Home | History | Annotate | Download | only in llvm-diff
      1 //===-- DifferenceEngine.cpp - Structural function/module comparison ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This header defines the implementation of the LLVM difference
     11 // engine, which structurally compares global values within a module.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "DifferenceEngine.h"
     16 #include "llvm/ADT/DenseMap.h"
     17 #include "llvm/ADT/DenseSet.h"
     18 #include "llvm/ADT/SmallVector.h"
     19 #include "llvm/ADT/StringRef.h"
     20 #include "llvm/ADT/StringSet.h"
     21 #include "llvm/IR/Constants.h"
     22 #include "llvm/IR/Function.h"
     23 #include "llvm/IR/Instructions.h"
     24 #include "llvm/IR/Module.h"
     25 #include "llvm/Support/CFG.h"
     26 #include "llvm/Support/CallSite.h"
     27 #include "llvm/Support/ErrorHandling.h"
     28 #include "llvm/Support/raw_ostream.h"
     29 #include "llvm/Support/type_traits.h"
     30 #include <utility>
     31 
     32 using namespace llvm;
     33 
     34 namespace {
     35 
     36 /// A priority queue, implemented as a heap.
     37 template <class T, class Sorter, unsigned InlineCapacity>
     38 class PriorityQueue {
     39   Sorter Precedes;
     40   llvm::SmallVector<T, InlineCapacity> Storage;
     41 
     42 public:
     43   PriorityQueue(const Sorter &Precedes) : Precedes(Precedes) {}
     44 
     45   /// Checks whether the heap is empty.
     46   bool empty() const { return Storage.empty(); }
     47 
     48   /// Insert a new value on the heap.
     49   void insert(const T &V) {
     50     unsigned Index = Storage.size();
     51     Storage.push_back(V);
     52     if (Index == 0) return;
     53 
     54     T *data = Storage.data();
     55     while (true) {
     56       unsigned Target = (Index + 1) / 2 - 1;
     57       if (!Precedes(data[Index], data[Target])) return;
     58       std::swap(data[Index], data[Target]);
     59       if (Target == 0) return;
     60       Index = Target;
     61     }
     62   }
     63 
     64   /// Remove the minimum value in the heap.  Only valid on a non-empty heap.
     65   T remove_min() {
     66     assert(!empty());
     67     T tmp = Storage[0];
     68 
     69     unsigned NewSize = Storage.size() - 1;
     70     if (NewSize) {
     71       // Move the slot at the end to the beginning.
     72       if (isPodLike<T>::value)
     73         Storage[0] = Storage[NewSize];
     74       else
     75         std::swap(Storage[0], Storage[NewSize]);
     76 
     77       // Bubble the root up as necessary.
     78       unsigned Index = 0;
     79       while (true) {
     80         // With a 1-based index, the children would be Index*2 and Index*2+1.
     81         unsigned R = (Index + 1) * 2;
     82         unsigned L = R - 1;
     83 
     84         // If R is out of bounds, we're done after this in any case.
     85         if (R >= NewSize) {
     86           // If L is also out of bounds, we're done immediately.
     87           if (L >= NewSize) break;
     88 
     89           // Otherwise, test whether we should swap L and Index.
     90           if (Precedes(Storage[L], Storage[Index]))
     91             std::swap(Storage[L], Storage[Index]);
     92           break;
     93         }
     94 
     95         // Otherwise, we need to compare with the smaller of L and R.
     96         // Prefer R because it's closer to the end of the array.
     97         unsigned IndexToTest = (Precedes(Storage[L], Storage[R]) ? L : R);
     98 
     99         // If Index is >= the min of L and R, then heap ordering is restored.
    100         if (!Precedes(Storage[IndexToTest], Storage[Index]))
    101           break;
    102 
    103         // Otherwise, keep bubbling up.
