1 //===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is part of the X86 Disassembler Emitter. 11 // It contains the implementation of a single recognizable instruction. 12 // Documentation for the disassembler emitter in general can be found in 13 // X86DisasemblerEmitter.h. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "X86RecognizableInstr.h" 18 #include "X86DisassemblerShared.h" 19 #include "X86ModRMFilters.h" 20 #include "llvm/Support/ErrorHandling.h" 21 #include <string> 22 23 using namespace llvm; 24 25 #define MRM_MAPPING \ 26 MAP(C1, 33) \ 27 MAP(C2, 34) \ 28 MAP(C3, 35) \ 29 MAP(C4, 36) \ 30 MAP(C8, 37) \ 31 MAP(C9, 38) \ 32 MAP(E8, 39) \ 33 MAP(F0, 40) \ 34 MAP(F8, 41) \ 35 MAP(F9, 42) \ 36 MAP(D0, 45) \ 37 MAP(D1, 46) \ 38 MAP(D4, 47) \ 39 MAP(D5, 48) \ 40 MAP(D8, 49) \ 41 MAP(D9, 50) \ 42 MAP(DA, 51) \ 43 MAP(DB, 52) \ 44 MAP(DC, 53) \ 45 MAP(DD, 54) \ 46 MAP(DE, 55) \ 47 MAP(DF, 56) 48 49 // A clone of X86 since we can't depend on something that is generated. 50 namespace X86Local { 51 enum { 52 Pseudo = 0, 53 RawFrm = 1, 54 AddRegFrm = 2, 55 MRMDestReg = 3, 56 MRMDestMem = 4, 57 MRMSrcReg = 5, 58 MRMSrcMem = 6, 59 MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, 60 MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, 61 MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, 62 MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, 63 MRMInitReg = 32, 64 RawFrmImm8 = 43, 65 RawFrmImm16 = 44, 66 #define MAP(from, to) MRM_##from = to, 67 MRM_MAPPING 68 #undef MAP 69 lastMRM 70 }; 71 72 enum { 73 TB = 1, 74 REP = 2, 75 D8 = 3, D9 = 4, DA = 5, DB = 6, 76 DC = 7, DD = 8, DE = 9, DF = 10, 77 XD = 11, XS = 12, 78 T8 = 13, P_TA = 14, 79 A6 = 15, A7 = 16, T8XD = 17, T8XS = 18, TAXD = 19 80 }; 81 } 82 83 // If rows are added to the opcode extension tables, then corresponding entries 84 // must be added here. 85 // 86 // If the row corresponds to a single byte (i.e., 8f), then add an entry for 87 // that byte to ONE_BYTE_EXTENSION_TABLES. 88 // 89 // If the row corresponds to two bytes where the first is 0f, add an entry for 90 // the second byte to TWO_BYTE_EXTENSION_TABLES. 91 // 92 // If the row corresponds to some other set of bytes, you will need to modify 93 // the code in RecognizableInstr::emitDecodePath() as well, and add new prefixes 94 // to the X86 TD files, except in two cases: if the first two bytes of such a 95 // new combination are 0f 38 or 0f 3a, you just have to add maps called 96 // THREE_BYTE_38_EXTENSION_TABLES and THREE_BYTE_3A_EXTENSION_TABLES and add a 97 // switch(Opcode) just below the case X86Local::T8: or case X86Local::TA: line 98 // in RecognizableInstr::emitDecodePath(). 99 100 #define ONE_BYTE_EXTENSION_TABLES \ 101 EXTENSION_TABLE(80) \ 102 EXTENSION_TABLE(81) \ 103 EXTENSION_TABLE(82) \ 104 EXTENSION_TABLE(83) \ 105 EXTENSION_TABLE(8f) \ 106 EXTENSION_TABLE(c0) \ 107 EXTENSION_TABLE(c1) \ 108 EXTENSION_TABLE(c6) \ 109 EXTENSION_TABLE(c7) \ 110 EXTENSION_TABLE(d0) \ 111 EXTENSION_TABLE(d1) \ 112 EXTENSION_TABLE(d2) \ 113 EXTENSION_TABLE(d3) \ 114 EXTENSION_TABLE(f6) \ 115 EXTENSION_TABLE(f7) \ 116 EXTENSION_TABLE(fe) \ 117 EXTENSION_TABLE(ff) 118 119 #define TWO_BYTE_EXTENSION_TABLES \ 120 EXTENSION_TABLE(00) \ 121 EXTENSION_TABLE(01) \ 122 EXTENSION_TABLE(0d) \ 123 EXTENSION_TABLE(18) \ 124 EXTENSION_TABLE(71) \ 125 EXTENSION_TABLE(72) \ 126 EXTENSION_TABLE(73) \ 127 EXTENSION_TABLE(ae) \ 128 EXTENSION_TABLE(ba) \ 129 EXTENSION_TABLE(c7) 130 131 #define THREE_BYTE_38_EXTENSION_TABLES \ 132 EXTENSION_TABLE(F3) 133 134 using namespace X86Disassembler; 135 136 /// needsModRMForDecode - Indicates whether a particular instruction requires a 137 /// ModR/M byte for the instruction to be properly decoded. For example, a 138 /// MRMDestReg instruction needs the Mod field in the ModR/M byte to be set to 139 /// 0b11. 140 /// 141 /// @param form - The form of the instruction. 142 /// @return - true if the form implies that a ModR/M byte is required, false 143 /// otherwise. 144 static bool needsModRMForDecode(uint8_t form) { 145 if (form == X86Local::MRMDestReg || 146 form == X86Local::MRMDestMem || 147 form == X86Local::MRMSrcReg || 148 form == X86Local::MRMSrcMem || 149 (form >= X86Local::MRM0r && form <= X86Local::MRM7r) || 150 (form >= X86Local::MRM0m && form <= X86Local::MRM7m)) 151 return true; 152 else 153 return false; 154 } 155 156 /// isRegFormat - Indicates whether a particular form requires the Mod field of 157 /// the ModR/M byte to be 0b11. 158 /// 159 /// @param form - The form of the instruction. 160 /// @return - true if the form implies that Mod must be 0b11, false 161 /// otherwise. 162 static bool isRegFormat(uint8_t form) { 163 if (form == X86Local::MRMDestReg || 164 form == X86Local::MRMSrcReg || 165 (form >= X86Local::MRM0r && form <= X86Local::MRM7r)) 166 return true; 167 else 168 return false; 169 } 170 171 /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit. 172 /// Useful for switch statements and the like. 173 /// 174 /// @param init - A reference to the BitsInit to be decoded. 