Home | History | Annotate | Download | only in Sema
      1 //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis for C++ declarations.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "clang/AST/ASTConsumer.h"
     16 #include "clang/AST/ASTContext.h"
     17 #include "clang/AST/ASTMutationListener.h"
     18 #include "clang/AST/CXXInheritance.h"
     19 #include "clang/AST/CharUnits.h"
     20 #include "clang/AST/DeclVisitor.h"
     21 #include "clang/AST/EvaluatedExprVisitor.h"
     22 #include "clang/AST/ExprCXX.h"
     23 #include "clang/AST/RecordLayout.h"
     24 #include "clang/AST/RecursiveASTVisitor.h"
     25 #include "clang/AST/StmtVisitor.h"
     26 #include "clang/AST/TypeLoc.h"
     27 #include "clang/AST/TypeOrdering.h"
     28 #include "clang/Basic/PartialDiagnostic.h"
     29 #include "clang/Basic/TargetInfo.h"
     30 #include "clang/Lex/Preprocessor.h"
     31 #include "clang/Sema/CXXFieldCollector.h"
     32 #include "clang/Sema/DeclSpec.h"
     33 #include "clang/Sema/Initialization.h"
     34 #include "clang/Sema/Lookup.h"
     35 #include "clang/Sema/ParsedTemplate.h"
     36 #include "clang/Sema/Scope.h"
     37 #include "clang/Sema/ScopeInfo.h"
     38 #include "llvm/ADT/STLExtras.h"
     39 #include "llvm/ADT/SmallString.h"
     40 #include <map>
     41 #include <set>
     42 
     43 using namespace clang;
     44 
     45 //===----------------------------------------------------------------------===//
     46 // CheckDefaultArgumentVisitor
     47 //===----------------------------------------------------------------------===//
     48 
     49 namespace {
     50   /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
     51   /// the default argument of a parameter to determine whether it
     52   /// contains any ill-formed subexpressions. For example, this will
     53   /// diagnose the use of local variables or parameters within the
     54   /// default argument expression.
     55   class CheckDefaultArgumentVisitor
     56     : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
     57     Expr *DefaultArg;
     58     Sema *S;
     59 
     60   public:
     61     CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
     62       : DefaultArg(defarg), S(s) {}
     63 
     64     bool VisitExpr(Expr *Node);
     65     bool VisitDeclRefExpr(DeclRefExpr *DRE);
     66     bool VisitCXXThisExpr(CXXThisExpr *ThisE);
     67     bool VisitLambdaExpr(LambdaExpr *Lambda);
     68   };
     69 
     70   /// VisitExpr - Visit all of the children of this expression.
     71   bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
     72     bool IsInvalid = false;
     73     for (Stmt::child_range I = Node->children(); I; ++I)
     74       IsInvalid |= Visit(*I);
     75     return IsInvalid;
     76   }
     77 
     78   /// VisitDeclRefExpr - Visit a reference to a declaration, to
     79   /// determine whether this declaration can be used in the default
     80   /// argument expression.
     81   bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
     82     NamedDecl *Decl = DRE->getDecl();
     83     if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
     84       // C++ [dcl.fct.default]p9
     85       //   Default arguments are evaluated each time the function is
     86       //   called. The order of evaluation of function arguments is
     87       //   unspecified. Consequently, parameters of a function shall not
     88       //   be used in default argument expressions, even if they are not
     89       //   evaluated. Parameters of a function declared before a default
     90       //   argument expression are in scope and can hide namespace and
     91       //   class member names.
     92       return S->Diag(DRE->getLocStart(),
     93                      diag::err_param_default_argument_references_param)
     94          << Param->getDeclName() << DefaultArg->getSourceRange();
     95     } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
     96       // C++ [dcl.fct.default]p7
     97       //   Local variables shall not be used in default argument
     98       //   expressions.
     99       if (VDecl->isLocalVarDecl())
    100         return S->Diag(DRE->getLocStart(),
    101                        diag::err_param_default_argument_references_local)
    102           << VDecl->getDeclName() << DefaultArg->getSourceRange();
    103     }
    104 
    105     return false;
    106   }
    107 
    108   /// VisitCXXThisExpr - Visit a C++ "this" expression.
    109   bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
    110     // C++ [dcl.fct.default]p8:
    111     //   The keyword this shall not be used in a default argument of a
    112     //   member function.
    113     return S->Diag(ThisE->getLocStart(),
    114                    diag::err_param_default_argument_references_this)
    115                << ThisE->getSourceRange();
    116   }
    117 
    118   bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
    119     // C++11 [expr.lambda.prim]p13:
    120     //   A lambda-expression appearing in a default argument shall not
    121     //   implicitly or explicitly capture any entity.
    122     if (Lambda->capture_begin() == Lambda->capture_end())
    123       return false;
    124 
    125     return S->Diag(Lambda->getLocStart(),
    126                    diag::err_lambda_capture_default_arg);
    127   }
    128 }
    129 
    130 void Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
    131                                                       CXXMethodDecl *Method) {
    132   // If we have an MSAny spec already, don't bother.
    133   if (!Method || ComputedEST == EST_MSAny)
    134     return;
    135 
    136   const FunctionProtoType *Proto
    137     = Method->getType()->getAs<FunctionProtoType>();
    138   Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
    139   if (!Proto)
    140     return;
    141 
    142   ExceptionSpecificationType EST = Proto->getExceptionSpecType();
    143 
    144   // If this function can throw any exceptions, make a note of that.
    145   if (EST == EST_MSAny || EST == EST_None) {
    146     ClearExceptions();
    147     ComputedEST = EST;
    148     return;
    149   }
    150 
    151   // FIXME: If the call to this decl is using any of its default arguments, we
    152   // need to search them for potentially-throwing calls.
    153 
    154   // If this function has a basic noexcept, it doesn't affect the outcome.
    155   if (EST == EST_BasicNoexcept)
    156     return;
    157 
    158   // If we have a throw-all spec at this point, ignore the function.
    159   if (ComputedEST == EST_None)
    160     return;
    161 
    162   // If we're still at noexcept(true) and there's a nothrow() callee,
    163   // change to that specification.
    164   if (EST == EST_DynamicNone) {
    165     if (ComputedEST == EST_BasicNoexcept)
    166       ComputedEST = EST_DynamicNone;
    167     return;
    168   }
    169 
    170   // Check out noexcept specs.
    171   if (EST == EST_ComputedNoexcept) {
    172     FunctionProtoType::NoexceptResult NR =
    173         Proto->getNoexceptSpec(Self->Context);
    174     assert(NR != FunctionProtoType::NR_NoNoexcept &&
    175            "Must have noexcept result for EST_ComputedNoexcept.");
    176     assert(NR != FunctionProtoType::NR_Dependent &&
    177            "Should not generate implicit declarations for dependent cases, "
    178            "and don't know how to handle them anyway.");
    179 
    180     // noexcept(false) -> no spec on the new function
    181     if (NR == FunctionProtoType::NR_Throw) {
    182       ClearExceptions();
    183       ComputedEST = EST_None;
    184     }
    185     // noexcept(true) won't change anything either.
    186     return;
    187   }
    188 
    189   assert(EST == EST_Dynamic && "EST case not considered earlier.");
    190   assert(ComputedEST != EST_None &&
    191          "Shouldn't collect exceptions when throw-all is guaranteed.");
    192   ComputedEST = EST_Dynamic;
    193   // Record the exceptions in this function's exception specification.
    194   for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
    195                                           EEnd = Proto->exception_end();
    196        E != EEnd; ++E)
    197     if (ExceptionsSeen.insert(Self->Context.getCanonicalType(*E)))
    198       Exceptions.push_back(*E);
    199 }
    200 
    201 void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
    202   if (!E || ComputedEST == EST_MSAny)
    203     return;
    204 
    205   // FIXME:
    206   //
    207   // C++0x [except.spec]p14:
    208   //   [An] implicit exception-specification specifies the type-id T if and
    209   // only if T is allowed by the exception-specification of a function directly
    210   // invoked by f's implicit definition; f shall allow all exceptions if any
    211   // function it directly invokes allows all exceptions, and f shall allow no
    212   // exceptions if every function it directly invokes allows no exceptions.
    213   //
    214   // Note in particular that if an implicit exception-specification is generated
    215   // for a function containing a throw-expression, that specification can still
    216   // be noexcept(true).
    217   //
    218   // Note also that 'directly invoked' is not defined in the standard, and there
    219   // is no indication that we should only consider potentially-evaluated calls.
    220   //
    221   // Ultimately we should implement the intent of the standard: the exception
    222   // specification should be the set of exceptions which can be thrown by the
    223   // implicit definition. For now, we assume that any non-nothrow expression can
    224   // throw any exception.
    225 
    226   if (Self->canThrow(E))
    227     ComputedEST = EST_None;
    228 }
    229 
    230 bool
    231 Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
    232                               SourceLocation EqualLoc) {
    233   if (RequireCompleteType(Param->getLocation(), Param->getType(),
    234                           diag::err_typecheck_decl_incomplete_type)) {
    235     Param->setInvalidDecl();
    236     return true;
    237   }
    238 
    239   // C++ [dcl.fct.default]p5
    240   //   A default argument expression is implicitly converted (clause
    241   //   4) to the parameter type. The default argument expression has
    242   //   the same semantic constraints as the initializer expression in
    243   //   a declaration of a variable of the parameter type, using the
    244   //   copy-initialization semantics (8.5).
    245   InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
    246                                                                     Param);
    247   InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
    248                                                            EqualLoc);
    249   InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
    250   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
    251   if (Result.isInvalid())
    252     return true;
    253   Arg = Result.takeAs<Expr>();
    254 
    255   CheckCompletedExpr(Arg, EqualLoc);
    256   Arg = MaybeCreateExprWithCleanups(Arg);
    257 
    258   // Okay: add the default argument to the parameter
    259   Param->setDefaultArg(Arg);
    260 
    261   // We have already instantiated this parameter; provide each of the
    262   // instantiations with the uninstantiated default argument.
    263   UnparsedDefaultArgInstantiationsMap::iterator InstPos
    264     = UnparsedDefaultArgInstantiations.find(Param);
    265   if (InstPos != UnparsedDefaultArgInstantiations.end()) {
    266     for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
    267       InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
    268 
    269     // We're done tracking this parameter's instantiations.
    270     UnparsedDefaultArgInstantiations.erase(InstPos);
    271   }
    272 
    273   return false;
    274 }
    275 
    276 /// ActOnParamDefaultArgument - Check whether the default argument
    277 /// provided for a function parameter is well-formed. If so, attach it
    278 /// to the parameter declaration.
    279 void
    280 Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
    281                                 Expr *DefaultArg) {
    282   if (!param || !DefaultArg)
    283     return;
    284 
    285   ParmVarDecl *Param = cast<ParmVarDecl>(param);
    286   UnparsedDefaultArgLocs.erase(Param);
    287 
    288   // Default arguments are only permitted in C++
    289   if (!getLangOpts().CPlusPlus) {
    290     Diag(EqualLoc, diag::err_param_default_argument)
    291       << DefaultArg->getSourceRange();
    292     Param->setInvalidDecl();
    293     return;
    294   }
    295 
    296   // Check for unexpanded parameter packs.
    297   if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
    298     Param->setInvalidDecl();
    299     return;
    300   }
    301 
    302   // Check that the default argument is well-formed
    303   CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
    304   if (DefaultArgChecker.Visit(DefaultArg)) {
    305     Param->setInvalidDecl();
    306     return;
    307   }
    308 
    309   SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
    310 }
    311 
    312 /// ActOnParamUnparsedDefaultArgument - We've seen a default
    313 /// argument for a function parameter, but we can't parse it yet
    314 /// because we're inside a class definition. Note that this default
    315 /// argument will be parsed later.
    316 void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
    317                                              SourceLocation EqualLoc,
    318                                              SourceLocation ArgLoc) {
    319   if (!param)
    320     return;
    321 
    322   ParmVarDecl *Param = cast<ParmVarDecl>(param);
    323   if (Param)
    324     Param->setUnparsedDefaultArg();
    325 
    326   UnparsedDefaultArgLocs[Param] = ArgLoc;
    327 }
    328 
    329 /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
    330 /// the default argument for the parameter param failed.
    331 void Sema::ActOnParamDefaultArgumentError(Decl *param) {
    332   if (!param)
    333     return;
    334 
    335   ParmVarDecl *Param = cast<ParmVarDecl>(param);
    336 
    337   Param->setInvalidDecl();
    338 
    339   UnparsedDefaultArgLocs.erase(Param);
    340 }
    341 
    342 /// CheckExtraCXXDefaultArguments - Check for any extra default
    343 /// arguments in the declarator, which is not a function declaration
    344 /// or definition and therefore is not permitted to have default
    345 /// arguments. This routine should be invoked for every declarator
    346 /// that is not a function declaration or definition.
    347 void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
    348   // C++ [dcl.fct.default]p3
    349   //   A default argument expression shall be specified only in the
    350   //   parameter-declaration-clause of a function declaration or in a
    351   //   template-parameter (14.1). It shall not be specified for a
    352   //   parameter pack. If it is specified in a
    353   //   parameter-declaration-clause, it shall not occur within a
    354   //   declarator or abstract-declarator of a parameter-declaration.
    355   bool MightBeFunction = D.isFunctionDeclarationContext();
    356   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
    357     DeclaratorChunk &chunk = D.getTypeObject(i);
    358     if (chunk.Kind == DeclaratorChunk::Function) {
    359       if (MightBeFunction) {
    360         // This is a function declaration. It can have default arguments, but
    361         // keep looking in case its return type is a function type with default
    362         // arguments.
    363         MightBeFunction = false;
    364         continue;
    365       }
    366       for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
    367         ParmVarDecl *Param =
    368           cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
    369         if (Param->hasUnparsedDefaultArg()) {
    370           CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
    371           Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
    372             << SourceRange((*Toks)[1].getLocation(),
    373                            Toks->back().getLocation());
    374           delete Toks;
    375           chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
    376         } else if (Param->getDefaultArg()) {
    377           Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
    378             << Param->getDefaultArg()->getSourceRange();
    379           Param->setDefaultArg(0);
    380         }
    381       }
    382     } else if (chunk.Kind != DeclaratorChunk::Paren) {
    383       MightBeFunction = false;
    384     }
    385   }
    386 }
    387 
    388 /// MergeCXXFunctionDecl - Merge two declarations of the same C++
    389 /// function, once we already know that they have the same
    390 /// type. Subroutine of MergeFunctionDecl. Returns true if there was an
    391 /// error, false otherwise.
    392 bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
    393                                 Scope *S) {
    394   bool Invalid = false;
    395 
    396   // C++ [dcl.fct.default]p4:
    397   //   For non-template functions, default arguments can be added in
    398   //   later declarations of a function in the same
    399   //   scope. Declarations in different scopes have completely
    400   //   distinct sets of default arguments. That is, declarations in
    401   //   inner scopes do not acquire default arguments from
    402   //   declarations in outer scopes, and vice versa. In a given
    403   //   function declaration, all parameters subsequent to a
    404   //   parameter with a default argument shall have default
    405   //   arguments supplied in this or previous declarations. A
    406   //   default argument shall not be redefined by a later
    407   //   declaration (not even to the same value).
    408   //
    409   // C++ [dcl.fct.default]p6:
    410   //   Except for member functions of class templates, the default arguments
    411   //   in a member function definition that appears outside of the class
    412   //   definition are added to the set of default arguments provided by the
    413   //   member function declaration in the class definition.
    414   for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
    415     ParmVarDecl *OldParam = Old->getParamDecl(p);
    416     ParmVarDecl *NewParam = New->getParamDecl(p);
    417 
    418     bool OldParamHasDfl = OldParam->hasDefaultArg();
    419     bool NewParamHasDfl = NewParam->hasDefaultArg();
    420 
    421     NamedDecl *ND = Old;
    422     if (S && !isDeclInScope(ND, New->getDeclContext(), S))
    423       // Ignore default parameters of old decl if they are not in
    424       // the same scope.
    425       OldParamHasDfl = false;
    426 
    427     if (OldParamHasDfl && NewParamHasDfl) {
    428 
    429       unsigned DiagDefaultParamID =
    430         diag::err_param_default_argument_redefinition;
    431 
    432       // MSVC accepts that default parameters be redefined for member functions
    433       // of template class. The new default parameter's value is ignored.
    434       Invalid = true;
    435       if (getLangOpts().MicrosoftExt) {
    436         CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
    437         if (MD && MD->getParent()->getDescribedClassTemplate()) {
    438           // Merge the old default argument into the new parameter.
    439           NewParam->setHasInheritedDefaultArg();
    440           if (OldParam->hasUninstantiatedDefaultArg())
    441             NewParam->setUninstantiatedDefaultArg(
    442                                       OldParam->getUninstantiatedDefaultArg());
    443           else
    444             NewParam->setDefaultArg(OldParam->getInit());
    445           DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
    446           Invalid = false;
    447         }
    448       }
    449 
    450       // FIXME: If we knew where the '=' was, we could easily provide a fix-it
    451       // hint here. Alternatively, we could walk the type-source information
    452       // for NewParam to find the last source location in the type... but it
    453       // isn't worth the effort right now. This is the kind of test case that
    454       // is hard to get right:
    455       //   int f(int);
    456       //   void g(int (*fp)(int) = f);
    457       //   void g(int (*fp)(int) = &f);
    458       Diag(NewParam->getLocation(), DiagDefaultParamID)
    459         << NewParam->getDefaultArgRange();
    460 
    461       // Look for the function declaration where the default argument was
    462       // actually written, which may be a declaration prior to Old.
    463       for (FunctionDecl *Older = Old->getPreviousDecl();
    464            Older; Older = Older->getPreviousDecl()) {
    465         if (!Older->getParamDecl(p)->hasDefaultArg())
    466           break;
    467 
    468         OldParam = Older->getParamDecl(p);
    469       }
    470 
    471       Diag(OldParam->getLocation(), diag::note_previous_definition)
    472         << OldParam->getDefaultArgRange();
    473     } else if (OldParamHasDfl) {
    474       // Merge the old default argument into the new parameter.
    475       // It's important to use getInit() here;  getDefaultArg()
    476       // strips off any top-level ExprWithCleanups.
    477       NewParam->setHasInheritedDefaultArg();
    478       if (OldParam->hasUninstantiatedDefaultArg())
    479         NewParam->setUninstantiatedDefaultArg(
    480                                       OldParam->getUninstantiatedDefaultArg());
    481       else
    482         NewParam->setDefaultArg(OldParam->getInit());
    483     } else if (NewParamHasDfl) {
    484       if (New->getDescribedFunctionTemplate()) {
    485         // Paragraph 4, quoted above, only applies to non-template functions.
    486         Diag(NewParam->getLocation(),
    487              diag::err_param_default_argument_template_redecl)
    488           << NewParam->getDefaultArgRange();
    489         Diag(Old->getLocation(), diag::note_template_prev_declaration)
    490           << false;
    491       } else if (New->getTemplateSpecializationKind()
    492                    != TSK_ImplicitInstantiation &&
    493                  New->getTemplateSpecializationKind() != TSK_Undeclared) {
    494         // C++ [temp.expr.spec]p21:
    495         //   Default function arguments shall not be specified in a declaration
    496         //   or a definition for one of the following explicit specializations:
    497         //     - the explicit specialization of a function template;
    498         //     - the explicit specialization of a member function template;
    499         //     - the explicit specialization of a member function of a class
    500         //       template where the class template specialization to which the
    501         //       member function specialization belongs is implicitly
    502         //       instantiated.
    503         Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
    504           << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
    505           << New->getDeclName()
    506           << NewParam->getDefaultArgRange();
    507       } else if (New->getDeclContext()->isDependentContext()) {
    508         // C++ [dcl.fct.default]p6 (DR217):
    509         //   Default arguments for a member function of a class template shall
    510         //   be specified on the initial declaration of the member function
    511         //   within the class template.
    512         //
    513         // Reading the tea leaves a bit in DR217 and its reference to DR205
    514         // leads me to the conclusion that one cannot add default function
    515         // arguments for an out-of-line definition of a member function of a
    516         // dependent type.
    517         int WhichKind = 2;
    518         if (CXXRecordDecl *Record
    519               = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
    520           if (Record->getDescribedClassTemplate())
    521             WhichKind = 0;
    522           else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
    523             WhichKind = 1;
    524           else
    525             WhichKind = 2;
    526         }
    527 
    528         Diag(NewParam->getLocation(),
    529              diag::err_param_default_argument_member_template_redecl)
    530           << WhichKind
    531           << NewParam->getDefaultArgRange();
    532       }
    533     }
    534   }
    535 
    536   // DR1344: If a default argument is added outside a class definition and that
    537   // default argument makes the function a special member function, the program
    538   // is ill-formed. This can only happen for constructors.
    539   if (isa<CXXConstructorDecl>(New) &&
    540       New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
    541     CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
    542                      OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
    543     if (NewSM != OldSM) {
    544       ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
    545       assert(NewParam->hasDefaultArg());
    546       Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
    547         << NewParam->getDefaultArgRange() << NewSM;
    548       Diag(Old->getLocation(), diag::note_previous_declaration);
    549     }
    550   }
    551 
    552   // C++11 [dcl.constexpr]p1: If any declaration of a function or function
    553   // template has a constexpr specifier then all its declarations shall
    554   // contain the constexpr specifier.
    555   if (New->isConstexpr() != Old->isConstexpr()) {
    556     Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
    557       << New << New->isConstexpr();
    558     Diag(Old->getLocation(), diag::note_previous_declaration);
    559     Invalid = true;
    560   }
    561 
    562   if (CheckEquivalentExceptionSpec(Old, New))
    563     Invalid = true;
    564 
    565   return Invalid;
    566 }
    567 
    568 /// \brief Merge the exception specifications of two variable declarations.
    569 ///
    570 /// This is called when there's a redeclaration of a VarDecl. The function
    571 /// checks if the redeclaration might have an exception specification and
    572 /// validates compatibility and merges the specs if necessary.
    573 void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
    574   // Shortcut if exceptions are disabled.
    575   if (!getLangOpts().CXXExceptions)
    576     return;
    577 
    578   assert(Context.hasSameType(New->getType(), Old->getType()) &&
    579          "Should only be called if types are otherwise the same.");
    580 
    581   QualType NewType = New->getType();
    582   QualType OldType = Old->getType();
    583 
    584   // We're only interested in pointers and references to functions, as well
    585   // as pointers to member functions.
    586   if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
    587     NewType = R->getPointeeType();
    588     OldType = OldType->getAs<ReferenceType>()->getPointeeType();
    589   } else if (const PointerType *P = NewType->getAs<PointerType>()) {
    590     NewType = P->getPointeeType();
    591     OldType = OldType->getAs<PointerType>()->getPointeeType();
    592   } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
    593     NewType = M->getPointeeType();
    594     OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
    595   }
    596 
    597   if (!NewType->isFunctionProtoType())
    598     return;
    599 
    600   // There's lots of special cases for functions. For function pointers, system
    601   // libraries are hopefully not as broken so that we don't need these
    602   // workarounds.
    603   if (CheckEquivalentExceptionSpec(
    604         OldType->getAs<FunctionProtoType>(), Old->getLocation(),
    605         NewType->getAs<FunctionProtoType>(), New->getLocation())) {
    606     New->setInvalidDecl();
    607   }
    608 }
    609 
    610 /// CheckCXXDefaultArguments - Verify that the default arguments for a
    611 /// function declaration are well-formed according to C++
    612 /// [dcl.fct.default].
    613 void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
    614   unsigned NumParams = FD->getNumParams();
    615   unsigned p;
    616 
    617   bool IsLambda = FD->getOverloadedOperator() == OO_Call &&
    618                   isa<CXXMethodDecl>(FD) &&
    619                   cast<CXXMethodDecl>(FD)->getParent()->isLambda();
    620 
    621   // Find first parameter with a default argument
    622   for (p = 0; p < NumParams; ++p) {
    623     ParmVarDecl *Param = FD->getParamDecl(p);
    624     if (Param->hasDefaultArg()) {
    625       // C++11 [expr.prim.lambda]p5:
    626       //   [...] Default arguments (8.3.6) shall not be specified in the
    627       //   parameter-declaration-clause of a lambda-declarator.
    628       //
    629       // FIXME: Core issue 974 strikes this sentence, we only provide an
    630       // extension warning.
    631       if (IsLambda)
    632         Diag(Param->getLocation(), diag::ext_lambda_default_arguments)
    633           << Param->getDefaultArgRange();
    634       break;
    635     }
    636   }
    637 
    638   // C++ [dcl.fct.default]p4:
    639   //   In a given function declaration, all parameters
    640   //   subsequent to a parameter with a default argument shall
    641   //   have default arguments supplied in this or previous
    642   //   declarations. A default argument shall not be redefined
    643   //   by a later declaration (not even to the same value).
