1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "jump-threading" 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LazyValueInfo.h" 25 #include "llvm/Analysis/Loads.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ValueHandle.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetLibraryInfo.h" 35 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 36 #include "llvm/Transforms/Utils/Local.h" 37 #include "llvm/Transforms/Utils/SSAUpdater.h" 38 using namespace llvm; 39 40 STATISTIC(NumThreads, "Number of jumps threaded"); 41 STATISTIC(NumFolds, "Number of terminators folded"); 42 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 43 44 static cl::opt<unsigned> 45 Threshold("jump-threading-threshold", 46 cl::desc("Max block size to duplicate for jump threading"), 47 cl::init(6), cl::Hidden); 48 49 namespace { 50 // These are at global scope so static functions can use them too. 51 typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo; 52 typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy; 53 54 // This is used to keep track of what kind of constant we're currently hoping 55 // to find. 56 enum ConstantPreference { 57 WantInteger, 58 WantBlockAddress 59 }; 60 61 /// This pass performs 'jump threading', which looks at blocks that have 62 /// multiple predecessors and multiple successors. If one or more of the 63 /// predecessors of the block can be proven to always jump to one of the 64 /// successors, we forward the edge from the predecessor to the successor by 65 /// duplicating the contents of this block. 66 /// 67 /// An example of when this can occur is code like this: 68 /// 69 /// if () { ... 70 /// X = 4; 71 /// } 72 /// if (X < 3) { 73 /// 74 /// In this case, the unconditional branch at the end of the first if can be 75 /// revectored to the false side of the second if. 76 /// 77 class JumpThreading : public FunctionPass { 78 DataLayout *TD; 79 TargetLibraryInfo *TLI; 80 LazyValueInfo *LVI; 81 #ifdef NDEBUG 82 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 83 #else 84 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 85 #endif 86 DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet; 87 88 // RAII helper for updating the recursion stack. 89 struct RecursionSetRemover { 90 DenseSet<std::pair<Value*, BasicBlock*> > &TheSet; 91 std::pair<Value*, BasicBlock*> ThePair; 92 93 RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S, 94 std::pair<Value*, BasicBlock*> P) 95 : TheSet(S), ThePair(P) { } 96 97 ~RecursionSetRemover() { 98 TheSet.erase(ThePair); 99 } 100 }; 101 public: 102 static char ID; // Pass identification 103 JumpThreading() : FunctionPass(ID) { 104 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 105 } 106 107 bool runOnFunction(Function &F); 108 109 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 110 AU.addRequired<LazyValueInfo>(); 111 AU.addPreserved<LazyValueInfo>(); 112 AU.addRequired<TargetLibraryInfo>(); 113 } 114 115 void FindLoopHeaders(Function &F); 116 bool ProcessBlock(BasicBlock *BB); 117 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 118 BasicBlock *SuccBB); 119 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 120 const SmallVectorImpl<BasicBlock *> &PredBBs); 121 122 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 123 PredValueInfo &Result, 124 ConstantPreference Preference); 125 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 126 ConstantPreference Preference); 127 128 bool ProcessBranchOnPHI(PHINode *PN); 129 bool ProcessBranchOnXOR(BinaryOperator *BO); 130 131 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 132 }; 133 } 134 135 char JumpThreading::ID = 0; 136 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 137 "Jump Threading", false, false) 138 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo) 139 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 140 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 141 "Jump Threading", false, false) 142 143 // Public interface to the Jump Threading pass 144 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); } 145 146 /// runOnFunction - Top level algorithm. 147 /// 148 bool JumpThreading::runOnFunction(Function &F) { 149 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 150 TD = getAnalysisIfAvailable<DataLayout>(); 151 TLI = &getAnalysis<TargetLibraryInfo>(); 152 LVI = &getAnalysis<LazyValueInfo>(); 153 154 FindLoopHeaders(F); 155 156 bool Changed, EverChanged = false; 157 do { 158 Changed = false; 159 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 160 BasicBlock *BB = I; 161 // Thread all of the branches we can over this block. 162 while (ProcessBlock(BB)) 163 Changed = true; 164 165 ++I; 166 167 // If the block is trivially dead, zap it. This eliminates the successor 168 // edges which simplifies the CFG. 169 if (pred_begin(BB) == pred_end(BB) && 170 BB != &BB->getParent()->getEntryBlock()) { 171 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 172 << "' with terminator: " << *BB->getTerminator() << '\n'); 173 LoopHeaders.erase(BB); 174 LVI->eraseBlock(BB); 175 DeleteDeadBlock(BB); 176 Changed = true; 177 continue; 178 } 179 180 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 181 182 // Can't thread an unconditional jump, but if the block is "almost 183 // empty", we can replace uses of it with uses of the successor and make 184 // this dead. 185 if (BI && BI->isUnconditional() && 186 BB != &BB->getParent()->getEntryBlock() && 187 // If the terminator is the only non-phi instruction, try to nuke it. 188 BB->getFirstNonPHIOrDbg()->isTerminator()) { 189 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 190 // block, we have to make sure it isn't in the LoopHeaders set. We 191 // reinsert afterward if needed. 192 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 193 BasicBlock *Succ = BI->getSuccessor(0); 194 195 // FIXME: It is always conservatively correct to drop the info 196 // for a block even if it doesn't get erased. This isn't totally 197 // awesome, but it allows us to use AssertingVH to prevent nasty 198 // dangling pointer issues within LazyValueInfo. 199 LVI->eraseBlock(BB); 200 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { 201 Changed = true; 202 // If we deleted BB and BB was the header of a loop, then the 203 // successor is now the header of the loop. 204 BB = Succ; 205 } 206 207 if (ErasedFromLoopHeaders) 208 LoopHeaders.insert(BB); 209 } 210 } 211 EverChanged |= Changed; 212 } while (Changed); 213 214 LoopHeaders.clear(); 215 return EverChanged; 216 } 217 218 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 219 /// thread across it. Stop scanning the block when passing the threshold. 220 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB, 221 unsigned Threshold) { 222 /// Ignore PHI nodes, these will be flattened when duplication happens. 223 BasicBlock::const_iterator I = BB->getFirstNonPHI(); 224 225 // FIXME: THREADING will delete values that are just used to compute the 226 // branch, so they shouldn't count against the duplication cost. 227 228 // Sum up the cost of each instruction until we get to the terminator. Don't 229 // include the terminator because the copy won't include it. 230 unsigned Size = 0; 231 for (; !isa<TerminatorInst>(I); ++I) { 232 233 // Stop scanning the block if we've reached the threshold. 