Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements routines for translating functions from LLVM IR into
     11 // Machine IR.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "function-lowering-info"
     16 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     17 #include "llvm/ADT/PostOrderIterator.h"
     18 #include "llvm/CodeGen/Analysis.h"
     19 #include "llvm/CodeGen/MachineFrameInfo.h"
     20 #include "llvm/CodeGen/MachineFunction.h"
     21 #include "llvm/CodeGen/MachineInstrBuilder.h"
     22 #include "llvm/CodeGen/MachineModuleInfo.h"
     23 #include "llvm/CodeGen/MachineRegisterInfo.h"
     24 #include "llvm/DebugInfo.h"
     25 #include "llvm/IR/DataLayout.h"
     26 #include "llvm/IR/DerivedTypes.h"
     27 #include "llvm/IR/Function.h"
     28 #include "llvm/IR/Instructions.h"
     29 #include "llvm/IR/IntrinsicInst.h"
     30 #include "llvm/IR/LLVMContext.h"
     31 #include "llvm/IR/Module.h"
     32 #include "llvm/Support/Debug.h"
     33 #include "llvm/Support/ErrorHandling.h"
     34 #include "llvm/Support/MathExtras.h"
     35 #include "llvm/Target/TargetInstrInfo.h"
     36 #include "llvm/Target/TargetLowering.h"
     37 #include "llvm/Target/TargetOptions.h"
     38 #include "llvm/Target/TargetRegisterInfo.h"
     39 #include <algorithm>
     40 using namespace llvm;
     41 
     42 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
     43 /// PHI nodes or outside of the basic block that defines it, or used by a
     44 /// switch or atomic instruction, which may expand to multiple basic blocks.
     45 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
     46   if (I->use_empty()) return false;
     47   if (isa<PHINode>(I)) return true;
     48   const BasicBlock *BB = I->getParent();
     49   for (Value::const_use_iterator UI = I->use_begin(), E = I->use_end();
     50         UI != E; ++UI) {
     51     const User *U = *UI;
     52     if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
     53       return true;
     54   }
     55   return false;
     56 }
     57 
     58 FunctionLoweringInfo::FunctionLoweringInfo(const TargetLowering &tli)
     59   : TLI(tli) {
     60 }
     61 
     62 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf) {
     63   Fn = &fn;
     64   MF = &mf;
     65   RegInfo = &MF->getRegInfo();
     66 
     67   // Check whether the function can return without sret-demotion.
     68   SmallVector<ISD::OutputArg, 4> Outs;
     69   GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, TLI);
     70   CanLowerReturn = TLI.CanLowerReturn(Fn->getCallingConv(), *MF,
     71                                       Fn->isVarArg(),
     72                                       Outs, Fn->getContext());
     73 
     74   // Initialize the mapping of values to registers.  This is only set up for
     75   // instruction values that are used outside of the block that defines
     76   // them.
     77   Function::const_iterator BB = Fn->begin(), EB = Fn->end();
     78   for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
     79     if (const AllocaInst *AI = dyn_cast<AllocaInst>(I))
     80       if (const ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
     81         Type *Ty = AI->getAllocatedType();
     82         uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
     83         unsigned Align =
     84           std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty),
     85                    AI->getAlignment());
     86 
     87         TySize *= CUI->getZExtValue();   // Get total allocated size.
     88         if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
     89 
     90         // The object may need to be placed onto the stack near the stack
     91         // protector if one exists. Determine here if this object is a suitable
     92         // candidate. I.e., it would trigger the creation of a stack protector.
     93         bool MayNeedSP =
     94           (AI->isArrayAllocation() ||
     95            (TySize >= 8 && isa<ArrayType>(Ty) &&
     96             cast<ArrayType>(Ty)->getElementType()->isIntegerTy(8)));
     97         StaticAllocaMap[AI] =
     98           MF->getFrameInfo()->CreateStackObject(TySize, Align, false,
     99                                                 MayNeedSP, AI);
    100       }
    101 
    102   for (; BB != EB; ++BB)
    103     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
    104          I != E; ++I) {
    105       // Mark values used outside their block as exported, by allocating
    106       // a virtual register for them.
    107       if (isUsedOutsideOfDefiningBlock(I))
    108         if (!isa<AllocaInst>(I) ||
    109             !StaticAllocaMap.count(cast<AllocaInst>(I)))
    110           InitializeRegForValue(I);
    111 
    112       // Collect llvm.dbg.declare information. This is done now instead of
    113       // during the initial isel pass through the IR so that it is done
    114       // in a predictable order.
    115       if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) {
    116         MachineModuleInfo &MMI = MF->getMMI();
    117         if (MMI.hasDebugInfo() &&
    118             DIVariable(DI->getVariable()).Verify() &&
    119             !DI->getDebugLoc().isUnknown()) {
    120           // Don't handle byval struct arguments or VLAs, for example.
