Home | History | Annotate | Download | only in qemu
      1 /*
      2  * defines common to all virtual CPUs
      3  *
      4  *  Copyright (c) 2003 Fabrice Bellard
      5  *
      6  * This library is free software; you can redistribute it and/or
      7  * modify it under the terms of the GNU Lesser General Public
      8  * License as published by the Free Software Foundation; either
      9  * version 2 of the License, or (at your option) any later version.
     10  *
     11  * This library is distributed in the hope that it will be useful,
     12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     14  * Lesser General Public License for more details.
     15  *
     16  * You should have received a copy of the GNU Lesser General Public
     17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
     18  */
     19 #ifndef CPU_ALL_H
     20 #define CPU_ALL_H
     21 
     22 #include "qemu-common.h"
     23 #include "cpu-common.h"
     24 
     25 /* some important defines:
     26  *
     27  * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
     28  * memory accesses.
     29  *
     30  * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
     31  * otherwise little endian.
     32  *
     33  * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
     34  *
     35  * TARGET_WORDS_BIGENDIAN : same for target cpu
     36  */
     37 
     38 #include "softfloat.h"
     39 
     40 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
     41 #define BSWAP_NEEDED
     42 #endif
     43 
     44 #ifdef BSWAP_NEEDED
     45 
     46 static inline uint16_t tswap16(uint16_t s)
     47 {
     48     return bswap16(s);
     49 }
     50 
     51 static inline uint32_t tswap32(uint32_t s)
     52 {
     53     return bswap32(s);
     54 }
     55 
     56 static inline uint64_t tswap64(uint64_t s)
     57 {
     58     return bswap64(s);
     59 }
     60 
     61 static inline void tswap16s(uint16_t *s)
     62 {
     63     *s = bswap16(*s);
     64 }
     65 
     66 static inline void tswap32s(uint32_t *s)
     67 {
     68     *s = bswap32(*s);
     69 }
     70 
     71 static inline void tswap64s(uint64_t *s)
     72 {
     73     *s = bswap64(*s);
     74 }
     75 
     76 #else
     77 
     78 static inline uint16_t tswap16(uint16_t s)
     79 {
     80     return s;
     81 }
     82 
     83 static inline uint32_t tswap32(uint32_t s)
     84 {
     85     return s;
     86 }
     87 
     88 static inline uint64_t tswap64(uint64_t s)
     89 {
     90     return s;
     91 }
     92 
     93 static inline void tswap16s(uint16_t *s)
     94 {
     95 }
     96 
     97 static inline void tswap32s(uint32_t *s)
     98 {
     99 }
    100 
    101 static inline void tswap64s(uint64_t *s)
    102 {
    103 }
    104 
    105 #endif
    106 
    107 #if TARGET_LONG_SIZE == 4
    108 #define tswapl(s) tswap32(s)
    109 #define tswapls(s) tswap32s((uint32_t *)(s))
    110 #define bswaptls(s) bswap32s(s)
    111 #else
    112 #define tswapl(s) tswap64(s)
    113 #define tswapls(s) tswap64s((uint64_t *)(s))
    114 #define bswaptls(s) bswap64s(s)
    115 #endif
    116 
    117 typedef union {
    118     float32 f;
    119     uint32_t l;
    120 } CPU_FloatU;
    121 
    122 /* NOTE: arm FPA is horrible as double 32 bit words are stored in big
    123    endian ! */
    124 typedef union {
    125     float64 d;
    126 #if defined(HOST_WORDS_BIGENDIAN) \
    127     || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
    128     struct {
    129         uint32_t upper;
    130         uint32_t lower;
    131     } l;
    132 #else
    133     struct {
    134         uint32_t lower;
    135         uint32_t upper;
    136     } l;
    137 #endif
    138     uint64_t ll;
    139 } CPU_DoubleU;
    140 
    141 #ifdef TARGET_SPARC
    142 typedef union {
    143     float128 q;
    144 #if defined(HOST_WORDS_BIGENDIAN) \
    145     || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
    146     struct {
    147         uint32_t upmost;
    148         uint32_t upper;
    149         uint32_t lower;
    150         uint32_t lowest;
    151     } l;
    152     struct {
    153         uint64_t upper;
    154         uint64_t lower;
    155     } ll;
    156 #else
    157     struct {
    158         uint32_t lowest;