234 if (Size > Threshold) 235 return Size; 236 237 // Debugger intrinsics don't incur code size. 238 if (isa<DbgInfoIntrinsic>(I)) continue; 239 240 // If this is a pointer->pointer bitcast, it is free. 241 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 242 continue; 243 244 // All other instructions count for at least one unit. 245 ++Size; 246 247 // Calls are more expensive. If they are non-intrinsic calls, we model them 248 // as having cost of 4. If they are a non-vector intrinsic, we model them 249 // as having cost of 2 total, and if they are a vector intrinsic, we model 250 // them as having cost 1. 251 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 252 if (CI->hasFnAttr(Attribute::NoDuplicate)) 253 // Blocks with NoDuplicate are modelled as having infinite cost, so they 254 // are never duplicated. 255 return ~0U; 256 else if (!isa<IntrinsicInst>(CI)) 257 Size += 3; 258 else if (!CI->getType()->isVectorTy()) 259 Size += 1; 260 } 261 } 262 263 // Threading through a switch statement is particularly profitable. If this 264 // block ends in a switch, decrease its cost to make it more likely to happen. 265 if (isa<SwitchInst>(I)) 266 Size = Size > 6 ? Size-6 : 0; 267 268 // The same holds for indirect branches, but slightly more so. 269 if (isa<IndirectBrInst>(I)) 270 Size = Size > 8 ? Size-8 : 0; 271 272 return Size; 273 } 274 275 /// FindLoopHeaders - We do not want jump threading to turn proper loop 276 /// structures into irreducible loops. Doing this breaks up the loop nesting 277 /// hierarchy and pessimizes later transformations. To prevent this from 278 /// happening, we first have to find the loop headers. Here we approximate this 279 /// by finding targets of backedges in the CFG. 280 /// 281 /// Note that there definitely are cases when we want to allow threading of 282 /// edges across a loop header. For example, threading a jump from outside the 283 /// loop (the preheader) to an exit block of the loop is definitely profitable. 284 /// It is also almost always profitable to thread backedges from within the loop 285 /// to exit blocks, and is often profitable to thread backedges to other blocks 286 /// within the loop (forming a nested loop). This simple analysis is not rich 287 /// enough to track all of these properties and keep it up-to-date as the CFG 288 /// mutates, so we don't allow any of these transformations. 289 /// 290 void JumpThreading::FindLoopHeaders(Function &F) { 291 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 292 FindFunctionBackedges(F, Edges); 293 294 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 295 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 296 } 297 298 /// getKnownConstant - Helper method to determine if we can thread over a 299 /// terminator with the given value as its condition, and if so what value to 300 /// use for that. What kind of value this is depends on whether we want an 301 /// integer or a block address, but an undef is always accepted. 302 /// Returns null if Val is null or not an appropriate constant. 303 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 304 if (!Val) 305 return 0; 306 307 // Undef is "known" enough. 308 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 309 return U; 310 311 if (Preference == WantBlockAddress) 312 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 313 314 return dyn_cast<ConstantInt>(Val); 315 } 316 317 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 318 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 319 /// in any of our predecessors. If so, return the known list of value and pred 320 /// BB in the result vector. 321 /// 322 /// This returns true if there were any known values. 323 /// 324 bool JumpThreading:: 325 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result, 326 ConstantPreference Preference) { 327 // This method walks up use-def chains recursively. Because of this, we could 328 // get into an infinite loop going around loops in the use-def chain. To 329 // prevent this, keep track of what (value, block) pairs we've already visited 330 // and terminate the search if we loop back to them 331 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 332 return false; 333 334 // An RAII help to remove this pair from the recursion set once the recursion 335 // stack pops back out again. 336 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 337 338 // If V is a constant, then it is known in all predecessors. 339 if (Constant *KC = getKnownConstant(V, Preference)) { 340 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 341 Result.push_back(std::make_pair(KC, *PI)); 342 343 return true; 344 } 345 346 // If V is a non-instruction value, or an instruction in a different block, 347 // then it can't be derived from a PHI. 348 Instruction *I = dyn_cast<Instruction>(V); 349 if (I == 0 || I->getParent() != BB) { 350 351 // Okay, if this is a live-in value, see if it has a known value at the end 352 // of any of our predecessors. 353 // 354 // FIXME: This should be an edge property, not a block end property. 355 /// TODO: Per PR2563, we could infer value range information about a 356 /// predecessor based on its terminator. 357 // 358 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 359 // "I" is a non-local compare-with-a-constant instruction. This would be 360 // able to handle value inequalities better, for example if the compare is 361 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 362 // Perhaps getConstantOnEdge should be smart enough to do this? 363 364 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 365 BasicBlock *P = *PI; 366 // If the value is known by LazyValueInfo to be a constant in a 367 // predecessor, use that information to try to thread this block. 368 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB); 369 if (Constant *KC = getKnownConstant(PredCst, Preference)) 370 Result.push_back(std::make_pair(KC, P)); 371 } 372 373 return !Result.empty(); 374 } 375 376 /// If I is a PHI node, then we know the incoming values for any constants. 377 if (PHINode *PN = dyn_cast<PHINode>(I)) { 378 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 379 Value *InVal = PN->getIncomingValue(i); 380 if (Constant *KC = getKnownConstant(InVal, Preference)) { 381 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 382 } else { 383 Constant *CI = LVI->getConstantOnEdge(InVal, 384 PN->getIncomingBlock(i), BB); 385 if (Constant *KC = getKnownConstant(CI, Preference)) 386 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 387 } 388 } 389 390 return !Result.empty(); 391 } 392 393 PredValueInfoTy LHSVals, RHSVals; 394 395 // Handle some boolean conditions. 396 if (I->getType()->getPrimitiveSizeInBits() == 1) { 397 assert(Preference == WantInteger && "One-bit non-integer type?"); 398 // X | true -> true 399 // X & false -> false 400 if (I->getOpcode() == Instruction::Or || 401 I->getOpcode() == Instruction::And) { 402 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 403 WantInteger); 404 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 405 WantInteger); 406 407 if (LHSVals.empty() && RHSVals.empty()) 408 return false; 409 410 ConstantInt *InterestingVal; 411 if (I->getOpcode() == Instruction::Or) 412 InterestingVal = ConstantInt::getTrue(I->getContext()); 413 else 414 InterestingVal = ConstantInt::getFalse(I->getContext()); 415 416 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 417 418 // Scan for the sentinel. If we find an undef, force it to the 419 // interesting value: x|undef -> true and x&undef -> false. 