
   1361   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
   1362     PHINode *Phi = cast<PHINode>(I);
   1363     if (!SE->isSCEVable(Phi->getType()))
   1364       continue;
   1365 
   1366     // Avoid comparing an integer IV against a pointer Limit.
   1367     if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
   1368       continue;
   1369 
   1370     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
   1371     if (!AR || AR->getLoop() != L || !AR->isAffine())
   1372       continue;
   1373 
   1374     // AR may be a pointer type, while BECount is an integer type.
   1375     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
   1376     // AR may not be a narrower type, or we may never exit.
   1377     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
   1378     if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth)))
   1379       continue;
   1380 
   1381     const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
   1382     if (!Step || !Step->isOne())
   1383       continue;
   1384 
   1385     int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
   1386     Value *IncV = Phi->getIncomingValue(LatchIdx);
   1387     if (getLoopPhiForCounter(IncV, L, DT) != Phi)
   1388       continue;
   1389 
   1390     // Avoid reusing a potentially undef value to compute other values that may
   1391     // have originally had a concrete definition.
   1392     if (!hasConcreteDef(Phi)) {
   1393       // We explicitly allow unknown phis as long as they are already used by
   1394       // the loop test. In this case we assume that performing LFTR could not
   1395       // increase the number of undef users.
   1396       if (ICmpInst *Cond = getLoopTest(L)) {
   1397         if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT)
   1398             && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
   1399           continue;
   1400         }
   1401       }
   1402     }
   1403     const SCEV *Init = AR->getStart();
   1404 
   1405     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
   1406       // Don't force a live loop counter if another IV can be used.
   1407       if (AlmostDeadIV(Phi, LatchBlock, Cond))
   1408         continue;
   1409 
   1410       // Prefer to count-from-zero. This is a more "canonical" counter form. It
   1411       // also prefers integer to pointer IVs.
   1412       if (BestInit->isZero() != Init->isZero()) {
   1413         if (BestInit->isZero())
   1414           continue;
   1415       }
   1416       // If two IVs both count from zero or both count from nonzero then the
   1417       // narrower is likely a dead phi that has been widened. Use the wider phi
   1418       // to allow the other to be eliminated.
   1419       else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
   1420         continue;
   1421     }
   1422     BestPhi = Phi;
   1423     BestInit = Init;
   1424   }
   1425   return BestPhi;
   1426 }
   1427 
   1428 /// genLoopLimit - Help LinearFunctionTestReplace by generating a value that
   1429 /// holds the RHS of the new loop test.
   1430 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
   1431                            SCEVExpander &Rewriter, ScalarEvolution *SE) {
   1432   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
   1433   assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
   1434   const SCEV *IVInit = AR->getStart();
   1435 
   1436   // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
   1437   // finds a valid pointer IV. Sign extend BECount in order to materialize a
   1438   // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
   1439   // the existing GEPs whenever possible.
   1440   if (IndVar->getType()->isPointerTy()
   1441       && !IVCount->getType()->isPointerTy()) {
   1442 
   1443     Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
   1444     const SCEV *IVOffset = SE->getTruncateOrSignExtend(IVCount, OfsTy);
   1445 
   1446     // Expand the code for the iteration count.
   1447     assert(SE->isLoopInvariant(IVOffset, L) &&
   1448            "Computed iteration count is not loop invariant!");
   1449     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
   1450     Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
   1451 
   1452     Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
   1453     assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
   1454     // We could handle pointer IVs other than i8*, but we need to compensate for
   1455     // gep index scaling. See canExpandBackedgeTakenCount comments.
   1456     assert(SE->getSizeOfExpr(
   1457              cast<PointerType>(GEPBase->getType())->getElementType())->isOne()
   1458            && "unit stride pointer IV must be i8*");
   1459 
   1460     IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
   1461     return Builder.CreateGEP(GEPBase, GEPOffset, "lftr.limit");
   1462   }
   1463   else {
   1464     // In any other case, convert both IVInit and IVCount to integers before
   1465     // comparing. This may result in SCEV expension of pointers, but in practice
   1466     // SCEV will fold the pointer arithmetic away as such:
   1467     // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
   1468     //
   1469     // Valid Cases: (1) both integers is most common; (2) both may be pointers
   1470     // for simple memset-style loops; (3) IVInit is an integer and IVCount is a
   1471     // pointer may occur when enable-iv-rewrite generates a canonical IV on top
   1472     // of case #2.
   1473 
   1474     const SCEV *IVLimit = 0;
   1475     // For unit stride, IVCount = Start + BECount with 2's complement overflow.