    644   unsigned LastMissingDefaultArg = 0;
    645   for (; p < NumParams; ++p) {
    646     ParmVarDecl *Param = FD->getParamDecl(p);
    647     if (!Param->hasDefaultArg()) {
    648       if (Param->isInvalidDecl())
    649         /* We already complained about this parameter. */;
    650       else if (Param->getIdentifier())
    651         Diag(Param->getLocation(),
    652              diag::err_param_default_argument_missing_name)
    653           << Param->getIdentifier();
    654       else
    655         Diag(Param->getLocation(),
    656              diag::err_param_default_argument_missing);
    657 
    658       LastMissingDefaultArg = p;
    659     }
    660   }
    661 
    662   if (LastMissingDefaultArg > 0) {
    663     // Some default arguments were missing. Clear out all of the
    664     // default arguments up to (and including) the last missing
    665     // default argument, so that we leave the function parameters
    666     // in a semantically valid state.
    667     for (p = 0; p <= LastMissingDefaultArg; ++p) {
    668       ParmVarDecl *Param = FD->getParamDecl(p);
    669       if (Param->hasDefaultArg()) {
    670         Param->setDefaultArg(0);
    671       }
    672     }
    673   }
    674 }
    675 
    676 // CheckConstexprParameterTypes - Check whether a function's parameter types
    677 // are all literal types. If so, return true. If not, produce a suitable
    678 // diagnostic and return false.
    679 static bool CheckConstexprParameterTypes(Sema &SemaRef,
    680                                          const FunctionDecl *FD) {
    681   unsigned ArgIndex = 0;
    682   const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
    683   for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
    684        e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
    685     const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
    686     SourceLocation ParamLoc = PD->getLocation();
    687     if (!(*i)->isDependentType() &&
    688         SemaRef.RequireLiteralType(ParamLoc, *i,
    689                                    diag::err_constexpr_non_literal_param,
    690                                    ArgIndex+1, PD->getSourceRange(),
    691                                    isa<CXXConstructorDecl>(FD)))
    692       return false;
    693   }
    694   return true;
    695 }
    696 
    697 /// \brief Get diagnostic %select index for tag kind for
    698 /// record diagnostic message.
    699 /// WARNING: Indexes apply to particular diagnostics only!
    700 ///
    701 /// \returns diagnostic %select index.
    702 static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
    703   switch (Tag) {
    704   case TTK_Struct: return 0;
    705   case TTK_Interface: return 1;
    706   case TTK_Class:  return 2;
    707   default: llvm_unreachable("Invalid tag kind for record diagnostic!");
    708   }
    709 }
    710 
    711 // CheckConstexprFunctionDecl - Check whether a function declaration satisfies
    712 // the requirements of a constexpr function definition or a constexpr
    713 // constructor definition. If so, return true. If not, produce appropriate
    714 // diagnostics and return false.
    715 //
    716 // This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
    717 bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
    718   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
    719   if (MD && MD->isInstance()) {
    720     // C++11 [dcl.constexpr]p4:
    721     //  The definition of a constexpr constructor shall satisfy the following
    722     //  constraints:
    723     //  - the class shall not have any virtual base classes;
    724     const CXXRecordDecl *RD = MD->getParent();
    725     if (RD->getNumVBases()) {
    726       Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
    727         << isa<CXXConstructorDecl>(NewFD)
    728         << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
    729       for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
    730              E = RD->vbases_end(); I != E; ++I)
    731         Diag(I->getLocStart(),
    732              diag::note_constexpr_virtual_base_here) << I->getSourceRange();
    733       return false;
    734     }
    735   }
    736 
    737   if (!isa<CXXConstructorDecl>(NewFD)) {
    738     // C++11 [dcl.constexpr]p3:
    739     //  The definition of a constexpr function shall satisfy the following
    740     //  constraints:
    741     // - it shall not be virtual;
    742     const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
    743     if (Method && Method->isVirtual()) {
    744       Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
    745 
    746       // If it's not obvious why this function is virtual, find an overridden
    747       // function which uses the 'virtual' keyword.
    748       const CXXMethodDecl *WrittenVirtual = Method;
    749       while (!WrittenVirtual->isVirtualAsWritten())
    750         WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
    751       if (WrittenVirtual != Method)
    752         Diag(WrittenVirtual->getLocation(),
    753              diag::note_overridden_virtual_function);
    754       return false;
    755     }
    756 
    757     // - its return type shall be a literal type;
    758     QualType RT = NewFD->getResultType();
    759     if (!RT->isDependentType() &&
    760         RequireLiteralType(NewFD->getLocation(), RT,
    761                            diag::err_constexpr_non_literal_return))
    762       return false;
    763   }
    764 
    765   // - each of its parameter types shall be a literal type;
    766   if (!CheckConstexprParameterTypes(*this, NewFD))
    767     return false;
    768 
    769   return true;
    770 }
    771 
    772 /// Check the given declaration statement is legal within a constexpr function
    773 /// body. C++0x [dcl.constexpr]p3,p4.
    774 ///
    775 /// \return true if the body is OK, false if we have diagnosed a problem.
    776 static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
    777                                    DeclStmt *DS) {
    778   // C++0x [dcl.constexpr]p3 and p4:
    779   //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
    780   //  contain only
    781   for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
    782          DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
    783     switch ((*DclIt)->getKind()) {
    784     case Decl::StaticAssert:
    785     case Decl::Using:
    786     case Decl::UsingShadow:
    787     case Decl::UsingDirective:
    788     case Decl::UnresolvedUsingTypename:
    789       //   - static_assert-declarations
    790       //   - using-declarations,
    791       //   - using-directives,
    792       continue;
    793 
    794     case Decl::Typedef:
    795     case Decl::TypeAlias: {
    796       //   - typedef declarations and alias-declarations that do not define
    797       //     classes or enumerations,
    798       TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
    799       if (TN->getUnderlyingType()->isVariablyModifiedType()) {
    800         // Don't allow variably-modified types in constexpr functions.
    801         TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
    802         SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
    803           << TL.getSourceRange() << TL.getType()
    804           << isa<CXXConstructorDecl>(Dcl);
    805         return false;
    806       }
    807       continue;
    808     }
    809 
    810     case Decl::Enum:
    811     case Decl::CXXRecord:
    812       // As an extension, we allow the declaration (but not the definition) of
    813       // classes and enumerations in all declarations, not just in typedef and
    814       // alias declarations.
    815       if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
    816         SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
    817           << isa<CXXConstructorDecl>(Dcl);
    818         return false;
    819       }
    820       continue;
    821 
    822     case Decl::Var:
    823       SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
    824         << isa<CXXConstructorDecl>(Dcl);
    825       return false;
    826 
    827     default:
    828       SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
    829         << isa<CXXConstructorDecl>(Dcl);
    830       return false;
    831     }
    832   }
    833 
    834   return true;
    835 }
    836 
    837 /// Check that the given field is initialized within a constexpr constructor.
    838 ///
    839 /// \param Dcl The constexpr constructor being checked.
    840 /// \param Field The field being checked. This may be a member of an anonymous
    841 ///        struct or union nested within the class being checked.
    842 /// \param Inits All declarations, including anonymous struct/union members and
    843 ///        indirect members, for which any initialization was provided.
    844 /// \param Diagnosed Set to true if an error is produced.
    845 static void CheckConstexprCtorInitializer(Sema &SemaRef,
    846                                           const FunctionDecl *Dcl,
    847                                           FieldDecl *Field,
    848                                           llvm::SmallSet<Decl*, 16> &Inits,
    849                                           bool &Diagnosed) {
    850   if (Field->isUnnamedBitfield())
    851     return;
    852 
    853   if (Field->isAnonymousStructOrUnion() &&
    854       Field->getType()->getAsCXXRecordDecl()->isEmpty())
    855     return;
    856 
    857   if (!Inits.count(Field)) {
    858     if (!Diagnosed) {
    859       SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
    860       Diagnosed = true;
    861     }
    862     SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
    863   } else if (Field->isAnonymousStructOrUnion()) {
    864     const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
    865     for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
    866          I != E; ++I)
    867       // If an anonymous union contains an anonymous struct of which any member
    868       // is initialized, all members must be initialized.
    869       if (!RD->isUnion() || Inits.count(*I))
    870         CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
    871   }
    872 }
    873 
    874 /// Check the body for the given constexpr function declaration only contains
    875 /// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
    876 ///
    877 /// \return true if the body is OK, false if we have diagnosed a problem.
    878 bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
    879   if (isa<CXXTryStmt>(Body)) {
    880     // C++11 [dcl.constexpr]p3:
    881     //  The definition of a constexpr function shall satisfy the following
    882     //  constraints: [...]
    883     // - its function-body shall be = delete, = default, or a
    884     //   compound-statement
    885     //
    886     // C++11 [dcl.constexpr]p4:
    887     //  In the definition of a constexpr constructor, [...]
    888     // - its function-body shall not be a function-try-block;
    889     Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
    890       << isa<CXXConstructorDecl>(Dcl);
    891     return false;
    892   }
    893 
    894   // - its function-body shall be [...] a compound-statement that contains only
    895   CompoundStmt *CompBody = cast<CompoundStmt>(Body);
    896 
    897   SmallVector<SourceLocation, 4> ReturnStmts;
    898   for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
    899          BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
    900     switch ((*BodyIt)->getStmtClass()) {
    901     case Stmt::NullStmtClass:
    902       //   - null statements,
    903       continue;
    904 
    905     case Stmt::DeclStmtClass:
    906       //   - static_assert-declarations
    907       //   - using-declarations,
    908       //   - using-directives,
    909       //   - typedef declarations and alias-declarations that do not define
    910       //     classes or enumerations,
    911       if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
    912         return false;
    913       continue;
    914 
    915     case Stmt::ReturnStmtClass:
    916       //   - and exactly one return statement;
    917       if (isa<CXXConstructorDecl>(Dcl))
    918         break;
    919 
    920       ReturnStmts.push_back((*BodyIt)->getLocStart());
    921       continue;
    922 
    923     default:
    924       break;
    925     }
    926 
    927     Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
    928       << isa<CXXConstructorDecl>(Dcl);
    929     return false;
    930   }
    931 
    932   if (const CXXConstructorDecl *Constructor
    933         = dyn_cast<CXXConstructorDecl>(Dcl)) {
    934     const CXXRecordDecl *RD = Constructor->getParent();
    935     // DR1359:
    936     // - every non-variant non-static data member and base class sub-object
    937     //   shall be initialized;
    938     // - if the class is a non-empty union, or for each non-empty anonymous
    939     //   union member of a non-union class, exactly one non-static data member
    940     //   shall be initialized;
    941     if (RD->isUnion()) {
    942       if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
    943         Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
    944         return false;
    945       }
    946     } else if (!Constructor->isDependentContext() &&
    947                !Constructor->isDelegatingConstructor()) {
    948       assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
    949 
    950       // Skip detailed checking if we have enough initializers, and we would
    951       // allow at most one initializer per member.
    952       bool AnyAnonStructUnionMembers = false;
    953       unsigned Fields = 0;
    954       for (CXXRecordDecl::field_iterator I = RD->field_begin(),
    955            E = RD->field_end(); I != E; ++I, ++Fields) {
    956         if (I->isAnonymousStructOrUnion()) {
    957           AnyAnonStructUnionMembers = true;
    958           break;
    959         }
    960       }
    961       if (AnyAnonStructUnionMembers ||
    962           Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
    963         // Check initialization of non-static data members. Base classes are
    964         // always initialized so do not need to be checked. Dependent bases
    965         // might not have initializers in the member initializer list.
    966         llvm::SmallSet<Decl*, 16> Inits;
    967         for (CXXConstructorDecl::init_const_iterator
    968                I = Constructor->init_begin(), E = Constructor->init_end();
    969              I != E; ++I) {
    970           if (FieldDecl *FD = (*I)->getMember())
    971             Inits.insert(FD);
    972           else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
    973             Inits.insert(ID->chain_begin(), ID->chain_end());
    974         }
    975 
    976         bool Diagnosed = false;
    977         for (CXXRecordDecl::field_iterator I = RD->field_begin(),
    978              E = RD->field_end(); I != E; ++I)
    979           CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
    980         if (Diagnosed)
    981           return false;
    982       }
    983     }
    984   } else {
    985     if (ReturnStmts.empty()) {
    986       Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
    987       return false;
    988     }
    989     if (ReturnStmts.size() > 1) {
    990       Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
    991       for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
    992         Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
    993       return false;
    994     }
    995   }
    996 
    997   // C++11 [dcl.constexpr]p5:
    998   //   if no function argument values exist such that the function invocation
    999   //   substitution would produce a constant expression, the program is
   1000   //   ill-formed; no diagnostic required.
   1001   // C++11 [dcl.constexpr]p3:
   1002   //   - every constructor call and implicit conversion used in initializing the
   1003   //     return value shall be one of those allowed in a constant expression.
   1004   // C++11 [dcl.constexpr]p4:
   1005   //   - every constructor involved in initializing non-static data members and
   1006   //     base class sub-objects shall be a constexpr constructor.
   1007   SmallVector<PartialDiagnosticAt, 8> Diags;
   1008   if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
   1009     Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
   1010       << isa<CXXConstructorDecl>(Dcl);
   1011     for (size_t I = 0, N = Diags.size(); I != N; ++I)
   1012       Diag(Diags[I].first, Diags[I].second);
   1013     // Don't return false here: we allow this for compatibility in
   1014     // system headers.
   1015   }
   1016 
   1017   return true;
   1018 }
   1019 
   1020 /// isCurrentClassName - Determine whether the identifier II is the
   1021 /// name of the class type currently being defined. In the case of
   1022 /// nested classes, this will only return true if II is the name of
   1023 /// the innermost class.
   1024 bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
   1025                               const CXXScopeSpec *SS) {
   1026   assert(getLangOpts().CPlusPlus && "No class names in C!");
   1027 
   1028   CXXRecordDecl *CurDecl;
   1029   if (SS && SS->isSet() && !SS->isInvalid()) {
   1030     DeclContext *DC = computeDeclContext(*SS, true);
   1031     CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
   1032   } else
   1033     CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
   1034 
   1035   if (CurDecl && CurDecl->getIdentifier())
   1036     return &II == CurDecl->getIdentifier();
   1037   else
   1038     return false;
   1039 }
   1040 
   1041 /// \brief Determine whether the given class is a base class of the given
   1042 /// class, including looking at dependent bases.
   1043 static bool findCircularInheritance(const CXXRecordDecl *Class,
   1044                                     const CXXRecordDecl *Current) {
   1045   SmallVector<const CXXRecordDecl*, 8> Queue;
   1046 
   1047   Class = Class->getCanonicalDecl();
   1048   while (true) {
   1049     for (CXXRecordDecl::base_class_const_iterator I = Current->bases_begin(),
   1050                                                   E = Current->bases_end();
   1051          I != E; ++I) {
   1052       CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
   1053       if (!Base)
   1054         continue;
   1055 
   1056       Base = Base->getDefinition();
   1057       if (!Base)
   1058         continue;
   1059 
   1060       if (Base->getCanonicalDecl() == Class)
   1061         return true;
   1062 
   1063       Queue.push_back(Base);
   1064     }
   1065 
   1066     if (Queue.empty())
   1067       return false;
   1068 
   1069     Current = Queue.back();
   1070     Queue.pop_back();
   1071   }
   1072 
   1073   return false;
   1074 }
   1075 
   1076 /// \brief Check the validity of a C++ base class specifier.
   1077 ///
   1078 /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
   1079 /// and returns NULL otherwise.
   1080 CXXBaseSpecifier *
   1081 Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
   1082                          SourceRange SpecifierRange,
   1083                          bool Virtual, AccessSpecifier Access,
   1084                          TypeSourceInfo *TInfo,
   1085                          SourceLocation EllipsisLoc) {
   1086   QualType BaseType = TInfo->getType();
   1087 
   1088   // C++ [class.union]p1:
   1089   //   A union shall not have base classes.
   1090   if (Class->isUnion()) {
   1091     Diag(Class->getLocation(), diag::err_base_clause_on_union)
   1092       << SpecifierRange;
   1093     return 0;
   1094   }
   1095 
   1096   if (EllipsisLoc.isValid() &&
   1097       !TInfo->getType()->containsUnexpandedParameterPack()) {
   1098     Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
   1099       << TInfo->getTypeLoc().getSourceRange();
   1100     EllipsisLoc = SourceLocation();
   1101   }
   1102 
   1103   SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
   1104 
   1105   if (BaseType->isDependentType()) {
   1106     // Make sure that we don't have circular inheritance among our dependent
   1107     // bases. For non-dependent bases, the check for completeness below handles
   1108     // this.
   1109     if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
   1110       if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
   1111           ((BaseDecl = BaseDecl->getDefinition()) &&
   1112            findCircularInheritance(Class, BaseDecl))) {
   1113         Diag(BaseLoc, diag::err_circular_inheritance)
   1114           << BaseType << Context.getTypeDeclType(Class);
   1115 
   1116         if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
   1117           Diag(BaseDecl->getLocation(), diag::note_previous_decl)
   1118             << BaseType;
   1119 
   1120         return 0;
   1121       }
   1122     }
   1123 
   1124     return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
   1125                                           Class->getTagKind() == TTK_Class,
   1126                                           Access, TInfo, EllipsisLoc);
   1127   }
   1128 
   1129   // Base specifiers must be record types.
   1130   if (!BaseType->isRecordType()) {
   1131     Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
   1132     return 0;
   1133   }
   1134 
   1135   // C++ [class.union]p1:
   1136   //   A union shall not be used as a base class.
   1137   if (BaseType->isUnionType()) {
   1138     Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
   1139     return 0;
   1140   }
   1141 
   1142   // C++ [class.derived]p2:
   1143   //   The class-name in a base-specifier shall not be an incompletely
   1144   //   defined class.
   1145   if (RequireCompleteType(BaseLoc, BaseType,
   1146                           diag::err_incomplete_base_class, SpecifierRange)) {
   1147     Class->setInvalidDecl();
   1148     return 0;
   1149   }
   1150 
   1151   // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
   1152   RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
   1153   assert(BaseDecl && "Record type has no declaration");
   1154   BaseDecl = BaseDecl->getDefinition();
   1155   assert(BaseDecl && "Base type is not incomplete, but has no definition");
   1156   CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
   1157   assert(CXXBaseDecl && "Base type is not a C++ type");
   1158 
   1159   // C++ [class]p3:
   1160   //   If a class is marked final and it appears as a base-type-specifier in
   1161   //   base-clause, the program is ill-formed.
   1162   if (CXXBaseDecl->hasAttr<FinalAttr>()) {
   1163     Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
   1164       << CXXBaseDecl->getDeclName();
   1165     Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
   1166       << CXXBaseDecl->getDeclName();
   1167     return 0;
   1168   }
   1169 
   1170   if (BaseDecl->isInvalidDecl())
   1171     Class->setInvalidDecl();
   1172 
   1173   // Create the base specifier.
   1174   return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
   1175                                         Class->getTagKind() == TTK_Class,
   1176                                         Access, TInfo, EllipsisLoc);
   1177 }
   1178 
   1179 /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
   1180 /// one entry in the base class list of a class specifier, for
   1181 /// example:
   1182 ///    class foo : public bar, virtual private baz {
   1183 /// 'public bar' and 'virtual private baz' are each base-specifiers.
   1184 BaseResult
   1185 Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
   1186                          ParsedAttributes &Attributes,
   1187                          bool Virtual, AccessSpecifier Access,
   1188                          ParsedType basetype, SourceLocation BaseLoc,
   1189                          SourceLocation EllipsisLoc) {
   1190   if (!classdecl)
   1191     return true;
   1192 
   1193   AdjustDeclIfTemplate(classdecl);
   1194   CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
   1195   if (!Class)
   1196     return true;
   1197 
   1198   // We do not support any C++11 attributes on base-specifiers yet.
   1199   // Diagnose any attributes we see.
   1200   if (!Attributes.empty()) {
   1201     for (AttributeList *Attr = Attributes.getList(); Attr;
   1202          Attr = Attr->getNext()) {
   1203       if (Attr->isInvalid() ||
   1204           Attr->getKind() == AttributeList::IgnoredAttribute)
   1205         continue;
   1206       Diag(Attr->getLoc(),
   1207            Attr->getKind() == AttributeList::UnknownAttribute
   1208              ? diag::warn_unknown_attribute_ignored
   1209              : diag::err_base_specifier_attribute)
   1210         << Attr->getName();
   1211     }
   1212   }
   1213 
   1214   TypeSourceInfo *TInfo = 0;
   1215   GetTypeFromParser(basetype, &TInfo);
   1216 
   1217   if (EllipsisLoc.isInvalid() &&
   1218       DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
   1219                                       UPPC_BaseType))
   1220     return true;
   1221 
   1222   if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
   1223                                                       Virtual, Access, TInfo,
   1224                                                       EllipsisLoc))
   1225     return BaseSpec;
   1226   else
   1227     Class->setInvalidDecl();
   1228 
   1229   return true;
   1230 }
   1231 
   1232 /// \brief Performs the actual work of attaching the given base class
   1233 /// specifiers to a C++ class.
   1234 bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
   1235                                 unsigned NumBases) {
   1236  if (NumBases == 0)
   1237     return false;
   1238 
   1239   // Used to keep track of which base types we have already seen, so
   1240   // that we can properly diagnose redundant direct base types. Note
   1241   // that the key is always the unqualified canonical type of the base
   1242   // class.
   1243   std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
   1244 
   1245   // Copy non-redundant base specifiers into permanent storage.
   1246   unsigned NumGoodBases = 0;
   1247   bool Invalid = false;
   1248   for (unsigned idx = 0; idx < NumBases; ++idx) {
   1249     QualType NewBaseType
   1250       = Context.getCanonicalType(Bases[idx]->getType());
   1251     NewBaseType = NewBaseType.getLocalUnqualifiedType();
   1252 
   1253     CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
   1254     if (KnownBase) {
   1255       // C++ [class.mi]p3:
   1256       //   A class shall not be specified as a direct base class of a
   1257       //   derived class more than once.
   1258       Diag(Bases[idx]->getLocStart(),
   1259            diag::err_duplicate_base_class)
   1260         << KnownBase->getType()
   1261         << Bases[idx]->getSourceRange();
   1262 
   1263       // Delete the duplicate base class specifier; we're going to
   1264       // overwrite its pointer later.
   1265       Context.Deallocate(Bases[idx]);
   1266 
   1267       Invalid = true;
   1268     } else {
   1269       // Okay, add this new base class.
   1270       KnownBase = Bases[idx];
   1271       Bases[NumGoodBases++] = Bases[idx];
   1272       if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
   1273         const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
   1274         if (Class->isInterface() &&
   1275               (!RD->isInterface() ||
   1276                KnownBase->getAccessSpecifier() != AS_public)) {
   1277           // The Microsoft extension __interface does not permit bases that
   1278           // are not themselves public interfaces.
   1279           Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
   1280             << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
   1281             << RD->getSourceRange();
   1282           Invalid = true;
   1283         }
   1284         if (RD->hasAttr<WeakAttr>())
   1285           Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
   1286       }
   1287     }
   1288   }
   1289 
   1290   // Attach the remaining base class specifiers to the derived class.
   1291   Class->setBases(Bases, NumGoodBases);
   1292 
   1293   // Delete the remaining (good) base class specifiers, since their
   1294   // data has been copied into the CXXRecordDecl.
   1295   for (unsigned idx = 0; idx < NumGoodBases; ++idx)
   1296     Context.Deallocate(Bases[idx]);
   1297 
   1298   return Invalid;
   1299 }
   1300 
   1301 /// ActOnBaseSpecifiers - Attach the given base specifiers to the
   1302 /// class, after checking whether there are any duplicate base
   1303 /// classes.
   1304 void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
   1305                                unsigned NumBases) {
   1306   if (!ClassDecl || !Bases || !NumBases)
   1307     return;
   1308 
   1309   AdjustDeclIfTemplate(ClassDecl);
   1310   AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
   1311                        (CXXBaseSpecifier**)(Bases), NumBases);
   1312 }
   1313 
   1314 static CXXRecordDecl *GetClassForType(QualType T) {
   1315   if (const RecordType *RT = T->getAs<RecordType>())
   1316     return cast<CXXRecordDecl>(RT->getDecl());
   1317   else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
   1318     return ICT->getDecl();
   1319   else
   1320     return 0;
   1321 }
   1322 
   1323 /// \brief Determine whether the type \p Derived is a C++ class that is
   1324 /// derived from the type \p Base.
   1325 bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
   1326   if (!getLangOpts().CPlusPlus)
   1327     return false;
   1328 
   1329   CXXRecordDecl *DerivedRD = GetClassForType(Derived);
   1330   if (!DerivedRD)
   1331     return false;
   1332 
   1333   CXXRecordDecl *BaseRD = GetClassForType(Base);
   1334   if (!BaseRD)
   1335     return false;
   1336 
   1337   // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
   1338   return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
   1339 }
   1340 
   1341 /// \brief Determine whether the type \p Derived is a C++ class that is
   1342 /// derived from the type \p Base.