420 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 421 if (LHSVals[i].first == InterestingVal || 422 isa<UndefValue>(LHSVals[i].first)) { 423 Result.push_back(LHSVals[i]); 424 Result.back().first = InterestingVal; 425 LHSKnownBBs.insert(LHSVals[i].second); 426 } 427 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 428 if (RHSVals[i].first == InterestingVal || 429 isa<UndefValue>(RHSVals[i].first)) { 430 // If we already inferred a value for this block on the LHS, don't 431 // re-add it. 432 if (!LHSKnownBBs.count(RHSVals[i].second)) { 433 Result.push_back(RHSVals[i]); 434 Result.back().first = InterestingVal; 435 } 436 } 437 438 return !Result.empty(); 439 } 440 441 // Handle the NOT form of XOR. 442 if (I->getOpcode() == Instruction::Xor && 443 isa<ConstantInt>(I->getOperand(1)) && 444 cast<ConstantInt>(I->getOperand(1))->isOne()) { 445 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 446 WantInteger); 447 if (Result.empty()) 448 return false; 449 450 // Invert the known values. 451 for (unsigned i = 0, e = Result.size(); i != e; ++i) 452 Result[i].first = ConstantExpr::getNot(Result[i].first); 453 454 return true; 455 } 456 457 // Try to simplify some other binary operator values. 458 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 459 assert(Preference != WantBlockAddress 460 && "A binary operator creating a block address?"); 461 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 462 PredValueInfoTy LHSVals; 463 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 464 WantInteger); 465 466 // Try to use constant folding to simplify the binary operator. 467 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 468 Constant *V = LHSVals[i].first; 469 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 470 471 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 472 Result.push_back(std::make_pair(KC, LHSVals[i].second)); 473 } 474 } 475 476 return !Result.empty(); 477 } 478 479 // Handle compare with phi operand, where the PHI is defined in this block. 480 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 481 assert(Preference == WantInteger && "Compares only produce integers"); 482 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 483 if (PN && PN->getParent() == BB) { 484 // We can do this simplification if any comparisons fold to true or false. 485 // See if any do. 486 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 487 BasicBlock *PredBB = PN->getIncomingBlock(i); 488 Value *LHS = PN->getIncomingValue(i); 489 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 490 491 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD); 492 if (Res == 0) { 493 if (!isa<Constant>(RHS)) 494 continue; 495 496 LazyValueInfo::Tristate 497 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 498 cast<Constant>(RHS), PredBB, BB); 499 if (ResT == LazyValueInfo::Unknown) 500 continue; 501 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 502 } 503 504 if (Constant *KC = getKnownConstant(Res, WantInteger)) 505 Result.push_back(std::make_pair(KC, PredBB)); 506 } 507 508 return !Result.empty(); 509 } 510 511 512 // If comparing a live-in value against a constant, see if we know the 513 // live-in value on any predecessors. 514 if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) { 515 if (!isa<Instruction>(Cmp->getOperand(0)) || 516 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) { 517 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 518 519 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){ 520 BasicBlock *P = *PI; 521 // If the value is known by LazyValueInfo to be a constant in a 522 // predecessor, use that information to try to thread this block. 523 LazyValueInfo::Tristate Res = 524 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 525 RHSCst, P, BB); 526 if (Res == LazyValueInfo::Unknown) 527 continue; 528 529 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 530 Result.push_back(std::make_pair(ResC, P)); 531 } 532 533 return !Result.empty(); 534 } 535 536 // Try to find a constant value for the LHS of a comparison, 537 // and evaluate it statically if we can. 538 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) { 539 PredValueInfoTy LHSVals; 540 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 541 WantInteger); 542 543 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 544 Constant *V = LHSVals[i].first; 545 Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(), 546 V, CmpConst); 547 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 548 Result.push_back(std::make_pair(KC, LHSVals[i].second)); 549 } 550 551 return !Result.empty(); 552 } 553 } 554 } 555 556 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 557 // Handle select instructions where at least one operand is a known constant 558 // and we can figure out the condition value for any predecessor block. 559 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 560 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 561 PredValueInfoTy Conds; 562 if ((TrueVal || FalseVal) && 563 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 564 WantInteger)) { 565 for (unsigned i = 0, e = Conds.size(); i != e; ++i) { 566 Constant *Cond = Conds[i].first; 567 568 // Figure out what value to use for the condition. 569 bool KnownCond; 570 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 571 // A known boolean. 572 KnownCond = CI->isOne(); 573 } else { 574 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 575 // Either operand will do, so be sure to pick the one that's a known 576 // constant. 577 // FIXME: Do this more cleverly if both values are known constants? 578 KnownCond = (TrueVal != 0); 579 } 580 581 // See if the select has a known constant value for this predecessor. 582 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 583 Result.push_back(std::make_pair(Val, Conds[i].second)); 584 } 585 586 return !Result.empty(); 587 } 588 } 589 590 // If all else fails, see if LVI can figure out a constant value for us. 591 Constant *CI = LVI->getConstant(V, BB); 592 if (Constant *KC = getKnownConstant(CI, Preference)) { 593 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 594 Result.push_back(std::make_pair(KC, *PI)); 595 } 596 597 return !Result.empty(); 598 } 599 600 601 602 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 603 /// in an undefined jump, decide which block is best to revector to. 604 /// 605 /// Since we can pick an arbitrary destination, we pick the successor with the 606 /// fewest predecessors. This should reduce the in-degree of the others. 607 /// 608 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 609 TerminatorInst *BBTerm = BB->getTerminator(); 610 unsigned MinSucc = 0; 611 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 612 // Compute the successor with the minimum number of predecessors. 613 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 614 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 615 TestBB = BBTerm->getSuccessor(i); 616 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 617 if (NumPreds < MinNumPreds) { 618 MinSucc = i; 619 MinNumPreds = NumPreds; 620 } 621 } 622 623 return MinSucc; 624 } 625 626 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 627 if (!BB->hasAddressTaken()) return false; 628 629 // If the block has its address taken, it may be a tree of dead constants 630 // hanging off of it. These shouldn't keep the block alive. 631 BlockAddress *BA = BlockAddress::get(BB); 632 BA->removeDeadConstantUsers(); 633 return !BA->use_empty(); 634 } 635 636 /// ProcessBlock - If there are any predecessors whose control can be threaded 637 /// through to a successor, transform them now. 638 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 639 // If the block is trivially dead, just return and let the caller nuke it. 640 // This simplifies other transformations. 