175 /// @return - The field, with the first bit in the BitsInit as the lowest 176 /// order bit. 177 static uint8_t byteFromBitsInit(BitsInit &init) { 178 int width = init.getNumBits(); 179 180 assert(width <= 8 && "Field is too large for uint8_t!"); 181 182 int index; 183 uint8_t mask = 0x01; 184 185 uint8_t ret = 0; 186 187 for (index = 0; index < width; index++) { 188 if (static_cast<BitInit*>(init.getBit(index))->getValue()) 189 ret |= mask; 190 191 mask <<= 1; 192 } 193 194 return ret; 195 } 196 197 /// byteFromRec - Extract a value at most 8 bits in with from a Record given the 198 /// name of the field. 199 /// 200 /// @param rec - The record from which to extract the value. 201 /// @param name - The name of the field in the record. 202 /// @return - The field, as translated by byteFromBitsInit(). 203 static uint8_t byteFromRec(const Record* rec, const std::string &name) { 204 BitsInit* bits = rec->getValueAsBitsInit(name); 205 return byteFromBitsInit(*bits); 206 } 207 208 RecognizableInstr::RecognizableInstr(DisassemblerTables &tables, 209 const CodeGenInstruction &insn, 210 InstrUID uid) { 211 UID = uid; 212 213 Rec = insn.TheDef; 214 Name = Rec->getName(); 215 Spec = &tables.specForUID(UID); 216 217 if (!Rec->isSubClassOf("X86Inst")) { 218 ShouldBeEmitted = false; 219 return; 220 } 221 222 Prefix = byteFromRec(Rec, "Prefix"); 223 Opcode = byteFromRec(Rec, "Opcode"); 224 Form = byteFromRec(Rec, "FormBits"); 225 SegOvr = byteFromRec(Rec, "SegOvrBits"); 226 227 HasOpSizePrefix = Rec->getValueAsBit("hasOpSizePrefix"); 228 HasAdSizePrefix = Rec->getValueAsBit("hasAdSizePrefix"); 229 HasREX_WPrefix = Rec->getValueAsBit("hasREX_WPrefix"); 230 HasVEXPrefix = Rec->getValueAsBit("hasVEXPrefix"); 231 HasVEX_4VPrefix = Rec->getValueAsBit("hasVEX_4VPrefix"); 232 HasVEX_4VOp3Prefix = Rec->getValueAsBit("hasVEX_4VOp3Prefix"); 233 HasVEX_WPrefix = Rec->getValueAsBit("hasVEX_WPrefix"); 234 HasMemOp4Prefix = Rec->getValueAsBit("hasMemOp4Prefix"); 235 IgnoresVEX_L = Rec->getValueAsBit("ignoresVEX_L"); 236 HasLockPrefix = Rec->getValueAsBit("hasLockPrefix"); 237 IsCodeGenOnly = Rec->getValueAsBit("isCodeGenOnly"); 238 239 Name = Rec->getName(); 240 AsmString = Rec->getValueAsString("AsmString"); 241 242 Operands = &insn.Operands.OperandList; 243 244 IsSSE = (HasOpSizePrefix && (Name.find("16") == Name.npos)) || 245 (Name.find("CRC32") != Name.npos); 246 HasFROperands = hasFROperands(); 247 HasVEX_LPrefix = Rec->getValueAsBit("hasVEX_L"); 248 249 // Check for 64-bit inst which does not require REX 250 Is32Bit = false; 251 Is64Bit = false; 252 // FIXME: Is there some better way to check for In64BitMode? 253 std::vector<Record*> Predicates = Rec->getValueAsListOfDefs("Predicates"); 254 for (unsigned i = 0, e = Predicates.size(); i != e; ++i) { 255 if (Predicates[i]->getName().find("32Bit") != Name.npos) { 256 Is32Bit = true; 257 break; 258 } 259 if (Predicates[i]->getName().find("64Bit") != Name.npos) { 260 Is64Bit = true; 261 break; 262 } 263 } 264 // FIXME: These instructions aren't marked as 64-bit in any way 265 Is64Bit |= Rec->getName() == "JMP64pcrel32" || 266 Rec->getName() == "MASKMOVDQU64" || 267 Rec->getName() == "POPFS64" || 268 Rec->getName() == "POPGS64" || 269 Rec->getName() == "PUSHFS64" || 270 Rec->getName() == "PUSHGS64" || 271 Rec->getName() == "REX64_PREFIX" || 272 Rec->getName().find("MOV64") != Name.npos || 273 Rec->getName().find("PUSH64") != Name.npos || 274 Rec->getName().find("POP64") != Name.npos; 275 276 ShouldBeEmitted = true; 277 } 278 279 void RecognizableInstr::processInstr(DisassemblerTables &tables, 280 const CodeGenInstruction &insn, 281 InstrUID uid) 282 { 283 // Ignore "asm parser only" instructions. 284 if (insn.TheDef->getValueAsBit("isAsmParserOnly")) 285 return; 286 287 RecognizableInstr recogInstr(tables, insn, uid); 288 289 recogInstr.emitInstructionSpecifier(tables); 290 291 if (recogInstr.shouldBeEmitted()) 292 recogInstr.emitDecodePath(tables); 293 } 294 295 InstructionContext RecognizableInstr::insnContext() const { 296 InstructionContext insnContext; 297 298 if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix|| HasVEXPrefix) { 299 if (HasVEX_LPrefix && HasVEX_WPrefix) { 300 if (HasOpSizePrefix) 301 insnContext = IC_VEX_L_W_OPSIZE; 302 else 303 llvm_unreachable("Don't support VEX.L and VEX.W together"); 304 } else if (HasOpSizePrefix && HasVEX_LPrefix) 305 insnContext = IC_VEX_L_OPSIZE; 306 else if (HasOpSizePrefix && HasVEX_WPrefix) 307 insnContext = IC_VEX_W_OPSIZE; 308 else if (HasOpSizePrefix) 309 insnContext = IC_VEX_OPSIZE; 310 else if (HasVEX_LPrefix && 311 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 312 insnContext = IC_VEX_L_XS; 313 else if (HasVEX_LPrefix && (Prefix == X86Local::XD || 314 Prefix == X86Local::T8XD || 315 Prefix == X86Local::TAXD)) 316 insnContext = IC_VEX_L_XD; 317 else if (HasVEX_WPrefix && 318 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 319 insnContext = IC_VEX_W_XS; 320 else if (HasVEX_WPrefix && (Prefix == X86Local::XD || 321 Prefix == X86Local::T8XD || 322 Prefix == X86Local::TAXD)) 323 insnContext = IC_VEX_W_XD; 324 else if (HasVEX_WPrefix) 325 insnContext = IC_VEX_W; 326 else if (HasVEX_LPrefix) 327 insnContext = IC_VEX_L; 328 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 329 Prefix == X86Local::TAXD) 330 insnContext = IC_VEX_XD; 331 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS) 332 insnContext = IC_VEX_XS; 333 else 334 insnContext = IC_VEX; 335 } else if (Is64Bit || HasREX_WPrefix) { 336 if (HasREX_WPrefix && HasOpSizePrefix) 337 insnContext = IC_64BIT_REXW_OPSIZE; 338 else if (HasOpSizePrefix && (Prefix == X86Local::XD || 339 Prefix == X86Local::T8XD || 340 Prefix == X86Local::TAXD)) 341 insnContext = IC_64BIT_XD_OPSIZE; 342 else if (HasOpSizePrefix && 343 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 344 insnContext = IC_64BIT_XS_OPSIZE; 345 else if (HasOpSizePrefix) 346 insnContext = IC_64BIT_OPSIZE; 347 else if (HasAdSizePrefix) 348 insnContext = IC_64BIT_ADSIZE; 349 else if (HasREX_WPrefix && 350 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 351 insnContext = IC_64BIT_REXW_XS; 352 else if (HasREX_WPrefix && (Prefix == X86Local::XD || 353 Prefix == X86Local::T8XD || 354 Prefix == X86Local::TAXD)) 355 insnContext = IC_64BIT_REXW_XD; 356 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 357 Prefix == X86Local::TAXD) 358 insnContext = IC_64BIT_XD; 359 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS) 360 insnContext = IC_64BIT_XS; 361 else if (HasREX_WPrefix) 362 insnContext = IC_64BIT_REXW; 363 else 364 insnContext = IC_64BIT; 365 } else { 366 if (HasOpSizePrefix && (Prefix == X86Local::XD || 367 Prefix == X86Local::T8XD || 368 Prefix == X86Local::TAXD)) 369 insnContext = IC_XD_OPSIZE; 370 else if (HasOpSizePrefix && 371 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 372 insnContext = IC_XS_OPSIZE; 373 else if (HasOpSizePrefix) 374 insnContext = IC_OPSIZE; 375 else if (HasAdSizePrefix) 376 insnContext = IC_ADSIZE; 377 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 378 Prefix == X86Local::TAXD) 379 insnContext = IC_XD; 380 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS || 381 Prefix == X86Local::REP) 382 insnContext = IC_XS; 383 else 384 insnContext = IC; 385 } 386 387 return insnContext; 388 } 389 390 RecognizableInstr::filter_ret RecognizableInstr::filter() const { 391 /////////////////// 392 // FILTER_STRONG 393 // 394 395 // Filter out intrinsics 396 397 assert(Rec->isSubClassOf("X86Inst") && "Can only filter X86 instructions"); 398 399 if (Form == X86Local::Pseudo || 400 (IsCodeGenOnly && Name.find("_REV") == Name.npos)) 401 return FILTER_STRONG; 402 403 404 // Filter out artificial instructions but leave in the LOCK_PREFIX so it is 405 // printed as a separate "instruction". 406 407 if (Name.find("_Int") != Name.npos || 408 Name.find("Int_") != Name.npos) 409 return FILTER_STRONG; 410 411 // Filter out instructions with segment override prefixes. 412 // They're too messy to handle now and we'll special case them if needed. 413 414 if (SegOvr) 415 return FILTER_STRONG; 416 417 418 ///////////////// 419 // FILTER_WEAK 420 // 421 422 423 // Filter out instructions with a LOCK prefix; 424 // prefer forms that do not have the prefix 425 if (HasLockPrefix) 426 return FILTER_WEAK; 427 428 // Filter out alternate forms of AVX instructions 429 if (Name.find("_alt") != Name.npos || 430 Name.find("XrYr") != Name.npos || 431 (Name.find("r64r") != Name.npos && Name.find("r64r64") == Name.npos) || 432 Name.find("_64mr") != Name.npos || 433 Name.find("Xrr") != Name.npos || 434 Name.find("rr64") != Name.npos) 435 return FILTER_WEAK; 436 437 // Special cases. 438 439 if (Name.find("PCMPISTRI") != Name.npos && Name != "PCMPISTRI") 440 return FILTER_WEAK; 441 if (Name.find("PCMPESTRI") != Name.npos && Name != "PCMPESTRI") 442 return FILTER_WEAK; 443 444 if (Name.find("MOV") != Name.npos && Name.find("r0") != Name.npos) 445 return FILTER_WEAK; 446 if (Name.find("MOVZ") != Name.npos && Name.find("MOVZX") == Name.npos) 447 return FILTER_WEAK; 448 if (Name.find("Fs") != Name.npos) 449 return FILTER_WEAK; 450 if (Name == "PUSH64i16" || 451 Name == "MOVPQI2QImr" || 452 Name == "VMOVPQI2QImr" || 453 Name == "MMX_MOVD64rrv164" || 454 Name == "MOV64ri64i32" || 455 Name == "VMASKMOVDQU64" || 456 Name == "VEXTRACTPSrr64" || 457 Name == "VMOVQd64rr" || 458 Name == "VMOVQs64rr") 459 return FILTER_WEAK; 460 461 if (HasFROperands && Name.find("MOV") != Name.npos && 462 ((Name.find("2") != Name.npos && Name.find("32") == Name.npos) || 463 (Name.find("to") != Name.npos))) 464 return FILTER_STRONG; 465 466 return FILTER_NORMAL; 467 } 468 469 bool RecognizableInstr::hasFROperands() const { 470 const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands; 471 unsigned numOperands = OperandList.size(); 472 473 for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) { 474 const std::string &recName = OperandList[operandIndex].Rec->getName(); 475 476 if (recName.find("FR") != recName.npos) 477 return true; 478 } 479 return false; 480 } 481 482 void