   1343 bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
   1344   if (!getLangOpts().CPlusPlus)
   1345     return false;
   1346 
   1347   CXXRecordDecl *DerivedRD = GetClassForType(Derived);
   1348   if (!DerivedRD)
   1349     return false;
   1350 
   1351   CXXRecordDecl *BaseRD = GetClassForType(Base);
   1352   if (!BaseRD)
   1353     return false;
   1354 
   1355   return DerivedRD->isDerivedFrom(BaseRD, Paths);
   1356 }
   1357 
   1358 void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
   1359                               CXXCastPath &BasePathArray) {
   1360   assert(BasePathArray.empty() && "Base path array must be empty!");
   1361   assert(Paths.isRecordingPaths() && "Must record paths!");
   1362 
   1363   const CXXBasePath &Path = Paths.front();
   1364 
   1365   // We first go backward and check if we have a virtual base.
   1366   // FIXME: It would be better if CXXBasePath had the base specifier for
   1367   // the nearest virtual base.
   1368   unsigned Start = 0;
   1369   for (unsigned I = Path.size(); I != 0; --I) {
   1370     if (Path[I - 1].Base->isVirtual()) {
   1371       Start = I - 1;
   1372       break;
   1373     }
   1374   }
   1375 
   1376   // Now add all bases.
   1377   for (unsigned I = Start, E = Path.size(); I != E; ++I)
   1378     BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
   1379 }
   1380 
   1381 /// \brief Determine whether the given base path includes a virtual
   1382 /// base class.
   1383 bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
   1384   for (CXXCastPath::const_iterator B = BasePath.begin(),
   1385                                 BEnd = BasePath.end();
   1386        B != BEnd; ++B)
   1387     if ((*B)->isVirtual())
   1388       return true;
   1389 
   1390   return false;
   1391 }
   1392 
   1393 /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
   1394 /// conversion (where Derived and Base are class types) is
   1395 /// well-formed, meaning that the conversion is unambiguous (and
   1396 /// that all of the base classes are accessible). Returns true
   1397 /// and emits a diagnostic if the code is ill-formed, returns false
   1398 /// otherwise. Loc is the location where this routine should point to
   1399 /// if there is an error, and Range is the source range to highlight
   1400 /// if there is an error.
   1401 bool
   1402 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
   1403                                    unsigned InaccessibleBaseID,
   1404                                    unsigned AmbigiousBaseConvID,
   1405                                    SourceLocation Loc, SourceRange Range,
   1406                                    DeclarationName Name,
   1407                                    CXXCastPath *BasePath) {
   1408   // First, determine whether the path from Derived to Base is
   1409   // ambiguous. This is slightly more expensive than checking whether
   1410   // the Derived to Base conversion exists, because here we need to
   1411   // explore multiple paths to determine if there is an ambiguity.
   1412   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
   1413                      /*DetectVirtual=*/false);
   1414   bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
   1415   assert(DerivationOkay &&
   1416          "Can only be used with a derived-to-base conversion");
   1417   (void)DerivationOkay;
   1418 
   1419   if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
   1420     if (InaccessibleBaseID) {
   1421       // Check that the base class can be accessed.
   1422       switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
   1423                                    InaccessibleBaseID)) {
   1424         case AR_inaccessible:
   1425           return true;
   1426         case AR_accessible:
   1427         case AR_dependent:
   1428         case AR_delayed:
   1429           break;
   1430       }
   1431     }
   1432 
   1433     // Build a base path if necessary.
   1434     if (BasePath)
   1435       BuildBasePathArray(Paths, *BasePath);
   1436     return false;
   1437   }
   1438 
   1439   // We know that the derived-to-base conversion is ambiguous, and
   1440   // we're going to produce a diagnostic. Perform the derived-to-base
   1441   // search just one more time to compute all of the possible paths so
   1442   // that we can print them out. This is more expensive than any of
   1443   // the previous derived-to-base checks we've done, but at this point
   1444   // performance isn't as much of an issue.
   1445   Paths.clear();
   1446   Paths.setRecordingPaths(true);
   1447   bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
   1448   assert(StillOkay && "Can only be used with a derived-to-base conversion");
   1449   (void)StillOkay;
   1450 
   1451   // Build up a textual representation of the ambiguous paths, e.g.,
   1452   // D -> B -> A, that will be used to illustrate the ambiguous
   1453   // conversions in the diagnostic. We only print one of the paths
   1454   // to each base class subobject.
   1455   std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
   1456 
   1457   Diag(Loc, AmbigiousBaseConvID)
   1458   << Derived << Base << PathDisplayStr << Range << Name;
   1459   return true;
   1460 }
   1461 
   1462 bool
   1463 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
   1464                                    SourceLocation Loc, SourceRange Range,
   1465                                    CXXCastPath *BasePath,
   1466                                    bool IgnoreAccess) {
   1467   return CheckDerivedToBaseConversion(Derived, Base,
   1468                                       IgnoreAccess ? 0
   1469                                        : diag::err_upcast_to_inaccessible_base,
   1470                                       diag::err_ambiguous_derived_to_base_conv,
   1471                                       Loc, Range, DeclarationName(),
   1472                                       BasePath);
   1473 }
   1474 
   1475 
   1476 /// @brief Builds a string representing ambiguous paths from a
   1477 /// specific derived class to different subobjects of the same base
   1478 /// class.
   1479 ///
   1480 /// This function builds a string that can be used in error messages
   1481 /// to show the different paths that one can take through the
   1482 /// inheritance hierarchy to go from the derived class to different
   1483 /// subobjects of a base class. The result looks something like this:
   1484 /// @code
   1485 /// struct D -> struct B -> struct A
   1486 /// struct D -> struct C -> struct A
   1487 /// @endcode
   1488 std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
   1489   std::string PathDisplayStr;
   1490   std::set<unsigned> DisplayedPaths;
   1491   for (CXXBasePaths::paths_iterator Path = Paths.begin();
   1492        Path != Paths.end(); ++Path) {
   1493     if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
   1494       // We haven't displayed a path to this particular base
   1495       // class subobject yet.
   1496       PathDisplayStr += "\n    ";
   1497       PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
   1498       for (CXXBasePath::const_iterator Element = Path->begin();
   1499            Element != Path->end(); ++Element)
   1500         PathDisplayStr += " -> " + Element->Base->getType().getAsString();
   1501     }
   1502   }
   1503 
   1504   return PathDisplayStr;
   1505 }
   1506 
   1507 //===----------------------------------------------------------------------===//
   1508 // C++ class member Handling
   1509 //===----------------------------------------------------------------------===//
   1510 
   1511 /// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
   1512 bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
   1513                                 SourceLocation ASLoc,
   1514                                 SourceLocation ColonLoc,
   1515                                 AttributeList *Attrs) {
   1516   assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
   1517   AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
   1518                                                   ASLoc, ColonLoc);
   1519   CurContext->addHiddenDecl(ASDecl);
   1520   return ProcessAccessDeclAttributeList(ASDecl, Attrs);
   1521 }
   1522 
   1523 /// CheckOverrideControl - Check C++11 override control semantics.
   1524 void Sema::CheckOverrideControl(Decl *D) {
   1525   if (D->isInvalidDecl())
   1526     return;
   1527 
   1528   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
   1529 
   1530   // Do we know which functions this declaration might be overriding?
   1531   bool OverridesAreKnown = !MD ||
   1532       (!MD->getParent()->hasAnyDependentBases() &&
   1533        !MD->getType()->isDependentType());
   1534 
   1535   if (!MD || !MD->isVirtual()) {
   1536     if (OverridesAreKnown) {
   1537       if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
   1538         Diag(OA->getLocation(),
   1539              diag::override_keyword_only_allowed_on_virtual_member_functions)
   1540           << "override" << FixItHint::CreateRemoval(OA->getLocation());
   1541         D->dropAttr<OverrideAttr>();
   1542       }
   1543       if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
   1544         Diag(FA->getLocation(),
   1545              diag::override_keyword_only_allowed_on_virtual_member_functions)
   1546           << "final" << FixItHint::CreateRemoval(FA->getLocation());
   1547         D->dropAttr<FinalAttr>();
   1548       }
   1549     }
   1550     return;
   1551   }
   1552 
   1553   if (!OverridesAreKnown)
   1554     return;
   1555 
   1556   // C++11 [class.virtual]p5:
   1557   //   If a virtual function is marked with the virt-specifier override and
   1558   //   does not override a member function of a base class, the program is
   1559   //   ill-formed.
   1560   bool HasOverriddenMethods =
   1561     MD->begin_overridden_methods() != MD->end_overridden_methods();
   1562   if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
   1563     Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
   1564       << MD->getDeclName();
   1565 }
   1566 
   1567 /// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
   1568 /// function overrides a virtual member function marked 'final', according to
   1569 /// C++11 [class.virtual]p4.
   1570 bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
   1571                                                   const CXXMethodDecl *Old) {
   1572   if (!Old->hasAttr<FinalAttr>())
   1573     return false;
   1574 
   1575   Diag(New->getLocation(), diag::err_final_function_overridden)
   1576     << New->getDeclName();
   1577   Diag(Old->getLocation(), diag::note_overridden_virtual_function);
   1578   return true;
   1579 }
   1580 
   1581 static bool InitializationHasSideEffects(const FieldDecl &FD) {
   1582   const Type *T = FD.getType()->getBaseElementTypeUnsafe();
   1583   // FIXME: Destruction of ObjC lifetime types has side-effects.
   1584   if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   1585     return !RD->isCompleteDefinition() ||
   1586            !RD->hasTrivialDefaultConstructor() ||
   1587            !RD->hasTrivialDestructor();
   1588   return false;
   1589 }
   1590 
   1591 /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
   1592 /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
   1593 /// bitfield width if there is one, 'InitExpr' specifies the initializer if
   1594 /// one has been parsed, and 'InitStyle' is set if an in-class initializer is
   1595 /// present (but parsing it has been deferred).
   1596 NamedDecl *
   1597 Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
   1598                                MultiTemplateParamsArg TemplateParameterLists,
   1599                                Expr *BW, const VirtSpecifiers &VS,
   1600                                InClassInitStyle InitStyle) {
   1601   const DeclSpec &DS = D.getDeclSpec();
   1602   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
   1603   DeclarationName Name = NameInfo.getName();
   1604   SourceLocation Loc = NameInfo.getLoc();
   1605 
   1606   // For anonymous bitfields, the location should point to the type.
   1607   if (Loc.isInvalid())
   1608     Loc = D.getLocStart();
   1609 
   1610   Expr *BitWidth = static_cast<Expr*>(BW);
   1611 
   1612   assert(isa<CXXRecordDecl>(CurContext));
   1613   assert(!DS.isFriendSpecified());
   1614 
   1615   bool isFunc = D.isDeclarationOfFunction();
   1616 
   1617   if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
   1618     // The Microsoft extension __interface only permits public member functions
   1619     // and prohibits constructors, destructors, operators, non-public member
   1620     // functions, static methods and data members.
   1621     unsigned InvalidDecl;
   1622     bool ShowDeclName = true;
   1623     if (!isFunc)
   1624       InvalidDecl = (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) ? 0 : 1;
   1625     else if (AS != AS_public)
   1626       InvalidDecl = 2;
   1627     else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
   1628       InvalidDecl = 3;
   1629     else switch (Name.getNameKind()) {
   1630       case DeclarationName::CXXConstructorName:
   1631         InvalidDecl = 4;
   1632         ShowDeclName = false;
   1633         break;
   1634 
   1635       case DeclarationName::CXXDestructorName:
   1636         InvalidDecl = 5;
   1637         ShowDeclName = false;
   1638         break;
   1639 
   1640       case DeclarationName::CXXOperatorName:
   1641       case DeclarationName::CXXConversionFunctionName:
   1642         InvalidDecl = 6;
   1643         break;
   1644 
   1645       default:
   1646         InvalidDecl = 0;
   1647         break;
   1648     }
   1649 
   1650     if (InvalidDecl) {
   1651       if (ShowDeclName)
   1652         Diag(Loc, diag::err_invalid_member_in_interface)
   1653           << (InvalidDecl-1) << Name;
   1654       else
   1655         Diag(Loc, diag::err_invalid_member_in_interface)
   1656           << (InvalidDecl-1) << "";
   1657       return 0;
   1658     }
   1659   }
   1660 
   1661   // C++ 9.2p6: A member shall not be declared to have automatic storage
   1662   // duration (auto, register) or with the extern storage-class-specifier.
   1663   // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
   1664   // data members and cannot be applied to names declared const or static,
   1665   // and cannot be applied to reference members.
   1666   switch (DS.getStorageClassSpec()) {
   1667     case DeclSpec::SCS_unspecified:
   1668     case DeclSpec::SCS_typedef:
   1669     case DeclSpec::SCS_static:
   1670       // FALL THROUGH.
   1671       break;
   1672     case DeclSpec::SCS_mutable:
   1673       if (isFunc) {
   1674         if (DS.getStorageClassSpecLoc().isValid())
   1675           Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
   1676         else
   1677           Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
   1678 
   1679         // FIXME: It would be nicer if the keyword was ignored only for this
   1680         // declarator. Otherwise we could get follow-up errors.
   1681         D.getMutableDeclSpec().ClearStorageClassSpecs();
   1682       }
   1683       break;
   1684     default:
   1685       if (DS.getStorageClassSpecLoc().isValid())
   1686         Diag(DS.getStorageClassSpecLoc(),
   1687              diag::err_storageclass_invalid_for_member);
   1688       else
   1689         Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
   1690       D.getMutableDeclSpec().ClearStorageClassSpecs();
   1691   }
   1692 
   1693   bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
   1694                        DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
   1695                       !isFunc);
   1696 
   1697   if (DS.isConstexprSpecified() && isInstField) {
   1698     SemaDiagnosticBuilder B =
   1699         Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
   1700     SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
   1701     if (InitStyle == ICIS_NoInit) {
   1702       B << 0 << 0 << FixItHint::CreateReplacement(ConstexprLoc, "const");
   1703       D.getMutableDeclSpec().ClearConstexprSpec();
   1704       const char *PrevSpec;
   1705       unsigned DiagID;
   1706       bool Failed = D.getMutableDeclSpec().SetTypeQual(DeclSpec::TQ_const, ConstexprLoc,
   1707                                          PrevSpec, DiagID, getLangOpts());
   1708       (void)Failed;
   1709       assert(!Failed && "Making a constexpr member const shouldn't fail");
   1710     } else {
   1711       B << 1;
   1712       const char *PrevSpec;
   1713       unsigned DiagID;
   1714       if (D.getMutableDeclSpec().SetStorageClassSpec(
   1715           *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID)) {
   1716         assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
   1717                "This is the only DeclSpec that should fail to be applied");
   1718         B << 1;
   1719       } else {
   1720         B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
   1721         isInstField = false;
   1722       }
   1723     }
   1724   }
   1725 
   1726   NamedDecl *Member;
   1727   if (isInstField) {
   1728     CXXScopeSpec &SS = D.getCXXScopeSpec();
   1729 
   1730     // Data members must have identifiers for names.
   1731     if (!Name.isIdentifier()) {
   1732       Diag(Loc, diag::err_bad_variable_name)
   1733         << Name;
   1734       return 0;
   1735     }
   1736 
   1737     IdentifierInfo *II = Name.getAsIdentifierInfo();
   1738 
   1739     // Member field could not be with "template" keyword.
   1740     // So TemplateParameterLists should be empty in this case.
   1741     if (TemplateParameterLists.size()) {
   1742       TemplateParameterList* TemplateParams = TemplateParameterLists[0];
   1743       if (TemplateParams->size()) {
   1744         // There is no such thing as a member field template.
   1745         Diag(D.getIdentifierLoc(), diag::err_template_member)
   1746             << II
   1747             << SourceRange(TemplateParams->getTemplateLoc(),
   1748                 TemplateParams->getRAngleLoc());
   1749       } else {
   1750         // There is an extraneous 'template<>' for this member.
   1751         Diag(TemplateParams->getTemplateLoc(),
   1752             diag::err_template_member_noparams)
   1753             << II
   1754             << SourceRange(TemplateParams->getTemplateLoc(),
   1755                 TemplateParams->getRAngleLoc());
   1756       }
   1757       return 0;
   1758     }
   1759 
   1760     if (SS.isSet() && !SS.isInvalid()) {
   1761       // The user provided a superfluous scope specifier inside a class
   1762       // definition:
   1763       //
   1764       // class X {
   1765       //   int X::member;
   1766       // };
   1767       if (DeclContext *DC = computeDeclContext(SS, false))
   1768         diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
   1769       else
   1770         Diag(D.getIdentifierLoc(), diag::err_member_qualification)
   1771           << Name << SS.getRange();
   1772 
   1773       SS.clear();
   1774     }
   1775 
   1776     Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
   1777                          InitStyle, AS);
   1778     assert(Member && "HandleField never returns null");
   1779   } else {
   1780     assert(InitStyle == ICIS_NoInit || D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static);
   1781 
   1782     Member = HandleDeclarator(S, D, TemplateParameterLists);
   1783     if (!Member) {
   1784       return 0;
   1785     }
   1786 
   1787     // Non-instance-fields can't have a bitfield.
   1788     if (BitWidth) {
   1789       if (Member->isInvalidDecl()) {
   1790         // don't emit another diagnostic.
   1791       } else if (isa<VarDecl>(Member)) {
   1792         // C++ 9.6p3: A bit-field shall not be a static member.
   1793         // "static member 'A' cannot be a bit-field"
   1794         Diag(Loc, diag::err_static_not_bitfield)
   1795           << Name << BitWidth->getSourceRange();
   1796       } else if (isa<TypedefDecl>(Member)) {
   1797         // "typedef member 'x' cannot be a bit-field"
   1798         Diag(Loc, diag::err_typedef_not_bitfield)
   1799           << Name << BitWidth->getSourceRange();
   1800       } else {
   1801         // A function typedef ("typedef int f(); f a;").
   1802         // C++ 9.6p3: A bit-field shall have integral or enumeration type.
   1803         Diag(Loc, diag::err_not_integral_type_bitfield)
   1804           << Name << cast<ValueDecl>(Member)->getType()
   1805           << BitWidth->getSourceRange();
   1806       }
   1807 
   1808       BitWidth = 0;
   1809       Member->setInvalidDecl();
   1810     }
   1811 
   1812     Member->setAccess(AS);
   1813 
   1814     // If we have declared a member function template, set the access of the
   1815     // templated declaration as well.
   1816     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
   1817       FunTmpl->getTemplatedDecl()->setAccess(AS);
   1818   }
   1819 
   1820   if (VS.isOverrideSpecified())
   1821     Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
   1822   if (VS.isFinalSpecified())
   1823     Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
   1824 
   1825   if (VS.getLastLocation().isValid()) {
   1826     // Update the end location of a method that has a virt-specifiers.
   1827     if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
   1828       MD->setRangeEnd(VS.getLastLocation());
   1829   }
   1830 
   1831   CheckOverrideControl(Member);
   1832 
   1833   assert((Name || isInstField) && "No identifier for non-field ?");
   1834 
   1835   if (isInstField) {
   1836     FieldDecl *FD = cast<FieldDecl>(Member);
   1837     FieldCollector->Add(FD);
   1838 
   1839     if (Diags.getDiagnosticLevel(diag::warn_unused_private_field,
   1840                                  FD->getLocation())
   1841           != DiagnosticsEngine::Ignored) {
   1842       // Remember all explicit private FieldDecls that have a name, no side
   1843       // effects and are not part of a dependent type declaration.
   1844       if (!FD->isImplicit() && FD->getDeclName() &&
   1845           FD->getAccess() == AS_private &&
   1846           !FD->hasAttr<UnusedAttr>() &&
   1847           !FD->getParent()->isDependentContext() &&
   1848           !InitializationHasSideEffects(*FD))
   1849         UnusedPrivateFields.insert(FD);
   1850     }
   1851   }
   1852 
   1853   return Member;
   1854 }
   1855 
   1856 namespace {
   1857   class UninitializedFieldVisitor
   1858       : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
   1859     Sema &S;
   1860     ValueDecl *VD;
   1861   public:
   1862     typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
   1863     UninitializedFieldVisitor(Sema &S, ValueDecl *VD) : Inherited(S.Context),
   1864                                                         S(S) {
   1865       if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(VD))
   1866         this->VD = IFD->getAnonField();
   1867       else
   1868         this->VD = VD;
   1869     }
   1870 
   1871     void HandleExpr(Expr *E) {
   1872       if (!E) return;
   1873 
   1874       // Expressions like x(x) sometimes lack the surrounding expressions
   1875       // but need to be checked anyways.
   1876       HandleValue(E);
   1877       Visit(E);
   1878     }
   1879 
   1880     void HandleValue(Expr *E) {
   1881       E = E->IgnoreParens();
   1882 
   1883       if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
   1884         if (isa<EnumConstantDecl>(ME->getMemberDecl()))
   1885           return;
   1886 
   1887         // FieldME is the inner-most MemberExpr that is not an anonymous struct
   1888         // or union.
   1889         MemberExpr *FieldME = ME;
   1890 
   1891         Expr *Base = E;
   1892         while (isa<MemberExpr>(Base)) {
   1893           ME = cast<MemberExpr>(Base);
   1894 
   1895           if (isa<VarDecl>(ME->getMemberDecl()))
   1896             return;
   1897 
   1898           if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
   1899             if (!FD->isAnonymousStructOrUnion())
   1900               FieldME = ME;
   1901 
   1902           Base = ME->getBase();
   1903         }
   1904 
   1905         if (VD == FieldME->getMemberDecl() && isa<CXXThisExpr>(Base)) {
   1906           unsigned diag = VD->getType()->isReferenceType()
   1907               ? diag::warn_reference_field_is_uninit
   1908               : diag::warn_field_is_uninit;
   1909           S.Diag(FieldME->getExprLoc(), diag) << VD;
   1910         }
   1911         return;
   1912       }
   1913 
   1914       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
   1915         HandleValue(CO->getTrueExpr());
   1916         HandleValue(CO->getFalseExpr());
   1917         return;
   1918       }
   1919 
   1920       if (BinaryConditionalOperator *BCO =
   1921               dyn_cast<BinaryConditionalOperator>(E)) {
   1922         HandleValue(BCO->getCommon());
   1923         HandleValue(BCO->getFalseExpr());
   1924         return;
   1925       }
   1926 
   1927       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
   1928         switch (BO->getOpcode()) {
   1929         default:
   1930           return;
   1931         case(BO_PtrMemD):
   1932         case(BO_PtrMemI):
   1933           HandleValue(BO->getLHS());
   1934           return;
   1935         case(BO_Comma):
   1936           HandleValue(BO->getRHS());
   1937           return;
   1938         }
   1939       }
   1940     }
   1941 
   1942     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
   1943       if (E->getCastKind() == CK_LValueToRValue)
   1944         HandleValue(E->getSubExpr());
   1945 
   1946       Inherited::VisitImplicitCastExpr(E);
   1947     }
   1948 
   1949     void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
   1950       Expr *Callee = E->getCallee();
   1951       if (isa<MemberExpr>(Callee))
   1952         HandleValue(Callee);
   1953 
   1954       Inherited::VisitCXXMemberCallExpr(E);
   1955     }
   1956   };
   1957   static void CheckInitExprContainsUninitializedFields(Sema &S, Expr *E,
   1958                                                        ValueDecl *VD) {
   1959     UninitializedFieldVisitor(S, VD).HandleExpr(E);
   1960   }
   1961 } // namespace
   1962 
   1963 /// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
   1964 /// in-class initializer for a non-static C++ class member, and after
   1965 /// instantiating an in-class initializer in a class template. Such actions
   1966 /// are deferred until the class is complete.
   1967 void
   1968 Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation InitLoc,
   1969                                        Expr *InitExpr) {
   1970   FieldDecl *FD = cast<FieldDecl>(D);
   1971   assert(FD->getInClassInitStyle() != ICIS_NoInit &&
   1972          "must set init style when field is created");
   1973 
   1974   if (!InitExpr) {
   1975     FD->setInvalidDecl();
   1976     FD->removeInClassInitializer();
   1977     return;
   1978   }
   1979 
   1980   if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
   1981     FD->setInvalidDecl();
   1982     FD->removeInClassInitializer();
   1983     return;
   1984   }
   1985 
   1986   if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, InitLoc)
   1987       != DiagnosticsEngine::Ignored) {
   1988     CheckInitExprContainsUninitializedFields(*this, InitExpr, FD);
   1989   }
   1990 
   1991   ExprResult Init = InitExpr;
   1992   if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
   1993     if (isa<InitListExpr>(InitExpr) && isStdInitializerList(FD->getType(), 0)) {
   1994       Diag(FD->getLocation(), diag::warn_dangling_std_initializer_list)
   1995         << /*at end of ctor*/1 << InitExpr->getSourceRange();
   1996     }
   1997     Expr **Inits = &InitExpr;
   1998     unsigned NumInits = 1;
   1999     InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
   2000     InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
   2001         ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
   2002         : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
   2003     InitializationSequence Seq(*this, Entity, Kind, Inits, NumInits);
   2004     Init = Seq.Perform(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
   2005     if (Init.isInvalid()) {
   2006       FD->setInvalidDecl();
   2007       return;
   2008     }
   2009   }
   2010 
   2011   // C++11 [class.base.init]p7:
   2012   //   The initialization of each base and member constitutes a
   2013   //   full-expression.