641 if (pred_begin(BB) == pred_end(BB) && 642 BB != &BB->getParent()->getEntryBlock()) 643 return false; 644 645 // If this block has a single predecessor, and if that pred has a single 646 // successor, merge the blocks. This encourages recursive jump threading 647 // because now the condition in this block can be threaded through 648 // predecessors of our predecessor block. 649 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 650 if (SinglePred->getTerminator()->getNumSuccessors() == 1 && 651 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 652 // If SinglePred was a loop header, BB becomes one. 653 if (LoopHeaders.erase(SinglePred)) 654 LoopHeaders.insert(BB); 655 656 // Remember if SinglePred was the entry block of the function. If so, we 657 // will need to move BB back to the entry position. 658 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 659 LVI->eraseBlock(SinglePred); 660 MergeBasicBlockIntoOnlyPred(BB); 661 662 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 663 BB->moveBefore(&BB->getParent()->getEntryBlock()); 664 return true; 665 } 666 } 667 668 // What kind of constant we're looking for. 669 ConstantPreference Preference = WantInteger; 670 671 // Look to see if the terminator is a conditional branch, switch or indirect 672 // branch, if not we can't thread it. 673 Value *Condition; 674 Instruction *Terminator = BB->getTerminator(); 675 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 676 // Can't thread an unconditional jump. 677 if (BI->isUnconditional()) return false; 678 Condition = BI->getCondition(); 679 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 680 Condition = SI->getCondition(); 681 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 682 // Can't thread indirect branch with no successors. 683 if (IB->getNumSuccessors() == 0) return false; 684 Condition = IB->getAddress()->stripPointerCasts(); 685 Preference = WantBlockAddress; 686 } else { 687 return false; // Must be an invoke. 688 } 689 690 // Run constant folding to see if we can reduce the condition to a simple 691 // constant. 692 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 693 Value *SimpleVal = ConstantFoldInstruction(I, TD, TLI); 694 if (SimpleVal) { 695 I->replaceAllUsesWith(SimpleVal); 696 I->eraseFromParent(); 697 Condition = SimpleVal; 698 } 699 } 700 701 // If the terminator is branching on an undef, we can pick any of the 702 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 703 if (isa<UndefValue>(Condition)) { 704 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 705 706 // Fold the branch/switch. 707 TerminatorInst *BBTerm = BB->getTerminator(); 708 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 709 if (i == BestSucc) continue; 710 BBTerm->getSuccessor(i)->removePredecessor(BB, true); 711 } 712 713 DEBUG(dbgs() << " In block '" << BB->getName() 714 << "' folding undef terminator: " << *BBTerm << '\n'); 715 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 716 BBTerm->eraseFromParent(); 717 return true; 718 } 719 720 // If the terminator of this block is branching on a constant, simplify the 721 // terminator to an unconditional branch. This can occur due to threading in 722 // other blocks. 723 if (getKnownConstant(Condition, Preference)) { 724 DEBUG(dbgs() << " In block '" << BB->getName() 725 << "' folding terminator: " << *BB->getTerminator() << '\n'); 726 ++NumFolds; 727 ConstantFoldTerminator(BB, true); 728 return true; 729 } 730 731 Instruction *CondInst = dyn_cast<Instruction>(Condition); 732 733 // All the rest of our checks depend on the condition being an instruction. 734 if (CondInst == 0) { 735 // FIXME: Unify this with code below. 736 if (ProcessThreadableEdges(Condition, BB, Preference)) 737 return true; 738 return false; 739 } 740 741 742 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 743 // For a comparison where the LHS is outside this block, it's possible 744 // that we've branched on it before. Used LVI to see if we can simplify 745 // the branch based on that. 746 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 747 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 748 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 749 if (CondBr && CondConst && CondBr->isConditional() && PI != PE && 750 (!isa<Instruction>(CondCmp->getOperand(0)) || 751 cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) { 752 // For predecessor edge, determine if the comparison is true or false 753 // on that edge. If they're all true or all false, we can simplify the 754 // branch. 755 // FIXME: We could handle mixed true/false by duplicating code. 756 LazyValueInfo::Tristate Baseline = 757 LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0), 758 CondConst, *PI, BB); 759 if (Baseline != LazyValueInfo::Unknown) { 760 // Check that all remaining incoming values match the first one. 761 while (++PI != PE) { 762 LazyValueInfo::Tristate Ret = 763 LVI->getPredicateOnEdge(CondCmp->getPredicate(), 764 CondCmp->getOperand(0), CondConst, *PI, BB); 765 if (Ret != Baseline) break; 766 } 767 768 // If we terminated early, then one of the values didn't match. 769 if (PI == PE) { 770 unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0; 771 unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1; 772 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 773 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 774 CondBr->eraseFromParent(); 775 return true; 776 } 777 } 778 } 779 } 780 781 // Check for some cases that are worth simplifying. Right now we want to look 782 // for loads that are used by a switch or by the condition for the branch. If 783 // we see one, check to see if it's partially redundant. If so, insert a PHI 784 // which can then be used to thread the values. 785 // 786 Value *SimplifyValue = CondInst; 787 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 788 if (isa<Constant>(CondCmp->getOperand(1))) 789 SimplifyValue = CondCmp->getOperand(0); 790 791 // TODO: There are other places where load PRE would be profitable, such as 792 // more complex comparisons. 793 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 794 if (SimplifyPartiallyRedundantLoad(LI)) 795 return true; 796 797 798 // Handle a variety of cases where we are branching on something derived from 799 // a PHI node in the current block. If we can prove that any predecessors 800 // compute a predictable value based on a PHI node, thread those predecessors. 801 // 802 if (ProcessThreadableEdges(CondInst, BB, Preference)) 803 return true; 804 805 // If this is an otherwise-unfoldable branch on a phi node in the current 806 // block, see if we can simplify. 807 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 808 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 809 return ProcessBranchOnPHI(PN); 810 811 812 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 813 if (CondInst->getOpcode() == Instruction::Xor && 814 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 815 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 816 817 818 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 819 // "(X == 4)", thread through this block. 820 821 return false; 822 } 823 824 825 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 826 /// load instruction, eliminate it by replacing it with a PHI node. This is an 827 /// important optimization that encourages jump threading, and needs to be run 828 /// interlaced with other jump threading tasks. 829 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 830 // Don't hack volatile/atomic loads. 831 if (!LI->isSimple()) return false; 832 833 // If the load is defined in a block with exactly one predecessor, it can't be 834 // partially redundant. 