    121           // Non-byval arguments are handled here (they refer to the stack
    122           // temporary alloca at this point).
    123           const Value *Address = DI->getAddress();
    124           if (Address) {
    125             if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
    126               Address = BCI->getOperand(0);
    127             if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
    128               DenseMap<const AllocaInst *, int>::iterator SI =
    129                 StaticAllocaMap.find(AI);
    130               if (SI != StaticAllocaMap.end()) { // Check for VLAs.
    131                 int FI = SI->second;
    132                 MMI.setVariableDbgInfo(DI->getVariable(),
    133                                        FI, DI->getDebugLoc());
    134               }
    135             }
    136           }
    137         }
    138       }
    139     }
    140 
    141   // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
    142   // also creates the initial PHI MachineInstrs, though none of the input
    143   // operands are populated.
    144   for (BB = Fn->begin(); BB != EB; ++BB) {
    145     MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
    146     MBBMap[BB] = MBB;
    147     MF->push_back(MBB);
    148 
    149     // Transfer the address-taken flag. This is necessary because there could
    150     // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
    151     // the first one should be marked.
    152     if (BB->hasAddressTaken())
    153       MBB->setHasAddressTaken();
    154 
    155     // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
    156     // appropriate.
    157     for (BasicBlock::const_iterator I = BB->begin();
    158          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
    159       if (PN->use_empty()) continue;
    160 
    161       // Skip empty types
    162       if (PN->getType()->isEmptyTy())
    163         continue;
    164 
    165       DebugLoc DL = PN->getDebugLoc();
    166       unsigned PHIReg = ValueMap[PN];
    167       assert(PHIReg && "PHI node does not have an assigned virtual register!");
    168 
    169       SmallVector<EVT, 4> ValueVTs;
    170       ComputeValueVTs(TLI, PN->getType(), ValueVTs);
    171       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
    172         EVT VT = ValueVTs[vti];
    173         unsigned NumRegisters = TLI.getNumRegisters(Fn->getContext(), VT);
    174         const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
    175         for (unsigned i = 0; i != NumRegisters; ++i)
    176           BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
    177         PHIReg += NumRegisters;
    178       }
    179     }
    180   }
    181 
    182   // Mark landing pad blocks.
    183   for (BB = Fn->begin(); BB != EB; ++BB)
    184     if (const InvokeInst *Invoke = dyn_cast<InvokeInst>(BB->getTerminator()))
    185       MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
    186 }
    187 
    188 /// clear - Clear out all the function-specific state. This returns this
    189 /// FunctionLoweringInfo to an empty state, ready to be used for a
    190 /// different function.
    191 void FunctionLoweringInfo::clear() {
    192   assert(CatchInfoFound.size() == CatchInfoLost.size() &&
    193          "Not all catch info was assigned to a landing pad!");
    194 
    195   MBBMap.clear();
    196   ValueMap.clear();
    197   StaticAllocaMap.clear();
    198 #ifndef NDEBUG
    199   CatchInfoLost.clear();
    200   CatchInfoFound.clear();
    201 #endif
    202   LiveOutRegInfo.clear();
    203   VisitedBBs.clear();
    204   ArgDbgValues.clear();
    205   ByValArgFrameIndexMap.clear();
    206   RegFixups.clear();
    207 }
    208 
    209 /// CreateReg - Allocate a single virtual register for the given type.
    210 unsigned FunctionLoweringInfo::CreateReg(MVT VT) {
    211   return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
    212 }
    213 
    214 /// CreateRegs - Allocate the appropriate number of virtual registers of
    215 /// the correctly promoted or expanded types.  Assign these registers
    216 /// consecutive vreg numbers and return the first assigned number.
    217 ///
    218 /// In the case that the given value has struct or array type, this function
    219 /// will assign registers for each member or element.
    220 ///
    221 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) {
    222   SmallVector<EVT, 4> ValueVTs;
    223   ComputeValueVTs(TLI, Ty, ValueVTs);
    224 
    225   unsigned FirstReg = 0;
    226   for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
    227     EVT ValueVT = ValueVTs[Value];
    228     MVT RegisterVT = TLI.getRegisterType(Ty->getContext(), ValueVT);
    229 
    230     unsigned NumRegs = TLI.getNumRegisters(Ty->getContext(), ValueVT);
    231     for (unsigned i = 0; i != NumRegs; ++i) {
    232       unsigned R = CreateReg(RegisterVT);
    233       if (!FirstReg) FirstReg = R;
    234     }
    235   }
    236   return FirstReg;
    237 }
    238 
    239 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
    240 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
    241 /// the register's LiveOutInfo is for a smaller bit width, it is extended to
    242 /// the larger bit width by zero extension. The bit width must be no smaller
    243 /// than the LiveOutInfo's existing bit width.