    104         std::swap(Storage[IndexToTest], Storage[Index]);
    105         Index = IndexToTest;
    106       }
    107     }
    108     Storage.pop_back();
    109 
    110     return tmp;
    111   }
    112 };
    113 
    114 /// A function-scope difference engine.
    115 class FunctionDifferenceEngine {
    116   DifferenceEngine &Engine;
    117 
    118   /// The current mapping from old local values to new local values.
    119   DenseMap<Value*, Value*> Values;
    120 
    121   /// The current mapping from old blocks to new blocks.
    122   DenseMap<BasicBlock*, BasicBlock*> Blocks;
    123 
    124   DenseSet<std::pair<Value*, Value*> > TentativeValues;
    125 
    126   unsigned getUnprocPredCount(BasicBlock *Block) const {
    127     unsigned Count = 0;
    128     for (pred_iterator I = pred_begin(Block), E = pred_end(Block); I != E; ++I)
    129       if (!Blocks.count(*I)) Count++;
    130     return Count;
    131   }
    132 
    133   typedef std::pair<BasicBlock*, BasicBlock*> BlockPair;
    134 
    135   /// A type which sorts a priority queue by the number of unprocessed
    136   /// predecessor blocks it has remaining.
    137   ///
    138   /// This is actually really expensive to calculate.
    139   struct QueueSorter {
    140     const FunctionDifferenceEngine &fde;
    141     explicit QueueSorter(const FunctionDifferenceEngine &fde) : fde(fde) {}
    142 
    143     bool operator()(const BlockPair &Old, const BlockPair &New) {
    144       return fde.getUnprocPredCount(Old.first)
    145            < fde.getUnprocPredCount(New.first);
    146     }
    147   };
    148 
    149   /// A queue of unified blocks to process.
    150   PriorityQueue<BlockPair, QueueSorter, 20> Queue;
    151 
    152   /// Try to unify the given two blocks.  Enqueues them for processing
    153   /// if they haven't already been processed.
    154   ///
    155   /// Returns true if there was a problem unifying them.
    156   bool tryUnify(BasicBlock *L, BasicBlock *R) {
    157     BasicBlock *&Ref = Blocks[L];
    158 
    159     if (Ref) {
    160       if (Ref == R) return false;
    161 
    162       Engine.logf("successor %l cannot be equivalent to %r; "
    163                   "it's already equivalent to %r")
    164         << L << R << Ref;
    165       return true;
    166     }
    167 
    168     Ref = R;
    169     Queue.insert(BlockPair(L, R));
    170     return false;
    171   }
    172 
    173   /// Unifies two instructions, given that they're known not to have
    174   /// structural differences.
    175   void unify(Instruction *L, Instruction *R) {
    176     DifferenceEngine::Context C(Engine, L, R);
    177 
    178     bool Result = diff(L, R, true, true);
    179     assert(!Result && "structural differences second time around?");
    180     (void) Result;
    181     if (!L->use_empty())
    182       Values[L] = R;
    183   }
    184 
    185   void processQueue() {
    186     while (!Queue.empty()) {
    187       BlockPair Pair = Queue.remove_min();
    188       diff(Pair.first, Pair.second);
    189     }
    190   }
    191 
    192   void diff(BasicBlock *L, BasicBlock *R) {
    193     DifferenceEngine::Context C(Engine, L, R);
    194 
    195     BasicBlock::iterator LI = L->begin(), LE = L->end();
    196     BasicBlock::iterator RI = R->begin();
    197 
    198     llvm::SmallVector<std::pair<Instruction*,Instruction*>, 20> TentativePairs;
    199 
    200     do {
    201       assert(LI != LE && RI != R->end());
    202       Instruction *LeftI = &*LI, *RightI = &*RI;
    203 
    204       // If the instructions differ, start the more sophisticated diff
    205       // algorithm at the start of the block.