    159         uint32_t lower;
    160         uint32_t upper;
    161         uint32_t upmost;
    162     } l;
    163     struct {
    164         uint64_t lower;
    165         uint64_t upper;
    166     } ll;
    167 #endif
    168 } CPU_QuadU;
    169 #endif
    170 
    171 /* CPU memory access without any memory or io remapping */
    172 
    173 /*
    174  * the generic syntax for the memory accesses is:
    175  *
    176  * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
    177  *
    178  * store: st{type}{size}{endian}_{access_type}(ptr, val)
    179  *
    180  * type is:
    181  * (empty): integer access
    182  *   f    : float access
    183  *
    184  * sign is:
    185  * (empty): for floats or 32 bit size
    186  *   u    : unsigned
    187  *   s    : signed
    188  *
    189  * size is:
    190  *   b: 8 bits
    191  *   w: 16 bits
    192  *   l: 32 bits
    193  *   q: 64 bits
    194  *
    195  * endian is:
    196  * (empty): target cpu endianness or 8 bit access
    197  *   r    : reversed target cpu endianness (not implemented yet)
    198  *   be   : big endian (not implemented yet)
    199  *   le   : little endian (not implemented yet)
    200  *
    201  * access_type is:
    202  *   raw    : host memory access
    203  *   user   : user mode access using soft MMU
    204  *   kernel : kernel mode access using soft MMU
    205  */
    206 static inline int ldub_p(const void *ptr)
    207 {
    208     return *(uint8_t *)ptr;
    209 }
    210 
    211 static inline int ldsb_p(const void *ptr)
    212 {
    213     return *(int8_t *)ptr;
    214 }
    215 
    216 static inline void stb_p(void *ptr, int v)
    217 {
    218     *(uint8_t *)ptr = v;
    219 }
    220 
    221 /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
    222    kernel handles unaligned load/stores may give better results, but
    223    it is a system wide setting : bad */
    224 #if defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
    225 
    226 /* conservative code for little endian unaligned accesses */
    227 static inline int lduw_le_p(const void *ptr)
    228 {
    229 #ifdef _ARCH_PPC
    230     int val;
    231     __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
    232     return val;
    233 #else
    234     const uint8_t *p = ptr;
    235     return p[0] | (p[1] << 8);
    236 #endif
    237 }
    238 
    239 static inline int ldsw_le_p(const void *ptr)
    240 {
    241 #ifdef _ARCH_PPC
    242     int val;
    243     __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
    244     return (int16_t)val;
    245 #else
    246     const uint8_t *p = ptr;
    247     return (int16_t)(p[0] | (p[1] << 8));
    248 #endif
    249 }
    250 
    251 static inline int ldl_le_p(const void *ptr)
    252 {
    253 #ifdef _ARCH_PPC
    254     int val;
    255     __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
    256     return val;
    257 #else
    258     const uint8_t *p = ptr;
    259     return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
    260 #endif
    261 }
    262 
    263 static inline uint64_t ldq_le_p(const void *ptr)
    264 {
    265     const uint8_t *p = ptr;
    266     uint32_t v1, v2;
    267     v1 = ldl_le_p(p);
    268     v2 = ldl_le_p(p + 4);
    269     return v1 | ((uint64_t)v2 << 32);
    270 }
    271 
    272 static inline void stw_le_p(void *ptr, int v)
    273 {
    274 #ifdef _ARCH_PPC
    275     __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
    276 #else
    277     uint8_t *p = ptr;
    278     p[0] = v;
    279     p[1] = v >> 8;
    280 #endif
    281 }
    282 
    283 static inline void stl_le_p(void *ptr, int v)
    284 {
    285 #ifdef _ARCH_PPC
    286     __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
    287 #else
    288     uint8_t *p = ptr;
    289     p[0] = v;
    290     p[1] = v >> 8;
    291     p[2] = v >> 16;
    292     p[3] = v >> 24;
    293 #endif
    294 }
    295 
    296 static inline void stq_le_p(void *ptr, uint64_t v)
    297 {
    298     uint8_t *p = ptr;
    299     stl_le_p(p, (uint32_t)v);
    300     stl_le_p(p + 4, v >> 32);
    301 }
    302 
    303 /* float access */
    304 
    305 static inline float32 ldfl_le_p(const void *ptr)
    306 {
    307     union {