RecognizableInstr::handleOperand(bool optional, unsigned &operandIndex, 483 unsigned &physicalOperandIndex, 484 unsigned &numPhysicalOperands, 485 const unsigned *operandMapping, 486 OperandEncoding (*encodingFromString) 487 (const std::string&, 488 bool hasOpSizePrefix)) { 489 if (optional) { 490 if (physicalOperandIndex >= numPhysicalOperands) 491 return; 492 } else { 493 assert(physicalOperandIndex < numPhysicalOperands); 494 } 495 496 while (operandMapping[operandIndex] != operandIndex) { 497 Spec->operands[operandIndex].encoding = ENCODING_DUP; 498 Spec->operands[operandIndex].type = 499 (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]); 500 ++operandIndex; 501 } 502 503 const std::string &typeName = (*Operands)[operandIndex].Rec->getName(); 504 505 Spec->operands[operandIndex].encoding = encodingFromString(typeName, 506 HasOpSizePrefix); 507 Spec->operands[operandIndex].type = typeFromString(typeName, 508 IsSSE, 509 HasREX_WPrefix, 510 HasOpSizePrefix); 511 512 ++operandIndex; 513 ++physicalOperandIndex; 514 } 515 516 void RecognizableInstr::emitInstructionSpecifier(DisassemblerTables &tables) { 517 Spec->name = Name; 518 519 if (!ShouldBeEmitted) 520 return; 521 522 switch (filter()) { 523 case FILTER_WEAK: 524 Spec->filtered = true; 525 break; 526 case FILTER_STRONG: 527 ShouldBeEmitted = false; 528 return; 529 case FILTER_NORMAL: 530 break; 531 } 532 533 Spec->insnContext = insnContext(); 534 535 const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands; 536 537 unsigned numOperands = OperandList.size(); 538 unsigned numPhysicalOperands = 0; 539 540 // operandMapping maps from operands in OperandList to their originals. 541 // If operandMapping[i] != i, then the entry is a duplicate. 542 unsigned operandMapping[X86_MAX_OPERANDS]; 543 assert(numOperands <= X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough"); 544 545 for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) { 546 if (OperandList[operandIndex].Constraints.size()) { 547 const CGIOperandList::ConstraintInfo &Constraint = 548 OperandList[operandIndex].Constraints[0]; 549 if (Constraint.isTied()) { 550 operandMapping[operandIndex] = operandIndex; 551 operandMapping[Constraint.getTiedOperand()] = operandIndex; 552 } else { 553 ++numPhysicalOperands; 554 operandMapping[operandIndex] = operandIndex; 555 } 556 } else { 557 ++numPhysicalOperands; 558 operandMapping[operandIndex] = operandIndex; 559 } 560 } 561 562 #define HANDLE_OPERAND(class) \ 563 handleOperand(false, \ 564 operandIndex, \ 565 physicalOperandIndex, \ 566 numPhysicalOperands, \ 567 operandMapping, \ 568 class##EncodingFromString); 569 570 #define HANDLE_OPTIONAL(class) \ 571 handleOperand(true, \ 572 operandIndex, \ 573 physicalOperandIndex, \ 574 numPhysicalOperands, \ 575 operandMapping, \ 576 class##EncodingFromString); 577 578 // operandIndex should always be < numOperands 579 unsigned operandIndex = 0; 580 // physicalOperandIndex should always be < numPhysicalOperands 581 unsigned physicalOperandIndex = 0; 582 583 switch (Form) { 584 case X86Local::RawFrm: 585 // Operand 1 (optional) is an address or immediate. 586 // Operand 2 (optional) is an immediate. 587 assert(numPhysicalOperands <= 2 && 588 "Unexpected number of operands for RawFrm"); 589 HANDLE_OPTIONAL(relocation) 590 HANDLE_OPTIONAL(immediate) 591 break; 592 case X86Local::AddRegFrm: 593 // Operand 1 is added to the opcode. 594 // Operand 2 (optional) is an address. 595 assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 && 596 "Unexpected number of operands for AddRegFrm"); 597 HANDLE_OPERAND(opcodeModifier) 598 HANDLE_OPTIONAL(relocation) 599 break; 600 case X86Local::MRMDestReg: 601 // Operand 1 is a register operand in the R/M field. 602 // Operand 2 is a register operand in the Reg/Opcode field. 603 // - In AVX, there is a register operand in the VEX.vvvv field here - 604 // Operand 3 (optional) is an immediate. 605 if (HasVEX_4VPrefix) 606 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 && 607 "Unexpected number of operands for MRMDestRegFrm with VEX_4V"); 608 else 609 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 610 "Unexpected number of operands for MRMDestRegFrm"); 611 612 HANDLE_OPERAND(rmRegister) 613 614 if (HasVEX_4VPrefix) 615 // FIXME: In AVX, the register below becomes the one encoded 616 // in ModRMVEX and the one above the one in the VEX.VVVV field 617 HANDLE_OPERAND(vvvvRegister) 618 619 HANDLE_OPERAND(roRegister) 620 HANDLE_OPTIONAL(immediate) 621 break; 622 case X86Local::MRMDestMem: 623 // Operand 1 is a memory operand (possibly SIB-extended) 624 // Operand 2 is a register operand in the Reg/Opcode field. 625 // - In AVX, there is a register operand in the VEX.vvvv field here - 626 // Operand 3 (optional) is an immediate. 