    244 const FunctionLoweringInfo::LiveOutInfo *
    245 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) {
    246   if (!LiveOutRegInfo.inBounds(Reg))
    247     return NULL;
    248 
    249   LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
    250   if (!LOI->IsValid)
    251     return NULL;
    252 
    253   if (BitWidth > LOI->KnownZero.getBitWidth()) {
    254     LOI->NumSignBits = 1;
    255     LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth);
    256     LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth);
    257   }
    258 
    259   return LOI;
    260 }
    261 
    262 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
    263 /// register based on the LiveOutInfo of its operands.
    264 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
    265   Type *Ty = PN->getType();
    266   if (!Ty->isIntegerTy() || Ty->isVectorTy())
    267     return;
    268 
    269   SmallVector<EVT, 1> ValueVTs;
    270   ComputeValueVTs(TLI, Ty, ValueVTs);
    271   assert(ValueVTs.size() == 1 &&
    272          "PHIs with non-vector integer types should have a single VT.");
    273   EVT IntVT = ValueVTs[0];
    274 
    275   if (TLI.getNumRegisters(PN->getContext(), IntVT) != 1)
    276     return;
    277   IntVT = TLI.getTypeToTransformTo(PN->getContext(), IntVT);
    278   unsigned BitWidth = IntVT.getSizeInBits();
    279 
    280   unsigned DestReg = ValueMap[PN];
    281   if (!TargetRegisterInfo::isVirtualRegister(DestReg))
    282     return;
    283   LiveOutRegInfo.grow(DestReg);
    284   LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
    285 
    286   Value *V = PN->getIncomingValue(0);
    287   if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
    288     DestLOI.NumSignBits = 1;
    289     APInt Zero(BitWidth, 0);
    290     DestLOI.KnownZero = Zero;
    291     DestLOI.KnownOne = Zero;
    292     return;
    293   }
    294 
    295   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    296     APInt Val = CI->getValue().zextOrTrunc(BitWidth);
    297     DestLOI.NumSignBits = Val.getNumSignBits();
    298     DestLOI.KnownZero = ~Val;
    299     DestLOI.KnownOne = Val;
    300   } else {
    301     assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
    302                                 "CopyToReg node was created.");
    303     unsigned SrcReg = ValueMap[V];
    304     if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
    305       DestLOI.IsValid = false;
    306       return;
    307     }
    308     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
    309     if (!SrcLOI) {
    310       DestLOI.IsValid = false;
    311       return;
    312     }
    313     DestLOI = *SrcLOI;
    314   }
    315 
    316   assert(DestLOI.KnownZero.getBitWidth() == BitWidth &&
    317          DestLOI.KnownOne.getBitWidth() == BitWidth &&
    318          "Masks should have the same bit width as the type.");
    319 
    320   for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
    321     Value *V = PN->getIncomingValue(i);
    322     if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
    323       DestLOI.NumSignBits = 1;
    324       APInt Zero(BitWidth, 0);
    325       DestLOI.KnownZero = Zero;
    326       DestLOI.KnownOne = Zero;
    327       return;
    328     }
    329 
    330     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    331       APInt Val = CI->getValue().zextOrTrunc(BitWidth);
    332       DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
    333       DestLOI.KnownZero &= ~Val;
    334       DestLOI.KnownOne &= Val;
    335       continue;
    336     }
    337 
    338     assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
    339                                 "its CopyToReg node was created.");
    340     unsigned SrcReg = ValueMap[V];
    341     if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
    342       DestLOI.IsValid = false;
    343       return;
    344     }
    345     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
    346     if (!SrcLOI) {
    347       DestLOI.IsValid = false;
    348       return;
    349     }
    350     DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
    351     DestLOI.KnownZero &= SrcLOI->KnownZero;
    352     DestLOI.KnownOne &= SrcLOI->KnownOne;
    353   }
    354 }
    355 
    356 /// setArgumentFrameIndex - Record frame index for the byval
    357 /// argument. This overrides previous frame index entry for this argument,
    358 /// if any.
    359 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
    360                                                  int FI) {
    361   ByValArgFrameIndexMap[A] = FI;
    362 }
    363 
    364 /// getArgumentFrameIndex - Get frame index for the byval argument.
    365 /// If the argument does not have any assigned frame index then 0 is
    366 /// returned.