    308         float32 f;
    309         uint32_t i;
    310     } u;
    311     u.i = ldl_le_p(ptr);
    312     return u.f;
    313 }
    314 
    315 static inline void stfl_le_p(void *ptr, float32 v)
    316 {
    317     union {
    318         float32 f;
    319         uint32_t i;
    320     } u;
    321     u.f = v;
    322     stl_le_p(ptr, u.i);
    323 }
    324 
    325 static inline float64 ldfq_le_p(const void *ptr)
    326 {
    327     CPU_DoubleU u;
    328     u.l.lower = ldl_le_p(ptr);
    329     u.l.upper = ldl_le_p(ptr + 4);
    330     return u.d;
    331 }
    332 
    333 static inline void stfq_le_p(void *ptr, float64 v)
    334 {
    335     CPU_DoubleU u;
    336     u.d = v;
    337     stl_le_p(ptr, u.l.lower);
    338     stl_le_p(ptr + 4, u.l.upper);
    339 }
    340 
    341 #else
    342 
    343 static inline int lduw_le_p(const void *ptr)
    344 {
    345     return *(uint16_t *)ptr;
    346 }
    347 
    348 static inline int ldsw_le_p(const void *ptr)
    349 {
    350     return *(int16_t *)ptr;
    351 }
    352 
    353 static inline int ldl_le_p(const void *ptr)
    354 {
    355     return *(uint32_t *)ptr;
    356 }
    357 
    358 static inline uint64_t ldq_le_p(const void *ptr)
    359 {
    360     return *(uint64_t *)ptr;
    361 }
    362 
    363 static inline void stw_le_p(void *ptr, int v)
    364 {
    365     *(uint16_t *)ptr = v;
    366 }
    367 
    368 static inline void stl_le_p(void *ptr, int v)
    369 {
    370     *(uint32_t *)ptr = v;
    371 }
    372 
    373 static inline void stq_le_p(void *ptr, uint64_t v)
    374 {
    375     *(uint64_t *)ptr = v;
    376 }
    377 
    378 /* float access */
    379 
    380 static inline float32 ldfl_le_p(const void *ptr)
    381 {
    382     return *(float32 *)ptr;
    383 }
    384 
    385 static inline float64 ldfq_le_p(const void *ptr)
    386 {
    387     return *(float64 *)ptr;
    388 }
    389 
    390 static inline void stfl_le_p(void *ptr, float32 v)
    391 {
    392     *(float32 *)ptr = v;
    393 }
    394 
    395 static inline void stfq_le_p(void *ptr, float64 v)
    396 {
    397     *(float64 *)ptr = v;
    398 }
    399 #endif
    400 
    401 #if !defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
    402 
    403 static inline int lduw_be_p(const void *ptr)
    404 {
    405 #if defined(__i386__)
    406     int val;
    407     asm volatile ("movzwl %1, %0\n"
    408                   "xchgb %b0, %h0\n"
    409                   : "=q" (val)
    410                   : "m" (*(uint16_t *)ptr));
    411     return val;
    412 #else
    413     const uint8_t *b = ptr;
    414     return ((b[0] << 8) | b[1]);
    415 #endif
    416 }
    417 
    418 static inline int ldsw_be_p(const void *ptr)
    419 {
    420 #if defined(__i386__)
    421     int val;
    422     asm volatile ("movzwl %1, %0\n"
    423                   "xchgb %b0, %h0\n"
    424                   : "=q" (val)
    425                   : "m" (*(uint16_t *)ptr));
    426     return (int16_t)val;
    427 #else
    428     const uint8_t *b = ptr;
    429     return (int16_t)((b[0] << 8) | b[1]);
    430 #endif
    431 }
    432 
    433 static inline int ldl_be_p(const void *ptr)
    434 {
    435 #if defined(__i386__) || defined(__x86_64__)
    436     int val;
    437     asm volatile ("movl %1, %0\n"
    438                   "bswap %0\n"
    439                   : "=r" (val)
    440                   : "m" (*(uint32_t *)ptr));
    441     return val;
    442 #else
    443     const uint8_t *b = ptr;
    444     return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
    445 #endif
    446 }
    447 
    448 static inline uint64_t ldq_be_p(const void *ptr)
    449 {
    450     uint32_t a,b;
    451     a = ldl_be_p(ptr);
    452     b = ldl_be_p((uint8_t *)ptr + 4);
    453     return (((uint64_t)a<<32)|b);
    454 }
    455 
    456 static inline void stw_be_p(void *ptr, int v)
    457 {
    458 #if defined(__i386__)
    459     asm volatile ("xchgb %b0, %h0\n"
    460                   "movw %w0, %1\n"
    461                   : "=q" (v)
    462                   : "m" (*(uint16_t *)ptr), "0" (v));
    463 #else
    464     uint8_t *d = (uint8_t *) ptr;
    465     d[0] = v >> 8;
    466     d[1] = v;
    467 #endif