   2014   Init = ActOnFinishFullExpr(Init.take(), InitLoc);
   2015   if (Init.isInvalid()) {
   2016     FD->setInvalidDecl();
   2017     return;
   2018   }
   2019 
   2020   InitExpr = Init.release();
   2021 
   2022   FD->setInClassInitializer(InitExpr);
   2023 }
   2024 
   2025 /// \brief Find the direct and/or virtual base specifiers that
   2026 /// correspond to the given base type, for use in base initialization
   2027 /// within a constructor.
   2028 static bool FindBaseInitializer(Sema &SemaRef,
   2029                                 CXXRecordDecl *ClassDecl,
   2030                                 QualType BaseType,
   2031                                 const CXXBaseSpecifier *&DirectBaseSpec,
   2032                                 const CXXBaseSpecifier *&VirtualBaseSpec) {
   2033   // First, check for a direct base class.
   2034   DirectBaseSpec = 0;
   2035   for (CXXRecordDecl::base_class_const_iterator Base
   2036          = ClassDecl->bases_begin();
   2037        Base != ClassDecl->bases_end(); ++Base) {
   2038     if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
   2039       // We found a direct base of this type. That's what we're
   2040       // initializing.
   2041       DirectBaseSpec = &*Base;
   2042       break;
   2043     }
   2044   }
   2045 
   2046   // Check for a virtual base class.
   2047   // FIXME: We might be able to short-circuit this if we know in advance that
   2048   // there are no virtual bases.
   2049   VirtualBaseSpec = 0;
   2050   if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
   2051     // We haven't found a base yet; search the class hierarchy for a
   2052     // virtual base class.
   2053     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
   2054                        /*DetectVirtual=*/false);
   2055     if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
   2056                               BaseType, Paths)) {
   2057       for (CXXBasePaths::paths_iterator Path = Paths.begin();
   2058            Path != Paths.end(); ++Path) {
   2059         if (Path->back().Base->isVirtual()) {
   2060           VirtualBaseSpec = Path->back().Base;
   2061           break;
   2062         }
   2063       }
   2064     }
   2065   }
   2066 
   2067   return DirectBaseSpec || VirtualBaseSpec;
   2068 }
   2069 
   2070 /// \brief Handle a C++ member initializer using braced-init-list syntax.
   2071 MemInitResult
   2072 Sema::ActOnMemInitializer(Decl *ConstructorD,
   2073                           Scope *S,
   2074                           CXXScopeSpec &SS,
   2075                           IdentifierInfo *MemberOrBase,
   2076                           ParsedType TemplateTypeTy,
   2077                           const DeclSpec &DS,
   2078                           SourceLocation IdLoc,
   2079                           Expr *InitList,
   2080                           SourceLocation EllipsisLoc) {
   2081   return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
   2082                              DS, IdLoc, InitList,
   2083                              EllipsisLoc);
   2084 }
   2085 
   2086 /// \brief Handle a C++ member initializer using parentheses syntax.
   2087 MemInitResult
   2088 Sema::ActOnMemInitializer(Decl *ConstructorD,
   2089                           Scope *S,
   2090                           CXXScopeSpec &SS,
   2091                           IdentifierInfo *MemberOrBase,
   2092                           ParsedType TemplateTypeTy,
   2093                           const DeclSpec &DS,
   2094                           SourceLocation IdLoc,
   2095                           SourceLocation LParenLoc,
   2096                           Expr **Args, unsigned NumArgs,
   2097                           SourceLocation RParenLoc,
   2098                           SourceLocation EllipsisLoc) {
   2099   Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
   2100                                            llvm::makeArrayRef(Args, NumArgs),
   2101                                            RParenLoc);
   2102   return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
   2103                              DS, IdLoc, List, EllipsisLoc);
   2104 }
   2105 
   2106 namespace {
   2107 
   2108 // Callback to only accept typo corrections that can be a valid C++ member
   2109 // intializer: either a non-static field member or a base class.
   2110 class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
   2111  public:
   2112   explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
   2113       : ClassDecl(ClassDecl) {}
   2114 
   2115   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
   2116     if (NamedDecl *ND = candidate.getCorrectionDecl()) {
   2117       if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
   2118         return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
   2119       else
   2120         return isa<TypeDecl>(ND);
   2121     }
   2122     return false;
   2123   }
   2124 
   2125  private:
   2126   CXXRecordDecl *ClassDecl;
   2127 };
   2128 
   2129 }
   2130 
   2131 /// \brief Handle a C++ member initializer.
   2132 MemInitResult
   2133 Sema::BuildMemInitializer(Decl *ConstructorD,
   2134                           Scope *S,
   2135                           CXXScopeSpec &SS,
   2136                           IdentifierInfo *MemberOrBase,
   2137                           ParsedType TemplateTypeTy,
   2138                           const DeclSpec &DS,
   2139                           SourceLocation IdLoc,
   2140                           Expr *Init,
   2141                           SourceLocation EllipsisLoc) {
   2142   if (!ConstructorD)
   2143     return true;
   2144 
   2145   AdjustDeclIfTemplate(ConstructorD);
   2146 
   2147   CXXConstructorDecl *Constructor
   2148     = dyn_cast<CXXConstructorDecl>(ConstructorD);
   2149   if (!Constructor) {
   2150     // The user wrote a constructor initializer on a function that is
   2151     // not a C++ constructor. Ignore the error for now, because we may
   2152     // have more member initializers coming; we'll diagnose it just
   2153     // once in ActOnMemInitializers.
   2154     return true;
   2155   }
   2156 
   2157   CXXRecordDecl *ClassDecl = Constructor->getParent();
   2158 
   2159   // C++ [class.base.init]p2:
   2160   //   Names in a mem-initializer-id are looked up in the scope of the
   2161   //   constructor's class and, if not found in that scope, are looked
   2162   //   up in the scope containing the constructor's definition.
   2163   //   [Note: if the constructor's class contains a member with the
   2164   //   same name as a direct or virtual base class of the class, a
   2165   //   mem-initializer-id naming the member or base class and composed
   2166   //   of a single identifier refers to the class member. A
   2167   //   mem-initializer-id for the hidden base class may be specified
   2168   //   using a qualified name. ]
   2169   if (!SS.getScopeRep() && !TemplateTypeTy) {
   2170     // Look for a member, first.
   2171     DeclContext::lookup_result Result
   2172       = ClassDecl->lookup(MemberOrBase);
   2173     if (!Result.empty()) {
   2174       ValueDecl *Member;
   2175       if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
   2176           (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) {
   2177         if (EllipsisLoc.isValid())
   2178           Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
   2179             << MemberOrBase
   2180             << SourceRange(IdLoc, Init->getSourceRange().getEnd());
   2181 
   2182         return BuildMemberInitializer(Member, Init, IdLoc);
   2183       }
   2184     }
   2185   }
   2186   // It didn't name a member, so see if it names a class.
   2187   QualType BaseType;
   2188   TypeSourceInfo *TInfo = 0;
   2189 
   2190   if (TemplateTypeTy) {
   2191     BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
   2192   } else if (DS.getTypeSpecType() == TST_decltype) {
   2193     BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
   2194   } else {
   2195     LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
   2196     LookupParsedName(R, S, &SS);
   2197 
   2198     TypeDecl *TyD = R.getAsSingle<TypeDecl>();
   2199     if (!TyD) {
   2200       if (R.isAmbiguous()) return true;
   2201 
   2202       // We don't want access-control diagnostics here.
   2203       R.suppressDiagnostics();
   2204 
   2205       if (SS.isSet() && isDependentScopeSpecifier(SS)) {
   2206         bool NotUnknownSpecialization = false;
   2207         DeclContext *DC = computeDeclContext(SS, false);
   2208         if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
   2209           NotUnknownSpecialization = !Record->hasAnyDependentBases();
   2210 
   2211         if (!NotUnknownSpecialization) {
   2212           // When the scope specifier can refer to a member of an unknown
   2213           // specialization, we take it as a type name.
   2214           BaseType = CheckTypenameType(ETK_None, SourceLocation(),
   2215                                        SS.getWithLocInContext(Context),
   2216                                        *MemberOrBase, IdLoc);
   2217           if (BaseType.isNull())
   2218             return true;
   2219 
   2220           R.clear();
   2221           R.setLookupName(MemberOrBase);
   2222         }
   2223       }
   2224 
   2225       // If no results were found, try to correct typos.
   2226       TypoCorrection Corr;
   2227       MemInitializerValidatorCCC Validator(ClassDecl);
   2228       if (R.empty() && BaseType.isNull() &&
   2229           (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
   2230                               Validator, ClassDecl))) {
   2231         std::string CorrectedStr(Corr.getAsString(getLangOpts()));
   2232         std::string CorrectedQuotedStr(Corr.getQuoted(getLangOpts()));
   2233         if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
   2234           // We have found a non-static data member with a similar
   2235           // name to what was typed; complain and initialize that
   2236           // member.
   2237           Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
   2238             << MemberOrBase << true << CorrectedQuotedStr
   2239             << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
   2240           Diag(Member->getLocation(), diag::note_previous_decl)
   2241             << CorrectedQuotedStr;
   2242 
   2243           return BuildMemberInitializer(Member, Init, IdLoc);
   2244         } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
   2245           const CXXBaseSpecifier *DirectBaseSpec;
   2246           const CXXBaseSpecifier *VirtualBaseSpec;
   2247           if (FindBaseInitializer(*this, ClassDecl,
   2248                                   Context.getTypeDeclType(Type),
   2249                                   DirectBaseSpec, VirtualBaseSpec)) {
   2250             // We have found a direct or virtual base class with a
   2251             // similar name to what was typed; complain and initialize
   2252             // that base class.
   2253             Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
   2254               << MemberOrBase << false << CorrectedQuotedStr
   2255               << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
   2256 
   2257             const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
   2258                                                              : VirtualBaseSpec;
   2259             Diag(BaseSpec->getLocStart(),
   2260                  diag::note_base_class_specified_here)
   2261               << BaseSpec->getType()
   2262               << BaseSpec->getSourceRange();
   2263 
   2264             TyD = Type;
   2265           }
   2266         }
   2267       }
   2268 
   2269       if (!TyD && BaseType.isNull()) {
   2270         Diag(IdLoc, diag::err_mem_init_not_member_or_class)
   2271           << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
   2272         return true;
   2273       }
   2274     }
   2275 
   2276     if (BaseType.isNull()) {
   2277       BaseType = Context.getTypeDeclType(TyD);
   2278       if (SS.isSet()) {
   2279         NestedNameSpecifier *Qualifier =
   2280           static_cast<NestedNameSpecifier*>(SS.getScopeRep());
   2281 
   2282         // FIXME: preserve source range information
   2283         BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
   2284       }
   2285     }
   2286   }
   2287 
   2288   if (!TInfo)
   2289     TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
   2290 
   2291   return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
   2292 }
   2293 
   2294 /// Checks a member initializer expression for cases where reference (or
   2295 /// pointer) members are bound to by-value parameters (or their addresses).
   2296 static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
   2297                                                Expr *Init,
   2298                                                SourceLocation IdLoc) {
   2299   QualType MemberTy = Member->getType();
   2300 
   2301   // We only handle pointers and references currently.
   2302   // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
   2303   if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
   2304     return;
   2305 
   2306   const bool IsPointer = MemberTy->isPointerType();
   2307   if (IsPointer) {
   2308     if (const UnaryOperator *Op
   2309           = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
   2310       // The only case we're worried about with pointers requires taking the
   2311       // address.
   2312       if (Op->getOpcode() != UO_AddrOf)
   2313         return;
   2314 
   2315       Init = Op->getSubExpr();
   2316     } else {
   2317       // We only handle address-of expression initializers for pointers.
   2318       return;
   2319     }
   2320   }
   2321 
   2322   if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
   2323     // Taking the address of a temporary will be diagnosed as a hard error.
   2324     if (IsPointer)
   2325       return;
   2326 
   2327     S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
   2328       << Member << Init->getSourceRange();
   2329   } else if (const DeclRefExpr *DRE
   2330                = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
   2331     // We only warn when referring to a non-reference parameter declaration.
   2332     const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
   2333     if (!Parameter || Parameter->getType()->isReferenceType())
   2334       return;
   2335 
   2336     S.Diag(Init->getExprLoc(),
   2337            IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
   2338                      : diag::warn_bind_ref_member_to_parameter)
   2339       << Member << Parameter << Init->getSourceRange();
   2340   } else {
   2341     // Other initializers are fine.
   2342     return;
   2343   }
   2344 
   2345   S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
   2346     << (unsigned)IsPointer;
   2347 }
   2348 
   2349 MemInitResult
   2350 Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
   2351                              SourceLocation IdLoc) {
   2352   FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
   2353   IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
   2354   assert((DirectMember || IndirectMember) &&
   2355          "Member must be a FieldDecl or IndirectFieldDecl");
   2356 
   2357   if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
   2358     return true;
   2359 
   2360   if (Member->isInvalidDecl())
   2361     return true;
   2362 
   2363   // Diagnose value-uses of fields to initialize themselves, e.g.
   2364   //   foo(foo)
   2365   // where foo is not also a parameter to the constructor.
   2366   // TODO: implement -Wuninitialized and fold this into that framework.
   2367   Expr **Args;
   2368   unsigned NumArgs;
   2369   if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
   2370     Args = ParenList->getExprs();
   2371     NumArgs = ParenList->getNumExprs();
   2372   } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
   2373     Args = InitList->getInits();
   2374     NumArgs = InitList->getNumInits();
   2375   } else {
   2376     // Template instantiation doesn't reconstruct ParenListExprs for us.
   2377     Args = &Init;
   2378     NumArgs = 1;
   2379   }
   2380 
   2381   if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, IdLoc)
   2382         != DiagnosticsEngine::Ignored)
   2383     for (unsigned i = 0; i < NumArgs; ++i)
   2384       // FIXME: Warn about the case when other fields are used before being
   2385       // initialized. For example, let this field be the i'th field. When
   2386       // initializing the i'th field, throw a warning if any of the >= i'th
   2387       // fields are used, as they are not yet initialized.
   2388       // Right now we are only handling the case where the i'th field uses
   2389       // itself in its initializer.
   2390       // Also need to take into account that some fields may be initialized by
   2391       // in-class initializers, see C++11 [class.base.init]p9.
   2392       CheckInitExprContainsUninitializedFields(*this, Args[i], Member);
   2393 
   2394   SourceRange InitRange = Init->getSourceRange();
   2395 
   2396   if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
   2397     // Can't check initialization for a member of dependent type or when
   2398     // any of the arguments are type-dependent expressions.
   2399     DiscardCleanupsInEvaluationContext();
   2400   } else {
   2401     bool InitList = false;
   2402     if (isa<InitListExpr>(Init)) {
   2403       InitList = true;
   2404       Args = &Init;
   2405       NumArgs = 1;
   2406 
   2407       if (isStdInitializerList(Member->getType(), 0)) {
   2408         Diag(IdLoc, diag::warn_dangling_std_initializer_list)
   2409             << /*at end of ctor*/1 << InitRange;
   2410       }
   2411     }
   2412 
   2413     // Initialize the member.
   2414     InitializedEntity MemberEntity =
   2415       DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
   2416                    : InitializedEntity::InitializeMember(IndirectMember, 0);
   2417     InitializationKind Kind =
   2418       InitList ? InitializationKind::CreateDirectList(IdLoc)
   2419                : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
   2420                                                   InitRange.getEnd());
   2421 
   2422     InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
   2423     ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind,
   2424                                             MultiExprArg(Args, NumArgs),
   2425                                             0);
   2426     if (MemberInit.isInvalid())
   2427       return true;
   2428 
   2429     // C++11 [class.base.init]p7:
   2430     //   The initialization of each base and member constitutes a
   2431     //   full-expression.
   2432     MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin());
   2433     if (MemberInit.isInvalid())
   2434       return true;
   2435 
   2436     Init = MemberInit.get();
   2437     CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
   2438   }
   2439 
   2440   if (DirectMember) {
   2441     return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
   2442                                             InitRange.getBegin(), Init,
   2443                                             InitRange.getEnd());
   2444   } else {
   2445     return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
   2446                                             InitRange.getBegin(), Init,
   2447                                             InitRange.getEnd());
   2448   }
   2449 }
   2450 
   2451 MemInitResult
   2452 Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
   2453                                  CXXRecordDecl *ClassDecl) {
   2454   SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
   2455   if (!LangOpts.CPlusPlus11)
   2456     return Diag(NameLoc, diag::err_delegating_ctor)
   2457       << TInfo->getTypeLoc().getLocalSourceRange();
   2458   Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
   2459 
   2460   bool InitList = true;
   2461   Expr **Args = &Init;
   2462   unsigned NumArgs = 1;
   2463   if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
   2464     InitList = false;
   2465     Args = ParenList->getExprs();
   2466     NumArgs = ParenList->getNumExprs();
   2467   }
   2468 
   2469   SourceRange InitRange = Init->getSourceRange();
   2470   // Initialize the object.
   2471   InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
   2472                                      QualType(ClassDecl->getTypeForDecl(), 0));
   2473   InitializationKind Kind =
   2474     InitList ? InitializationKind::CreateDirectList(NameLoc)
   2475              : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
   2476                                                 InitRange.getEnd());
   2477   InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
   2478   ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
   2479                                               MultiExprArg(Args, NumArgs),
   2480                                               0);
   2481   if (DelegationInit.isInvalid())
   2482     return true;
   2483 
   2484   assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
   2485          "Delegating constructor with no target?");
   2486 
   2487   // C++11 [class.base.init]p7:
   2488   //   The initialization of each base and member constitutes a
   2489   //   full-expression.
   2490   DelegationInit = ActOnFinishFullExpr(DelegationInit.get(),
   2491                                        InitRange.getBegin());
   2492   if (DelegationInit.isInvalid())
   2493     return true;
   2494 
   2495   // If we are in a dependent context, template instantiation will
   2496   // perform this type-checking again. Just save the arguments that we
   2497   // received in a ParenListExpr.
   2498   // FIXME: This isn't quite ideal, since our ASTs don't capture all
   2499   // of the information that we have about the base
   2500   // initializer. However, deconstructing the ASTs is a dicey process,
   2501   // and this approach is far more likely to get the corner cases right.
   2502   if (CurContext->isDependentContext())
   2503     DelegationInit = Owned(Init);
   2504 
   2505   return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
   2506                                           DelegationInit.takeAs<Expr>(),
   2507                                           InitRange.getEnd());
   2508 }
   2509 
   2510 MemInitResult
   2511 Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
   2512                            Expr *Init, CXXRecordDecl *ClassDecl,
   2513                            SourceLocation EllipsisLoc) {
   2514   SourceLocation BaseLoc
   2515     = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
   2516 
   2517   if (!BaseType->isDependentType() && !BaseType->isRecordType())
   2518     return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
   2519              << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
   2520 
   2521   // C++ [class.base.init]p2:
   2522   //   [...] Unless the mem-initializer-id names a nonstatic data
   2523   //   member of the constructor's class or a direct or virtual base
   2524   //   of that class, the mem-initializer is ill-formed. A
   2525   //   mem-initializer-list can initialize a base class using any
   2526   //   name that denotes that base class type.
   2527   bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
   2528 
   2529   SourceRange InitRange = Init->getSourceRange();
   2530   if (EllipsisLoc.isValid()) {
   2531     // This is a pack expansion.
   2532     if (!BaseType->containsUnexpandedParameterPack())  {
   2533       Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
   2534         << SourceRange(BaseLoc, InitRange.getEnd());
   2535 
   2536       EllipsisLoc = SourceLocation();
   2537     }
   2538   } else {
   2539     // Check for any unexpanded parameter packs.
   2540     if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
   2541       return true;
   2542 
   2543     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
   2544       return true;
   2545   }
   2546 
   2547   // Check for direct and virtual base classes.
   2548   const CXXBaseSpecifier *DirectBaseSpec = 0;
   2549   const CXXBaseSpecifier *VirtualBaseSpec = 0;
   2550   if (!Dependent) {
   2551     if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
   2552                                        BaseType))
   2553       return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
   2554 
   2555     FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
   2556                         VirtualBaseSpec);
   2557 
   2558     // C++ [base.class.init]p2:
   2559     // Unless the mem-initializer-id names a nonstatic data member of the
   2560     // constructor's class or a direct or virtual base of that class, the
   2561     // mem-initializer is ill-formed.
   2562     if (!DirectBaseSpec && !VirtualBaseSpec) {
   2563       // If the class has any dependent bases, then it's possible that
   2564       // one of those types will resolve to the same type as
   2565       // BaseType. Therefore, just treat this as a dependent base
   2566       // class initialization.  FIXME: Should we try to check the
   2567       // initialization anyway? It seems odd.
   2568       if (ClassDecl->hasAnyDependentBases())
   2569         Dependent = true;
   2570       else
   2571         return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
   2572           << BaseType << Context.getTypeDeclType(ClassDecl)
   2573           << BaseTInfo->getTypeLoc().getLocalSourceRange();
   2574     }
   2575   }
   2576 
   2577   if (Dependent) {
   2578     DiscardCleanupsInEvaluationContext();
   2579 
   2580     return new (Context) CXXCtorInitializer(Context, BaseTInfo,
   2581                                             /*IsVirtual=*/false,
   2582                                             InitRange.getBegin(), Init,
   2583                                             InitRange.getEnd(), EllipsisLoc);
   2584   }
   2585 
   2586   // C++ [base.class.init]p2:
   2587   //   If a mem-initializer-id is ambiguous because it designates both
   2588   //   a direct non-virtual base class and an inherited virtual base
   2589   //   class, the mem-initializer is ill-formed.
   2590   if (DirectBaseSpec && VirtualBaseSpec)
   2591     return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
   2592       << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
   2593 
   2594   CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
   2595   if (!BaseSpec)
   2596     BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
   2597 
   2598   // Initialize the base.
   2599   bool InitList = true;
   2600   Expr **Args = &Init;
   2601   unsigned NumArgs = 1;
   2602   if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
   2603     InitList = false;
   2604     Args = ParenList->getExprs();
   2605     NumArgs = ParenList->getNumExprs();
   2606   }
   2607 
   2608   InitializedEntity BaseEntity =
   2609     InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
   2610   InitializationKind Kind =
   2611     InitList ? InitializationKind::CreateDirectList(BaseLoc)
   2612              : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
   2613                                                 InitRange.getEnd());
   2614   InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
   2615   ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind,
   2616                                         MultiExprArg(Args, NumArgs), 0);
   2617   if (BaseInit.isInvalid())
   2618     return true;
   2619 
   2620   // C++11 [class.base.init]p7:
   2621   //   The initialization of each base and member constitutes a
   2622   //   full-expression.
   2623   BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin());
   2624   if (BaseInit.isInvalid())
   2625     return true;
   2626 
   2627   // If we are in a dependent context, template instantiation will
   2628   // perform this type-checking again. Just save the arguments that we
   2629   // received in a ParenListExpr.
   2630   // FIXME: This isn't quite ideal, since our ASTs don't capture all
   2631   // of the information that we have about the base
   2632   // initializer. However, deconstructing the ASTs is a dicey process,
   2633   // and this approach is far more likely to get the corner cases right.
   2634   if (CurContext->isDependentContext())
   2635     BaseInit = Owned(Init);
   2636 
   2637   return new (Context) CXXCtorInitializer(Context, BaseTInfo,
   2638                                           BaseSpec->isVirtual(),
   2639                                           InitRange.getBegin(),
   2640                                           BaseInit.takeAs<Expr>(),
   2641                                           InitRange.getEnd(), EllipsisLoc);
   2642 }
   2643 
   2644 // Create a static_cast\<T&&>(expr).
   2645 static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
   2646   if (T.isNull()) T = E->getType();
   2647   QualType TargetType = SemaRef.BuildReferenceType(
   2648       T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
   2649   SourceLocation ExprLoc = E->getLocStart();
   2650   TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
   2651       TargetType, ExprLoc);
   2652 
   2653   return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
   2654                                    SourceRange(ExprLoc, ExprLoc),
   2655                                    E->getSourceRange()).take();
   2656 }
   2657 
   2658 /// ImplicitInitializerKind - How an implicit base or member initializer should
   2659 /// initialize its base or member.