627 if (HasVEX_4VPrefix) 628 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 && 629 "Unexpected number of operands for MRMDestMemFrm with VEX_4V"); 630 else 631 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 632 "Unexpected number of operands for MRMDestMemFrm"); 633 HANDLE_OPERAND(memory) 634 635 if (HasVEX_4VPrefix) 636 // FIXME: In AVX, the register below becomes the one encoded 637 // in ModRMVEX and the one above the one in the VEX.VVVV field 638 HANDLE_OPERAND(vvvvRegister) 639 640 HANDLE_OPERAND(roRegister) 641 HANDLE_OPTIONAL(immediate) 642 break; 643 case X86Local::MRMSrcReg: 644 // Operand 1 is a register operand in the Reg/Opcode field. 645 // Operand 2 is a register operand in the R/M field. 646 // - In AVX, there is a register operand in the VEX.vvvv field here - 647 // Operand 3 (optional) is an immediate. 648 // Operand 4 (optional) is an immediate. 649 650 if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix) 651 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 5 && 652 "Unexpected number of operands for MRMSrcRegFrm with VEX_4V"); 653 else 654 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 4 && 655 "Unexpected number of operands for MRMSrcRegFrm"); 656 657 HANDLE_OPERAND(roRegister) 658 659 if (HasVEX_4VPrefix) 660 // FIXME: In AVX, the register below becomes the one encoded 661 // in ModRMVEX and the one above the one in the VEX.VVVV field 662 HANDLE_OPERAND(vvvvRegister) 663 664 if (HasMemOp4Prefix) 665 HANDLE_OPERAND(immediate) 666 667 HANDLE_OPERAND(rmRegister) 668 669 if (HasVEX_4VOp3Prefix) 670 HANDLE_OPERAND(vvvvRegister) 671 672 if (!HasMemOp4Prefix) 673 HANDLE_OPTIONAL(immediate) 674 HANDLE_OPTIONAL(immediate) // above might be a register in 7:4 675 HANDLE_OPTIONAL(immediate) 676 break; 677 case X86Local::MRMSrcMem: 678 // Operand 1 is a register operand in the Reg/Opcode field. 679 // Operand 2 is a memory operand (possibly SIB-extended) 680 // - In AVX, there is a register operand in the VEX.vvvv field here - 681 // Operand 3 (optional) is an immediate. 682 683 if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix) 684 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 5 && 685 "Unexpected number of operands for MRMSrcMemFrm with VEX_4V"); 686 else 687 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 688 "Unexpected number of operands for MRMSrcMemFrm"); 689 690 HANDLE_OPERAND(roRegister) 691 692 if (HasVEX_4VPrefix) 693 // FIXME: In AVX, the register below becomes the one encoded 694 // in ModRMVEX and the one above the one in the VEX.VVVV field 695 HANDLE_OPERAND(vvvvRegister) 696 697 if (HasMemOp4Prefix) 698 HANDLE_OPERAND(immediate) 699 700 HANDLE_OPERAND(memory) 701 702 if (HasVEX_4VOp3Prefix) 703 HANDLE_OPERAND(vvvvRegister) 704 705 if (!HasMemOp4Prefix) 706 HANDLE_OPTIONAL(immediate) 707 HANDLE_OPTIONAL(immediate) // above might be a register in 7:4 708 break; 709 case X86Local::MRM0r: 710 case X86Local::MRM1r: 711 case X86Local::MRM2r: 712 case X86Local::MRM3r: 713 case X86Local::MRM4r: 714 case X86Local::MRM5r: 715 case X86Local::MRM6r: 716 case X86Local::MRM7r: 717 // Operand 1 is a register operand in the R/M field. 718 // Operand 2 (optional) is an immediate or relocation. 719 // Operand 3 (optional) is an immediate. 720 if (HasVEX_4VPrefix) 721 assert(numPhysicalOperands <= 3 && 722 "Unexpected number of operands for MRMnRFrm with VEX_4V"); 723 else 724 assert(numPhysicalOperands <= 3 && 725 "Unexpected number of operands for MRMnRFrm"); 726 if (HasVEX_4VPrefix) 727 HANDLE_OPERAND(vvvvRegister) 728 HANDLE_OPTIONAL(rmRegister) 729 HANDLE_OPTIONAL(relocation) 730 HANDLE_OPTIONAL(immediate) 731 break; 732 case X86Local::MRM0m: 733 case X86Local::MRM1m: 734 case X86Local::MRM2m: 735 case X86Local::MRM3m: 736 case X86Local::MRM4m: 737 case X86Local::MRM5m: 738 case X86Local::MRM6m: 739 case X86Local::MRM7m: 740 // Operand 1 is a memory operand (possibly SIB-extended) 741 // Operand 2 (optional) is an immediate or relocation. 742 if (HasVEX_4VPrefix) 743 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 744 "Unexpected number of operands for MRMnMFrm"); 745 else 746 assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 && 747 "Unexpected number of operands for MRMnMFrm"); 748 if (HasVEX_4VPrefix) 749 HANDLE_OPERAND(vvvvRegister) 750 HANDLE_OPERAND(memory) 751 HANDLE_OPTIONAL(relocation) 752 break; 753 case X86Local::RawFrmImm8: 754 // operand 1 is a 16-bit immediate 755 // operand 2 is an 8-bit immediate 756 assert(numPhysicalOperands == 2 && 757 "Unexpected number of operands for X86Local::RawFrmImm8"); 758 HANDLE_OPERAND(immediate) 759 HANDLE_OPERAND(immediate) 760 break; 761 case X86Local::RawFrmImm16: 762 // operand 1 is a 16-bit immediate 763 // operand 2 is a 16-bit immediate 764 HANDLE_OPERAND(immediate) 765 HANDLE_OPERAND(immediate) 766 break; 767 case X86Local::MRM_F8: 768 if (Opcode == 0xc6) { 769 assert(numPhysicalOperands == 1 && 770 "Unexpected number of operands for X86Local::MRM_F8"); 771 HANDLE_OPERAND(immediate) 772 } else if (Opcode == 0xc7) { 773 assert(numPhysicalOperands == 1 && 774 "Unexpected number of operands for X86Local::MRM_F8"); 775 HANDLE_OPERAND(relocation) 776 } 777 break; 778 case X86Local::MRMInitReg: 779 // Ignored. 