    468 }
    469 
    470 static inline void stl_be_p(void *ptr, int v)
    471 {
    472 #if defined(__i386__) || defined(__x86_64__)
    473     asm volatile ("bswap %0\n"
    474                   "movl %0, %1\n"
    475                   : "=r" (v)
    476                   : "m" (*(uint32_t *)ptr), "0" (v));
    477 #else
    478     uint8_t *d = (uint8_t *) ptr;
    479     d[0] = v >> 24;
    480     d[1] = v >> 16;
    481     d[2] = v >> 8;
    482     d[3] = v;
    483 #endif
    484 }
    485 
    486 static inline void stq_be_p(void *ptr, uint64_t v)
    487 {
    488     stl_be_p(ptr, v >> 32);
    489     stl_be_p((uint8_t *)ptr + 4, v);
    490 }
    491 
    492 /* float access */
    493 
    494 static inline float32 ldfl_be_p(const void *ptr)
    495 {
    496     union {
    497         float32 f;
    498         uint32_t i;
    499     } u;
    500     u.i = ldl_be_p(ptr);
    501     return u.f;
    502 }
    503 
    504 static inline void stfl_be_p(void *ptr, float32 v)
    505 {
    506     union {
    507         float32 f;
    508         uint32_t i;
    509     } u;
    510     u.f = v;
    511     stl_be_p(ptr, u.i);
    512 }
    513 
    514 static inline float64 ldfq_be_p(const void *ptr)
    515 {
    516     CPU_DoubleU u;
    517     u.l.upper = ldl_be_p(ptr);
    518     u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
    519     return u.d;
    520 }
    521 
    522 static inline void stfq_be_p(void *ptr, float64 v)
    523 {
    524     CPU_DoubleU u;
    525     u.d = v;
    526     stl_be_p(ptr, u.l.upper);
    527     stl_be_p((uint8_t *)ptr + 4, u.l.lower);
    528 }
    529 
    530 #else
    531 
    532 static inline int lduw_be_p(const void *ptr)
    533 {
    534     return *(uint16_t *)ptr;
    535 }
    536 
    537 static inline int ldsw_be_p(const void *ptr)
    538 {
    539     return *(int16_t *)ptr;
    540 }
    541 
    542 static inline int ldl_be_p(const void *ptr)
    543 {
    544     return *(uint32_t *)ptr;
    545 }
    546 
    547 static inline uint64_t ldq_be_p(const void *ptr)
    548 {
    549     return *(uint64_t *)ptr;
    550 }
    551 
    552 static inline void stw_be_p(void *ptr, int v)
    553 {
    554     *(uint16_t *)ptr = v;
    555 }
    556 
    557 static inline void stl_be_p(void *ptr, int v)
    558 {
    559     *(uint32_t *)ptr = v;
    560 }
    561 
    562 static inline void stq_be_p(void *ptr, uint64_t v)
    563 {
    564     *(uint64_t *)ptr = v;
    565 }
    566 
    567 /* float access */
    568 
    569 static inline float32 ldfl_be_p(const void *ptr)
    570 {
    571     return *(float32 *)ptr;
    572 }
    573 
    574 static inline float64 ldfq_be_p(const void *ptr)
    575 {
    576     return *(float64 *)ptr;
    577 }
    578 
    579 static inline void stfl_be_p(void *ptr, float32 v)
    580 {
    581     *(float32 *)ptr = v;
    582 }
    583 
    584 static inline void stfq_be_p(void *ptr, float64 v)
    585 {
    586     *(float64 *)ptr = v;
    587 }
    588 
    589 #endif
    590 
    591 /* target CPU memory access functions */
    592 #if defined(TARGET_WORDS_BIGENDIAN)
    593 #define lduw_p(p) lduw_be_p(p)
    594 #define ldsw_p(p) ldsw_be_p(p)
    595 #define ldl_p(p) ldl_be_p(p)
    596 #define ldq_p(p) ldq_be_p(p)
    597 #define ldfl_p(p) ldfl_be_p(p)
    598 #define ldfq_p(p) ldfq_be_p(p)
    599 #define stw_p(p, v) stw_be_p(p, v)
    600 #define stl_p(p, v) stl_be_p(p, v)
    601 #define stq_p(p, v) stq_be_p(p, v)
    602 #define stfl_p(p, v) stfl_be_p(p, v)
    603 #define stfq_p(p, v) stfq_be_p(p, v)
    604 #else
    605 #define lduw_p(p) lduw_le_p(p)
    606 #define ldsw_p(p) ldsw_le_p(p)
    607 #define ldl_p(p) ldl_le_p(p)
    608 #define ldq_p(p) ldq_le_p(p)
    609 #define ldfl_p(p) ldfl_le_p(p)
    610 #define ldfq_p(p) ldfq_le_p(p)
    611 #define stw_p(p, v) stw_le_p(p, v)
    612 #define stl_p(p, v) stl_le_p(p, v)
    613 #define stq_p(p, v) stq_le_p(p, v)
    614 #define stfl_p(p, v) stfl_le_p(p, v)
    615 #define stfq_p(p, v) stfq_le_p(p, v)
    616 #endif
    617 
    618 /* MMU memory access macros */
    619 
    620 #if defined(CONFIG_USER_ONLY)
    621 #include <assert.h>
    622 #include "qemu-types.h"
    623 
    624 /* On some host systems the guest address space is reserved on the host.