    206       if (diff(LeftI, RightI, false, false)) {
    207         TentativeValues.clear();
    208         return runBlockDiff(L->begin(), R->begin());
    209       }
    210 
    211       // Otherwise, tentatively unify them.
    212       if (!LeftI->use_empty())
    213         TentativeValues.insert(std::make_pair(LeftI, RightI));
    214 
    215       ++LI, ++RI;
    216     } while (LI != LE); // This is sufficient: we can't get equality of
    217                         // terminators if there are residual instructions.
    218 
    219     // Unify everything in the block, non-tentatively this time.
    220     TentativeValues.clear();
    221     for (LI = L->begin(), RI = R->begin(); LI != LE; ++LI, ++RI)
    222       unify(&*LI, &*RI);
    223   }
    224 
    225   bool matchForBlockDiff(Instruction *L, Instruction *R);
    226   void runBlockDiff(BasicBlock::iterator LI, BasicBlock::iterator RI);
    227 
    228   bool diffCallSites(CallSite L, CallSite R, bool Complain) {
    229     // FIXME: call attributes
    230     if (!equivalentAsOperands(L.getCalledValue(), R.getCalledValue())) {
    231       if (Complain) Engine.log("called functions differ");
    232       return true;
    233     }
    234     if (L.arg_size() != R.arg_size()) {
    235       if (Complain) Engine.log("argument counts differ");
    236       return true;
    237     }
    238     for (unsigned I = 0, E = L.arg_size(); I != E; ++I)
    239       if (!equivalentAsOperands(L.getArgument(I), R.getArgument(I))) {
    240         if (Complain)
    241           Engine.logf("arguments %l and %r differ")
    242             << L.getArgument(I) << R.getArgument(I);
    243         return true;
    244       }
    245     return false;
    246   }
    247 
    248   bool diff(Instruction *L, Instruction *R, bool Complain, bool TryUnify) {
    249     // FIXME: metadata (if Complain is set)
    250 
    251     // Different opcodes always imply different operations.
    252     if (L->getOpcode() != R->getOpcode()) {
    253       if (Complain) Engine.log("different instruction types");
    254       return true;
    255     }
    256 
    257     if (isa<CmpInst>(L)) {
    258       if (cast<CmpInst>(L)->getPredicate()
    259             != cast<CmpInst>(R)->getPredicate()) {
    260         if (Complain) Engine.log("different predicates");
    261         return true;
    262       }
    263     } else if (isa<CallInst>(L)) {
    264       return diffCallSites(CallSite(L), CallSite(R), Complain);
    265     } else if (isa<PHINode>(L)) {
    266       // FIXME: implement.
    267 
    268       // This is really weird;  type uniquing is broken?
    269       if (L->getType() != R->getType()) {
    270         if (!L->getType()->isPointerTy() || !R->getType()->isPointerTy()) {
    271           if (Complain) Engine.log("different phi types");
    272           return true;
    273         }
    274       }
    275       return false;
    276 
    277     // Terminators.