   1476     // For non-zero Start, compute IVCount here.
   1477     if (AR->getStart()->isZero())
   1478       IVLimit = IVCount;
   1479     else {
   1480       assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
   1481       const SCEV *IVInit = AR->getStart();
   1482 
   1483       // For integer IVs, truncate the IV before computing IVInit + BECount.
   1484       if (SE->getTypeSizeInBits(IVInit->getType())
   1485           > SE->getTypeSizeInBits(IVCount->getType()))
   1486         IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
   1487 
   1488       IVLimit = SE->getAddExpr(IVInit, IVCount);
   1489     }
   1490     // Expand the code for the iteration count.
   1491     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
   1492     IRBuilder<> Builder(BI);
   1493     assert(SE->isLoopInvariant(IVLimit, L) &&
   1494            "Computed iteration count is not loop invariant!");
   1495     // Ensure that we generate the same type as IndVar, or a smaller integer
   1496     // type. In the presence of null pointer values, we have an integer type
   1497     // SCEV expression (IVInit) for a pointer type IV value (IndVar).
   1498     Type *LimitTy = IVCount->getType()->isPointerTy() ?
   1499       IndVar->getType() : IVCount->getType();
   1500     return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
   1501   }
   1502 }
   1503 
   1504 /// LinearFunctionTestReplace - This method rewrites the exit condition of the
   1505 /// loop to be a canonical != comparison against the incremented loop induction
   1506 /// variable.  This pass is able to rewrite the exit tests of any loop where the
   1507 /// SCEV analysis can determine a loop-invariant trip count of the loop, which
   1508 /// is actually a much broader range than just linear tests.
   1509 Value *IndVarSimplify::
   1510 LinearFunctionTestReplace(Loop *L,
   1511                           const SCEV *BackedgeTakenCount,
   1512                           PHINode *IndVar,
   1513                           SCEVExpander &Rewriter) {
   1514   assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
   1515 
   1516   // LFTR can ignore IV overflow and truncate to the width of
   1517   // BECount. This avoids materializing the add(zext(add)) expression.
   1518   Type *CntTy = BackedgeTakenCount->getType();
   1519 
   1520   const SCEV *IVCount = BackedgeTakenCount;
   1521 
   1522   // If the exiting block is the same as the backedge block, we prefer to
   1523   // compare against the post-incremented value, otherwise we must compare
   1524   // against the preincremented value.
   1525   Value *CmpIndVar;
   1526   if (L->getExitingBlock() == L->getLoopLatch()) {
   1527     // Add one to the "backedge-taken" count to get the trip count.
   1528     // If this addition may overflow, we have to be more pessimistic and
   1529     // cast the induction variable before doing the add.
   1530     const SCEV *N =
   1531       SE->getAddExpr(IVCount, SE->getConstant(IVCount->getType(), 1));
   1532     if (CntTy == IVCount->getType())
   1533       IVCount = N;
   1534     else {
   1535       const SCEV *Zero = SE->getConstant(IVCount->getType(), 0);
   1536       if ((isa<SCEVConstant>(N) && !N->isZero()) ||
   1537           SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
   1538         // No overflow. Cast the sum.
   1539         IVCount = SE->getTruncateOrZeroExtend(N, CntTy);
   1540       } else {
   1541         // Potential overflow. Cast before doing the add.
   1542         IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy);
   1543         IVCount = SE->getAddExpr(IVCount, SE->getConstant(CntTy, 1));
   1544       }
   1545     }
   1546     // The BackedgeTaken expression contains the number of times that the
   1547     // backedge branches to the loop header.  This is one less than the
   1548     // number of times the loop executes, so use the incremented indvar.
   1549     CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
   1550   } else {
   1551     // We must use the preincremented value...
   1552     IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy);
   1553     CmpIndVar = IndVar;
   1554   }
   1555 
   1556   Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
   1557   assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy()
   1558          && "genLoopLimit missed a cast");
   1559 
   1560   // Insert a new icmp_ne or icmp_eq instruction before the branch.