835 BasicBlock *LoadBB = LI->getParent(); 836 if (LoadBB->getSinglePredecessor()) 837 return false; 838 839 Value *LoadedPtr = LI->getOperand(0); 840 841 // If the loaded operand is defined in the LoadBB, it can't be available. 842 // TODO: Could do simple PHI translation, that would be fun :) 843 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 844 if (PtrOp->getParent() == LoadBB) 845 return false; 846 847 // Scan a few instructions up from the load, to see if it is obviously live at 848 // the entry to its block. 849 BasicBlock::iterator BBIt = LI; 850 851 if (Value *AvailableVal = 852 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) { 853 // If the value if the load is locally available within the block, just use 854 // it. This frequently occurs for reg2mem'd allocas. 855 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 856 857 // If the returned value is the load itself, replace with an undef. This can 858 // only happen in dead loops. 859 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 860 LI->replaceAllUsesWith(AvailableVal); 861 LI->eraseFromParent(); 862 return true; 863 } 864 865 // Otherwise, if we scanned the whole block and got to the top of the block, 866 // we know the block is locally transparent to the load. If not, something 867 // might clobber its value. 868 if (BBIt != LoadBB->begin()) 869 return false; 870 871 // If all of the loads and stores that feed the value have the same TBAA tag, 872 // then we can propagate it onto any newly inserted loads. 873 MDNode *TBAATag = LI->getMetadata(LLVMContext::MD_tbaa); 874 875 SmallPtrSet<BasicBlock*, 8> PredsScanned; 876 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 877 AvailablePredsTy AvailablePreds; 878 BasicBlock *OneUnavailablePred = 0; 879 880 // If we got here, the loaded value is transparent through to the start of the 881 // block. Check to see if it is available in any of the predecessor blocks. 882 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 883 PI != PE; ++PI) { 884 BasicBlock *PredBB = *PI; 885 886 // If we already scanned this predecessor, skip it. 887 if (!PredsScanned.insert(PredBB)) 888 continue; 889 890 // Scan the predecessor to see if the value is available in the pred. 891 BBIt = PredBB->end(); 892 MDNode *ThisTBAATag = 0; 893 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6, 894 0, &ThisTBAATag); 895 if (!PredAvailable) { 896 OneUnavailablePred = PredBB; 897 continue; 898 } 899 900 // If tbaa tags disagree or are not present, forget about them. 901 if (TBAATag != ThisTBAATag) TBAATag = 0; 902 903 // If so, this load is partially redundant. Remember this info so that we 904 // can create a PHI node. 905 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 906 } 907 908 // If the loaded value isn't available in any predecessor, it isn't partially 909 // redundant. 910 if (AvailablePreds.empty()) return false; 911 912 // Okay, the loaded value is available in at least one (and maybe all!) 913 // predecessors. If the value is unavailable in more than one unique 914 // predecessor, we want to insert a merge block for those common predecessors. 915 // This ensures that we only have to insert one reload, thus not increasing 916 // code size. 917 BasicBlock *UnavailablePred = 0; 918 919 // If there is exactly one predecessor where the value is unavailable, the 920 // already computed 'OneUnavailablePred' block is it. If it ends in an 921 // unconditional branch, we know that it isn't a critical edge. 922 if (PredsScanned.size() == AvailablePreds.size()+1 && 923 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 924 UnavailablePred = OneUnavailablePred; 925 } else if (PredsScanned.size() != AvailablePreds.size()) { 926 // Otherwise, we had multiple unavailable predecessors or we had a critical 927 // edge from the one. 928 SmallVector<BasicBlock*, 8> PredsToSplit; 929 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 930 931 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 932 AvailablePredSet.insert(AvailablePreds[i].first); 933 934 // Add all the unavailable predecessors to the PredsToSplit list. 935 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 936 PI != PE; ++PI) { 937 BasicBlock *P = *PI; 938 // If the predecessor is an indirect goto, we can't split the edge. 939 if (isa<IndirectBrInst>(P->getTerminator())) 940 return false; 941 942 if (!AvailablePredSet.count(P)) 943 PredsToSplit.push_back(P); 944 } 945 946 // Split them out to their own block. 947 UnavailablePred = 948 SplitBlockPredecessors(LoadBB, PredsToSplit, "thread-pre-split", this); 949 } 950 951 // If the value isn't available in all predecessors, then there will be 952 // exactly one where it isn't available. Insert a load on that edge and add 953 // it to the AvailablePreds list. 954 if (UnavailablePred) { 955 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 956 "Can't handle critical edge here!"); 957 LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, 958 LI->getAlignment(), 959 UnavailablePred->getTerminator()); 960 NewVal->setDebugLoc(LI->getDebugLoc()); 961 if (TBAATag) 962 NewVal->setMetadata(LLVMContext::MD_tbaa, TBAATag); 963 964 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 965 } 966 967 // Now we know that each predecessor of this block has a value in 968 // AvailablePreds, sort them for efficient access as we're walking the preds. 969 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 970 971 // Create a PHI node at the start of the block for the PRE'd load value. 972 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 973 PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "", 974 LoadBB->begin()); 975 PN->takeName(LI); 976 PN->setDebugLoc(LI->getDebugLoc()); 977 978 // Insert new entries into the PHI for each predecessor. A single block may 979 // have multiple entries here. 980 for (pred_iterator PI = PB; PI != PE; ++PI) { 981 BasicBlock *P = *PI; 982 AvailablePredsTy::iterator I = 983 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 984 std::make_pair(P, (Value*)0)); 985 986 assert(I != AvailablePreds.end() && I->first == P && 987 "Didn't find entry for predecessor!"); 988 989 PN->addIncoming(I->second, I->first); 990 } 991 992 //cerr << "PRE: " << *LI << *PN << "\n"; 993 994 LI->replaceAllUsesWith(PN); 995 LI->eraseFromParent(); 996 997 return true; 998 } 999 1000 /// FindMostPopularDest - The specified list contains multiple possible 1001 /// threadable destinations. Pick the one that occurs the most frequently in 1002 /// the list. 1003 static BasicBlock * 1004 FindMostPopularDest(BasicBlock *BB, 1005 const SmallVectorImpl<std::pair<BasicBlock*, 1006 BasicBlock*> > &PredToDestList) { 1007 assert(!PredToDestList.empty()); 1008 1009 // Determine popularity. If there are multiple possible destinations, we 1010 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1011 // blocks with known and real destinations to threading undef. We'll handle 1012 // them later if interesting. 1013 DenseMap<BasicBlock*, unsigned> DestPopularity; 1014 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1015 if (PredToDestList[i].second) 1016 DestPopularity[PredToDestList[i].second]++; 1017 1018 // Find the most popular dest. 1019 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1020 BasicBlock *MostPopularDest = DPI->first; 1021 unsigned Popularity = DPI->second; 1022 SmallVector<BasicBlock*, 4> SamePopularity; 1023 1024 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1025 // If the popularity of this entry isn't higher than the popularity we've 1026 // seen so far, ignore it. 1027 if (DPI->second < Popularity) 1028 ; // ignore. 