    278     } else if (isa<InvokeInst>(L)) {
    279       InvokeInst *LI = cast<InvokeInst>(L);
    280       InvokeInst *RI = cast<InvokeInst>(R);
    281       if (diffCallSites(CallSite(LI), CallSite(RI), Complain))
    282         return true;
    283 
    284       if (TryUnify) {
    285         tryUnify(LI->getNormalDest(), RI->getNormalDest());
    286         tryUnify(LI->getUnwindDest(), RI->getUnwindDest());
    287       }
    288       return false;
    289 
    290     } else if (isa<BranchInst>(L)) {
    291       BranchInst *LI = cast<BranchInst>(L);
    292       BranchInst *RI = cast<BranchInst>(R);
    293       if (LI->isConditional() != RI->isConditional()) {
    294         if (Complain) Engine.log("branch conditionality differs");
    295         return true;
    296       }
    297 
    298       if (LI->isConditional()) {
    299         if (!equivalentAsOperands(LI->getCondition(), RI->getCondition())) {
    300           if (Complain) Engine.log("branch conditions differ");
    301           return true;
    302         }
    303         if (TryUnify) tryUnify(LI->getSuccessor(1), RI->getSuccessor(1));
    304       }
    305       if (TryUnify) tryUnify(LI->getSuccessor(0), RI->getSuccessor(0));
    306       return false;
    307 
    308     } else if (isa<SwitchInst>(L)) {
    309       SwitchInst *LI = cast<SwitchInst>(L);
    310       SwitchInst *RI = cast<SwitchInst>(R);
    311       if (!equivalentAsOperands(LI->getCondition(), RI->getCondition())) {
    312         if (Complain) Engine.log("switch conditions differ");
    313         return true;
    314       }
    315       if (TryUnify) tryUnify(LI->getDefaultDest(), RI->getDefaultDest());
    316 
    317       bool Difference = false;
    318 
    319       DenseMap<Constant*, BasicBlock*> LCases;
    320 
    321       for (SwitchInst::CaseIt I = LI->case_begin(), E = LI->case_end();
    322            I != E; ++I)
    323         LCases[I.getCaseValueEx()] = I.getCaseSuccessor();
    324 
    325       for (SwitchInst::CaseIt I = RI->case_begin(), E = RI->case_end();
    326            I != E; ++I) {
    327         IntegersSubset CaseValue = I.getCaseValueEx();
    328         BasicBlock *LCase = LCases[CaseValue];
    329         if (LCase) {
    330           if (TryUnify) tryUnify(LCase, I.getCaseSuccessor());
    331           LCases.erase(CaseValue);
    332         } else if (Complain || !Difference) {
    333           if (Complain)
    334             Engine.logf("right switch has extra case %r") << CaseValue;
    335           Difference = true;
    336         }
    337       }
    338       if (!Difference)
    339         for (DenseMap<Constant*, BasicBlock*>::iterator
    340                I = LCases.begin(), E = LCases.end(); I != E; ++I) {
    341           if (Complain)
    342             Engine.logf("left switch has extra case %l") << I->first;
    343           Difference = true;
    344         }
    345       return Difference;
    346     } else if (isa<UnreachableInst>(L)) {
    347       return false;
    348     }
    349 
    350     if (L->getNumOperands() != R->getNumOperands()) {
    351       if (Complain) Engine.log("instructions have different operand counts");
    352       return true;
    353     }
    354 
    355     for (unsigned I = 0, E = L->getNumOperands(); I != E; ++I) {
    356       Value *LO = L->getOperand(I), *RO = R->getOperand(I);
    357       if (!equivalentAsOperands(LO, RO)) {
    358         if (Complain) Engine.logf("operands %l and %r differ") << LO << RO;
    359         return true;
    360       }
    361     }
    362 
    363     return false;
    364   }
    365 
    366   bool equivalentAsOperands(Constant *L, Constant *R) {
    367     // Use equality as a preliminary filter.
    368     if (L == R)
    369       return true;
    370 
    371     if (L->getValueID() != R->getValueID())
    372       return false;
    373 
    374     // Ask the engine about global values.
    375     if (isa<GlobalValue>(L))
    376       return Engine.equivalentAsOperands(cast<GlobalValue>(L),
    377                                          cast<GlobalValue>(R));
    378 
    379     // Compare constant expressions structurally.
    380     if (isa<ConstantExpr>(L))
    381       return equivalentAsOperands(cast<ConstantExpr>(L),
    382                                   cast<ConstantExpr>(R));
    383 
    384     // Nulls of the "same type" don't always actually have the same
    385     // type; I don't know why.  Just white-list them.
    386     if (isa<ConstantPointerNull>(L))
    387       return true;
    388 
    389     // Block addresses only match if we've already encountered the
    390     // block.  FIXME: tentative matches?