    367 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
    368   DenseMap<const Argument *, int>::iterator I =
    369     ByValArgFrameIndexMap.find(A);
    370   if (I != ByValArgFrameIndexMap.end())
    371     return I->second;
    372   DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
    373   return 0;
    374 }
    375 
    376 /// ComputeUsesVAFloatArgument - Determine if any floating-point values are
    377 /// being passed to this variadic function, and set the MachineModuleInfo's
    378 /// usesVAFloatArgument flag if so. This flag is used to emit an undefined
    379 /// reference to _fltused on Windows, which will link in MSVCRT's
    380 /// floating-point support.
    381 void llvm::ComputeUsesVAFloatArgument(const CallInst &I,
    382                                       MachineModuleInfo *MMI)
    383 {
    384   FunctionType *FT = cast<FunctionType>(
    385     I.getCalledValue()->getType()->getContainedType(0));
    386   if (FT->isVarArg() && !MMI->usesVAFloatArgument()) {
    387     for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
    388       Type* T = I.getArgOperand(i)->getType();
    389       for (po_iterator<Type*> i = po_begin(T), e = po_end(T);
    390            i != e; ++i) {
    391         if (i->isFloatingPointTy()) {
    392           MMI->setUsesVAFloatArgument(true);
    393           return;
    394         }
    395       }
    396     }
    397   }
    398 }
    399 
    400 /// AddCatchInfo - Extract the personality and type infos from an eh.selector
    401 /// call, and add them to the specified machine basic block.
    402 void llvm::AddCatchInfo(const CallInst &I, MachineModuleInfo *MMI,
    403                         MachineBasicBlock *MBB) {
    404   // Inform the MachineModuleInfo of the personality for this landing pad.
    405   const ConstantExpr *CE = cast<ConstantExpr>(I.getArgOperand(1));
    406   assert(CE->getOpcode() == Instruction::BitCast &&
    407          isa<Function>(CE->getOperand(0)) &&
    408          "Personality should be a function");
    409   MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
    410 
    411   // Gather all the type infos for this landing pad and pass them along to
    412   // MachineModuleInfo.
    413   std::vector<const GlobalVariable *> TyInfo;
    414   unsigned N = I.getNumArgOperands();
    415 
    416   for (unsigned i = N - 1; i > 1; --i) {
    417     if (const ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(i))) {
    418       unsigned FilterLength = CI->getZExtValue();
    419       unsigned FirstCatch = i + FilterLength + !FilterLength;
    420       assert(FirstCatch <= N && "Invalid filter length");
    421 
    422       if (FirstCatch < N) {
    423         TyInfo.reserve(N - FirstCatch);
    424         for (unsigned j = FirstCatch; j < N; ++j)
    425           TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j)));
    426         MMI->addCatchTypeInfo(MBB, TyInfo);
    427         TyInfo.clear();
    428       }
    429 
    430       if (!FilterLength) {
    431         // Cleanup.
    432         MMI->addCleanup(MBB);
    433       } else {
    434         // Filter.
    435         TyInfo.reserve(FilterLength - 1);
    436         for (unsigned j = i + 1; j < FirstCatch; ++j)
    437           TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j)));
    438         MMI->addFilterTypeInfo(MBB, TyInfo);
    439         TyInfo.clear();
    440       }
    441 
    442       N = i;
    443     }
    444   }
    445 
    446   if (N > 2) {
    447     TyInfo.reserve(N - 2);
    448     for (unsigned j = 2; j < N; ++j)
    449       TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j)));
    450     MMI->addCatchTypeInfo(MBB, TyInfo);
    451   }
    452 }
    453 
    454 /// AddLandingPadInfo - Extract the exception handling information from the
    455 /// landingpad instruction and add them to the specified machine module info.
    456 void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI,
    457                              MachineBasicBlock *MBB) {
    458   MMI.addPersonality(MBB,
    459                      cast<Function>(I.getPersonalityFn()->stripPointerCasts()));
    460 
    461   if (I.isCleanup())
    462     MMI.addCleanup(MBB);
    463 
    464   // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct,
    465   //        but we need to do it this way because of how the DWARF EH emitter
    466   //        processes the clauses.
    467   for (unsigned i = I.getNumClauses(); i != 0; --i) {
    468     Value *Val = I.getClause(i - 1);
    469     if (I.isCatch(i - 1)) {
    470       MMI.addCatchTypeInfo(MBB,
    471                            dyn_cast<GlobalVariable>(Val->stripPointerCasts()));
    472     } else {
    473       // Add filters in a list.
    474       Constant *CVal = cast<Constant>(Val);
    475       SmallVector<const GlobalVariable*, 4> FilterList;
    476       for (User::op_iterator
    477              II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II)
    478         FilterList.push_back(cast<GlobalVariable>((*II)->stripPointerCasts()));
    479 
    480       MMI.addFilterTypeInfo(MBB, FilterList);
    481     }
    482   }
    483 }
    484