1029 else if (DPI->second == Popularity) { 1030 // If it is the same as what we've seen so far, keep track of it. 1031 SamePopularity.push_back(DPI->first); 1032 } else { 1033 // If it is more popular, remember it. 1034 SamePopularity.clear(); 1035 MostPopularDest = DPI->first; 1036 Popularity = DPI->second; 1037 } 1038 } 1039 1040 // Okay, now we know the most popular destination. If there is more than one 1041 // destination, we need to determine one. This is arbitrary, but we need 1042 // to make a deterministic decision. Pick the first one that appears in the 1043 // successor list. 1044 if (!SamePopularity.empty()) { 1045 SamePopularity.push_back(MostPopularDest); 1046 TerminatorInst *TI = BB->getTerminator(); 1047 for (unsigned i = 0; ; ++i) { 1048 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1049 1050 if (std::find(SamePopularity.begin(), SamePopularity.end(), 1051 TI->getSuccessor(i)) == SamePopularity.end()) 1052 continue; 1053 1054 MostPopularDest = TI->getSuccessor(i); 1055 break; 1056 } 1057 } 1058 1059 // Okay, we have finally picked the most popular destination. 1060 return MostPopularDest; 1061 } 1062 1063 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1064 ConstantPreference Preference) { 1065 // If threading this would thread across a loop header, don't even try to 1066 // thread the edge. 1067 if (LoopHeaders.count(BB)) 1068 return false; 1069 1070 PredValueInfoTy PredValues; 1071 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference)) 1072 return false; 1073 1074 assert(!PredValues.empty() && 1075 "ComputeValueKnownInPredecessors returned true with no values"); 1076 1077 DEBUG(dbgs() << "IN BB: " << *BB; 1078 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1079 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1080 << *PredValues[i].first 1081 << " for pred '" << PredValues[i].second->getName() << "'.\n"; 1082 }); 1083 1084 // Decide what we want to thread through. Convert our list of known values to 1085 // a list of known destinations for each pred. This also discards duplicate 1086 // predecessors and keeps track of the undefined inputs (which are represented 1087 // as a null dest in the PredToDestList). 1088 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1089 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1090 1091 BasicBlock *OnlyDest = 0; 1092 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1093 1094 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1095 BasicBlock *Pred = PredValues[i].second; 1096 if (!SeenPreds.insert(Pred)) 1097 continue; // Duplicate predecessor entry. 1098 1099 // If the predecessor ends with an indirect goto, we can't change its 1100 // destination. 1101 if (isa<IndirectBrInst>(Pred->getTerminator())) 1102 continue; 1103 1104 Constant *Val = PredValues[i].first; 1105 1106 BasicBlock *DestBB; 1107 if (isa<UndefValue>(Val)) 1108 DestBB = 0; 1109 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1110 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1111 else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1112 DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor(); 1113 } else { 1114 assert(isa<IndirectBrInst>(BB->getTerminator()) 1115 && "Unexpected terminator"); 1116 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1117 } 1118 1119 // If we have exactly one destination, remember it for efficiency below. 1120 if (PredToDestList.empty()) 1121 OnlyDest = DestBB; 1122 else if (OnlyDest != DestBB) 1123 OnlyDest = MultipleDestSentinel; 1124 1125 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1126 } 1127 1128 // If all edges were unthreadable, we fail. 1129 if (PredToDestList.empty()) 1130 return false; 1131 1132 // Determine which is the most common successor. If we have many inputs and 1133 // this block is a switch, we want to start by threading the batch that goes 1134 // to the most popular destination first. If we only know about one 1135 // threadable destination (the common case) we can avoid this. 1136 BasicBlock *MostPopularDest = OnlyDest; 1137 1138 if (MostPopularDest == MultipleDestSentinel) 1139 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1140 1141 // Now that we know what the most popular destination is, factor all 1142 // predecessors that will jump to it into a single predecessor. 1143 SmallVector<BasicBlock*, 16> PredsToFactor; 1144 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1145 if (PredToDestList[i].second == MostPopularDest) { 1146 BasicBlock *Pred = PredToDestList[i].first; 1147 1148 // This predecessor may be a switch or something else that has multiple 1149 // edges to the block. Factor each of these edges by listing them 1150 // according to # occurrences in PredsToFactor. 1151 TerminatorInst *PredTI = Pred->getTerminator(); 1152 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 1153 if (PredTI->getSuccessor(i) == BB) 1154 PredsToFactor.push_back(Pred); 1155 } 1156 1157 // If the threadable edges are branching on an undefined value, we get to pick 1158 // the destination that these predecessors should get to. 1159 if (MostPopularDest == 0) 1160 MostPopularDest = BB->getTerminator()-> 1161 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1162 1163 // Ok, try to thread it! 1164 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1165 } 1166 1167 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1168 /// a PHI node in the current block. See if there are any simplifications we 1169 /// can do based on inputs to the phi node. 1170 /// 1171 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) { 1172 BasicBlock *BB = PN->getParent(); 1173 1174 // TODO: We could make use of this to do it once for blocks with common PHI 1175 // values. 1176 SmallVector<BasicBlock*, 1> PredBBs; 1177 PredBBs.resize(1); 1178 1179 // If any of the predecessor blocks end in an unconditional branch, we can 1180 // *duplicate* the conditional branch into that block in order to further 1181 // encourage jump threading and to eliminate cases where we have branch on a 1182 // phi of an icmp (branch on icmp is much better). 1183 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1184 BasicBlock *PredBB = PN->getIncomingBlock(i); 1185 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1186 if (PredBr->isUnconditional()) { 1187 PredBBs[0] = PredBB; 1188 // Try to duplicate BB into PredBB. 1189 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1190 return true; 1191 } 1192 } 1193 1194 return false; 1195 } 1196 1197 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1198 /// a xor instruction in the current block. See if there are any 1199 /// simplifications we can do based on inputs to the xor. 1200 /// 1201 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) { 1202 BasicBlock *BB = BO->getParent(); 1203 1204 // If either the LHS or RHS of the xor is a constant, don't do this 1205 // optimization. 1206 if (isa<ConstantInt>(BO->getOperand(0)) || 1207 isa<ConstantInt>(BO->getOperand(1))) 1208 return false; 1209 1210 // If the first instruction in BB isn't a phi, we won't be able to infer 1211 // anything special about any particular predecessor. 1212 if (!isa<PHINode>(BB->front())) 1213 return false; 1214 1215 // If we have a xor as the branch input to this block, and we know that the 1216 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1217 // the condition into the predecessor and fix that value to true, saving some 1218 // logical ops on that path and encouraging other paths to simplify. 