780 break; 781 } 782 783 #undef HANDLE_OPERAND 784 #undef HANDLE_OPTIONAL 785 } 786 787 void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const { 788 // Special cases where the LLVM tables are not complete 789 790 #define MAP(from, to) \ 791 case X86Local::MRM_##from: \ 792 filter = new ExactFilter(0x##from); \ 793 break; 794 795 OpcodeType opcodeType = (OpcodeType)-1; 796 797 ModRMFilter* filter = NULL; 798 uint8_t opcodeToSet = 0; 799 800 switch (Prefix) { 801 // Extended two-byte opcodes can start with f2 0f, f3 0f, or 0f 802 case X86Local::XD: 803 case X86Local::XS: 804 case X86Local::TB: 805 opcodeType = TWOBYTE; 806 807 switch (Opcode) { 808 default: 809 if (needsModRMForDecode(Form)) 810 filter = new ModFilter(isRegFormat(Form)); 811 else 812 filter = new DumbFilter(); 813 break; 814 #define EXTENSION_TABLE(n) case 0x##n: 815 TWO_BYTE_EXTENSION_TABLES 816 #undef EXTENSION_TABLE 817 switch (Form) { 818 default: 819 llvm_unreachable("Unhandled two-byte extended opcode"); 820 case X86Local::MRM0r: 821 case X86Local::MRM1r: 822 case X86Local::MRM2r: 823 case X86Local::MRM3r: 824 case X86Local::MRM4r: 825 case X86Local::MRM5r: 826 case X86Local::MRM6r: 827 case X86Local::MRM7r: 828 filter = new ExtendedFilter(true, Form - X86Local::MRM0r); 829 break; 830 case X86Local::MRM0m: 831 case X86Local::MRM1m: 832 case X86Local::MRM2m: 833 case X86Local::MRM3m: 834 case X86Local::MRM4m: 835 case X86Local::MRM5m: 836 case X86Local::MRM6m: 837 case X86Local::MRM7m: 838 filter = new ExtendedFilter(false, Form - X86Local::MRM0m); 839 break; 840 MRM_MAPPING 841 } // switch (Form) 842 break; 843 } // switch (Opcode) 844 opcodeToSet = Opcode; 845 break; 846 case X86Local::T8: 847 case X86Local::T8XD: 848 case X86Local::T8XS: 849 opcodeType = THREEBYTE_38; 850 switch (Opcode) { 851 default: 852 if (needsModRMForDecode(Form)) 853 filter = new ModFilter(isRegFormat(Form)); 854 else 855 filter = new DumbFilter(); 856 break; 857 #define EXTENSION_TABLE(n) case 0x##n: 858 THREE_BYTE_38_EXTENSION_TABLES 859 #undef EXTENSION_TABLE 860 switch (Form) { 861 default: 862 llvm_unreachable("Unhandled two-byte extended opcode"); 863 case X86Local::MRM0r: 864 case X86Local::MRM1r: 865 case X86Local::MRM2r: 866 case X86Local::MRM3r: 867 case X86Local::MRM4r: 868 case X86Local::MRM5r: 869 case X86Local::MRM6r: 870 case X86Local::MRM7r: 871 filter = new ExtendedFilter(true, Form - X86Local::MRM0r); 872 break; 873 case X86Local::MRM0m: 874 case X86Local::MRM1m: 875 case X86Local::MRM2m: 876 case X86Local::MRM3m: 877 case X86Local::MRM4m: 878 case X86Local::MRM5m: 879 case X86Local::MRM6m: 880 case X86Local::MRM7m: 881 filter = new ExtendedFilter(false, Form - X86Local::MRM0m); 882 break; 883 MRM_MAPPING 884 } // switch (Form) 885 break; 886 } // switch (Opcode) 887 opcodeToSet = Opcode; 888 break; 889 case X86Local::P_TA: 890 case X86Local::TAXD: 891 opcodeType = THREEBYTE_3A; 892 if (needsModRMForDecode(Form)) 893 filter = new ModFilter(isRegFormat(Form)); 894 else 895 filter = new DumbFilter(); 896 opcodeToSet = Opcode; 897 break; 898 case X86Local::A6: 899 opcodeType = THREEBYTE_A6; 900 if (needsModRMForDecode(Form)) 901 filter = new ModFilter(isRegFormat(Form)); 902 else 903 filter = new DumbFilter(); 904 opcodeToSet = Opcode; 905 break; 906 case X86Local::A7: 907 opcodeType = THREEBYTE_A7; 908 if (needsModRMForDecode(Form)) 909 filter = new ModFilter(isRegFormat(Form)); 910 else 911 filter = new DumbFilter(); 912 opcodeToSet = Opcode; 913 break; 914 case X86Local::D8: 915 case X86Local::D9: 916 case X86Local::DA: 917 case X86Local::DB: 918 case X86Local::DC: 919 case X86Local::DD: 920 case X86Local::DE: 921 case X86Local::DF: 922 assert(Opcode >= 0xc0 && "Unexpected opcode for an escape opcode"); 923 opcodeType = ONEBYTE; 924 if (Form == X86Local::AddRegFrm) { 925 Spec->modifierType = MODIFIER_MODRM; 926 Spec->modifierBase = Opcode; 927 filter = new AddRegEscapeFilter(Opcode); 928 } else { 929 filter = new EscapeFilter(true, Opcode); 930 } 931 opcodeToSet = 0xd8 + (Prefix - X86Local::D8); 932 break; 933 case X86Local::REP: 934 default: 935 opcodeType = ONEBYTE; 936 switch (Opcode) { 937 #define EXTENSION_TABLE(n) case 0x##n: 938 ONE_BYTE_EXTENSION_TABLES 939 #undef EXTENSION_TABLE 940 switch (Form) { 941 default: 942 llvm_unreachable("Fell through the cracks of a single-byte " 943 "extended opcode"); 944 case X86Local::MRM0r: 945 case X86Local::MRM1r: 946 case X86Local::MRM2r: 947 case X86Local::MRM3r: 948 case X86Local::MRM4r: 949 case X86Local::MRM5r: 950 case X86Local::MRM6r: 951 case X86Local::MRM7r: 952 filter = new ExtendedFilter(true, Form - X86Local::MRM0r); 953 break; 954 case X86Local::MRM0m: 955 case X86Local::MRM1m: 956 case X86Local::MRM2m: 957 case X86Local::MRM3m: 958 case X86Local::MRM4m: 959 case X86Local::MRM5m: 960 case X86Local::MRM6m: 961 case X86Local::MRM7m: 962 filter = new ExtendedFilter(false, Form - X86Local::MRM0m); 963 break; 964 MRM_MAPPING 965 } // switch (Form) 966 break; 967 case 0xd8: 968 case 0xd9: 969 case 0xda: 970 case 0xdb: 971 case 0xdc: 972 case 0xdd: 973 case 0xde: 974 case 0xdf: 975 filter = new EscapeFilter(false, Form - X86Local::MRM0m); 976 break; 977 default: 978 if (needsModRMForDecode(Form)) 979 filter = new ModFilter(isRegFormat(Form)); 980 else 981 filter = new DumbFilter(); 982 break; 983 } // switch (Opcode) 984 opcodeToSet = Opcode; 985 } // switch (Prefix) 986 987 assert(opcodeType != (OpcodeType)-1 && 988 "Opcode type not set"); 989 assert(filter && "Filter not set"); 990 991 if (Form == X86Local::AddRegFrm) { 992 if(Spec->modifierType != MODIFIER_MODRM) { 993 assert(opcodeToSet < 0xf9 && 994 "Not enough room for all ADDREG_FRM operands"); 995 996 uint8_t currentOpcode; 997 998 for (currentOpcode = opcodeToSet; 999 currentOpcode < opcodeToSet + 8; 1000 ++currentOpcode) 1001 tables.setTableFields(opcodeType, 1002 insnContext(), 1003 currentOpcode, 1004 *filter, 1005 UID, Is32Bit, IgnoresVEX_L); 1006 1007 Spec->modifierType = MODIFIER_OPCODE; 1008 Spec->modifierBase = opcodeToSet; 1009 } else { 1010 // modifierBase was set where MODIFIER_MODRM was set 1011 tables.setTableFields(opcodeType, 1012 insnContext(), 1013 opcodeToSet, 1014 *filter, 1015 UID, Is32Bit, IgnoresVEX_L); 1016 } 1017 } else { 1018 tables.setTableFields(opcodeType, 1019 insnContext(), 1020 opcodeToSet, 1021 *filter, 1022 UID, Is32Bit, IgnoresVEX_L); 1023 1024 Spec->modifierType = MODIFIER_NONE; 1025 Spec->modifierBase = opcodeToSet; 1026 } 1027 1028 delete filter; 1029 1030 #undef MAP 1031 } 1032 1033 #define TYPE(str, type) if (s == str) return type; 1034 OperandType RecognizableInstr::typeFromString(const std::string &s, 1035 bool isSSE, 1036 bool hasREX_WPrefix, 1037 bool hasOpSizePrefix) { 1038 if (isSSE) { 1039 // For SSE instructions, we ignore the OpSize prefix and force operand 1040 // sizes. 1041 TYPE("GR16", TYPE_R16) 1042 TYPE("GR32", TYPE_R32) 1043 TYPE("GR64", TYPE_R64) 1044 } 1045 if(hasREX_WPrefix) { 1046 // For instructions with a REX_W prefix, a declared 32-bit register encoding 1047 // is special. 1048 TYPE("GR32", TYPE_R32) 1049 } 1050 if(!hasOpSizePrefix) { 1051 // For instructions without an OpSize prefix, a declared 16-bit register or 1052 // immediate encoding is special. 1053 TYPE("GR16", TYPE_R16) 1054 TYPE("i16imm", TYPE_IMM16) 1055 } 1056 TYPE("i16mem", TYPE_Mv) 1057 TYPE("i16imm", TYPE_IMMv) 1058 TYPE("i16i8imm", TYPE_IMMv) 1059 TYPE("GR16", TYPE_Rv) 1060 TYPE("i32mem", TYPE_Mv) 1061 TYPE("i32imm", TYPE_IMMv) 1062 TYPE("i32i8imm", TYPE_IMM32) 1063 TYPE("u32u8imm", TYPE_IMM32) 1064 TYPE("GR32", TYPE_Rv) 1065 TYPE("i64mem", TYPE_Mv) 1066 TYPE("i64i32imm", TYPE_IMM64) 1067 TYPE("i64i8imm", TYPE_IMM64) 1068 TYPE("GR64", TYPE_R64) 1069 TYPE("i8mem", TYPE_M8) 1070 TYPE("i8imm", TYPE_IMM8) 1071 TYPE("GR8", TYPE_R8) 1072 TYPE("VR128", TYPE_XMM128) 1073 TYPE("f128mem", TYPE_M128) 1074 TYPE("f256mem", TYPE_M256) 1075 TYPE("FR64", TYPE_XMM64) 1076 TYPE("f64mem", TYPE_M64FP) 1077 TYPE("sdmem", TYPE_M64FP) 1078 TYPE("FR32", TYPE_XMM32) 1079 TYPE("f32mem", TYPE_M32FP) 1080 TYPE("ssmem", TYPE_M32FP) 1081 TYPE("RST", TYPE_ST) 1082 TYPE("i128mem", TYPE_M128) 1083 TYPE("i256mem", TYPE_M256) 1084 TYPE("i64i32imm_pcrel", TYPE_REL64) 1085 TYPE("i16imm_pcrel", TYPE_REL16) 1086 TYPE("i32imm_pcrel", TYPE_REL32) 1087 TYPE("SSECC", TYPE_IMM3) 1088 TYPE("AVXCC", TYPE_IMM5) 1089 TYPE("brtarget", TYPE_RELv) 1090 TYPE("uncondbrtarget", TYPE_RELv) 1091 TYPE("brtarget8", TYPE_REL8) 1092 TYPE("f80mem", TYPE_M80FP) 1093 TYPE("lea32mem", TYPE_LEA) 1094 TYPE("lea64_32mem", TYPE_LEA) 1095 TYPE("lea64mem", TYPE_LEA) 1096 TYPE("VR64", TYPE_MM64) 1097 TYPE("i64imm", TYPE_IMMv) 1098 TYPE("opaque32mem", TYPE_M1616) 1099 TYPE("opaque48mem", TYPE_M1632) 1100 TYPE("opaque80mem", TYPE_M1664) 1101 TYPE("opaque512mem", TYPE_M512) 1102 TYPE("SEGMENT_REG", TYPE_SEGMENTREG) 1103 TYPE("DEBUG_REG", TYPE_DEBUGREG) 1104 TYPE("CONTROL_REG", TYPE_CONTROLREG) 1105 TYPE("offset8", TYPE_MOFFS8) 1106 TYPE("offset16", TYPE_MOFFS16) 1107 TYPE("offset32", TYPE_MOFFS32) 1108 TYPE("offset64", TYPE_MOFFS64) 1109 TYPE("VR256", TYPE_XMM256) 1110 TYPE("GR16_NOAX", TYPE_Rv) 1111 TYPE("GR32_NOAX", TYPE_Rv) 1112 TYPE("GR64_NOAX", TYPE_R64) 1113 TYPE("vx32mem", TYPE_M32) 1114 TYPE("vy32mem", TYPE_M32) 1115 TYPE("vx64mem", TYPE_M64) 1116 TYPE("vy64mem", TYPE_M64) 1117 errs() << "Unhandled type string " << s << "\n"; 1118 llvm_unreachable("Unhandled type string"); 1119 } 1120 #undef TYPE 1121 1122 #define ENCODING(str, encoding) if (s == str) return encoding; 1123 OperandEncoding RecognizableInstr::immediateEncodingFromString 1124 (const std::string &s, 1125 bool hasOpSizePrefix) { 1126 if(!hasOpSizePrefix) { 1127 // For instructions without an OpSize prefix, a declared 16-bit register or 1128 // immediate encoding is special. 1129 ENCODING("i16imm", ENCODING_IW) 1130 } 1131 ENCODING("i32i8imm", ENCODING_IB) 1132 ENCODING("u32u8imm", ENCODING_IB) 1133 ENCODING("SSECC", ENCODING_IB) 1134 ENCODING("AVXCC", ENCODING_IB) 1135 ENCODING("i16imm", ENCODING_Iv) 1136 ENCODING("i16i8imm", ENCODING_IB) 1137 ENCODING("i32imm", ENCODING_Iv) 1138 ENCODING("i64i32imm", ENCODING_ID) 1139 ENCODING("i64i8imm", ENCODING_IB) 1140 ENCODING("i8imm", ENCODING_IB) 1141 // This is not a typo. Instructions like BLENDVPD put 1142 // register IDs in 8-bit immediates nowadays. 