    625  * This allows the guest address space to be offset to a convenient location.
    626  */
    627 #if defined(CONFIG_USE_GUEST_BASE)
    628 extern unsigned long guest_base;
    629 extern int have_guest_base;
    630 extern unsigned long reserved_va;
    631 #define GUEST_BASE guest_base
    632 #define RESERVED_VA reserved_va
    633 #else
    634 #define GUEST_BASE 0ul
    635 #define RESERVED_VA 0ul
    636 #endif
    637 
    638 /* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
    639 #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
    640 
    641 #if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
    642 #define h2g_valid(x) 1
    643 #else
    644 #define h2g_valid(x) ({ \
    645     unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
    646     __guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS); \
    647 })
    648 #endif
    649 
    650 #define h2g(x) ({ \
    651     unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
    652     /* Check if given address fits target address space */ \
    653     assert(h2g_valid(x)); \
    654     (abi_ulong)__ret; \
    655 })
    656 
    657 #define saddr(x) g2h(x)
    658 #define laddr(x) g2h(x)
    659 
    660 #else /* !CONFIG_USER_ONLY */
    661 /* NOTE: we use double casts if pointers and target_ulong have
    662    different sizes */
    663 #define saddr(x) (uint8_t *)(long)(x)
    664 #define laddr(x) (uint8_t *)(long)(x)
    665 #endif
    666 
    667 #define ldub_raw(p) ldub_p(laddr((p)))
    668 #define ldsb_raw(p) ldsb_p(laddr((p)))
    669 #define lduw_raw(p) lduw_p(laddr((p)))
    670 #define ldsw_raw(p) ldsw_p(laddr((p)))
    671 #define ldl_raw(p) ldl_p(laddr((p)))
    672 #define ldq_raw(p) ldq_p(laddr((p)))
    673 #define ldfl_raw(p) ldfl_p(laddr((p)))
    674 #define ldfq_raw(p) ldfq_p(laddr((p)))
    675 #define stb_raw(p, v) stb_p(saddr((p)), v)
    676 #define stw_raw(p, v) stw_p(saddr((p)), v)
    677 #define stl_raw(p, v) stl_p(saddr((p)), v)
    678 #define stq_raw(p, v) stq_p(saddr((p)), v)
    679 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
    680 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
    681 
    682 
    683 #if defined(CONFIG_USER_ONLY)
    684 
    685 /* if user mode, no other memory access functions */
    686 #define ldub(p) ldub_raw(p)
    687 #define ldsb(p) ldsb_raw(p)
    688 #define lduw(p) lduw_raw(p)
    689 #define ldsw(p) ldsw_raw(p)
    690 #define ldl(p) ldl_raw(p)
    691 #define ldq(p) ldq_raw(p)
    692 #define ldfl(p) ldfl_raw(p)
    693 #define ldfq(p) ldfq_raw(p)
    694 #define stb(p, v) stb_raw(p, v)
    695 #define stw(p, v) stw_raw(p, v)
    696 #define stl(p, v) stl_raw(p, v)
    697 #define stq(p, v) stq_raw(p, v)
    698 #define stfl(p, v) stfl_raw(p, v)
    699 #define stfq(p, v) stfq_raw(p, v)
    700 
    701 #define ldub_code(p) ldub_raw(p)
    702 #define ldsb_code(p) ldsb_raw(p)
    703 #define lduw_code(p) lduw_raw(p)
    704 #define ldsw_code(p) ldsw_raw(p)
    705 #define ldl_code(p) ldl_raw(p)
    706 #define ldq_code(p) ldq_raw(p)
    707 
    708 #define ldub_kernel(p) ldub_raw(p)
    709 #define ldsb_kernel(p) ldsb_raw(p)
    710 #define lduw_kernel(p) lduw_raw(p)
    711 #define ldsw_kernel(p) ldsw_raw(p)
    712 #define ldl_kernel(p) ldl_raw(p)
    713 #define ldq_kernel(p) ldq_raw(p)