1219 // 1220 // This copies something like this: 1221 // 1222 // BB: 1223 // %X = phi i1 [1], [%X'] 1224 // %Y = icmp eq i32 %A, %B 1225 // %Z = xor i1 %X, %Y 1226 // br i1 %Z, ... 1227 // 1228 // Into: 1229 // BB': 1230 // %Y = icmp ne i32 %A, %B 1231 // br i1 %Z, ... 1232 1233 PredValueInfoTy XorOpValues; 1234 bool isLHS = true; 1235 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1236 WantInteger)) { 1237 assert(XorOpValues.empty()); 1238 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1239 WantInteger)) 1240 return false; 1241 isLHS = false; 1242 } 1243 1244 assert(!XorOpValues.empty() && 1245 "ComputeValueKnownInPredecessors returned true with no values"); 1246 1247 // Scan the information to see which is most popular: true or false. The 1248 // predecessors can be of the set true, false, or undef. 1249 unsigned NumTrue = 0, NumFalse = 0; 1250 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1251 if (isa<UndefValue>(XorOpValues[i].first)) 1252 // Ignore undefs for the count. 1253 continue; 1254 if (cast<ConstantInt>(XorOpValues[i].first)->isZero()) 1255 ++NumFalse; 1256 else 1257 ++NumTrue; 1258 } 1259 1260 // Determine which value to split on, true, false, or undef if neither. 1261 ConstantInt *SplitVal = 0; 1262 if (NumTrue > NumFalse) 1263 SplitVal = ConstantInt::getTrue(BB->getContext()); 1264 else if (NumTrue != 0 || NumFalse != 0) 1265 SplitVal = ConstantInt::getFalse(BB->getContext()); 1266 1267 // Collect all of the blocks that this can be folded into so that we can 1268 // factor this once and clone it once. 1269 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1270 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1271 if (XorOpValues[i].first != SplitVal && 1272 !isa<UndefValue>(XorOpValues[i].first)) 1273 continue; 1274 1275 BlocksToFoldInto.push_back(XorOpValues[i].second); 1276 } 1277 1278 // If we inferred a value for all of the predecessors, then duplication won't 1279 // help us. However, we can just replace the LHS or RHS with the constant. 1280 if (BlocksToFoldInto.size() == 1281 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1282 if (SplitVal == 0) { 1283 // If all preds provide undef, just nuke the xor, because it is undef too. 1284 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1285 BO->eraseFromParent(); 1286 } else if (SplitVal->isZero()) { 1287 // If all preds provide 0, replace the xor with the other input. 1288 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1289 BO->eraseFromParent(); 1290 } else { 1291 // If all preds provide 1, set the computed value to 1. 1292 BO->setOperand(!isLHS, SplitVal); 1293 } 1294 1295 return true; 1296 } 1297 1298 // Try to duplicate BB into PredBB. 1299 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1300 } 1301 1302 1303 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1304 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1305 /// NewPred using the entries from OldPred (suitably mapped). 1306 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1307 BasicBlock *OldPred, 1308 BasicBlock *NewPred, 1309 DenseMap<Instruction*, Value*> &ValueMap) { 1310 for (BasicBlock::iterator PNI = PHIBB->begin(); 1311 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1312 // Ok, we have a PHI node. Figure out what the incoming value was for the 1313 // DestBlock. 1314 Value *IV = PN->getIncomingValueForBlock(OldPred); 1315 1316 // Remap the value if necessary. 1317 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1318 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1319 if (I != ValueMap.end()) 1320 IV = I->second; 1321 } 1322 1323 PN->addIncoming(IV, NewPred); 1324 } 1325 } 1326 1327 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1328 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1329 /// across BB. Transform the IR to reflect this change. 1330 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1331 const SmallVectorImpl<BasicBlock*> &PredBBs, 1332 BasicBlock *SuccBB) { 1333 // If threading to the same block as we come from, we would infinite loop. 1334 if (SuccBB == BB) { 1335 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1336 << "' - would thread to self!\n"); 1337 return false; 1338 } 1339 1340 // If threading this would thread across a loop header, don't thread the edge. 1341 // See the comments above FindLoopHeaders for justifications and caveats. 1342 if (LoopHeaders.count(BB)) { 1343 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1344 << "' to dest BB '" << SuccBB->getName() 1345 << "' - it might create an irreducible loop!\n"); 1346 return false; 1347 } 1348 1349 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, Threshold); 1350 if (JumpThreadCost > Threshold) { 1351 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1352 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1353 return false; 1354 } 1355 1356 // And finally, do it! Start by factoring the predecessors is needed. 1357 BasicBlock *PredBB; 1358 if (PredBBs.size() == 1) 1359 PredBB = PredBBs[0]; 1360 else { 1361 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1362 << " common predecessors.\n"); 1363 PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this); 1364 } 1365 1366 // And finally, do it! 1367 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1368 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1369 << ", across block:\n " 1370 << *BB << "\n"); 1371 1372 LVI->threadEdge(PredBB, BB, SuccBB); 1373 1374 // We are going to have to map operands from the original BB block to the new 1375 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1376 // account for entry from PredBB. 1377 DenseMap<Instruction*, Value*> ValueMapping; 1378 1379 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1380 BB->getName()+".thread", 1381 BB->getParent(), BB); 1382 NewBB->moveAfter(PredBB); 1383 1384 BasicBlock::iterator BI = BB->begin(); 1385 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1386 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1387 1388 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1389 // mapping and using it to remap operands in the cloned instructions. 1390 for (; !isa<TerminatorInst>(BI); ++BI) { 1391 Instruction *New = BI->clone(); 1392 New->setName(BI->getName()); 1393 NewBB->getInstList().push_back(New); 1394 ValueMapping[BI] = New; 1395 1396 // Remap operands to patch up intra-block references. 1397 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1398 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1399 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1400 if (I != ValueMapping.end()) 1401 New->setOperand(i, I->second); 1402 } 1403 } 1404 1405 // We didn't copy the terminator from BB over to NewBB, because there is now 1406 // an unconditional jump to SuccBB. Insert the unconditional jump. 1407 BranchInst *NewBI =BranchInst::Create(SuccBB, NewBB); 1408 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1409 1410 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1411 // PHI nodes for NewBB now. 1412 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1413 1414 // If there were values defined in BB that are used outside the block, then we 1415 // now have to update all uses of the value to use either the original value, 1416 // the cloned value, or some PHI derived value. This can require arbitrary 1417 // PHI insertion, of which we are prepared to do, clean these up now. 1418 SSAUpdater SSAUpdate; 1419 SmallVector<Use*, 16> UsesToRename; 1420 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1421 // Scan all uses of this instruction to see if it is used outside of its 1422 // block, and if so, record them in UsesToRename. 