   2660 enum ImplicitInitializerKind {
   2661   IIK_Default,
   2662   IIK_Copy,
   2663   IIK_Move,
   2664   IIK_Inherit
   2665 };
   2666 
   2667 static bool
   2668 BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
   2669                              ImplicitInitializerKind ImplicitInitKind,
   2670                              CXXBaseSpecifier *BaseSpec,
   2671                              bool IsInheritedVirtualBase,
   2672                              CXXCtorInitializer *&CXXBaseInit) {
   2673   InitializedEntity InitEntity
   2674     = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
   2675                                         IsInheritedVirtualBase);
   2676 
   2677   ExprResult BaseInit;
   2678 
   2679   switch (ImplicitInitKind) {
   2680   case IIK_Inherit: {
   2681     const CXXRecordDecl *Inherited =
   2682         Constructor->getInheritedConstructor()->getParent();
   2683     const CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
   2684     if (Base && Inherited->getCanonicalDecl() == Base->getCanonicalDecl()) {
   2685       // C++11 [class.inhctor]p8:
   2686       //   Each expression in the expression-list is of the form
   2687       //   static_cast<T&&>(p), where p is the name of the corresponding
   2688       //   constructor parameter and T is the declared type of p.
   2689       SmallVector<Expr*, 16> Args;
   2690       for (unsigned I = 0, E = Constructor->getNumParams(); I != E; ++I) {
   2691         ParmVarDecl *PD = Constructor->getParamDecl(I);
   2692         ExprResult ArgExpr =
   2693             SemaRef.BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
   2694                                      VK_LValue, SourceLocation());
   2695         if (ArgExpr.isInvalid())
   2696           return true;
   2697         Args.push_back(CastForMoving(SemaRef, ArgExpr.take(), PD->getType()));
   2698       }
   2699 
   2700       InitializationKind InitKind = InitializationKind::CreateDirect(
   2701           Constructor->getLocation(), SourceLocation(), SourceLocation());
   2702       InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
   2703                                      Args.data(), Args.size());
   2704       BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, Args);
   2705       break;
   2706     }
   2707   }
   2708   // Fall through.
   2709   case IIK_Default: {
   2710     InitializationKind InitKind
   2711       = InitializationKind::CreateDefault(Constructor->getLocation());
   2712     InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
   2713     BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
   2714     break;
   2715   }
   2716 
   2717   case IIK_Move:
   2718   case IIK_Copy: {
   2719     bool Moving = ImplicitInitKind == IIK_Move;
   2720     ParmVarDecl *Param = Constructor->getParamDecl(0);
   2721     QualType ParamType = Param->getType().getNonReferenceType();
   2722 
   2723     Expr *CopyCtorArg =
   2724       DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
   2725                           SourceLocation(), Param, false,
   2726                           Constructor->getLocation(), ParamType,
   2727                           VK_LValue, 0);
   2728 
   2729     SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
   2730 
   2731     // Cast to the base class to avoid ambiguities.
   2732     QualType ArgTy =
   2733       SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
   2734                                        ParamType.getQualifiers());
   2735 
   2736     if (Moving) {
   2737       CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
   2738     }
   2739 
   2740     CXXCastPath BasePath;
   2741     BasePath.push_back(BaseSpec);
   2742     CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
   2743                                             CK_UncheckedDerivedToBase,
   2744                                             Moving ? VK_XValue : VK_LValue,
   2745                                             &BasePath).take();
   2746 
   2747     InitializationKind InitKind
   2748       = InitializationKind::CreateDirect(Constructor->getLocation(),
   2749                                          SourceLocation(), SourceLocation());
   2750     InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
   2751                                    &CopyCtorArg, 1);
   2752     BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
   2753                                MultiExprArg(&CopyCtorArg, 1));
   2754     break;
   2755   }
   2756   }
   2757 
   2758   BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
   2759   if (BaseInit.isInvalid())
   2760     return true;
   2761 
   2762   CXXBaseInit =
   2763     new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
   2764                SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
   2765                                                         SourceLocation()),
   2766                                              BaseSpec->isVirtual(),
   2767                                              SourceLocation(),
   2768                                              BaseInit.takeAs<Expr>(),
   2769                                              SourceLocation(),
   2770                                              SourceLocation());
   2771 
   2772   return false;
   2773 }
   2774 
   2775 static bool RefersToRValueRef(Expr *MemRef) {
   2776   ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
   2777   return Referenced->getType()->isRValueReferenceType();
   2778 }
   2779 
   2780 static bool
   2781 BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
   2782                                ImplicitInitializerKind ImplicitInitKind,
   2783                                FieldDecl *Field, IndirectFieldDecl *Indirect,
   2784                                CXXCtorInitializer *&CXXMemberInit) {
   2785   if (Field->isInvalidDecl())
   2786     return true;
   2787 
   2788   SourceLocation Loc = Constructor->getLocation();
   2789 
   2790   if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
   2791     bool Moving = ImplicitInitKind == IIK_Move;
   2792     ParmVarDecl *Param = Constructor->getParamDecl(0);
   2793     QualType ParamType = Param->getType().getNonReferenceType();
   2794 
   2795     // Suppress copying zero-width bitfields.
   2796     if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
   2797       return false;
   2798 
   2799     Expr *MemberExprBase =
   2800       DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
   2801                           SourceLocation(), Param, false,
   2802                           Loc, ParamType, VK_LValue, 0);
   2803 
   2804     SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
   2805 
   2806     if (Moving) {
   2807       MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
   2808     }
   2809 
   2810     // Build a reference to this field within the parameter.
   2811     CXXScopeSpec SS;
   2812     LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
   2813                               Sema::LookupMemberName);
   2814     MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
   2815                                   : cast<ValueDecl>(Field), AS_public);
   2816     MemberLookup.resolveKind();
   2817     ExprResult CtorArg
   2818       = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
   2819                                          ParamType, Loc,
   2820                                          /*IsArrow=*/false,
   2821                                          SS,
   2822                                          /*TemplateKWLoc=*/SourceLocation(),
   2823                                          /*FirstQualifierInScope=*/0,
   2824                                          MemberLookup,
   2825                                          /*TemplateArgs=*/0);
   2826     if (CtorArg.isInvalid())
   2827       return true;
   2828 
   2829     // C++11 [class.copy]p15:
   2830     //   - if a member m has rvalue reference type T&&, it is direct-initialized
   2831     //     with static_cast<T&&>(x.m);
   2832     if (RefersToRValueRef(CtorArg.get())) {
   2833       CtorArg = CastForMoving(SemaRef, CtorArg.take());
   2834     }
   2835 
   2836     // When the field we are copying is an array, create index variables for
   2837     // each dimension of the array. We use these index variables to subscript
   2838     // the source array, and other clients (e.g., CodeGen) will perform the
   2839     // necessary iteration with these index variables.
   2840     SmallVector<VarDecl *, 4> IndexVariables;
   2841     QualType BaseType = Field->getType();
   2842     QualType SizeType = SemaRef.Context.getSizeType();
   2843     bool InitializingArray = false;
   2844     while (const ConstantArrayType *Array
   2845                           = SemaRef.Context.getAsConstantArrayType(BaseType)) {
   2846       InitializingArray = true;
   2847       // Create the iteration variable for this array index.
   2848       IdentifierInfo *IterationVarName = 0;
   2849       {
   2850         SmallString<8> Str;
   2851         llvm::raw_svector_ostream OS(Str);
   2852         OS << "__i" << IndexVariables.size();
   2853         IterationVarName = &SemaRef.Context.Idents.get(OS.str());
   2854       }
   2855       VarDecl *IterationVar
   2856         = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
   2857                           IterationVarName, SizeType,
   2858                         SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
   2859                           SC_None, SC_None);
   2860       IndexVariables.push_back(IterationVar);
   2861 
   2862       // Create a reference to the iteration variable.
   2863       ExprResult IterationVarRef
   2864         = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
   2865       assert(!IterationVarRef.isInvalid() &&
   2866              "Reference to invented variable cannot fail!");
   2867       IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
   2868       assert(!IterationVarRef.isInvalid() &&
   2869              "Conversion of invented variable cannot fail!");
   2870 
   2871       // Subscript the array with this iteration variable.
   2872       CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
   2873                                                         IterationVarRef.take(),
   2874                                                         Loc);
   2875       if (CtorArg.isInvalid())
   2876         return true;
   2877 
   2878       BaseType = Array->getElementType();
   2879     }
   2880 
   2881     // The array subscript expression is an lvalue, which is wrong for moving.
   2882     if (Moving && InitializingArray)
   2883       CtorArg = CastForMoving(SemaRef, CtorArg.take());
   2884 
   2885     // Construct the entity that we will be initializing. For an array, this
   2886     // will be first element in the array, which may require several levels
   2887     // of array-subscript entities.
   2888     SmallVector<InitializedEntity, 4> Entities;
   2889     Entities.reserve(1 + IndexVariables.size());
   2890     if (Indirect)
   2891       Entities.push_back(InitializedEntity::InitializeMember(Indirect));
   2892     else
   2893       Entities.push_back(InitializedEntity::InitializeMember(Field));
   2894     for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
   2895       Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
   2896                                                               0,
   2897                                                               Entities.back()));
   2898 
   2899     // Direct-initialize to use the copy constructor.
   2900     InitializationKind InitKind =
   2901       InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
   2902 
   2903     Expr *CtorArgE = CtorArg.takeAs<Expr>();
   2904     InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
   2905                                    &CtorArgE, 1);
   2906 
   2907     ExprResult MemberInit
   2908       = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
   2909                         MultiExprArg(&CtorArgE, 1));
   2910     MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
   2911     if (MemberInit.isInvalid())
   2912       return true;
   2913 
   2914     if (Indirect) {
   2915       assert(IndexVariables.size() == 0 &&
   2916              "Indirect field improperly initialized");
   2917       CXXMemberInit
   2918         = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
   2919                                                    Loc, Loc,
   2920                                                    MemberInit.takeAs<Expr>(),
   2921                                                    Loc);
   2922     } else
   2923       CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
   2924                                                  Loc, MemberInit.takeAs<Expr>(),
   2925                                                  Loc,
   2926                                                  IndexVariables.data(),
   2927                                                  IndexVariables.size());
   2928     return false;
   2929   }
   2930 
   2931   assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&
   2932          "Unhandled implicit init kind!");
   2933 
   2934   QualType FieldBaseElementType =
   2935     SemaRef.Context.getBaseElementType(Field->getType());
   2936 
   2937   if (FieldBaseElementType->isRecordType()) {
   2938     InitializedEntity InitEntity
   2939       = Indirect? InitializedEntity::InitializeMember(Indirect)
   2940                 : InitializedEntity::InitializeMember(Field);
   2941     InitializationKind InitKind =
   2942       InitializationKind::CreateDefault(Loc);
   2943 
   2944     InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
   2945     ExprResult MemberInit =
   2946       InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
   2947 
   2948     MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
   2949     if (MemberInit.isInvalid())
   2950       return true;
   2951 
   2952     if (Indirect)
   2953       CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
   2954                                                                Indirect, Loc,
   2955                                                                Loc,
   2956                                                                MemberInit.get(),
   2957                                                                Loc);
   2958     else
   2959       CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
   2960                                                                Field, Loc, Loc,
   2961                                                                MemberInit.get(),
   2962                                                                Loc);
   2963     return false;
   2964   }
   2965 
   2966   if (!Field->getParent()->isUnion()) {
   2967     if (FieldBaseElementType->isReferenceType()) {
   2968       SemaRef.Diag(Constructor->getLocation(),
   2969                    diag::err_uninitialized_member_in_ctor)
   2970       << (int)Constructor->isImplicit()
   2971       << SemaRef.Context.getTagDeclType(Constructor->getParent())
   2972       << 0 << Field->getDeclName();
   2973       SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
   2974       return true;
   2975     }
   2976 
   2977     if (FieldBaseElementType.isConstQualified()) {
   2978       SemaRef.Diag(Constructor->getLocation(),
   2979                    diag::err_uninitialized_member_in_ctor)
   2980       << (int)Constructor->isImplicit()
   2981       << SemaRef.Context.getTagDeclType(Constructor->getParent())
   2982       << 1 << Field->getDeclName();
   2983       SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
   2984       return true;
   2985     }
   2986   }
   2987 
   2988   if (SemaRef.getLangOpts().ObjCAutoRefCount &&
   2989       FieldBaseElementType->isObjCRetainableType() &&
   2990       FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
   2991       FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
   2992     // ARC:
   2993     //   Default-initialize Objective-C pointers to NULL.
   2994     CXXMemberInit
   2995       = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
   2996                                                  Loc, Loc,
   2997                  new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
   2998                                                  Loc);
   2999     return false;
   3000   }
   3001 
   3002   // Nothing to initialize.
   3003   CXXMemberInit = 0;
   3004   return false;
   3005 }
   3006 
   3007 namespace {
   3008 struct BaseAndFieldInfo {
   3009   Sema &S;
   3010   CXXConstructorDecl *Ctor;
   3011   bool AnyErrorsInInits;
   3012   ImplicitInitializerKind IIK;
   3013   llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
   3014   SmallVector<CXXCtorInitializer*, 8> AllToInit;
   3015 
   3016   BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
   3017     : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
   3018     bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
   3019     if (Generated && Ctor->isCopyConstructor())
   3020       IIK = IIK_Copy;
   3021     else if (Generated && Ctor->isMoveConstructor())
   3022       IIK = IIK_Move;
   3023     else if (Ctor->getInheritedConstructor())
   3024       IIK = IIK_Inherit;
   3025     else
   3026       IIK = IIK_Default;
   3027   }
   3028 
   3029   bool isImplicitCopyOrMove() const {
   3030     switch (IIK) {
   3031     case IIK_Copy:
   3032     case IIK_Move:
   3033       return true;
   3034 
   3035     case IIK_Default:
   3036     case IIK_Inherit:
   3037       return false;
   3038     }
   3039 
   3040     llvm_unreachable("Invalid ImplicitInitializerKind!");
   3041   }
   3042 
   3043   bool addFieldInitializer(CXXCtorInitializer *Init) {
   3044     AllToInit.push_back(Init);
   3045 
   3046     // Check whether this initializer makes the field "used".
   3047     if (Init->getInit() && Init->getInit()->HasSideEffects(S.Context))
   3048       S.UnusedPrivateFields.remove(Init->getAnyMember());
   3049 
   3050     return false;
   3051   }
   3052 };
   3053 }
   3054 
   3055 /// \brief Determine whether the given indirect field declaration is somewhere
   3056 /// within an anonymous union.
   3057 static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
   3058   for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
   3059                                       CEnd = F->chain_end();
   3060        C != CEnd; ++C)
   3061     if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
   3062       if (Record->isUnion())
   3063         return true;
   3064 
   3065   return false;
   3066 }
   3067 
   3068 /// \brief Determine whether the given type is an incomplete or zero-lenfgth
   3069 /// array type.
   3070 static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
   3071   if (T->isIncompleteArrayType())
   3072     return true;
   3073 
   3074   while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
   3075     if (!ArrayT->getSize())
   3076       return true;
   3077 
   3078     T = ArrayT->getElementType();
   3079   }
   3080 
   3081   return false;
   3082 }
   3083 
   3084 static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
   3085                                     FieldDecl *Field,
   3086                                     IndirectFieldDecl *Indirect = 0) {
   3087 
   3088   // Overwhelmingly common case: we have a direct initializer for this field.
   3089   if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field))
   3090     return Info.addFieldInitializer(Init);
   3091 
   3092   // C++11 [class.base.init]p8: if the entity is a non-static data member that
   3093   // has a brace-or-equal-initializer, the entity is initialized as specified
   3094   // in [dcl.init].
   3095   if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
   3096     CXXCtorInitializer *Init;
   3097     if (Indirect)
   3098       Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
   3099                                                       SourceLocation(),
   3100                                                       SourceLocation(), 0,
   3101                                                       SourceLocation());
   3102     else
   3103       Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
   3104                                                       SourceLocation(),
   3105                                                       SourceLocation(), 0,
   3106                                                       SourceLocation());
   3107     return Info.addFieldInitializer(Init);
   3108   }
   3109 
   3110   // Don't build an implicit initializer for union members if none was
   3111   // explicitly specified.
   3112   if (Field->getParent()->isUnion() ||
   3113       (Indirect && isWithinAnonymousUnion(Indirect)))
   3114     return false;
   3115 
   3116   // Don't initialize incomplete or zero-length arrays.
   3117   if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
   3118     return false;
   3119 
   3120   // Don't try to build an implicit initializer if there were semantic
   3121   // errors in any of the initializers (and therefore we might be
   3122   // missing some that the user actually wrote).
   3123   if (Info.AnyErrorsInInits || Field->isInvalidDecl())
   3124     return false;
   3125 
   3126   CXXCtorInitializer *Init = 0;
   3127   if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
   3128                                      Indirect, Init))
   3129     return true;
   3130 
   3131   if (!Init)
   3132     return false;
   3133 
   3134   return Info.addFieldInitializer(Init);
   3135 }
   3136 
   3137 bool
   3138 Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
   3139                                CXXCtorInitializer *Initializer) {
   3140   assert(Initializer->isDelegatingInitializer());
   3141   Constructor->setNumCtorInitializers(1);
   3142   CXXCtorInitializer **initializer =
   3143     new (Context) CXXCtorInitializer*[1];
   3144   memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
   3145   Constructor->setCtorInitializers(initializer);
   3146 
   3147   if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
   3148     MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
   3149     DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
   3150   }
   3151 
   3152   DelegatingCtorDecls.push_back(Constructor);
   3153 
   3154   return false;
   3155 }
   3156 
   3157 bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
   3158                                ArrayRef<CXXCtorInitializer *> Initializers) {
   3159   if (Constructor->isDependentContext()) {
   3160     // Just store the initializers as written, they will be checked during
   3161     // instantiation.
   3162     if (!Initializers.empty()) {
   3163       Constructor->setNumCtorInitializers(Initializers.size());
   3164       CXXCtorInitializer **baseOrMemberInitializers =
   3165         new (Context) CXXCtorInitializer*[Initializers.size()];
   3166       memcpy(baseOrMemberInitializers, Initializers.data(),
   3167              Initializers.size() * sizeof(CXXCtorInitializer*));
   3168       Constructor->setCtorInitializers(baseOrMemberInitializers);
   3169     }
   3170 
   3171     // Let template instantiation know whether we had errors.
   3172     if (AnyErrors)
   3173       Constructor->setInvalidDecl();
   3174 
   3175     return false;
   3176   }
   3177 
   3178   BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
   3179 
   3180   // We need to build the initializer AST according to order of construction
   3181   // and not what user specified in the Initializers list.
   3182   CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
   3183   if (!ClassDecl)
   3184     return true;
   3185 
   3186   bool HadError = false;
   3187 
   3188   for (unsigned i = 0; i < Initializers.size(); i++) {
   3189     CXXCtorInitializer *Member = Initializers[i];
   3190 
   3191     if (Member->isBaseInitializer())
   3192       Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
   3193     else
   3194       Info.AllBaseFields[Member->getAnyMember()] = Member;
   3195   }
   3196 
   3197   // Keep track of the direct virtual bases.
   3198   llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
   3199   for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
   3200        E = ClassDecl->bases_end(); I != E; ++I) {
   3201     if (I->isVirtual())
   3202       DirectVBases.insert(I);
   3203   }
   3204 
   3205   // Push virtual bases before others.
   3206   for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
   3207        E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
   3208 
   3209     if (CXXCtorInitializer *Value
   3210         = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
   3211       Info.AllToInit.push_back(Value);
   3212     } else if (!AnyErrors) {
   3213       bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
   3214       CXXCtorInitializer *CXXBaseInit;
   3215       if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
   3216                                        VBase, IsInheritedVirtualBase,
   3217                                        CXXBaseInit)) {
   3218         HadError = true;
   3219         continue;
   3220       }
   3221 
   3222       Info.AllToInit.push_back(CXXBaseInit);
   3223     }
   3224   }
   3225 
   3226   // Non-virtual bases.
   3227   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
   3228        E = ClassDecl->bases_end(); Base != E; ++Base) {
   3229     // Virtuals are in the virtual base list and already constructed.
   3230     if (Base->isVirtual())
   3231       continue;
   3232 
   3233     if (CXXCtorInitializer *Value
   3234           = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
   3235       Info.AllToInit.push_back(Value);
   3236     } else if (!AnyErrors) {
   3237       CXXCtorInitializer *CXXBaseInit;
   3238       if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
   3239                                        Base, /*IsInheritedVirtualBase=*/false,
   3240                                        CXXBaseInit)) {
   3241         HadError = true;
   3242         continue;
   3243       }
   3244 
   3245       Info.AllToInit.push_back(CXXBaseInit);
   3246     }
   3247   }
   3248 
   3249   // Fields.
   3250   for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
   3251                                MemEnd = ClassDecl->decls_end();
   3252        Mem != MemEnd; ++Mem) {
   3253     if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
   3254       // C++ [class.bit]p2:
   3255       //   A declaration for a bit-field that omits the identifier declares an
   3256       //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
   3257       //   initialized.
   3258       if (F->isUnnamedBitfield())
   3259         continue;
   3260 
   3261       // If we're not generating the implicit copy/move constructor, then we'll
   3262       // handle anonymous struct/union fields based on their individual
   3263       // indirect fields.
   3264       if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
   3265         continue;
   3266 
   3267       if (CollectFieldInitializer(*this, Info, F))
   3268         HadError = true;
   3269       continue;
   3270     }
   3271 
   3272     // Beyond this point, we only consider default initialization.
   3273     if (Info.isImplicitCopyOrMove())
   3274       continue;
   3275 
   3276     if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
   3277       if (F->getType()->isIncompleteArrayType()) {
   3278         assert(ClassDecl->hasFlexibleArrayMember() &&
   3279                "Incomplete array type is not valid");
   3280         continue;
   3281       }
   3282 
   3283       // Initialize each field of an anonymous struct individually.
   3284       if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
   3285         HadError = true;
   3286 
   3287       continue;
   3288     }
   3289   }
   3290 
   3291   unsigned NumInitializers = Info.AllToInit.size();
   3292   if (NumInitializers > 0) {
   3293     Constructor->setNumCtorInitializers(NumInitializers);
   3294     CXXCtorInitializer **baseOrMemberInitializers =
   3295       new (Context) CXXCtorInitializer*[NumInitializers];
   3296     memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
   3297            NumInitializers * sizeof(CXXCtorInitializer*));
   3298     Constructor->setCtorInitializers(baseOrMemberInitializers);
   3299 
   3300     // Constructors implicitly reference the base and member
   3301     // destructors.
   3302     MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
   3303                                            Constructor->getParent());
   3304   }
   3305 
   3306   return HadError;
   3307 }
   3308 
   3309 static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
   3310   if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
   3311     const RecordDecl *RD = RT->getDecl();
   3312     if (RD->isAnonymousStructOrUnion()) {
   3313       for (RecordDecl::field_iterator Field = RD->field_begin(),
   3314           E = RD->field_end(); Field != E; ++Field)
   3315         PopulateKeysForFields(*Field, IdealInits);
   3316       return;
   3317     }
   3318   }
   3319   IdealInits.push_back(Field);
   3320 }
   3321 
   3322 static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
   3323   return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
   3324 }
   3325 
   3326 static void *GetKeyForMember(ASTContext &Context,
   3327                              CXXCtorInitializer *Member) {
   3328   if (!Member->isAnyMemberInitializer())
   3329     return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
   3330 
   3331   return Member->getAnyMember();
   3332 }
   3333 
   3334 static void DiagnoseBaseOrMemInitializerOrder(
   3335     Sema &SemaRef, const CXXConstructorDecl *Constructor,
   3336     ArrayRef<CXXCtorInitializer *> Inits) {
   3337   if (Constructor->getDeclContext()->isDependentContext())
   3338     return;
   3339 
   3340   // Don't check initializers order unless the warning is enabled at the
   3341   // location of at least one initializer.
   3342   bool ShouldCheckOrder = false;
   3343   for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
   3344     CXXCtorInitializer *Init = Inits[InitIndex];
   3345     if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
   3346                                          Init->getSourceLocation())
   3347           != DiagnosticsEngine::Ignored) {
   3348       ShouldCheckOrder = true;
   3349       break;
   3350     }
   3351   }
   3352   if (!ShouldCheckOrder)
   3353     return;
   3354 
   3355   // Build the list of bases and members in the order that they'll
   3356   // actually be initialized.  The explicit initializers should be in
   3357   // this same order but may be missing things.
   3358   SmallVector<const void*, 32> IdealInitKeys;
   3359 
   3360   const CXXRecordDecl *ClassDecl = Constructor->getParent();
   3361 
   3362   // 1. Virtual bases.
   3363   for (CXXRecordDecl::base_class_const_iterator VBase =
   3364        ClassDecl->vbases_begin(),
   3365        E = ClassDecl->vbases_end(); VBase != E; ++VBase)
   3366     IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
   3367 
   3368   // 2. Non-virtual bases.
   3369   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
   3370        E = ClassDecl->bases_end(); Base != E; ++Base) {
   3371     if (Base->isVirtual())
   3372       continue;
   3373     IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
   3374   }
   3375 
   3376   // 3. Direct fields.