    391     if (isa<BlockAddress>(L))
    392       return Blocks[cast<BlockAddress>(L)->getBasicBlock()]
    393                  == cast<BlockAddress>(R)->getBasicBlock();
    394 
    395     return false;
    396   }
    397 
    398   bool equivalentAsOperands(ConstantExpr *L, ConstantExpr *R) {
    399     if (L == R)
    400       return true;
    401     if (L->getOpcode() != R->getOpcode())
    402       return false;
    403 
    404     switch (L->getOpcode()) {
    405     case Instruction::ICmp:
    406     case Instruction::FCmp:
    407       if (L->getPredicate() != R->getPredicate())
    408         return false;
    409       break;
    410 
    411     case Instruction::GetElementPtr:
    412       // FIXME: inbounds?
    413       break;
    414 
    415     default:
    416       break;
    417     }
    418 
    419     if (L->getNumOperands() != R->getNumOperands())
    420       return false;
    421 
    422     for (unsigned I = 0, E = L->getNumOperands(); I != E; ++I)
    423       if (!equivalentAsOperands(L->getOperand(I), R->getOperand(I)))
    424         return false;
    425 
    426     return true;
    427   }
    428 
    429   bool equivalentAsOperands(Value *L, Value *R) {
    430     // Fall out if the values have different kind.
    431     // This possibly shouldn't take priority over oracles.
    432     if (L->getValueID() != R->getValueID())
    433       return false;
    434 
    435     // Value subtypes:  Argument, Constant, Instruction, BasicBlock,
    436     //                  InlineAsm, MDNode, MDString, PseudoSourceValue
    437 
    438     if (isa<Constant>(L))
    439       return equivalentAsOperands(cast<Constant>(L), cast<Constant>(R));
    440 
    441     if (isa<Instruction>(L))
    442       return Values[L] == R || TentativeValues.count(std::make_pair(L, R));
    443 
    444     if (isa<Argument>(L))
    445       return Values[L] == R;
    446 
    447     if (isa<BasicBlock>(L))
    448       return Blocks[cast<BasicBlock>(L)] != R;
    449 
    450     // Pretend everything else is identical.
    451     return true;
    452   }
    453 
    454   // Avoid a gcc warning about accessing 'this' in an initializer.
    455   FunctionDifferenceEngine *this_() { return this; }
    456 
    457 public:
    458   FunctionDifferenceEngine(DifferenceEngine &Engine) :
    459     Engine(Engine), Queue(QueueSorter(*this_())) {}
    460 
    461   void diff(Function *L, Function *R) {
    462     if (L->arg_size() != R->arg_size())
    463       Engine.log("different argument counts");
    464 
    465     // Map the arguments.
    466     for (Function::arg_iterator
    467            LI = L->arg_begin(), LE = L->arg_end(),
    468            RI = R->arg_begin(), RE = R->arg_end();
    469          LI != LE && RI != RE; ++LI, ++RI)
    470       Values[&*LI] = &*RI;
    471 
    472     tryUnify(&*L->begin(), &*R->begin());
    473     processQueue();
    474   }
    475 };
    476 
    477 struct DiffEntry {
    478   DiffEntry() : Cost(0) {}
    479 
    480   unsigned Cost;
    481   llvm::SmallVector<char, 8> Path; // actually of DifferenceEngine::DiffChange
    482 };
    483 
    484 bool FunctionDifferenceEngine::matchForBlockDiff(Instruction *L,
    485                                                  Instruction *R) {
    486   return !diff(L, R, false, false);
    487 }
    488 
    489 void FunctionDifferenceEngine::runBlockDiff(BasicBlock::iterator LStart,
    490                                             BasicBlock::iterator RStart) {
    491   BasicBlock::iterator LE = LStart->getParent()->end();
    492   BasicBlock::iterator RE = RStart->getParent()->end();
    493 
    494   unsigned NL = std::distance(LStart, LE);
    495 
    496   SmallVector<DiffEntry, 20> Paths1(NL+1);
    497   SmallVector<DiffEntry, 20> Paths2(NL+1);
    498 
    499   DiffEntry *Cur = Paths1.data();
    500   DiffEntry *Next = Paths2.data();
    501 
    502   const unsigned LeftCost = 2;
    503   const unsigned RightCost = 2;
    504   const unsigned MatchCost = 0;
    505 
    506   assert(TentativeValues.empty());
    507 
    508   // Initialize the first column.