1143 ENCODING("VR256", ENCODING_IB) 1144 ENCODING("VR128", ENCODING_IB) 1145 ENCODING("FR32", ENCODING_IB) 1146 ENCODING("FR64", ENCODING_IB) 1147 errs() << "Unhandled immediate encoding " << s << "\n"; 1148 llvm_unreachable("Unhandled immediate encoding"); 1149 } 1150 1151 OperandEncoding RecognizableInstr::rmRegisterEncodingFromString 1152 (const std::string &s, 1153 bool hasOpSizePrefix) { 1154 ENCODING("GR16", ENCODING_RM) 1155 ENCODING("GR32", ENCODING_RM) 1156 ENCODING("GR64", ENCODING_RM) 1157 ENCODING("GR8", ENCODING_RM) 1158 ENCODING("VR128", ENCODING_RM) 1159 ENCODING("FR64", ENCODING_RM) 1160 ENCODING("FR32", ENCODING_RM) 1161 ENCODING("VR64", ENCODING_RM) 1162 ENCODING("VR256", ENCODING_RM) 1163 errs() << "Unhandled R/M register encoding " << s << "\n"; 1164 llvm_unreachable("Unhandled R/M register encoding"); 1165 } 1166 1167 OperandEncoding RecognizableInstr::roRegisterEncodingFromString 1168 (const std::string &s, 1169 bool hasOpSizePrefix) { 1170 ENCODING("GR16", ENCODING_REG) 1171 ENCODING("GR32", ENCODING_REG) 1172 ENCODING("GR64", ENCODING_REG) 1173 ENCODING("GR8", ENCODING_REG) 1174 ENCODING("VR128", ENCODING_REG) 1175 ENCODING("FR64", ENCODING_REG) 1176 ENCODING("FR32", ENCODING_REG) 1177 ENCODING("VR64", ENCODING_REG) 1178 ENCODING("SEGMENT_REG", ENCODING_REG) 1179 ENCODING("DEBUG_REG", ENCODING_REG) 1180 ENCODING("CONTROL_REG", ENCODING_REG) 1181 ENCODING("VR256", ENCODING_REG) 1182 errs() << "Unhandled reg/opcode register encoding " << s << "\n"; 1183 llvm_unreachable("Unhandled reg/opcode register encoding"); 1184 } 1185 1186 OperandEncoding RecognizableInstr::vvvvRegisterEncodingFromString 1187 (const std::string &s, 1188 bool hasOpSizePrefix) { 1189 ENCODING("GR32", ENCODING_VVVV) 1190 ENCODING("GR64", ENCODING_VVVV) 1191 ENCODING("FR32", ENCODING_VVVV) 1192 ENCODING("FR64", ENCODING_VVVV) 1193 ENCODING("VR128", ENCODING_VVVV) 1194 ENCODING("VR256", ENCODING_VVVV) 1195 errs() << "Unhandled VEX.vvvv register encoding " << s << "\n"; 1196 llvm_unreachable("Unhandled VEX.vvvv register encoding"); 1197 } 1198 1199 OperandEncoding RecognizableInstr::memoryEncodingFromString 1200 (const std::string &s, 1201 bool hasOpSizePrefix) { 1202 ENCODING("i16mem", ENCODING_RM) 1203 ENCODING("i32mem", ENCODING_RM) 1204 ENCODING("i64mem", ENCODING_RM) 1205 ENCODING("i8mem", ENCODING_RM) 1206 ENCODING("ssmem", ENCODING_RM) 1207 ENCODING("sdmem", ENCODING_RM) 1208 ENCODING("f128mem", ENCODING_RM) 1209 ENCODING("f256mem", ENCODING_RM) 1210 ENCODING("f64mem", ENCODING_RM) 1211 ENCODING("f32mem", ENCODING_RM) 1212 ENCODING("i128mem", ENCODING_RM) 1213 ENCODING("i256mem", ENCODING_RM) 1214 ENCODING("f80mem", ENCODING_RM) 1215 ENCODING("lea32mem", ENCODING_RM) 1216 ENCODING("lea64_32mem", ENCODING_RM) 1217 ENCODING("lea64mem", ENCODING_RM) 1218 ENCODING("opaque32mem", ENCODING_RM) 1219 ENCODING("opaque48mem", ENCODING_RM) 1220 ENCODING("opaque80mem", ENCODING_RM) 1221 ENCODING("opaque512mem", ENCODING_RM) 1222 ENCODING("vx32mem", ENCODING_RM) 1223 ENCODING("vy32mem", ENCODING_RM) 1224 ENCODING("vx64mem", ENCODING_RM) 1225 ENCODING("vy64mem", ENCODING_RM) 1226 errs() << "Unhandled memory encoding " << s << "\n"; 1227 llvm_unreachable("Unhandled memory encoding"); 1228 } 1229 1230 OperandEncoding RecognizableInstr::relocationEncodingFromString 1231 (const std::string &s, 1232 bool hasOpSizePrefix) { 1233 if(!hasOpSizePrefix) { 1234 // For instructions without an OpSize prefix, a declared 16-bit register or 1235 // immediate encoding is special. 1236 ENCODING("i16imm", ENCODING_IW) 1237 } 1238 ENCODING("i16imm", ENCODING_Iv) 1239 ENCODING("i16i8imm", ENCODING_IB) 1240 ENCODING("i32imm", ENCODING_Iv) 1241 ENCODING("i32i8imm", ENCODING_IB) 1242 ENCODING("i64i32imm", ENCODING_ID) 1243 ENCODING("i64i8imm", ENCODING_IB) 1244 ENCODING("i8imm", ENCODING_IB) 1245 ENCODING("i64i32imm_pcrel", ENCODING_ID) 1246 ENCODING("i16imm_pcrel", ENCODING_IW) 1247 ENCODING("i32imm_pcrel", ENCODING_ID) 1248 ENCODING("brtarget", ENCODING_Iv) 1249 ENCODING("brtarget8", ENCODING_IB) 1250 ENCODING("i64imm", ENCODING_IO) 1251 ENCODING("offset8", ENCODING_Ia) 1252 ENCODING("offset16", ENCODING_Ia) 1253 ENCODING("offset32", ENCODING_Ia) 1254 ENCODING("offset64", ENCODING_Ia) 1255 errs() << "Unhandled relocation encoding " << s << "\n"; 1256 llvm_unreachable("Unhandled relocation encoding"); 1257 } 1258 1259 OperandEncoding RecognizableInstr::opcodeModifierEncodingFromString 1260 (const std::string &s, 1261 bool hasOpSizePrefix) { 1262 ENCODING("RST", ENCODING_I) 1263 ENCODING("GR32", ENCODING_Rv) 1264 ENCODING("GR64", ENCODING_RO) 1265 ENCODING("GR16", ENCODING_Rv) 1266 ENCODING("GR8", ENCODING_RB) 1267 ENCODING("GR16_NOAX", ENCODING_Rv) 1268 ENCODING("GR32_NOAX", ENCODING_Rv) 1269 ENCODING("GR64_NOAX", ENCODING_RO) 1270 errs() << "Unhandled opcode modifier encoding " << s << "\n"; 1271 llvm_unreachable("Unhandled opcode modifier encoding"); 1272 } 1273 #undef ENCODING 1274