   3377   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
   3378        E = ClassDecl->field_end(); Field != E; ++Field) {
   3379     if (Field->isUnnamedBitfield())
   3380       continue;
   3381 
   3382     PopulateKeysForFields(*Field, IdealInitKeys);
   3383   }
   3384 
   3385   unsigned NumIdealInits = IdealInitKeys.size();
   3386   unsigned IdealIndex = 0;
   3387 
   3388   CXXCtorInitializer *PrevInit = 0;
   3389   for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
   3390     CXXCtorInitializer *Init = Inits[InitIndex];
   3391     void *InitKey = GetKeyForMember(SemaRef.Context, Init);
   3392 
   3393     // Scan forward to try to find this initializer in the idealized
   3394     // initializers list.
   3395     for (; IdealIndex != NumIdealInits; ++IdealIndex)
   3396       if (InitKey == IdealInitKeys[IdealIndex])
   3397         break;
   3398 
   3399     // If we didn't find this initializer, it must be because we
   3400     // scanned past it on a previous iteration.  That can only
   3401     // happen if we're out of order;  emit a warning.
   3402     if (IdealIndex == NumIdealInits && PrevInit) {
   3403       Sema::SemaDiagnosticBuilder D =
   3404         SemaRef.Diag(PrevInit->getSourceLocation(),
   3405                      diag::warn_initializer_out_of_order);
   3406 
   3407       if (PrevInit->isAnyMemberInitializer())
   3408         D << 0 << PrevInit->getAnyMember()->getDeclName();
   3409       else
   3410         D << 1 << PrevInit->getTypeSourceInfo()->getType();
   3411 
   3412       if (Init->isAnyMemberInitializer())
   3413         D << 0 << Init->getAnyMember()->getDeclName();
   3414       else
   3415         D << 1 << Init->getTypeSourceInfo()->getType();
   3416 
   3417       // Move back to the initializer's location in the ideal list.
   3418       for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
   3419         if (InitKey == IdealInitKeys[IdealIndex])
   3420           break;
   3421 
   3422       assert(IdealIndex != NumIdealInits &&
   3423              "initializer not found in initializer list");
   3424     }
   3425 
   3426     PrevInit = Init;
   3427   }
   3428 }
   3429 
   3430 namespace {
   3431 bool CheckRedundantInit(Sema &S,
   3432                         CXXCtorInitializer *Init,
   3433                         CXXCtorInitializer *&PrevInit) {
   3434   if (!PrevInit) {
   3435     PrevInit = Init;
   3436     return false;
   3437   }
   3438 
   3439   if (FieldDecl *Field = Init->getMember())
   3440     S.Diag(Init->getSourceLocation(),
   3441            diag::err_multiple_mem_initialization)
   3442       << Field->getDeclName()
   3443       << Init->getSourceRange();
   3444   else {
   3445     const Type *BaseClass = Init->getBaseClass();
   3446     assert(BaseClass && "neither field nor base");
   3447     S.Diag(Init->getSourceLocation(),
   3448            diag::err_multiple_base_initialization)
   3449       << QualType(BaseClass, 0)
   3450       << Init->getSourceRange();
   3451   }
   3452   S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
   3453     << 0 << PrevInit->getSourceRange();
   3454 
   3455   return true;
   3456 }
   3457 
   3458 typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
   3459 typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
   3460 
   3461 bool CheckRedundantUnionInit(Sema &S,
   3462                              CXXCtorInitializer *Init,
   3463                              RedundantUnionMap &Unions) {
   3464   FieldDecl *Field = Init->getAnyMember();
   3465   RecordDecl *Parent = Field->getParent();
   3466   NamedDecl *Child = Field;
   3467 
   3468   while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
   3469     if (Parent->isUnion()) {
   3470       UnionEntry &En = Unions[Parent];
   3471       if (En.first && En.first != Child) {
   3472         S.Diag(Init->getSourceLocation(),
   3473                diag::err_multiple_mem_union_initialization)
   3474           << Field->getDeclName()
   3475           << Init->getSourceRange();
   3476         S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
   3477           << 0 << En.second->getSourceRange();
   3478         return true;
   3479       }
   3480       if (!En.first) {
   3481         En.first = Child;
   3482         En.second = Init;
   3483       }
   3484       if (!Parent->isAnonymousStructOrUnion())
   3485         return false;
   3486     }
   3487 
   3488     Child = Parent;
   3489     Parent = cast<RecordDecl>(Parent->getDeclContext());
   3490   }
   3491 
   3492   return false;
   3493 }
   3494 }
   3495 
   3496 /// ActOnMemInitializers - Handle the member initializers for a constructor.
   3497 void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
   3498                                 SourceLocation ColonLoc,
   3499                                 ArrayRef<CXXCtorInitializer*> MemInits,
   3500                                 bool AnyErrors) {
   3501   if (!ConstructorDecl)
   3502     return;
   3503 
   3504   AdjustDeclIfTemplate(ConstructorDecl);
   3505 
   3506   CXXConstructorDecl *Constructor
   3507     = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
   3508 
   3509   if (!Constructor) {
   3510     Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
   3511     return;
   3512   }
   3513 
   3514   // Mapping for the duplicate initializers check.
   3515   // For member initializers, this is keyed with a FieldDecl*.
   3516   // For base initializers, this is keyed with a Type*.
   3517   llvm::DenseMap<void*, CXXCtorInitializer *> Members;
   3518 
   3519   // Mapping for the inconsistent anonymous-union initializers check.
   3520   RedundantUnionMap MemberUnions;
   3521 
   3522   bool HadError = false;
   3523   for (unsigned i = 0; i < MemInits.size(); i++) {
   3524     CXXCtorInitializer *Init = MemInits[i];
   3525 
   3526     // Set the source order index.
   3527     Init->setSourceOrder(i);
   3528 
   3529     if (Init->isAnyMemberInitializer()) {
   3530       FieldDecl *Field = Init->getAnyMember();
   3531       if (CheckRedundantInit(*this, Init, Members[Field]) ||
   3532           CheckRedundantUnionInit(*this, Init, MemberUnions))
   3533         HadError = true;
   3534     } else if (Init->isBaseInitializer()) {
   3535       void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
   3536       if (CheckRedundantInit(*this, Init, Members[Key]))
   3537         HadError = true;
   3538     } else {
   3539       assert(Init->isDelegatingInitializer());
   3540       // This must be the only initializer
   3541       if (MemInits.size() != 1) {
   3542         Diag(Init->getSourceLocation(),
   3543              diag::err_delegating_initializer_alone)
   3544           << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
   3545         // We will treat this as being the only initializer.
   3546       }
   3547       SetDelegatingInitializer(Constructor, MemInits[i]);
   3548       // Return immediately as the initializer is set.
   3549       return;
   3550     }
   3551   }
   3552 
   3553   if (HadError)
   3554     return;
   3555 
   3556   DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
   3557 
   3558   SetCtorInitializers(Constructor, AnyErrors, MemInits);
   3559 }
   3560 
   3561 void
   3562 Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
   3563                                              CXXRecordDecl *ClassDecl) {
   3564   // Ignore dependent contexts. Also ignore unions, since their members never
   3565   // have destructors implicitly called.
   3566   if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
   3567     return;
   3568 
   3569   // FIXME: all the access-control diagnostics are positioned on the
   3570   // field/base declaration.  That's probably good; that said, the
   3571   // user might reasonably want to know why the destructor is being
   3572   // emitted, and we currently don't say.
   3573 
   3574   // Non-static data members.
   3575   for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
   3576        E = ClassDecl->field_end(); I != E; ++I) {
   3577     FieldDecl *Field = *I;
   3578     if (Field->isInvalidDecl())
   3579       continue;
   3580 
   3581     // Don't destroy incomplete or zero-length arrays.
   3582     if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
   3583       continue;
   3584 
   3585     QualType FieldType = Context.getBaseElementType(Field->getType());
   3586 
   3587     const RecordType* RT = FieldType->getAs<RecordType>();
   3588     if (!RT)
   3589       continue;
   3590 
   3591     CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
   3592     if (FieldClassDecl->isInvalidDecl())
   3593       continue;
   3594     if (FieldClassDecl->hasIrrelevantDestructor())
   3595       continue;
   3596     // The destructor for an implicit anonymous union member is never invoked.
   3597     if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
   3598       continue;
   3599 
   3600     CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
   3601     assert(Dtor && "No dtor found for FieldClassDecl!");
   3602     CheckDestructorAccess(Field->getLocation(), Dtor,
   3603                           PDiag(diag::err_access_dtor_field)
   3604                             << Field->getDeclName()
   3605                             << FieldType);
   3606 
   3607     MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
   3608     DiagnoseUseOfDecl(Dtor, Location);
   3609   }
   3610 
   3611   llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
   3612 
   3613   // Bases.
   3614   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
   3615        E = ClassDecl->bases_end(); Base != E; ++Base) {
   3616     // Bases are always records in a well-formed non-dependent class.
   3617     const RecordType *RT = Base->getType()->getAs<RecordType>();
   3618 
   3619     // Remember direct virtual bases.
   3620     if (Base->isVirtual())
   3621       DirectVirtualBases.insert(RT);
   3622 
   3623     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
   3624     // If our base class is invalid, we probably can't get its dtor anyway.
   3625     if (BaseClassDecl->isInvalidDecl())
   3626       continue;
   3627     if (BaseClassDecl->hasIrrelevantDestructor())
   3628       continue;
   3629 
   3630     CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
   3631     assert(Dtor && "No dtor found for BaseClassDecl!");
   3632 
   3633     // FIXME: caret should be on the start of the class name
   3634     CheckDestructorAccess(Base->getLocStart(), Dtor,
   3635                           PDiag(diag::err_access_dtor_base)
   3636                             << Base->getType()
   3637                             << Base->getSourceRange(),
   3638                           Context.getTypeDeclType(ClassDecl));
   3639 
   3640     MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
   3641     DiagnoseUseOfDecl(Dtor, Location);
   3642   }
   3643 
   3644   // Virtual bases.
   3645   for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
   3646        E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
   3647 
   3648     // Bases are always records in a well-formed non-dependent class.
   3649     const RecordType *RT = VBase->getType()->castAs<RecordType>();
   3650 
   3651     // Ignore direct virtual bases.
   3652     if (DirectVirtualBases.count(RT))
   3653       continue;
   3654 
   3655     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
   3656     // If our base class is invalid, we probably can't get its dtor anyway.
   3657     if (BaseClassDecl->isInvalidDecl())
   3658       continue;
   3659     if (BaseClassDecl->hasIrrelevantDestructor())
   3660       continue;
   3661 
   3662     CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
   3663     assert(Dtor && "No dtor found for BaseClassDecl!");
   3664     CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
   3665                           PDiag(diag::err_access_dtor_vbase)
   3666                             << VBase->getType(),
   3667                           Context.getTypeDeclType(ClassDecl));
   3668 
   3669     MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
   3670     DiagnoseUseOfDecl(Dtor, Location);
   3671   }
   3672 }
   3673 
   3674 void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
   3675   if (!CDtorDecl)
   3676     return;
   3677 
   3678   if (CXXConstructorDecl *Constructor
   3679       = dyn_cast<CXXConstructorDecl>(CDtorDecl))
   3680     SetCtorInitializers(Constructor, /*AnyErrors=*/false);
   3681 }
   3682 
   3683 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
   3684                                   unsigned DiagID, AbstractDiagSelID SelID) {
   3685   class NonAbstractTypeDiagnoser : public TypeDiagnoser {
   3686     unsigned DiagID;
   3687     AbstractDiagSelID SelID;
   3688 
   3689   public:
   3690     NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
   3691       : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
   3692 
   3693     virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
   3694       if (Suppressed) return;
   3695       if (SelID == -1)
   3696         S.Diag(Loc, DiagID) << T;
   3697       else
   3698         S.Diag(Loc, DiagID) << SelID << T;
   3699     }
   3700   } Diagnoser(DiagID, SelID);
   3701 
   3702   return RequireNonAbstractType(Loc, T, Diagnoser);
   3703 }
   3704 
   3705 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
   3706                                   TypeDiagnoser &Diagnoser) {
   3707   if (!getLangOpts().CPlusPlus)
   3708     return false;
   3709 
   3710   if (const ArrayType *AT = Context.getAsArrayType(T))
   3711     return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
   3712 
   3713   if (const PointerType *PT = T->getAs<PointerType>()) {
   3714     // Find the innermost pointer type.
   3715     while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
   3716       PT = T;
   3717 
   3718     if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
   3719       return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
   3720   }
   3721 
   3722   const RecordType *RT = T->getAs<RecordType>();
   3723   if (!RT)
   3724     return false;
   3725 
   3726   const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
   3727 
   3728   // We can't answer whether something is abstract until it has a
   3729   // definition.  If it's currently being defined, we'll walk back
   3730   // over all the declarations when we have a full definition.
   3731   const CXXRecordDecl *Def = RD->getDefinition();
   3732   if (!Def || Def->isBeingDefined())
   3733     return false;
   3734 
   3735   if (!RD->isAbstract())
   3736     return false;
   3737 
   3738   Diagnoser.diagnose(*this, Loc, T);
   3739   DiagnoseAbstractType(RD);
   3740 
   3741   return true;
   3742 }
   3743 
   3744 void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
   3745   // Check if we've already emitted the list of pure virtual functions
   3746   // for this class.
   3747   if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
   3748     return;
   3749 
   3750   CXXFinalOverriderMap FinalOverriders;
   3751   RD->getFinalOverriders(FinalOverriders);
   3752 
   3753   // Keep a set of seen pure methods so we won't diagnose the same method
   3754   // more than once.
   3755   llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
   3756 
   3757   for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
   3758                                    MEnd = FinalOverriders.end();
   3759        M != MEnd;
   3760        ++M) {
   3761     for (OverridingMethods::iterator SO = M->second.begin(),
   3762                                   SOEnd = M->second.end();
   3763          SO != SOEnd; ++SO) {
   3764       // C++ [class.abstract]p4:
   3765       //   A class is abstract if it contains or inherits at least one
   3766       //   pure virtual function for which the final overrider is pure
   3767       //   virtual.
   3768 
   3769       //
   3770       if (SO->second.size() != 1)
   3771         continue;
   3772 
   3773       if (!SO->second.front().Method->isPure())
   3774         continue;
   3775 
   3776       if (!SeenPureMethods.insert(SO->second.front().Method))
   3777         continue;
   3778 
   3779       Diag(SO->second.front().Method->getLocation(),
   3780            diag::note_pure_virtual_function)
   3781         << SO->second.front().Method->getDeclName() << RD->getDeclName();
   3782     }
   3783   }
   3784 
   3785   if (!PureVirtualClassDiagSet)
   3786     PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
   3787   PureVirtualClassDiagSet->insert(RD);
   3788 }
   3789 
   3790 namespace {
   3791 struct AbstractUsageInfo {
   3792   Sema &S;
   3793   CXXRecordDecl *Record;
   3794   CanQualType AbstractType;
   3795   bool Invalid;
   3796 
   3797   AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
   3798     : S(S), Record(Record),
   3799       AbstractType(S.Context.getCanonicalType(
   3800                    S.Context.getTypeDeclType(Record))),
   3801       Invalid(false) {}
   3802 
   3803   void DiagnoseAbstractType() {
   3804     if (Invalid) return;
   3805     S.DiagnoseAbstractType(Record);
   3806     Invalid = true;
   3807   }
   3808 
   3809   void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
   3810 };
   3811 
   3812 struct CheckAbstractUsage {
   3813   AbstractUsageInfo &Info;
   3814   const NamedDecl *Ctx;
   3815 
   3816   CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
   3817     : Info(Info), Ctx(Ctx) {}
   3818 
   3819   void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
   3820     switch (TL.getTypeLocClass()) {
   3821 #define ABSTRACT_TYPELOC(CLASS, PARENT)
   3822 #define TYPELOC(CLASS, PARENT) \
   3823     case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
   3824 #include "clang/AST/TypeLocNodes.def"
   3825     }
   3826   }
   3827 
   3828   void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
   3829     Visit(TL.getResultLoc(), Sema::AbstractReturnType);
   3830     for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
   3831       if (!TL.getArg(I))
   3832         continue;
   3833 
   3834       TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
   3835       if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
   3836     }
   3837   }
   3838 
   3839   void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
   3840     Visit(TL.getElementLoc(), Sema::AbstractArrayType);
   3841   }
   3842 
   3843   void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
   3844     // Visit the type parameters from a permissive context.
   3845     for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
   3846       TemplateArgumentLoc TAL = TL.getArgLoc(I);
   3847       if (TAL.getArgument().getKind() == TemplateArgument::Type)
   3848         if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
   3849           Visit(TSI->getTypeLoc(), Sema::AbstractNone);
   3850       // TODO: other template argument types?
   3851     }
   3852   }
   3853 
   3854   // Visit pointee types from a permissive context.
   3855 #define CheckPolymorphic(Type) \
   3856   void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
   3857     Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
   3858   }
   3859   CheckPolymorphic(PointerTypeLoc)
   3860   CheckPolymorphic(ReferenceTypeLoc)
   3861   CheckPolymorphic(MemberPointerTypeLoc)
   3862   CheckPolymorphic(BlockPointerTypeLoc)
   3863   CheckPolymorphic(AtomicTypeLoc)
   3864 
   3865   /// Handle all the types we haven't given a more specific
   3866   /// implementation for above.
   3867   void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
   3868     // Every other kind of type that we haven't called out already
   3869     // that has an inner type is either (1) sugar or (2) contains that
   3870     // inner type in some way as a subobject.
   3871     if (TypeLoc Next = TL.getNextTypeLoc())
   3872       return Visit(Next, Sel);
   3873 
   3874     // If there's no inner type and we're in a permissive context,
   3875     // don't diagnose.
   3876     if (Sel == Sema::AbstractNone) return;
   3877 
   3878     // Check whether the type matches the abstract type.
   3879     QualType T = TL.getType();
   3880     if (T->isArrayType()) {
   3881       Sel = Sema::AbstractArrayType;
   3882       T = Info.S.Context.getBaseElementType(T);
   3883     }
   3884     CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
   3885     if (CT != Info.AbstractType) return;
   3886 
   3887     // It matched; do some magic.
   3888     if (Sel == Sema::AbstractArrayType) {
   3889       Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
   3890         << T << TL.getSourceRange();
   3891     } else {
   3892       Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
   3893         << Sel << T << TL.getSourceRange();
   3894     }
   3895     Info.DiagnoseAbstractType();
   3896   }
   3897 };
   3898 
   3899 void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
   3900                                   Sema::AbstractDiagSelID Sel) {
   3901   CheckAbstractUsage(*this, D).Visit(TL, Sel);
   3902 }
   3903 
   3904 }
   3905 
   3906 /// Check for invalid uses of an abstract type in a method declaration.
   3907 static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
   3908                                     CXXMethodDecl *MD) {
   3909   // No need to do the check on definitions, which require that
   3910   // the return/param types be complete.
   3911   if (MD->doesThisDeclarationHaveABody())
   3912     return;
   3913 
   3914   // For safety's sake, just ignore it if we don't have type source
   3915   // information.  This should never happen for non-implicit methods,
   3916   // but...
   3917   if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
   3918     Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
   3919 }
   3920 
   3921 /// Check for invalid uses of an abstract type within a class definition.
   3922 static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
   3923                                     CXXRecordDecl *RD) {
   3924   for (CXXRecordDecl::decl_iterator
   3925          I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
   3926     Decl *D = *I;
   3927     if (D->isImplicit()) continue;
   3928 
   3929     // Methods and method templates.
   3930     if (isa<CXXMethodDecl>(D)) {
   3931       CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
   3932     } else if (isa<FunctionTemplateDecl>(D)) {
   3933       FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
   3934       CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
   3935 
   3936     // Fields and static variables.
   3937     } else if (isa<FieldDecl>(D)) {
   3938       FieldDecl *FD = cast<FieldDecl>(D);
   3939       if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
   3940         Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
   3941     } else if (isa<VarDecl>(D)) {
   3942       VarDecl *VD = cast<VarDecl>(D);
   3943       if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
   3944         Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
   3945 
   3946     // Nested classes and class templates.
   3947     } else if (isa<CXXRecordDecl>(D)) {
   3948       CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
   3949     } else if (isa<ClassTemplateDecl>(D)) {
   3950       CheckAbstractClassUsage(Info,
   3951                              cast<ClassTemplateDecl>(D)->getTemplatedDecl());
   3952     }
   3953   }
   3954 }
   3955 
   3956 /// \brief Perform semantic checks on a class definition that has been
   3957 /// completing, introducing implicitly-declared members, checking for
   3958 /// abstract types, etc.
   3959 void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
   3960   if (!Record)
   3961     return;
   3962 
   3963   if (Record->isAbstract() && !Record->isInvalidDecl()) {
   3964     AbstractUsageInfo Info(*this, Record);
   3965     CheckAbstractClassUsage(Info, Record);
   3966   }
   3967 
   3968   // If this is not an aggregate type and has no user-declared constructor,
   3969   // complain about any non-static data members of reference or const scalar
   3970   // type, since they will never get initializers.
   3971   if (!Record->isInvalidDecl() && !Record->isDependentType() &&
   3972       !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
   3973       !Record->isLambda()) {
   3974     bool Complained = false;
   3975     for (RecordDecl::field_iterator F = Record->field_begin(),
   3976                                  FEnd = Record->field_end();
   3977          F != FEnd; ++F) {
   3978       if (F->hasInClassInitializer() || F->isUnnamedBitfield())
   3979         continue;
   3980 
   3981       if (F->getType()->isReferenceType() ||
   3982           (F->getType().isConstQualified() && F->getType()->isScalarType())) {
   3983         if (!Complained) {
   3984           Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
   3985             << Record->getTagKind() << Record;
   3986           Complained = true;
   3987         }
   3988 
   3989         Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
   3990           << F->getType()->isReferenceType()
   3991           << F->getDeclName();
   3992       }
   3993     }
   3994   }
   3995 
   3996   if (Record->isDynamicClass() && !Record->isDependentType())
   3997     DynamicClasses.push_back(Record);
   3998 
   3999   if (Record->getIdentifier()) {
   4000     // C++ [class.mem]p13:
   4001     //   If T is the name of a class, then each of the following shall have a
   4002     //   name different from T:
   4003     //     - every member of every anonymous union that is a member of class T.
   4004     //
   4005     // C++ [class.mem]p14:
   4006     //   In addition, if class T has a user-declared constructor (12.1), every
   4007     //   non-static data member of class T shall have a name different from T.
   4008     DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
   4009     for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
   4010          ++I) {
   4011       NamedDecl *D = *I;
   4012       if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
   4013           isa<IndirectFieldDecl>(D)) {
   4014         Diag(D->getLocation(), diag::err_member_name_of_class)
   4015           << D->getDeclName();
   4016         break;
   4017       }
   4018     }
   4019   }
   4020 
   4021   // Warn if the class has virtual methods but non-virtual public destructor.
   4022   if (Record->isPolymorphic() && !Record->isDependentType()) {
   4023     CXXDestructorDecl *dtor = Record->getDestructor();
   4024     if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
   4025       Diag(dtor ? dtor->getLocation() : Record->getLocation(),
   4026            diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
   4027   }
   4028 
   4029   if (Record->isAbstract() && Record->hasAttr<FinalAttr>()) {
   4030     Diag(Record->getLocation(), diag::warn_abstract_final_class);
   4031     DiagnoseAbstractType(Record);
   4032   }
   4033 
   4034   if (!Record->isDependentType()) {
   4035     for (CXXRecordDecl::method_iterator M = Record->method_begin(),
   4036                                      MEnd = Record->method_end();
   4037          M != MEnd; ++M) {
   4038       // See if a method overloads virtual methods in a base
   4039       // class without overriding any.
   4040       if (!M->isStatic())
   4041         DiagnoseHiddenVirtualMethods(Record, *M);
   4042 
   4043       // Check whether the explicitly-defaulted special members are valid.
   4044       if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
   4045         CheckExplicitlyDefaultedSpecialMember(*M);
   4046 
   4047       // For an explicitly defaulted or deleted special member, we defer
   4048       // determining triviality until the class is complete. That time is now!
   4049       if (!M->isImplicit() && !M->isUserProvided()) {
   4050         CXXSpecialMember CSM = getSpecialMember(*M);
   4051         if (CSM != CXXInvalid) {
   4052           M->setTrivial(SpecialMemberIsTrivial(*M, CSM));
   4053 
   4054           // Inform the class that we've finished declaring this member.
   4055           Record->finishedDefaultedOrDeletedMember(*M);
   4056         }
   4057       }
   4058     }
   4059   }
   4060 
   4061   // C++11 [dcl.constexpr]p8: A constexpr specifier for a non-static member
   4062   // function that is not a constructor declares that member function to be
   4063   // const. [...] The class of which that function is a member shall be
   4064   // a literal type.
   4065   //
   4066   // If the class has virtual bases, any constexpr members will already have
   4067   // been diagnosed by the checks performed on the member declaration, so
   4068   // suppress this (less useful) diagnostic.
   4069   //
   4070   // We delay this until we know whether an explicitly-defaulted (or deleted)
   4071   // destructor for the class is trivial.