    509   for (unsigned I = 0; I != NL+1; ++I) {
    510     Cur[I].Cost = I * LeftCost;
    511     for (unsigned J = 0; J != I; ++J)
    512       Cur[I].Path.push_back(DC_left);
    513   }
    514 
    515   for (BasicBlock::iterator RI = RStart; RI != RE; ++RI) {
    516     // Initialize the first row.
    517     Next[0] = Cur[0];
    518     Next[0].Cost += RightCost;
    519     Next[0].Path.push_back(DC_right);
    520 
    521     unsigned Index = 1;
    522     for (BasicBlock::iterator LI = LStart; LI != LE; ++LI, ++Index) {
    523       if (matchForBlockDiff(&*LI, &*RI)) {
    524         Next[Index] = Cur[Index-1];
    525         Next[Index].Cost += MatchCost;
    526         Next[Index].Path.push_back(DC_match);
    527         TentativeValues.insert(std::make_pair(&*LI, &*RI));
    528       } else if (Next[Index-1].Cost <= Cur[Index].Cost) {
    529         Next[Index] = Next[Index-1];
    530         Next[Index].Cost += LeftCost;
    531         Next[Index].Path.push_back(DC_left);
    532       } else {
    533         Next[Index] = Cur[Index];
    534         Next[Index].Cost += RightCost;
    535         Next[Index].Path.push_back(DC_right);
    536       }
    537     }
    538 
    539     std::swap(Cur, Next);
    540   }
    541 
    542   // We don't need the tentative values anymore; everything from here
    543   // on out should be non-tentative.
    544   TentativeValues.clear();
    545 
    546   SmallVectorImpl<char> &Path = Cur[NL].Path;
    547   BasicBlock::iterator LI = LStart, RI = RStart;
    548 
    549   DiffLogBuilder Diff(Engine.getConsumer());
    550 
    551   // Drop trailing matches.
    552   while (Path.back() == DC_match)
    553     Path.pop_back();
    554 
    555   // Skip leading matches.
    556   SmallVectorImpl<char>::iterator
    557     PI = Path.begin(), PE = Path.end();
    558   while (PI != PE && *PI == DC_match) {
    559     unify(&*LI, &*RI);
    560     ++PI, ++LI, ++RI;
    561   }
    562 
    563   for (; PI != PE; ++PI) {
    564     switch (static_cast<DiffChange>(*PI)) {
    565     case DC_match:
    566       assert(LI != LE && RI != RE);
    567       {
    568         Instruction *L = &*LI, *R = &*RI;
    569         unify(L, R);
    570         Diff.addMatch(L, R);
    571       }
    572       ++LI; ++RI;
    573       break;
    574 
    575     case DC_left:
    576       assert(LI != LE);
    577       Diff.addLeft(&*LI);
    578       ++LI;
    579       break;
    580 
    581     case DC_right:
    582       assert(RI != RE);
    583       Diff.addRight(&*RI);
    584       ++RI;
    585       break;
    586     }
    587   }
    588 
    589   // Finishing unifying and complaining about the tails of the block,
    590   // which should be matches all the way through.
    591   while (LI != LE) {
    592     assert(RI != RE);
    593     unify(&*LI, &*RI);
    594     ++LI, ++RI;
    595   }
    596 
    597   // If the terminators have different kinds, but one is an invoke and the
    598   // other is an unconditional branch immediately following a call, unify
    599   // the results and the destinations.