1423 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1424 ++UI) { 1425 Instruction *User = cast<Instruction>(*UI); 1426 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1427 if (UserPN->getIncomingBlock(UI) == BB) 1428 continue; 1429 } else if (User->getParent() == BB) 1430 continue; 1431 1432 UsesToRename.push_back(&UI.getUse()); 1433 } 1434 1435 // If there are no uses outside the block, we're done with this instruction. 1436 if (UsesToRename.empty()) 1437 continue; 1438 1439 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1440 1441 // We found a use of I outside of BB. Rename all uses of I that are outside 1442 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1443 // with the two values we know. 1444 SSAUpdate.Initialize(I->getType(), I->getName()); 1445 SSAUpdate.AddAvailableValue(BB, I); 1446 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); 1447 1448 while (!UsesToRename.empty()) 1449 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1450 DEBUG(dbgs() << "\n"); 1451 } 1452 1453 1454 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1455 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1456 // us to simplify any PHI nodes in BB. 1457 TerminatorInst *PredTerm = PredBB->getTerminator(); 1458 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1459 if (PredTerm->getSuccessor(i) == BB) { 1460 BB->removePredecessor(PredBB, true); 1461 PredTerm->setSuccessor(i, NewBB); 1462 } 1463 1464 // At this point, the IR is fully up to date and consistent. Do a quick scan 1465 // over the new instructions and zap any that are constants or dead. This 1466 // frequently happens because of phi translation. 1467 SimplifyInstructionsInBlock(NewBB, TD, TLI); 1468 1469 // Threaded an edge! 1470 ++NumThreads; 1471 return true; 1472 } 1473 1474 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1475 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1476 /// If we can duplicate the contents of BB up into PredBB do so now, this 1477 /// improves the odds that the branch will be on an analyzable instruction like 1478 /// a compare. 1479 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1480 const SmallVectorImpl<BasicBlock *> &PredBBs) { 1481 assert(!PredBBs.empty() && "Can't handle an empty set"); 1482 1483 // If BB is a loop header, then duplicating this block outside the loop would 1484 // cause us to transform this into an irreducible loop, don't do this. 1485 // See the comments above FindLoopHeaders for justifications and caveats. 1486 if (LoopHeaders.count(BB)) { 1487 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1488 << "' into predecessor block '" << PredBBs[0]->getName() 1489 << "' - it might create an irreducible loop!\n"); 1490 return false; 1491 } 1492 1493 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, Threshold); 1494 if (DuplicationCost > Threshold) { 1495 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1496 << "' - Cost is too high: " << DuplicationCost << "\n"); 1497 return false; 1498 } 1499 1500 // And finally, do it! Start by factoring the predecessors is needed. 1501 BasicBlock *PredBB; 1502 if (PredBBs.size() == 1) 1503 PredBB = PredBBs[0]; 1504 else { 1505 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1506 << " common predecessors.\n"); 1507 PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this); 1508 } 1509 1510 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1511 // of PredBB. 1512 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1513 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1514 << DuplicationCost << " block is:" << *BB << "\n"); 1515 1516 // Unless PredBB ends with an unconditional branch, split the edge so that we 1517 // can just clone the bits from BB into the end of the new PredBB. 1518 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 1519 1520 if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) { 1521 PredBB = SplitEdge(PredBB, BB, this); 1522 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1523 } 1524 1525 // We are going to have to map operands from the original BB block into the 1526 // PredBB block. Evaluate PHI nodes in BB. 1527 DenseMap<Instruction*, Value*> ValueMapping; 1528 1529 BasicBlock::iterator BI = BB->begin(); 1530 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1531 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1532 1533 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1534 // mapping and using it to remap operands in the cloned instructions. 1535 for (; BI != BB->end(); ++BI) { 1536 Instruction *New = BI->clone(); 1537 1538 // Remap operands to patch up intra-block references. 1539 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1540 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1541 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1542 if (I != ValueMapping.end()) 1543 New->setOperand(i, I->second); 1544 } 1545 1546 // If this instruction can be simplified after the operands are updated, 1547 // just use the simplified value instead. This frequently happens due to 1548 // phi translation. 1549 if (Value *IV = SimplifyInstruction(New, TD)) { 1550 delete New; 1551 ValueMapping[BI] = IV; 1552 } else { 1553 // Otherwise, insert the new instruction into the block. 1554 New->setName(BI->getName()); 1555 PredBB->getInstList().insert(OldPredBranch, New); 1556 ValueMapping[BI] = New; 1557 } 1558 } 1559 1560 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1561 // add entries to the PHI nodes for branch from PredBB now. 1562 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1563 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1564 ValueMapping); 1565 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1566 ValueMapping); 1567 1568 // If there were values defined in BB that are used outside the block, then we 1569 // now have to update all uses of the value to use either the original value, 1570 // the cloned value, or some PHI derived value. This can require arbitrary 1571 // PHI insertion, of which we are prepared to do, clean these up now. 1572 SSAUpdater SSAUpdate; 1573 SmallVector<Use*, 16> UsesToRename; 1574 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1575 // Scan all uses of this instruction to see if it is used outside of its 1576 // block, and if so, record them in UsesToRename. 1577 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1578 ++UI) { 1579 Instruction *User = cast<Instruction>(*UI); 1580 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1581 if (UserPN->getIncomingBlock(UI) == BB) 1582 continue; 1583 } else if (User->getParent() == BB) 1584 continue; 1585 1586 UsesToRename.push_back(&UI.getUse()); 1587 } 1588 1589 // If there are no uses outside the block, we're done with this instruction. 1590 if (UsesToRename.empty()) 1591 continue; 1592 1593 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1594 1595 // We found a use of I outside of BB. Rename all uses of I that are outside 1596 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1597 // with the two values we know. 1598 SSAUpdate.Initialize(I->getType(), I->getName()); 1599 SSAUpdate.AddAvailableValue(BB, I); 1600 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); 1601 1602 while (!UsesToRename.empty()) 1603 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1604 DEBUG(dbgs() << "\n"); 1605 } 1606 1607 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1608 // that we nuked. 1609 BB->removePredecessor(PredBB, true); 1610 1611 // Remove the unconditional branch at the end of the PredBB block. 1612 OldPredBranch->eraseFromParent(); 1613 1614 ++NumDupes; 1615 return true; 1616 } 1617 1618 1619