Home | History | Annotate | Download | only in rand.dist.bern.negbin
      1 //===----------------------------------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is dual licensed under the MIT and the University of Illinois Open
      6 // Source Licenses. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 // <random>
     11 
     12 // template<class IntType = int>
     13 // class negative_binomial_distribution
     14 
     15 // template<class _URNG> result_type operator()(_URNG& g);
     16 
     17 #include <random>
     18 #include <numeric>
     19 #include <vector>
     20 #include <cassert>
     21 
     22 template <class T>
     23 inline
     24 T
     25 sqr(T x)
     26 {
     27     return x * x;
     28 }
     29 
     30 int main()
     31 {
     32     {
     33         typedef std::negative_binomial_distribution<> D;
     34         typedef std::minstd_rand G;
     35         G g;
     36         D d(5, .25);
     37         const int N = 1000000;
     38         std::vector<D::result_type> u;
     39         for (int i = 0; i < N; ++i)
     40         {
     41             D::result_type v = d(g);
     42             assert(d.min() <= v && v <= d.max());
     43             u.push_back(v);
     44         }
     45         double mean = std::accumulate(u.begin(), u.end(),
     46                                               double(0)) / u.size();
     47         double var = 0;
     48         double skew = 0;
     49         double kurtosis = 0;
     50         for (int i = 0; i < u.size(); ++i)
     51         {
     52             double d = (u[i] - mean);
     53             double d2 = sqr(d);
     54             var += d2;
     55             skew += d * d2;
     56             kurtosis += d2 * d2;
     57         }
     58         var /= u.size();
     59         double dev = std::sqrt(var);
     60         skew /= u.size() * dev * var;
     61         kurtosis /= u.size() * var * var;
     62         kurtosis -= 3;
     63         double x_mean = d.k() * (1 - d.p()) / d.p();
     64         double x_var = x_mean / d.p();
     65         double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p()));
     66         double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p()));
     67         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
     68         assert(std::abs((var - x_var) / x_var) < 0.01);
     69         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
     70         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02);
     71     }
     72     {
     73         typedef std::negative_binomial_distribution<> D;
     74         typedef std::mt19937 G;
     75         G g;
     76         D d(30, .03125);
     77         const int N = 1000000;
     78         std::vector<D::result_type> u;
     79         for (int i = 0; i < N; ++i)
     80         {
     81             D::result_type v = d(g);
     82             assert(d.min() <= v && v <= d.max());
     83             u.push_back(v);
     84         }
     85         double mean = std::accumulate(u.begin(), u.end(),
     86                                               double(0)) / u.size();
     87         double var = 0;
     88         double skew = 0;
     89         double kurtosis = 0;
     90         for (int i = 0; i < u.size(); ++i)
     91         {
     92             double d = (u[i] - mean);
     93             double d2 = sqr(d);
     94             var += d2;
     95             skew += d * d2;
     96             kurtosis += d2 * d2;
     97         }
     98         var /= u.size();
     99         double dev = std::sqrt(var);
    100         skew /= u.size() * dev * var;
    101         kurtosis /= u.size() * var * var;
    102         kurtosis -= 3;
    103         double x_mean = d.k() * (1 - d.p()) / d.p();
    104         double x_var = x_mean / d.p();
    105         double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p()));
    106         double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p()));
    107         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
    108         assert(std::abs((var - x_var) / x_var) < 0.01);
    109         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
    110         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
    111     }
    112     {
    113         typedef std::negative_binomial_distribution<> D;
    114         typedef std::mt19937 G;
    115         G g;
    116         D d(40, .25);
    117         const int N = 1000000;
    118         std::vector<D::result_type> u;
    119         for (int i = 0; i < N; ++i)
    120         {
    121             D::result_type v = d(g);
    122             assert(d.min() <= v && v <= d.max());
    123             u.push_back(v);
    124         }
    125         double mean = std::accumulate(u.begin(), u.end(),
    126                                               double(0)) / u.size();
    127         double var = 0;
    128         double skew = 0;
    129         double kurtosis = 0;
    130         for (int i = 0; i < u.size(); ++i)
    131         {
    132             double d = (u[i] - mean);
    133             double d2 = sqr(d);
    134             var += d2;
    135             skew += d * d2;
    136             kurtosis += d2 * d2;
    137         }
    138         var /= u.size();
    139         double dev = std::sqrt(var);
    140         skew /= u.size() * dev * var;
    141         kurtosis /= u.size() * var * var;
    142         kurtosis -= 3;
    143         double x_mean = d.k() * (1 - d.p()) / d.p();