   4072   if (LangOpts.CPlusPlus11 && !Record->isDependentType() &&
   4073       !Record->isLiteral() && !Record->getNumVBases()) {
   4074     for (CXXRecordDecl::method_iterator M = Record->method_begin(),
   4075                                      MEnd = Record->method_end();
   4076          M != MEnd; ++M) {
   4077       if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
   4078         switch (Record->getTemplateSpecializationKind()) {
   4079         case TSK_ImplicitInstantiation:
   4080         case TSK_ExplicitInstantiationDeclaration:
   4081         case TSK_ExplicitInstantiationDefinition:
   4082           // If a template instantiates to a non-literal type, but its members
   4083           // instantiate to constexpr functions, the template is technically
   4084           // ill-formed, but we allow it for sanity.
   4085           continue;
   4086 
   4087         case TSK_Undeclared:
   4088         case TSK_ExplicitSpecialization:
   4089           RequireLiteralType(M->getLocation(), Context.getRecordType(Record),
   4090                              diag::err_constexpr_method_non_literal);
   4091           break;
   4092         }
   4093 
   4094         // Only produce one error per class.
   4095         break;
   4096       }
   4097     }
   4098   }
   4099 
   4100   // Declare inheriting constructors. We do this eagerly here because:
   4101   // - The standard requires an eager diagnostic for conflicting inheriting
   4102   //   constructors from different classes.
   4103   // - The lazy declaration of the other implicit constructors is so as to not
   4104   //   waste space and performance on classes that are not meant to be
   4105   //   instantiated (e.g. meta-functions). This doesn't apply to classes that
   4106   //   have inheriting constructors.
   4107   DeclareInheritingConstructors(Record);
   4108 }
   4109 
   4110 /// Is the special member function which would be selected to perform the
   4111 /// specified operation on the specified class type a constexpr constructor?
   4112 static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
   4113                                      Sema::CXXSpecialMember CSM,
   4114                                      bool ConstArg) {
   4115   Sema::SpecialMemberOverloadResult *SMOR =
   4116       S.LookupSpecialMember(ClassDecl, CSM, ConstArg,
   4117                             false, false, false, false);
   4118   if (!SMOR || !SMOR->getMethod())
   4119     // A constructor we wouldn't select can't be "involved in initializing"
   4120     // anything.
   4121     return true;
   4122   return SMOR->getMethod()->isConstexpr();
   4123 }
   4124 
   4125 /// Determine whether the specified special member function would be constexpr
   4126 /// if it were implicitly defined.
   4127 static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
   4128                                               Sema::CXXSpecialMember CSM,
   4129                                               bool ConstArg) {
   4130   if (!S.getLangOpts().CPlusPlus11)
   4131     return false;
   4132 
   4133   // C++11 [dcl.constexpr]p4:
   4134   // In the definition of a constexpr constructor [...]
   4135   switch (CSM) {
   4136   case Sema::CXXDefaultConstructor:
   4137     // Since default constructor lookup is essentially trivial (and cannot
   4138     // involve, for instance, template instantiation), we compute whether a
   4139     // defaulted default constructor is constexpr directly within CXXRecordDecl.
   4140     //
   4141     // This is important for performance; we need to know whether the default
   4142     // constructor is constexpr to determine whether the type is a literal type.
   4143     return ClassDecl->defaultedDefaultConstructorIsConstexpr();
   4144 
   4145   case Sema::CXXCopyConstructor:
   4146   case Sema::CXXMoveConstructor:
   4147     // For copy or move constructors, we need to perform overload resolution.
   4148     break;
   4149 
   4150   case Sema::CXXCopyAssignment:
   4151   case Sema::CXXMoveAssignment:
   4152   case Sema::CXXDestructor:
   4153   case Sema::CXXInvalid:
   4154     return false;
   4155   }
   4156 
   4157   //   -- if the class is a non-empty union, or for each non-empty anonymous
   4158   //      union member of a non-union class, exactly one non-static data member
   4159   //      shall be initialized; [DR1359]
   4160   //
   4161   // If we squint, this is guaranteed, since exactly one non-static data member
   4162   // will be initialized (if the constructor isn't deleted), we just don't know
   4163   // which one.
   4164   if (ClassDecl->isUnion())
   4165     return true;
   4166 
   4167   //   -- the class shall not have any virtual base classes;
   4168   if (ClassDecl->getNumVBases())
   4169     return false;
   4170 
   4171   //   -- every constructor involved in initializing [...] base class
   4172   //      sub-objects shall be a constexpr constructor;
   4173   for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
   4174                                        BEnd = ClassDecl->bases_end();
   4175        B != BEnd; ++B) {
   4176     const RecordType *BaseType = B->getType()->getAs<RecordType>();
   4177     if (!BaseType) continue;
   4178 
   4179     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
   4180     if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, ConstArg))
   4181       return false;
   4182   }
   4183 
   4184   //   -- every constructor involved in initializing non-static data members
   4185   //      [...] shall be a constexpr constructor;
   4186   //   -- every non-static data member and base class sub-object shall be
   4187   //      initialized
   4188   for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
   4189                                FEnd = ClassDecl->field_end();
   4190        F != FEnd; ++F) {
   4191     if (F->isInvalidDecl())
   4192       continue;
   4193     if (const RecordType *RecordTy =
   4194             S.Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
   4195       CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
   4196       if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, ConstArg))
   4197         return false;
   4198     }
   4199   }
   4200 
   4201   // All OK, it's constexpr!
   4202   return true;
   4203 }
   4204 
   4205 static Sema::ImplicitExceptionSpecification
   4206 computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
   4207   switch (S.getSpecialMember(MD)) {
   4208   case Sema::CXXDefaultConstructor:
   4209     return S.ComputeDefaultedDefaultCtorExceptionSpec(Loc, MD);
   4210   case Sema::CXXCopyConstructor:
   4211     return S.ComputeDefaultedCopyCtorExceptionSpec(MD);
   4212   case Sema::CXXCopyAssignment:
   4213     return S.ComputeDefaultedCopyAssignmentExceptionSpec(MD);
   4214   case Sema::CXXMoveConstructor:
   4215     return S.ComputeDefaultedMoveCtorExceptionSpec(MD);
   4216   case Sema::CXXMoveAssignment:
   4217     return S.ComputeDefaultedMoveAssignmentExceptionSpec(MD);
   4218   case Sema::CXXDestructor:
   4219     return S.ComputeDefaultedDtorExceptionSpec(MD);
   4220   case Sema::CXXInvalid:
   4221     break;
   4222   }
   4223   assert(cast<CXXConstructorDecl>(MD)->getInheritedConstructor() &&
   4224          "only special members have implicit exception specs");
   4225   return S.ComputeInheritingCtorExceptionSpec(cast<CXXConstructorDecl>(MD));
   4226 }
   4227 
   4228 static void
   4229 updateExceptionSpec(Sema &S, FunctionDecl *FD, const FunctionProtoType *FPT,
   4230                     const Sema::ImplicitExceptionSpecification &ExceptSpec) {
   4231   FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
   4232   ExceptSpec.getEPI(EPI);
   4233   const FunctionProtoType *NewFPT = cast<FunctionProtoType>(
   4234       S.Context.getFunctionType(FPT->getResultType(), FPT->getArgTypes(), EPI));
   4235   FD->setType(QualType(NewFPT, 0));
   4236 }
   4237 
   4238 void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
   4239   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
   4240   if (FPT->getExceptionSpecType() != EST_Unevaluated)
   4241     return;
   4242 
   4243   // Evaluate the exception specification.
   4244   ImplicitExceptionSpecification ExceptSpec =
   4245       computeImplicitExceptionSpec(*this, Loc, MD);
   4246 
   4247   // Update the type of the special member to use it.
   4248   updateExceptionSpec(*this, MD, FPT, ExceptSpec);
   4249 
   4250   // A user-provided destructor can be defined outside the class. When that
   4251   // happens, be sure to update the exception specification on both
   4252   // declarations.
   4253   const FunctionProtoType *CanonicalFPT =
   4254     MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
   4255   if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
   4256     updateExceptionSpec(*this, MD->getCanonicalDecl(),
   4257                         CanonicalFPT, ExceptSpec);
   4258 }
   4259 
   4260 void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
   4261   CXXRecordDecl *RD = MD->getParent();
   4262   CXXSpecialMember CSM = getSpecialMember(MD);
   4263 
   4264   assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
   4265          "not an explicitly-defaulted special member");
   4266 
   4267   // Whether this was the first-declared instance of the constructor.
   4268   // This affects whether we implicitly add an exception spec and constexpr.
   4269   bool First = MD == MD->getCanonicalDecl();
   4270 
   4271   bool HadError = false;
   4272 
   4273   // C++11 [dcl.fct.def.default]p1:
   4274   //   A function that is explicitly defaulted shall
   4275   //     -- be a special member function (checked elsewhere),
   4276   //     -- have the same type (except for ref-qualifiers, and except that a
   4277   //        copy operation can take a non-const reference) as an implicit
   4278   //        declaration, and
   4279   //     -- not have default arguments.
   4280   unsigned ExpectedParams = 1;
   4281   if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
   4282     ExpectedParams = 0;
   4283   if (MD->getNumParams() != ExpectedParams) {
   4284     // This also checks for default arguments: a copy or move constructor with a
   4285     // default argument is classified as a default constructor, and assignment
   4286     // operations and destructors can't have default arguments.
   4287     Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
   4288       << CSM << MD->getSourceRange();
   4289     HadError = true;
   4290   } else if (MD->isVariadic()) {
   4291     Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
   4292       << CSM << MD->getSourceRange();
   4293     HadError = true;
   4294   }
   4295 
   4296   const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
   4297 
   4298   bool CanHaveConstParam = false;
   4299   if (CSM == CXXCopyConstructor)
   4300     CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
   4301   else if (CSM == CXXCopyAssignment)
   4302     CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
   4303 
   4304   QualType ReturnType = Context.VoidTy;
   4305   if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
   4306     // Check for return type matching.
   4307     ReturnType = Type->getResultType();
   4308     QualType ExpectedReturnType =
   4309         Context.getLValueReferenceType(Context.getTypeDeclType(RD));
   4310     if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
   4311       Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
   4312         << (CSM == CXXMoveAssignment) << ExpectedReturnType;
   4313       HadError = true;
   4314     }
   4315 
   4316     // A defaulted special member cannot have cv-qualifiers.
   4317     if (Type->getTypeQuals()) {
   4318       Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
   4319         << (CSM == CXXMoveAssignment);
   4320       HadError = true;
   4321     }
   4322   }
   4323 
   4324   // Check for parameter type matching.
   4325   QualType ArgType = ExpectedParams ? Type->getArgType(0) : QualType();
   4326   bool HasConstParam = false;
   4327   if (ExpectedParams && ArgType->isReferenceType()) {
   4328     // Argument must be reference to possibly-const T.
   4329     QualType ReferentType = ArgType->getPointeeType();
   4330     HasConstParam = ReferentType.isConstQualified();
   4331 
   4332     if (ReferentType.isVolatileQualified()) {
   4333       Diag(MD->getLocation(),
   4334            diag::err_defaulted_special_member_volatile_param) << CSM;
   4335       HadError = true;
   4336     }
   4337 
   4338     if (HasConstParam && !CanHaveConstParam) {
   4339       if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
   4340         Diag(MD->getLocation(),
   4341              diag::err_defaulted_special_member_copy_const_param)
   4342           << (CSM == CXXCopyAssignment);
   4343         // FIXME: Explain why this special member can't be const.
   4344       } else {
   4345         Diag(MD->getLocation(),
   4346              diag::err_defaulted_special_member_move_const_param)
   4347           << (CSM == CXXMoveAssignment);
   4348       }
   4349       HadError = true;
   4350     }
   4351   } else if (ExpectedParams) {
   4352     // A copy assignment operator can take its argument by value, but a
   4353     // defaulted one cannot.
   4354     assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
   4355     Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
   4356     HadError = true;
   4357   }
   4358 
   4359   // C++11 [dcl.fct.def.default]p2:
   4360   //   An explicitly-defaulted function may be declared constexpr only if it
   4361   //   would have been implicitly declared as constexpr,
   4362   // Do not apply this rule to members of class templates, since core issue 1358
   4363   // makes such functions always instantiate to constexpr functions. For
   4364   // non-constructors, this is checked elsewhere.
   4365   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
   4366                                                      HasConstParam);
   4367   if (isa<CXXConstructorDecl>(MD) && MD->isConstexpr() && !Constexpr &&
   4368       MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
   4369     Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
   4370     // FIXME: Explain why the constructor can't be constexpr.
   4371     HadError = true;
   4372   }
   4373 
   4374   //   and may have an explicit exception-specification only if it is compatible
   4375   //   with the exception-specification on the implicit declaration.
   4376   if (Type->hasExceptionSpec()) {
   4377     // Delay the check if this is the first declaration of the special member,
   4378     // since we may not have parsed some necessary in-class initializers yet.
   4379     if (First)
   4380       DelayedDefaultedMemberExceptionSpecs.push_back(std::make_pair(MD, Type));
   4381     else
   4382       CheckExplicitlyDefaultedMemberExceptionSpec(MD, Type);
   4383   }
   4384 
   4385   //   If a function is explicitly defaulted on its first declaration,
   4386   if (First) {
   4387     //  -- it is implicitly considered to be constexpr if the implicit
   4388     //     definition would be,
   4389     MD->setConstexpr(Constexpr);
   4390 
   4391     //  -- it is implicitly considered to have the same exception-specification
   4392     //     as if it had been implicitly declared,
   4393     FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
   4394     EPI.ExceptionSpecType = EST_Unevaluated;
   4395     EPI.ExceptionSpecDecl = MD;
   4396     MD->setType(Context.getFunctionType(ReturnType,
   4397                                         ArrayRef<QualType>(&ArgType,
   4398                                                            ExpectedParams),
   4399                                         EPI));
   4400   }
   4401 
   4402   if (ShouldDeleteSpecialMember(MD, CSM)) {
   4403     if (First) {
   4404       MD->setDeletedAsWritten();
   4405     } else {
   4406       // C++11 [dcl.fct.def.default]p4:
   4407       //   [For a] user-provided explicitly-defaulted function [...] if such a
   4408       //   function is implicitly defined as deleted, the program is ill-formed.
   4409       Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
   4410       HadError = true;
   4411     }
   4412   }
   4413 
   4414   if (HadError)
   4415     MD->setInvalidDecl();
   4416 }
   4417 
   4418 /// Check whether the exception specification provided for an
   4419 /// explicitly-defaulted special member matches the exception specification
   4420 /// that would have been generated for an implicit special member, per
   4421 /// C++11 [dcl.fct.def.default]p2.
   4422 void Sema::CheckExplicitlyDefaultedMemberExceptionSpec(
   4423     CXXMethodDecl *MD, const FunctionProtoType *SpecifiedType) {
   4424   // Compute the implicit exception specification.
   4425   FunctionProtoType::ExtProtoInfo EPI;
   4426   computeImplicitExceptionSpec(*this, MD->getLocation(), MD).getEPI(EPI);
   4427   const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
   4428     Context.getFunctionType(Context.VoidTy, ArrayRef<QualType>(), EPI));
   4429 
   4430   // Ensure that it matches.
   4431   CheckEquivalentExceptionSpec(
   4432     PDiag(diag::err_incorrect_defaulted_exception_spec)
   4433       << getSpecialMember(MD), PDiag(),
   4434     ImplicitType, SourceLocation(),
   4435     SpecifiedType, MD->getLocation());
   4436 }
   4437 
   4438 void Sema::CheckDelayedExplicitlyDefaultedMemberExceptionSpecs() {
   4439   for (unsigned I = 0, N = DelayedDefaultedMemberExceptionSpecs.size();
   4440        I != N; ++I)
   4441     CheckExplicitlyDefaultedMemberExceptionSpec(
   4442       DelayedDefaultedMemberExceptionSpecs[I].first,
   4443       DelayedDefaultedMemberExceptionSpecs[I].second);
   4444 
   4445   DelayedDefaultedMemberExceptionSpecs.clear();
   4446 }
   4447 
   4448 namespace {
   4449 struct SpecialMemberDeletionInfo {
   4450   Sema &S;
   4451   CXXMethodDecl *MD;
   4452   Sema::CXXSpecialMember CSM;
   4453   bool Diagnose;
   4454 
   4455   // Properties of the special member, computed for convenience.
   4456   bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
   4457   SourceLocation Loc;
   4458 
   4459   bool AllFieldsAreConst;
   4460 
   4461   SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
   4462                             Sema::CXXSpecialMember CSM, bool Diagnose)
   4463     : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
   4464       IsConstructor(false), IsAssignment(false), IsMove(false),
   4465       ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
   4466       AllFieldsAreConst(true) {
   4467     switch (CSM) {
   4468       case Sema::CXXDefaultConstructor:
   4469       case Sema::CXXCopyConstructor:
   4470         IsConstructor = true;
   4471         break;
   4472       case Sema::CXXMoveConstructor:
   4473         IsConstructor = true;
   4474         IsMove = true;
   4475         break;
   4476       case Sema::CXXCopyAssignment:
   4477         IsAssignment = true;
   4478         break;
   4479       case Sema::CXXMoveAssignment:
   4480         IsAssignment = true;
   4481         IsMove = true;
   4482         break;
   4483       case Sema::CXXDestructor:
   4484         break;
   4485       case Sema::CXXInvalid:
   4486         llvm_unreachable("invalid special member kind");
   4487     }
   4488 
   4489     if (MD->getNumParams()) {
   4490       ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
   4491       VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
   4492     }
   4493   }
   4494 
   4495   bool inUnion() const { return MD->getParent()->isUnion(); }
   4496 
   4497   /// Look up the corresponding special member in the given class.
   4498   Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class,
   4499                                               unsigned Quals) {
   4500     unsigned TQ = MD->getTypeQualifiers();
   4501     // cv-qualifiers on class members don't affect default ctor / dtor calls.
   4502     if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
   4503       Quals = 0;
   4504     return S.LookupSpecialMember(Class, CSM,
   4505                                  ConstArg || (Quals & Qualifiers::Const),
   4506                                  VolatileArg || (Quals & Qualifiers::Volatile),
   4507                                  MD->getRefQualifier() == RQ_RValue,
   4508                                  TQ & Qualifiers::Const,
   4509                                  TQ & Qualifiers::Volatile);
   4510   }
   4511 
   4512   typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
   4513 
   4514   bool shouldDeleteForBase(CXXBaseSpecifier *Base);
   4515   bool shouldDeleteForField(FieldDecl *FD);
   4516   bool shouldDeleteForAllConstMembers();
   4517 
   4518   bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
   4519                                      unsigned Quals);
   4520   bool shouldDeleteForSubobjectCall(Subobject Subobj,
   4521                                     Sema::SpecialMemberOverloadResult *SMOR,
   4522                                     bool IsDtorCallInCtor);
   4523 
   4524   bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
   4525 };
   4526 }
   4527 
   4528 /// Is the given special member inaccessible when used on the given
   4529 /// sub-object.
   4530 bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
   4531                                              CXXMethodDecl *target) {
   4532   /// If we're operating on a base class, the object type is the
   4533   /// type of this special member.
   4534   QualType objectTy;
   4535   AccessSpecifier access = target->getAccess();
   4536   if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
   4537     objectTy = S.Context.getTypeDeclType(MD->getParent());
   4538     access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
   4539 
   4540   // If we're operating on a field, the object type is the type of the field.
   4541   } else {
   4542     objectTy = S.Context.getTypeDeclType(target->getParent());
   4543   }
   4544 
   4545   return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
   4546 }
   4547 
   4548 /// Check whether we should delete a special member due to the implicit
   4549 /// definition containing a call to a special member of a subobject.
   4550 bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
   4551     Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
   4552     bool IsDtorCallInCtor) {
   4553   CXXMethodDecl *Decl = SMOR->getMethod();
   4554   FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
   4555 
   4556   int DiagKind = -1;
   4557 
   4558   if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
   4559     DiagKind = !Decl ? 0 : 1;
   4560   else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
   4561     DiagKind = 2;
   4562   else if (!isAccessible(Subobj, Decl))
   4563     DiagKind = 3;
   4564   else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
   4565            !Decl->isTrivial()) {
   4566     // A member of a union must have a trivial corresponding special member.
   4567     // As a weird special case, a destructor call from a union's constructor
   4568     // must be accessible and non-deleted, but need not be trivial. Such a
   4569     // destructor is never actually called, but is semantically checked as
   4570     // if it were.
   4571     DiagKind = 4;
   4572   }
   4573 
   4574   if (DiagKind == -1)
   4575     return false;
   4576 
   4577   if (Diagnose) {
   4578     if (Field) {
   4579       S.Diag(Field->getLocation(),
   4580              diag::note_deleted_special_member_class_subobject)
   4581         << CSM << MD->getParent() << /*IsField*/true
   4582         << Field << DiagKind << IsDtorCallInCtor;
   4583     } else {
   4584       CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
   4585       S.Diag(Base->getLocStart(),
   4586              diag::note_deleted_special_member_class_subobject)
   4587         << CSM << MD->getParent() << /*IsField*/false
   4588         << Base->getType() << DiagKind << IsDtorCallInCtor;
   4589     }
   4590 
   4591     if (DiagKind == 1)
   4592       S.NoteDeletedFunction(Decl);
   4593     // FIXME: Explain inaccessibility if DiagKind == 3.
   4594   }
   4595 
   4596   return true;
   4597 }
   4598 
   4599 /// Check whether we should delete a special member function due to having a
   4600 /// direct or virtual base class or non-static data member of class type M.
   4601 bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
   4602     CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
   4603   FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
   4604 
   4605   // C++11 [class.ctor]p5:
   4606   // -- any direct or virtual base class, or non-static data member with no
   4607   //    brace-or-equal-initializer, has class type M (or array thereof) and
   4608   //    either M has no default constructor or overload resolution as applied
   4609   //    to M's default constructor results in an ambiguity or in a function
   4610   //    that is deleted or inaccessible
   4611   // C++11 [class.copy]p11, C++11 [class.copy]p23:
   4612   // -- a direct or virtual base class B that cannot be copied/moved because
   4613   //    overload resolution, as applied to B's corresponding special member,
   4614   //    results in an ambiguity or a function that is deleted or inaccessible
   4615   //    from the defaulted special member
   4616   // C++11 [class.dtor]p5:
   4617   // -- any direct or virtual base class [...] has a type with a destructor
   4618   //    that is deleted or inaccessible
   4619   if (!(CSM == Sema::CXXDefaultConstructor &&
   4620         Field && Field->hasInClassInitializer()) &&
   4621       shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals), false))
   4622     return true;
   4623 
   4624   // C++11 [class.ctor]p5, C++11 [class.copy]p11:
   4625   // -- any direct or virtual base class or non-static data member has a
   4626   //    type with a destructor that is deleted or inaccessible
   4627   if (IsConstructor) {
   4628     Sema::SpecialMemberOverloadResult *SMOR =
   4629         S.LookupSpecialMember(Class, Sema::CXXDestructor,
   4630                               false, false, false, false, false);
   4631     if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
   4632       return true;
   4633   }
   4634 
   4635   return false;
   4636 }
   4637 
   4638 /// Check whether we should delete a special member function due to the class
   4639 /// having a particular direct or virtual base class.
   4640 bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
   4641   CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
   4642   return shouldDeleteForClassSubobject(BaseClass, Base, 0);
   4643 }
   4644 
   4645 /// Check whether we should delete a special member function due to the class
   4646 /// having a particular non-static data member.
   4647 bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
   4648   QualType FieldType = S.Context.getBaseElementType(FD->getType());
   4649   CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
   4650 
   4651   if (CSM == Sema::CXXDefaultConstructor) {
   4652     // For a default constructor, all references must be initialized in-class
   4653     // and, if a union, it must have a non-const member.
   4654     if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
   4655       if (Diagnose)
   4656         S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
   4657           << MD->getParent() << FD << FieldType << /*Reference*/0;
   4658       return true;
   4659     }
   4660     // C++11 [class.ctor]p5: any non-variant non-static data member of
   4661     // const-qualified type (or array thereof) with no
   4662     // brace-or-equal-initializer does not have a user-provided default
   4663     // constructor.
   4664     if (!inUnion() && FieldType.isConstQualified() &&
   4665         !FD->hasInClassInitializer() &&
   4666         (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
   4667       if (Diagnose)
   4668         S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
   4669           << MD->getParent() << FD << FD->getType() << /*Const*/1;
   4670       return true;
   4671     }
   4672 
   4673     if (inUnion() && !FieldType.isConstQualified())
   4674       AllFieldsAreConst = false;
   4675   } else if (CSM == Sema::CXXCopyConstructor) {
   4676     // For a copy constructor, data members must not be of rvalue reference
   4677     // type.
   4678     if (FieldType->isRValueReferenceType()) {
   4679       if (Diagnose)
   4680         S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
   4681           << MD->getParent() << FD << FieldType;
   4682       return true;
   4683     }
   4684   } else if (IsAssignment) {
   4685     // For an assignment operator, data members must not be of reference type.