    600   TerminatorInst *LTerm = LStart->getParent()->getTerminator();
    601   TerminatorInst *RTerm = RStart->getParent()->getTerminator();
    602   if (isa<BranchInst>(LTerm) && isa<InvokeInst>(RTerm)) {
    603     if (cast<BranchInst>(LTerm)->isConditional()) return;
    604     BasicBlock::iterator I = LTerm;
    605     if (I == LStart->getParent()->begin()) return;
    606     --I;
    607     if (!isa<CallInst>(*I)) return;
    608     CallInst *LCall = cast<CallInst>(&*I);
    609     InvokeInst *RInvoke = cast<InvokeInst>(RTerm);
    610     if (!equivalentAsOperands(LCall->getCalledValue(), RInvoke->getCalledValue()))
    611       return;
    612     if (!LCall->use_empty())
    613       Values[LCall] = RInvoke;
    614     tryUnify(LTerm->getSuccessor(0), RInvoke->getNormalDest());
    615   } else if (isa<InvokeInst>(LTerm) && isa<BranchInst>(RTerm)) {
    616     if (cast<BranchInst>(RTerm)->isConditional()) return;
    617     BasicBlock::iterator I = RTerm;
    618     if (I == RStart->getParent()->begin()) return;
    619     --I;
    620     if (!isa<CallInst>(*I)) return;
    621     CallInst *RCall = cast<CallInst>(I);
    622     InvokeInst *LInvoke = cast<InvokeInst>(LTerm);
    623     if (!equivalentAsOperands(LInvoke->getCalledValue(), RCall->getCalledValue()))
    624       return;
    625     if (!LInvoke->use_empty())
    626       Values[LInvoke] = RCall;
    627     tryUnify(LInvoke->getNormalDest(), RTerm->getSuccessor(0));
    628   }
    629 }
    630 
    631 }
    632 
    633 void DifferenceEngine::Oracle::anchor() { }
    634 
    635 void DifferenceEngine::diff(Function *L, Function *R) {
    636   Context C(*this, L, R);
    637 
    638   // FIXME: types
    639   // FIXME: attributes and CC
    640   // FIXME: parameter attributes
    641 
    642   // If both are declarations, we're done.
    643   if (L->empty() && R->empty())
    644     return;
    645   else if (L->empty())
    646     log("left function is declaration, right function is definition");
    647   else if (R->empty())
    648     log("right function is declaration, left function is definition");
    649   else
    650     FunctionDifferenceEngine(*this).diff(L, R);
    651 }
    652 
    653 void DifferenceEngine::diff(Module *L, Module *R) {
    654   StringSet<> LNames;
    655   SmallVector<std::pair<Function*,Function*>, 20> Queue;
    656 
    657   for (Module::iterator I = L->begin(), E = L->end(); I != E; ++I) {
    658     Function *LFn = &*I;
    659     LNames.insert(LFn->getName());
    660 
    661     if (Function *RFn = R->getFunction(LFn->getName()))
    662       Queue.push_back(std::make_pair(LFn, RFn));
    663     else
    664       logf("function %l exists only in left module") << LFn;
    665   }
    666 
    667   for (Module::iterator I = R->begin(), E = R->end(); I != E; ++I) {
    668     Function *RFn = &*I;
    669     if (!LNames.count(RFn->getName()))
    670       logf("function %r exists only in right module") << RFn;
    671   }
    672 
    673   for (SmallVectorImpl<std::pair<Function*,Function*> >::iterator
    674          I = Queue.begin(), E = Queue.end(); I != E; ++I)
    675     diff(I->first, I->second);
    676 }
    677 
    678 bool DifferenceEngine::equivalentAsOperands(GlobalValue *L, GlobalValue *R) {
    679   if (globalValueOracle) return (*globalValueOracle)(L, R);
    680   return L->getName() == R->getName();
    681 }
    682