    144         double x_var = x_mean / d.p();
    145         double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p()));
    146         double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p()));
    147         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
    148         assert(std::abs((var - x_var) / x_var) < 0.01);
    149         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
    150         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03);
    151     }
    152     {
    153         typedef std::negative_binomial_distribution<> D;
    154         typedef std::mt19937 G;
    155         G g;
    156         D d(40, 1);
    157         const int N = 1000;
    158         std::vector<D::result_type> u;
    159         for (int i = 0; i < N; ++i)
    160         {
    161             D::result_type v = d(g);
    162             assert(d.min() <= v && v <= d.max());
    163             u.push_back(v);
    164         }
    165         double mean = std::accumulate(u.begin(), u.end(),
    166                                               double(0)) / u.size();
    167         double var = 0;
    168         double skew = 0;
    169         double kurtosis = 0;
    170         for (int i = 0; i < u.size(); ++i)
    171         {
    172             double d = (u[i] - mean);
    173             double d2 = sqr(d);
    174             var += d2;
    175             skew += d * d2;
    176             kurtosis += d2 * d2;
    177         }
    178         var /= u.size();
    179         double dev = std::sqrt(var);
    180         skew /= u.size() * dev * var;
    181         kurtosis /= u.size() * var * var;
    182         kurtosis -= 3;
    183         double x_mean = d.k() * (1 - d.p()) / d.p();
    184         double x_var = x_mean / d.p();
    185         double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p()));
    186         double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p()));
    187         assert(mean == x_mean);
    188         assert(var == x_var);
    189     }
    190     {
    191         typedef std::negative_binomial_distribution<> D;
    192         typedef std::mt19937 G;
    193         G g;
    194         D d(400, 0.5);
    195         const int N = 1000000;
    196         std::vector<D::result_type> u;
    197         for (int i = 0; i < N; ++i)
    198         {
    199             D::result_type v = d(g);
    200             assert(d.min() <= v && v <= d.max());
    201             u.push_back(v);
    202         }
    203         double mean = std::accumulate(u.begin(), u.end(),
    204                                               double(0)) / u.size();
    205         double var = 0;
    206         double skew = 0;
    207         double kurtosis = 0;
    208         for (int i = 0; i < u.size(); ++i)
    209         {
    210             double d = (u[i] - mean);
    211             double d2 = sqr(d);
    212             var += d2;
    213             skew += d * d2;
    214             kurtosis += d2 * d2;
    215         }
    216         var /= u.size();
    217         double dev = std::sqrt(var);
    218         skew /= u.size() * dev * var;
    219         kurtosis /= u.size() * var * var;
    220         kurtosis -= 3;
    221         double x_mean = d.k() * (1 - d.p()) / d.p();
    222         double x_var = x_mean / d.p();
    223         double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p()));
    224         double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p()));
    225         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
    226         assert(std::abs((var - x_var) / x_var) < 0.01);
    227         assert(std::abs((skew - x_skew) / x_skew) < 0.04);
    228         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.05);
    229     }
    230     {
    231         typedef std::negative_binomial_distribution<> D;
    232         typedef std::mt19937 G;
    233         G g;
    234         D d(1, 0.05);
    235         const int N = 1000000;
    236         std::vector<D::result_type> u;
    237         for (int i = 0; i < N; ++i)
    238         {
    239             D::result_type v = d(g);
    240             assert(d.min() <= v && v <= d.max());
    241             u.push_back(v);
    242         }
    243         double mean = std::accumulate(u.begin(), u.end(),
    244                                               double(0)) / u.size();
    245         double var = 0;
    246         double skew = 0;
    247         double kurtosis = 0;
    248         for (int i = 0; i < u.size(); ++i)
    249         {
    250             double d = (u[i] - mean);
    251             double d2 = sqr(d);
    252             var += d2;
    253             skew += d * d2;
    254             kurtosis += d2 * d2;
    255         }
    256         var /= u.size();
    257         double dev = std::sqrt(var);
    258         skew /= u.size() * dev * var;
    259         kurtosis /= u.size() * var * var;
    260         kurtosis -= 3;
    261         double x_mean = d.k() * (1 - d.p()) / d.p();
    262         double x_var = x_mean / d.p();
    263         double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p()));
    264         double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p()));
    265         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
    266         assert(std::abs((var - x_var) / x_var) < 0.01);
    267         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
    268         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03);
    269     }
    270 }
    271