    714 #define ldfl_kernel(p) ldfl_raw(p)
    715 #define ldfq_kernel(p) ldfq_raw(p)
    716 #define stb_kernel(p, v) stb_raw(p, v)
    717 #define stw_kernel(p, v) stw_raw(p, v)
    718 #define stl_kernel(p, v) stl_raw(p, v)
    719 #define stq_kernel(p, v) stq_raw(p, v)
    720 #define stfl_kernel(p, v) stfl_raw(p, v)
    721 #define stfq_kernel(p, vt) stfq_raw(p, v)
    722 
    723 #endif /* defined(CONFIG_USER_ONLY) */
    724 
    725 /* page related stuff */
    726 
    727 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
    728 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
    729 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
    730 
    731 /* ??? These should be the larger of unsigned long and target_ulong.  */
    732 extern unsigned long qemu_real_host_page_size;
    733 extern unsigned long qemu_host_page_bits;
    734 extern unsigned long qemu_host_page_size;
    735 extern unsigned long qemu_host_page_mask;
    736 
    737 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
    738 
    739 /* same as PROT_xxx */
    740 #define PAGE_READ      0x0001
    741 #define PAGE_WRITE     0x0002
    742 #define PAGE_EXEC      0x0004
    743 #define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
    744 #define PAGE_VALID     0x0008
    745 /* original state of the write flag (used when tracking self-modifying
    746    code */
    747 #define PAGE_WRITE_ORG 0x0010
    748 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
    749 /* FIXME: Code that sets/uses this is broken and needs to go away.  */
    750 #define PAGE_RESERVED  0x0020
    751 #endif
    752 
    753 #if defined(CONFIG_USER_ONLY)
    754 void page_dump(FILE *f);
    755 
    756 typedef int (*walk_memory_regions_fn)(void *, abi_ulong,
    757                                       abi_ulong, unsigned long);
    758 int walk_memory_regions(void *, walk_memory_regions_fn);
    759 
    760 int page_get_flags(target_ulong address);
    761 void page_set_flags(target_ulong start, target_ulong end, int flags);
    762 int page_check_range(target_ulong start, target_ulong len, int flags);
    763 #endif
    764 
    765 CPUState *cpu_copy(CPUState *env);
    766 CPUState *qemu_get_cpu(int cpu);
    767 
    768 #define CPU_DUMP_CODE 0x00010000
    769 
    770 void cpu_dump_state(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
    771                     int flags);
    772 void cpu_dump_statistics(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
    773                           int flags);
    774 
    775 void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
    776     GCC_FMT_ATTR(2, 3);
    777 extern CPUState *first_cpu;
    778 extern CPUState *cpu_single_env;
    779 
    780 #define CPU_INTERRUPT_TIMER  0x08 /* internal timer exception pending */
    781 #define CPU_INTERRUPT_SMI    0x40 /* (x86 only) SMI interrupt pending */
    782 #define CPU_INTERRUPT_VIRQ   0x100 /* virtual interrupt pending.  */
    783 #define CPU_INTERRUPT_NMI    0x200 /* NMI pending. */
    784 #define CPU_INTERRUPT_INIT   0x400 /* INIT pending. */
    785 #define CPU_INTERRUPT_SIPI   0x800 /* SIPI pending. */
    786 #define CPU_INTERRUPT_MCE    0x1000 /* (x86 only) MCE pending. */
    787 
    788 /* Flags for use in ENV->INTERRUPT_PENDING.