   1561   BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
   1562   ICmpInst::Predicate P;
   1563   if (L->contains(BI->getSuccessor(0)))
   1564     P = ICmpInst::ICMP_NE;
   1565   else
   1566     P = ICmpInst::ICMP_EQ;
   1567 
   1568   DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
   1569                << "      LHS:" << *CmpIndVar << '\n'
   1570                << "       op:\t"
   1571                << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
   1572                << "      RHS:\t" << *ExitCnt << "\n"
   1573                << "  IVCount:\t" << *IVCount << "\n");
   1574 
   1575   IRBuilder<> Builder(BI);
   1576   if (SE->getTypeSizeInBits(CmpIndVar->getType())
   1577       > SE->getTypeSizeInBits(ExitCnt->getType())) {
   1578     CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
   1579                                     "lftr.wideiv");
   1580   }
   1581 
   1582   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
   1583   Value *OrigCond = BI->getCondition();
   1584   // It's tempting to use replaceAllUsesWith here to fully replace the old
   1585   // comparison, but that's not immediately safe, since users of the old
   1586   // comparison may not be dominated by the new comparison. Instead, just
   1587   // update the branch to use the new comparison; in the common case this
   1588   // will make old comparison dead.
   1589   BI->setCondition(Cond);
   1590   DeadInsts.push_back(OrigCond);
   1591 
   1592   ++NumLFTR;
   1593   Changed = true;
   1594   return Cond;
   1595 }
   1596 
   1597 //===----------------------------------------------------------------------===//
   1598 //  SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
   1599 //===----------------------------------------------------------------------===//
   1600 
   1601 /// If there's a single exit block, sink any loop-invariant values that
   1602 /// were defined in the preheader but not used inside the loop into the
   1603 /// exit block to reduce register pressure in the loop.
   1604 void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
   1605   BasicBlock *ExitBlock = L->getExitBlock();
   1606   if (!ExitBlock) return;
   1607 
   1608   BasicBlock *Preheader = L->getLoopPreheader();
   1609   if (!Preheader) return;
   1610 
   1611   Instruction *InsertPt = ExitBlock->getFirstInsertionPt();
   1612   BasicBlock::iterator I = Preheader->getTerminator();
   1613   while (I != Preheader->begin()) {
   1614     --I;
   1615     // New instructions were inserted at the end of the preheader.
   1616     if (isa<PHINode>(I))
   1617       break;
   1618 
   1619     // Don't move instructions which might have side effects, since the side
   1620     // effects need to complete before instructions inside the loop.  Also don't
   1621     // move instructions which might read memory, since the loop may modify
   1622     // memory. Note that it's okay if the instruction might have undefined
   1623     // behavior: LoopSimplify guarantees that the preheader dominates the exit
   1624     // block.
   1625     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
   1626       continue;
   1627 
   1628     // Skip debug info intrinsics.
   1629     if (isa<DbgInfoIntrinsic>(I))
   1630       continue;
   1631 
   1632     // Skip landingpad instructions.
   1633     if (isa<LandingPadInst>(I))
   1634       continue;
   1635 
   1636     // Don't sink alloca: we never want to sink static alloca's out of the
   1637     // entry block, and correctly sinking dynamic alloca's requires
   1638     // checks for stacksave/stackrestore intrinsics.
   1639     // FIXME: Refactor this check somehow?
   1640     if (isa<AllocaInst>(I))
   1641       continue;
   1642 
   1643     // Determine if there is a use in or before the loop (direct or
   1644     // otherwise).
   1645     bool UsedInLoop = false;
   1646     for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
   1647          UI != UE; ++UI) {
   1648       User *U = *UI;
   1649       BasicBlock *UseBB = cast<Instruction>(U)->getParent();
   1650       if (PHINode *P = dyn_cast<PHINode>(U)) {
   1651         unsigned i =
   1652           PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
   1653         UseBB = P->getIncomingBlock(i);
   1654       }
   1655       if (UseBB == Preheader || L->contains(UseBB)) {
   1656         UsedInLoop = true;
   1657         break;
   1658       }
   1659     }
   1660 
   1661     // If there is, the def must remain in the preheader.
   1662     if (UsedInLoop)
   1663       continue;
   1664 
   1665     // Otherwise, sink it to the exit block.
   1666     Instruction *ToMove = I;
   1667     bool Done = false;
   1668 
   1669     if (I != Preheader->begin()) {
   1670       // Skip debug info intrinsics.
   1671       do {
   1672         --I;
   1673       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
   1674 
   1675       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
   1676         Done = true;
   1677     } else {
   1678       Done = true;
   1679     }
   1680 
   1681     ToMove->moveBefore(InsertPt);
   1682     if (Done) break;
   1683     InsertPt = ToMove;
   1684   }
   1685 }
   1686 
   1687 //===----------------------------------------------------------------------===//
   1688 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
   1689 //===----------------------------------------------------------------------===//
   1690 
   1691 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
   1692   // If LoopSimplify form is not available, stay out of trouble. Some notes:
   1693   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
   1694   //    canonicalization can be a pessimization without LSR to "clean up"
   1695   //    afterwards.