    789 
    790    The numbers assigned here are non-sequential in order to preserve
    791    binary compatibility with the vmstate dump.  Bit 0 (0x0001) was
    792    previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
    793    the vmstate dump.  */
    794 
    795 /* External hardware interrupt pending.  This is typically used for
    796    interrupts from devices.  */
    797 #define CPU_INTERRUPT_HARD        0x0002
    798 
    799 /* Exit the current TB.  This is typically used when some system-level device
    800    makes some change to the memory mapping.  E.g. the a20 line change.  */
    801 #define CPU_INTERRUPT_EXITTB      0x0004
    802 
    803 /* Halt the CPU.  */
    804 #define CPU_INTERRUPT_HALT        0x0020
    805 
    806 /* Debug event pending.  */
    807 #define CPU_INTERRUPT_DEBUG       0x0080
    808 
    809 /* Several target-specific external hardware interrupts.  Each target/cpu.h
    810    should define proper names based on these defines.  */
    811 #define CPU_INTERRUPT_TGT_EXT_0   0x0008
    812 #define CPU_INTERRUPT_TGT_EXT_1   0x0010
    813 #define CPU_INTERRUPT_TGT_EXT_2   0x0040
    814 #define CPU_INTERRUPT_TGT_EXT_3   0x0200
    815 #define CPU_INTERRUPT_TGT_EXT_4   0x1000
    816 
    817 /* Several target-specific internal interrupts.  These differ from the
    818    preceeding target-specific interrupts in that they are intended to
    819    originate from within the cpu itself, typically in response to some
    820    instruction being executed.  These, therefore, are not masked while
    821    single-stepping within the debugger.  */
    822 #define CPU_INTERRUPT_TGT_INT_0   0x0100
    823 #define CPU_INTERRUPT_TGT_INT_1   0x0400
    824 #define CPU_INTERRUPT_TGT_INT_2   0x0800
    825 
    826 /* First unused bit: 0x2000.  */
    827 
    828 /* The set of all bits that should be masked when single-stepping.  */
    829 #define CPU_INTERRUPT_SSTEP_MASK \
    830     (CPU_INTERRUPT_HARD          \
    831      | CPU_INTERRUPT_TGT_EXT_0   \
    832      | CPU_INTERRUPT_TGT_EXT_1   \
    833      | CPU_INTERRUPT_TGT_EXT_2   \
    834      | CPU_INTERRUPT_TGT_EXT_3   \
    835      | CPU_INTERRUPT_TGT_EXT_4)
    836 
    837 void cpu_interrupt(CPUState *s, int mask);
    838 void cpu_reset_interrupt(CPUState *env, int mask);
    839 
    840 void cpu_exit(CPUState *s);
    841 
    842 int qemu_cpu_has_work(CPUState *env);
    843 
    844 /* Breakpoint/watchpoint flags */
    845 #define BP_MEM_READ           0x01
    846 #define BP_MEM_WRITE          0x02
    847 #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
    848 #define BP_STOP_BEFORE_ACCESS 0x04
    849 #define BP_WATCHPOINT_HIT     0x08
    850 #define BP_GDB                0x10
    851 #define BP_CPU                0x20
    852 
    853 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
    854                           CPUBreakpoint **breakpoint);
    855 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
    856 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
    857 void cpu_breakpoint_remove_all(CPUState *env, int mask);
    858 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
    859                           int flags, CPUWatchpoint **watchpoint);
    860 int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
    861                           target_ulong len, int flags);
    862 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
    863 void cpu_watchpoint_remove_all(CPUState *env, int mask);
    864 
    865 #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
    866 #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
    867 #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
    868 
    869 void cpu_single_step(CPUState *env, int enabled);
    870 void cpu_reset(CPUState *s);
    871 int cpu_is_stopped(CPUState *env);
    872 void run_on_cpu(CPUState *env, void (*func)(void *data), void *data);
    873 
    874 #define CPU_LOG_TB_OUT_ASM (1 << 0)
    875 #define CPU_LOG_TB_IN_ASM  (1 << 1)
    876 #define CPU_LOG_TB_OP      (1 << 2)
    877 #define CPU_LOG_TB_OP_OPT  (1 << 3)
    878 #define CPU_LOG_INT        (1 << 4)
    879 #define CPU_LOG_EXEC       (1 << 5)
    880 #define CPU_LOG_PCALL      (1 << 6)
    881 #define CPU_LOG_IOPORT     (1 << 7)
    882 #define CPU_LOG_TB_CPU     (1 << 8)
    883 #define CPU_LOG_RESET      (1 << 9)
    884 
    885 /* define log items */
    886 typedef struct CPULogItem {
    887     int mask;
    888     const char *name;
    889     const char *help;
    890 } CPULogItem;
    891 
    892 extern const CPULogItem cpu_log_items[];
    893 
    894 void cpu_set_log(int log_flags);
    895 void cpu_set_log_filename(const char *filename);
    896 int cpu_str_to_log_mask(const char *str);
    897 
    898 /* IO ports API */
    899 #include "ioport.h"
    900 
    901 /* Return the physical page corresponding to a virtual one. Use it
    902    only for debugging because no protection checks are done. Return -1
    903    if no page found. */
    904 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
    905 
    906 /* memory API */
    907 
    908 extern int phys_ram_fd;
    909 extern ram_addr_t ram_size;
    910 
    911 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
    912 #define RAM_PREALLOC_MASK   (1 << 0)
    913 
    914 typedef struct RAMBlock {
    915     uint8_t *host;
    916     ram_addr_t offset;
    917     ram_addr_t length;
    918     uint32_t flags;
    919     char idstr[256];
    920     QLIST_ENTRY(RAMBlock) next;
    921 #if defined(__linux__) && !defined(TARGET_S390X)
    922     int fd;
    923 #endif
    924 } RAMBlock;
    925 
    926 typedef struct RAMList {
    927     uint8_t *phys_dirty;
    928     QLIST_HEAD(ram, RAMBlock) blocks;
    929 } RAMList;
    930 extern RAMList ram_list;
    931 
    932 extern const char *mem_path;
    933 extern int mem_prealloc;
    934 
    935 /* physical memory access */
    936 
    937 /* MMIO pages are identified by a combination of an IO device index and
    938    3 flags.  The ROMD code stores the page ram offset in iotlb entry,
    939    so only a limited number of ids are avaiable.  */
    940 
    941 #define IO_MEM_NB_ENTRIES  (1 << (TARGET_PAGE_BITS  - IO_MEM_SHIFT))
    942 
    943 /* Flags stored in the low bits of the TLB virtual address.  These are
    944    defined so that fast path ram access is all zeros.  */
    945 /* Zero if TLB entry is valid.  */
    946 #define TLB_INVALID_MASK   (1 << 3)
    947 /* Set if TLB entry references a clean RAM page.  The iotlb entry will
    948    contain the page physical address.  */
    949 #define TLB_NOTDIRTY    (1 << 4)
    950 /* Set if TLB entry is an IO callback.  */
    951 #define TLB_MMIO        (1 << 5)
    952 
    953 #define VGA_DIRTY_FLAG       0x01
    954 #define CODE_DIRTY_FLAG      0x02
    955 #define MIGRATION_DIRTY_FLAG 0x08
    956 
    957 /* read dirty bit (return 0 or 1) */
    958 static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
    959 {
    960     return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
    961 }
    962 
    963 static inline int cpu_physical_memory_get_dirty_flags(ram_addr_t addr)
    964 {
    965     return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS];
    966 }
    967 
    968 static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
    969                                                 int dirty_flags)
    970 {
    971     return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
    972 }
    973 
    974 static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
    975 {
    976     ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
    977 }
    978 
    979 static inline int cpu_physical_memory_set_dirty_flags(ram_addr_t addr,
    980                                                       int dirty_flags)
    981 {
    982     return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] |= dirty_flags;
    983 }
    984 
    985 static inline void cpu_physical_memory_mask_dirty_range(ram_addr_t start,
    986                                                         int length,
    987                                                         int dirty_flags)
    988 {
    989     int i, mask, len;
    990     uint8_t *p;
    991 
    992     len = length >> TARGET_PAGE_BITS;
    993     mask = ~dirty_flags;
    994     p = ram_list.phys_dirty + (start >> TARGET_PAGE_BITS);
    995     for (i = 0; i < len; i++) {
    996         p[i] &= mask;
    997     }
    998 }
    999 
   1000 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
   1001                                      int dirty_flags);
   1002 void cpu_tlb_update_dirty(CPUState *env);
   1003 
   1004 int cpu_physical_memory_set_dirty_tracking(int enable);
   1005 
   1006 int cpu_physical_memory_get_dirty_tracking(void);
   1007 
   1008 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
   1009                                    target_phys_addr_t end_addr);
   1010 
   1011 void dump_exec_info(FILE *f,
   1012                     int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
   1013 
   1014 /* Coalesced MMIO regions are areas where write operations can be reordered.
   1015  * This usually implies that write operations are side-effect free.  This allows
   1016  * batching which can make a major impact on performance when using
   1017  * virtualization.
   1018  */
   1019 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
   1020 
   1021 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
   1022 
   1023 void qemu_flush_coalesced_mmio_buffer(void);
   1024 
   1025 
   1026 /* profiling */
   1027 #ifdef CONFIG_PROFILER
   1028 static inline int64_t profile_getclock(void)
   1029 {
   1030     return cpu_get_real_ticks();
   1031 }
   1032 
   1033 extern int64_t qemu_time, qemu_time_start;
   1034 extern int64_t tlb_flush_time;
   1035 extern int64_t dev_time;
   1036 #endif
   1037 
   1038 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
   1039                         uint8_t *buf, int len, int is_write);
   1040 
   1041 void cpu_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
   1042                         uint64_t mcg_status, uint64_t addr, uint64_t misc);
   1043 
   1044 #endif /* CPU_ALL_H */
   1045