   1696   //  - We depend on having a preheader; in particular,
   1697   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
   1698   //    and we're in trouble if we can't find the induction variable even when
   1699   //    we've manually inserted one.
   1700   if (!L->isLoopSimplifyForm())
   1701     return false;
   1702 
   1703   LI = &getAnalysis<LoopInfo>();
   1704   SE = &getAnalysis<ScalarEvolution>();
   1705   DT = &getAnalysis<DominatorTree>();
   1706   TD = getAnalysisIfAvailable<DataLayout>();
   1707   TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
   1708 
   1709   DeadInsts.clear();
   1710   Changed = false;
   1711 
   1712   // If there are any floating-point recurrences, attempt to
   1713   // transform them to use integer recurrences.
   1714   RewriteNonIntegerIVs(L);
   1715 
   1716   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
   1717 
   1718   // Create a rewriter object which we'll use to transform the code with.
   1719   SCEVExpander Rewriter(*SE, "indvars");
   1720 #ifndef NDEBUG
   1721   Rewriter.setDebugType(DEBUG_TYPE);
   1722 #endif
   1723 
   1724   // Eliminate redundant IV users.
   1725   //
   1726   // Simplification works best when run before other consumers of SCEV. We
   1727   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
   1728   // other expressions involving loop IVs have been evaluated. This helps SCEV
   1729   // set no-wrap flags before normalizing sign/zero extension.
   1730   Rewriter.disableCanonicalMode();
   1731   SimplifyAndExtend(L, Rewriter, LPM);
   1732 
   1733   // Check to see if this loop has a computable loop-invariant execution count.
   1734   // If so, this means that we can compute the final value of any expressions
   1735   // that are recurrent in the loop, and substitute the exit values from the
   1736   // loop into any instructions outside of the loop that use the final values of
   1737   // the current expressions.
   1738   //
   1739   if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
   1740     RewriteLoopExitValues(L, Rewriter);
   1741 
   1742   // Eliminate redundant IV cycles.
   1743   NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
   1744 
   1745   // If we have a trip count expression, rewrite the loop's exit condition
   1746   // using it.  We can currently only handle loops with a single exit.
   1747   if (canExpandBackedgeTakenCount(L, SE) && needsLFTR(L, DT)) {
   1748     PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD);
   1749     if (IndVar) {
   1750       // Check preconditions for proper SCEVExpander operation. SCEV does not
   1751       // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
   1752       // pass that uses the SCEVExpander must do it. This does not work well for
   1753       // loop passes because SCEVExpander makes assumptions about all loops, while
   1754       // LoopPassManager only forces the current loop to be simplified.
   1755       //
   1756       // FIXME: SCEV expansion has no way to bail out, so the caller must
   1757       // explicitly check any assumptions made by SCEV. Brittle.
   1758       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
   1759       if (!AR || AR->getLoop()->getLoopPreheader())
   1760         (void)LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
   1761                                         Rewriter);
   1762     }
   1763   }
   1764   // Clear the rewriter cache, because values that are in the rewriter's cache
   1765   // can be deleted in the loop below, causing the AssertingVH in the cache to
   1766   // trigger.
   1767   Rewriter.clear();
   1768 
   1769   // Now that we're done iterating through lists, clean up any instructions
   1770   // which are now dead.
   1771   while (!DeadInsts.empty())
   1772     if (Instruction *Inst =
   1773           dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
   1774       RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
   1775 
   1776   // The Rewriter may not be used from this point on.
   1777 
   1778   // Loop-invariant instructions in the preheader that aren't used in the
   1779   // loop may be sunk below the loop to reduce register pressure.
   1780   SinkUnusedInvariants(L);
   1781 
   1782   // Clean up dead instructions.
   1783   Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
   1784   // Check a post-condition.
   1785   assert(L->isLCSSAForm(*DT) &&
   1786          "Indvars did not leave the loop in lcssa form!");
   1787 
   1788   // Verify that LFTR, and any other change have not interfered with SCEV's
   1789   // ability to compute trip count.
   1790 #ifndef NDEBUG
   1791   if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
   1792     SE->forgetLoop(L);
   1793     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
   1794     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
   1795         SE->getTypeSizeInBits(NewBECount->getType()))
   1796       NewBECount = SE->getTruncateOrNoop(NewBECount,
   1797                                          BackedgeTakenCount->getType());
   1798     else
   1799       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
   1800                                                  NewBECount->getType());
   1801     assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
   1802   }
   1803 #endif
   1804 
   1805   return Changed;
   1806 }
   1807