   4686     if (FieldType->isReferenceType()) {
   4687       if (Diagnose)
   4688         S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
   4689           << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
   4690       return true;
   4691     }
   4692     if (!FieldRecord && FieldType.isConstQualified()) {
   4693       // C++11 [class.copy]p23:
   4694       // -- a non-static data member of const non-class type (or array thereof)
   4695       if (Diagnose)
   4696         S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
   4697           << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
   4698       return true;
   4699     }
   4700   }
   4701 
   4702   if (FieldRecord) {
   4703     // Some additional restrictions exist on the variant members.
   4704     if (!inUnion() && FieldRecord->isUnion() &&
   4705         FieldRecord->isAnonymousStructOrUnion()) {
   4706       bool AllVariantFieldsAreConst = true;
   4707 
   4708       // FIXME: Handle anonymous unions declared within anonymous unions.
   4709       for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
   4710                                          UE = FieldRecord->field_end();
   4711            UI != UE; ++UI) {
   4712         QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
   4713 
   4714         if (!UnionFieldType.isConstQualified())
   4715           AllVariantFieldsAreConst = false;
   4716 
   4717         CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
   4718         if (UnionFieldRecord &&
   4719             shouldDeleteForClassSubobject(UnionFieldRecord, *UI,
   4720                                           UnionFieldType.getCVRQualifiers()))
   4721           return true;
   4722       }
   4723 
   4724       // At least one member in each anonymous union must be non-const
   4725       if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
   4726           FieldRecord->field_begin() != FieldRecord->field_end()) {
   4727         if (Diagnose)
   4728           S.Diag(FieldRecord->getLocation(),
   4729                  diag::note_deleted_default_ctor_all_const)
   4730             << MD->getParent() << /*anonymous union*/1;
   4731         return true;
   4732       }
   4733 
   4734       // Don't check the implicit member of the anonymous union type.
   4735       // This is technically non-conformant, but sanity demands it.
   4736       return false;
   4737     }
   4738 
   4739     if (shouldDeleteForClassSubobject(FieldRecord, FD,
   4740                                       FieldType.getCVRQualifiers()))
   4741       return true;
   4742   }
   4743 
   4744   return false;
   4745 }
   4746 
   4747 /// C++11 [class.ctor] p5:
   4748 ///   A defaulted default constructor for a class X is defined as deleted if
   4749 /// X is a union and all of its variant members are of const-qualified type.
   4750 bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
   4751   // This is a silly definition, because it gives an empty union a deleted
   4752   // default constructor. Don't do that.
   4753   if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
   4754       (MD->getParent()->field_begin() != MD->getParent()->field_end())) {
   4755     if (Diagnose)
   4756       S.Diag(MD->getParent()->getLocation(),
   4757              diag::note_deleted_default_ctor_all_const)
   4758         << MD->getParent() << /*not anonymous union*/0;
   4759     return true;
   4760   }
   4761   return false;
   4762 }
   4763 
   4764 /// Determine whether a defaulted special member function should be defined as
   4765 /// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
   4766 /// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
   4767 bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
   4768                                      bool Diagnose) {
   4769   if (MD->isInvalidDecl())
   4770     return false;
   4771   CXXRecordDecl *RD = MD->getParent();
   4772   assert(!RD->isDependentType() && "do deletion after instantiation");
   4773   if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
   4774     return false;
   4775 
   4776   // C++11 [expr.lambda.prim]p19:
   4777   //   The closure type associated with a lambda-expression has a
   4778   //   deleted (8.4.3) default constructor and a deleted copy
   4779   //   assignment operator.
   4780   if (RD->isLambda() &&
   4781       (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
   4782     if (Diagnose)
   4783       Diag(RD->getLocation(), diag::note_lambda_decl);
   4784     return true;
   4785   }
   4786 
   4787   // For an anonymous struct or union, the copy and assignment special members
   4788   // will never be used, so skip the check. For an anonymous union declared at
   4789   // namespace scope, the constructor and destructor are used.
   4790   if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
   4791       RD->isAnonymousStructOrUnion())
   4792     return false;
   4793 
   4794   // C++11 [class.copy]p7, p18:
   4795   //   If the class definition declares a move constructor or move assignment
   4796   //   operator, an implicitly declared copy constructor or copy assignment
   4797   //   operator is defined as deleted.
   4798   if (MD->isImplicit() &&
   4799       (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
   4800     CXXMethodDecl *UserDeclaredMove = 0;
   4801 
   4802     // In Microsoft mode, a user-declared move only causes the deletion of the
   4803     // corresponding copy operation, not both copy operations.
   4804     if (RD->hasUserDeclaredMoveConstructor() &&
   4805         (!getLangOpts().MicrosoftMode || CSM == CXXCopyConstructor)) {
   4806       if (!Diagnose) return true;
   4807 
   4808       // Find any user-declared move constructor.
   4809       for (CXXRecordDecl::ctor_iterator I = RD->ctor_begin(),
   4810                                         E = RD->ctor_end(); I != E; ++I) {
   4811         if (I->isMoveConstructor()) {
   4812           UserDeclaredMove = *I;
   4813           break;
   4814         }
   4815       }
   4816       assert(UserDeclaredMove);
   4817     } else if (RD->hasUserDeclaredMoveAssignment() &&
   4818                (!getLangOpts().MicrosoftMode || CSM == CXXCopyAssignment)) {
   4819       if (!Diagnose) return true;
   4820 
   4821       // Find any user-declared move assignment operator.
   4822       for (CXXRecordDecl::method_iterator I = RD->method_begin(),
   4823                                           E = RD->method_end(); I != E; ++I) {
   4824         if (I->isMoveAssignmentOperator()) {
   4825           UserDeclaredMove = *I;
   4826           break;
   4827         }
   4828       }
   4829       assert(UserDeclaredMove);
   4830     }
   4831 
   4832     if (UserDeclaredMove) {
   4833       Diag(UserDeclaredMove->getLocation(),
   4834            diag::note_deleted_copy_user_declared_move)
   4835         << (CSM == CXXCopyAssignment) << RD
   4836         << UserDeclaredMove->isMoveAssignmentOperator();
   4837       return true;
   4838     }
   4839   }
   4840 
   4841   // Do access control from the special member function
   4842   ContextRAII MethodContext(*this, MD);
   4843 
   4844   // C++11 [class.dtor]p5:
   4845   // -- for a virtual destructor, lookup of the non-array deallocation function
   4846   //    results in an ambiguity or in a function that is deleted or inaccessible
   4847   if (CSM == CXXDestructor && MD->isVirtual()) {
   4848     FunctionDecl *OperatorDelete = 0;
   4849     DeclarationName Name =
   4850       Context.DeclarationNames.getCXXOperatorName(OO_Delete);
   4851     if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
   4852                                  OperatorDelete, false)) {
   4853       if (Diagnose)
   4854         Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
   4855       return true;
   4856     }
   4857   }
   4858 
   4859   SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
   4860 
   4861   for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
   4862                                           BE = RD->bases_end(); BI != BE; ++BI)
   4863     if (!BI->isVirtual() &&
   4864         SMI.shouldDeleteForBase(BI))
   4865       return true;
   4866 
   4867   for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
   4868                                           BE = RD->vbases_end(); BI != BE; ++BI)
   4869     if (SMI.shouldDeleteForBase(BI))
   4870       return true;
   4871 
   4872   for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
   4873                                      FE = RD->field_end(); FI != FE; ++FI)
   4874     if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
   4875         SMI.shouldDeleteForField(*FI))
   4876       return true;
   4877 
   4878   if (SMI.shouldDeleteForAllConstMembers())
   4879     return true;
   4880 
   4881   return false;
   4882 }
   4883 
   4884 /// Perform lookup for a special member of the specified kind, and determine
   4885 /// whether it is trivial. If the triviality can be determined without the
   4886 /// lookup, skip it. This is intended for use when determining whether a
   4887 /// special member of a containing object is trivial, and thus does not ever
   4888 /// perform overload resolution for default constructors.
   4889 ///
   4890 /// If \p Selected is not \c NULL, \c *Selected will be filled in with the
   4891 /// member that was most likely to be intended to be trivial, if any.
   4892 static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
   4893                                      Sema::CXXSpecialMember CSM, unsigned Quals,
   4894                                      CXXMethodDecl **Selected) {
   4895   if (Selected)
   4896     *Selected = 0;
   4897 
   4898   switch (CSM) {
   4899   case Sema::CXXInvalid:
   4900     llvm_unreachable("not a special member");
   4901 
   4902   case Sema::CXXDefaultConstructor:
   4903     // C++11 [class.ctor]p5:
   4904     //   A default constructor is trivial if:
   4905     //    - all the [direct subobjects] have trivial default constructors
   4906     //
   4907     // Note, no overload resolution is performed in this case.
   4908     if (RD->hasTrivialDefaultConstructor())
   4909       return true;
   4910 
   4911     if (Selected) {
   4912       // If there's a default constructor which could have been trivial, dig it
   4913       // out. Otherwise, if there's any user-provided default constructor, point
   4914       // to that as an example of why there's not a trivial one.
   4915       CXXConstructorDecl *DefCtor = 0;
   4916       if (RD->needsImplicitDefaultConstructor())
   4917         S.DeclareImplicitDefaultConstructor(RD);
   4918       for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(),
   4919                                         CE = RD->ctor_end(); CI != CE; ++CI) {
   4920         if (!CI->isDefaultConstructor())
   4921           continue;
   4922         DefCtor = *CI;
   4923         if (!DefCtor->isUserProvided())
   4924           break;
   4925       }
   4926 
   4927       *Selected = DefCtor;
   4928     }
   4929 
   4930     return false;
   4931 
   4932   case Sema::CXXDestructor:
   4933     // C++11 [class.dtor]p5:
   4934     //   A destructor is trivial if:
   4935     //    - all the direct [subobjects] have trivial destructors
   4936     if (RD->hasTrivialDestructor())
   4937       return true;
   4938 
   4939     if (Selected) {
   4940       if (RD->needsImplicitDestructor())
   4941         S.DeclareImplicitDestructor(RD);
   4942       *Selected = RD->getDestructor();
   4943     }
   4944 
   4945     return false;
   4946 
   4947   case Sema::CXXCopyConstructor:
   4948     // C++11 [class.copy]p12:
   4949     //   A copy constructor is trivial if:
   4950     //    - the constructor selected to copy each direct [subobject] is trivial
   4951     if (RD->hasTrivialCopyConstructor()) {
   4952       if (Quals == Qualifiers::Const)
   4953         // We must either select the trivial copy constructor or reach an
   4954         // ambiguity; no need to actually perform overload resolution.
   4955         return true;
   4956     } else if (!Selected) {
   4957       return false;
   4958     }
   4959     // In C++98, we are not supposed to perform overload resolution here, but we
   4960     // treat that as a language defect, as suggested on cxx-abi-dev, to treat
   4961     // cases like B as having a non-trivial copy constructor:
   4962     //   struct A { template<typename T> A(T&); };
   4963     //   struct B { mutable A a; };
   4964     goto NeedOverloadResolution;
   4965 
   4966   case Sema::CXXCopyAssignment:
   4967     // C++11 [class.copy]p25:
   4968     //   A copy assignment operator is trivial if:
   4969     //    - the assignment operator selected to copy each direct [subobject] is
   4970     //      trivial
   4971     if (RD->hasTrivialCopyAssignment()) {
   4972       if (Quals == Qualifiers::Const)
   4973         return true;
   4974     } else if (!Selected) {
   4975       return false;
   4976     }
   4977     // In C++98, we are not supposed to perform overload resolution here, but we
   4978     // treat that as a language defect.
   4979     goto NeedOverloadResolution;
   4980 
   4981   case Sema::CXXMoveConstructor:
   4982   case Sema::CXXMoveAssignment:
   4983   NeedOverloadResolution:
   4984     Sema::SpecialMemberOverloadResult *SMOR =
   4985       S.LookupSpecialMember(RD, CSM,
   4986                             Quals & Qualifiers::Const,
   4987                             Quals & Qualifiers::Volatile,
   4988                             /*RValueThis*/false, /*ConstThis*/false,
   4989                             /*VolatileThis*/false);
   4990 
   4991     // The standard doesn't describe how to behave if the lookup is ambiguous.
   4992     // We treat it as not making the member non-trivial, just like the standard
   4993     // mandates for the default constructor. This should rarely matter, because
   4994     // the member will also be deleted.
   4995     if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
   4996       return true;
   4997 
   4998     if (!SMOR->getMethod()) {
   4999       assert(SMOR->getKind() ==
   5000              Sema::SpecialMemberOverloadResult::NoMemberOrDeleted);
   5001       return false;
   5002     }
   5003 
   5004     // We deliberately don't check if we found a deleted special member. We're
   5005     // not supposed to!
   5006     if (Selected)
   5007       *Selected = SMOR->getMethod();
   5008     return SMOR->getMethod()->isTrivial();
   5009   }
   5010 
   5011   llvm_unreachable("unknown special method kind");
   5012 }
   5013 
   5014 static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
   5015   for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(), CE = RD->ctor_end();
   5016        CI != CE; ++CI)
   5017     if (!CI->isImplicit())
   5018       return *CI;
   5019 
   5020   // Look for constructor templates.
   5021   typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
   5022   for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
   5023     if (CXXConstructorDecl *CD =
   5024           dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
   5025       return CD;
   5026   }
   5027 
   5028   return 0;
   5029 }
   5030 
   5031 /// The kind of subobject we are checking for triviality. The values of this
   5032 /// enumeration are used in diagnostics.
   5033 enum TrivialSubobjectKind {
   5034   /// The subobject is a base class.
   5035   TSK_BaseClass,
   5036   /// The subobject is a non-static data member.
   5037   TSK_Field,
   5038   /// The object is actually the complete object.
   5039   TSK_CompleteObject
   5040 };
   5041 
   5042 /// Check whether the special member selected for a given type would be trivial.
   5043 static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
   5044                                       QualType SubType,
   5045                                       Sema::CXXSpecialMember CSM,
   5046                                       TrivialSubobjectKind Kind,
   5047                                       bool Diagnose) {
   5048   CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
   5049   if (!SubRD)
   5050     return true;
   5051 
   5052   CXXMethodDecl *Selected;
   5053   if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
   5054                                Diagnose ? &Selected : 0))
   5055     return true;
   5056 
   5057   if (Diagnose) {
   5058     if (!Selected && CSM == Sema::CXXDefaultConstructor) {
   5059       S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
   5060         << Kind << SubType.getUnqualifiedType();
   5061       if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
   5062         S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
   5063     } else if (!Selected)
   5064       S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
   5065         << Kind << SubType.getUnqualifiedType() << CSM << SubType;
   5066     else if (Selected->isUserProvided()) {
   5067       if (Kind == TSK_CompleteObject)
   5068         S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
   5069           << Kind << SubType.getUnqualifiedType() << CSM;
   5070       else {
   5071         S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
   5072           << Kind << SubType.getUnqualifiedType() << CSM;
   5073         S.Diag(Selected->getLocation(), diag::note_declared_at);
   5074       }
   5075     } else {
   5076       if (Kind != TSK_CompleteObject)
   5077         S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
   5078           << Kind << SubType.getUnqualifiedType() << CSM;
   5079 
   5080       // Explain why the defaulted or deleted special member isn't trivial.
   5081       S.SpecialMemberIsTrivial(Selected, CSM, Diagnose);
   5082     }
   5083   }
   5084 
   5085   return false;
   5086 }
   5087 
   5088 /// Check whether the members of a class type allow a special member to be
   5089 /// trivial.
   5090 static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
   5091                                      Sema::CXXSpecialMember CSM,
   5092                                      bool ConstArg, bool Diagnose) {
   5093   for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
   5094                                      FE = RD->field_end(); FI != FE; ++FI) {
   5095     if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
   5096       continue;
   5097 
   5098     QualType FieldType = S.Context.getBaseElementType(FI->getType());
   5099 
   5100     // Pretend anonymous struct or union members are members of this class.
   5101     if (FI->isAnonymousStructOrUnion()) {
   5102       if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
   5103                                     CSM, ConstArg, Diagnose))
   5104         return false;
   5105       continue;
   5106     }
   5107 
   5108     // C++11 [class.ctor]p5:
   5109     //   A default constructor is trivial if [...]
   5110     //    -- no non-static data member of its class has a
   5111     //       brace-or-equal-initializer
   5112     if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
   5113       if (Diagnose)
   5114         S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << *FI;
   5115       return false;
   5116     }
   5117 
   5118     // Objective C ARC 4.3.5:
   5119     //   [...] nontrivally ownership-qualified types are [...] not trivially
   5120     //   default constructible, copy constructible, move constructible, copy
   5121     //   assignable, move assignable, or destructible [...]
   5122     if (S.getLangOpts().ObjCAutoRefCount &&
   5123         FieldType.hasNonTrivialObjCLifetime()) {
   5124       if (Diagnose)
   5125         S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
   5126           << RD << FieldType.getObjCLifetime();
   5127       return false;
   5128     }
   5129 
   5130     if (ConstArg && !FI->isMutable())
   5131       FieldType.addConst();
   5132     if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, CSM,
   5133                                    TSK_Field, Diagnose))
   5134       return false;
   5135   }
   5136 
   5137   return true;
   5138 }
   5139 
   5140 /// Diagnose why the specified class does not have a trivial special member of
   5141 /// the given kind.
   5142 void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
   5143   QualType Ty = Context.getRecordType(RD);
   5144   if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)
   5145     Ty.addConst();
   5146 
   5147   checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, CSM,
   5148                             TSK_CompleteObject, /*Diagnose*/true);
   5149 }
   5150 
   5151 /// Determine whether a defaulted or deleted special member function is trivial,
   5152 /// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
   5153 /// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
   5154 bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
   5155                                   bool Diagnose) {
   5156   assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough");
   5157 
   5158   CXXRecordDecl *RD = MD->getParent();
   5159 
   5160   bool ConstArg = false;
   5161 
   5162   // C++11 [class.copy]p12, p25:
   5163   //   A [special member] is trivial if its declared parameter type is the same
   5164   //   as if it had been implicitly declared [...]
   5165   switch (CSM) {
   5166   case CXXDefaultConstructor:
   5167   case CXXDestructor:
   5168     // Trivial default constructors and destructors cannot have parameters.
   5169     break;
   5170 
   5171   case CXXCopyConstructor:
   5172   case CXXCopyAssignment: {
   5173     // Trivial copy operations always have const, non-volatile parameter types.
   5174     ConstArg = true;
   5175     const ParmVarDecl *Param0 = MD->getParamDecl(0);
   5176     const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
   5177     if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
   5178       if (Diagnose)
   5179         Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
   5180           << Param0->getSourceRange() << Param0->getType()
   5181           << Context.getLValueReferenceType(
   5182                Context.getRecordType(RD).withConst());
   5183       return false;
   5184     }
   5185     break;
   5186   }
   5187 
   5188   case CXXMoveConstructor:
   5189   case CXXMoveAssignment: {
   5190     // Trivial move operations always have non-cv-qualified parameters.
   5191     const ParmVarDecl *Param0 = MD->getParamDecl(0);
   5192     const RValueReferenceType *RT =
   5193       Param0->getType()->getAs<RValueReferenceType>();
   5194     if (!RT || RT->getPointeeType().getCVRQualifiers()) {
   5195       if (Diagnose)
   5196         Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
   5197           << Param0->getSourceRange() << Param0->getType()
   5198           << Context.getRValueReferenceType(Context.getRecordType(RD));
   5199       return false;
   5200     }
   5201     break;
   5202   }
   5203 
   5204   case CXXInvalid:
   5205     llvm_unreachable("not a special member");
   5206   }
   5207 
   5208   // FIXME: We require that the parameter-declaration-clause is equivalent to
   5209   // that of an implicit declaration, not just that the declared parameter type
   5210   // matches, in order to prevent absuridities like a function simultaneously
   5211   // being a trivial copy constructor and a non-trivial default constructor.
   5212   // This issue has not yet been assigned a core issue number.
   5213   if (MD->getMinRequiredArguments() < MD->getNumParams()) {
   5214     if (Diagnose)
   5215       Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
   5216            diag::note_nontrivial_default_arg)
   5217         << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
   5218     return false;
   5219   }
   5220   if (MD->isVariadic()) {
   5221     if (Diagnose)
   5222       Diag(MD->getLocation(), diag::note_nontrivial_variadic);
   5223     return false;
   5224   }
   5225 
   5226   // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
   5227   //   A copy/move [constructor or assignment operator] is trivial if
   5228   //    -- the [member] selected to copy/move each direct base class subobject
   5229   //       is trivial
   5230   //
   5231   // C++11 [class.copy]p12, C++11 [class.copy]p25:
   5232   //   A [default constructor or destructor] is trivial if
   5233   //    -- all the direct base classes have trivial [default constructors or
   5234   //       destructors]
   5235   for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
   5236                                           BE = RD->bases_end(); BI != BE; ++BI)
   5237     if (!checkTrivialSubobjectCall(*this, BI->getLocStart(),
   5238                                    ConstArg ? BI->getType().withConst()
   5239                                             : BI->getType(),
   5240                                    CSM, TSK_BaseClass, Diagnose))
   5241       return false;
   5242 
   5243   // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
   5244   //   A copy/move [constructor or assignment operator] for a class X is
   5245   //   trivial if
   5246   //    -- for each non-static data member of X that is of class type (or array
   5247   //       thereof), the constructor selected to copy/move that member is
   5248   //       trivial
   5249   //
   5250   // C++11 [class.copy]p12, C++11 [class.copy]p25:
   5251   //   A [default constructor or destructor] is trivial if
   5252   //    -- for all of the non-static data members of its class that are of class
   5253   //       type (or array thereof), each such class has a trivial [default
   5254   //       constructor or destructor]
   5255   if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, Diagnose))
   5256     return false;
   5257 
   5258   // C++11 [class.dtor]p5:
   5259   //   A destructor is trivial if [...]
   5260   //    -- the destructor is not virtual
   5261   if (CSM == CXXDestructor && MD->isVirtual()) {
   5262     if (Diagnose)
   5263       Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
   5264     return false;
   5265   }
   5266 
   5267   // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
   5268   //   A [special member] for class X is trivial if [...]
   5269   //    -- class X has no virtual functions and no virtual base classes
   5270   if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
   5271     if (!Diagnose)
   5272       return false;
   5273 
   5274     if (RD->getNumVBases()) {
   5275       // Check for virtual bases. We already know that the corresponding
   5276       // member in all bases is trivial, so vbases must all be direct.
   5277       CXXBaseSpecifier &BS = *RD->vbases_begin();
   5278       assert(BS.isVirtual());
   5279       Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1;
   5280       return false;
   5281     }
   5282 
   5283     // Must have a virtual method.
   5284     for (CXXRecordDecl::method_iterator MI = RD->method_begin(),
   5285                                         ME = RD->method_end(); MI != ME; ++MI) {
   5286       if (MI->isVirtual()) {
   5287         SourceLocation MLoc = MI->getLocStart();
   5288         Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
   5289         return false;
   5290       }
   5291     }
   5292 
   5293     llvm_unreachable("dynamic class with no vbases and no virtual functions");
   5294   }
   5295 
   5296   // Looks like it's trivial!
   5297   return true;
   5298 }
   5299 
   5300 /// \brief Data used with FindHiddenVirtualMethod
   5301 namespace {
   5302   struct FindHiddenVirtualMethodData {
   5303     Sema *S;
   5304     CXXMethodDecl *Method;
   5305     llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
   5306     SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
   5307   };
   5308 }
   5309 
   5310 /// \brief Check whether any most overriden method from MD in Methods
   5311 static bool CheckMostOverridenMethods(const CXXMethodDecl *MD,
   5312                    const llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
   5313   if (MD->size_overridden_methods() == 0)
   5314     return Methods.count(MD->getCanonicalDecl());
   5315   for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
   5316                                       E = MD->end_overridden_methods();
   5317        I != E; ++I)
   5318     if (CheckMostOverridenMethods(*I, Methods))
   5319       return true;
   5320   return false;
   5321 }
   5322 
   5323 /// \brief Member lookup function that determines whether a given C++
   5324 /// method overloads virtual methods in a base class without overriding any,
   5325 /// to be used with CXXRecordDecl::lookupInBases().
   5326 static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
   5327                                     CXXBasePath &Path,
   5328                                     void *UserData) {
   5329   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
   5330 
   5331   FindHiddenVirtualMethodData &Data
   5332     = *static_cast<FindHiddenVirtualMethodData*>(UserData);
   5333 
   5334   DeclarationName Name = Data.Method->getDeclName();
   5335   assert(Name.getNameKind() == DeclarationName::Identifier);
   5336 
   5337   bool foundSameNameMethod = false;
   5338   SmallVector<CXXMethodDecl *, 8> overloadedMethods;
   5339   for (Path.Decls = BaseRecord->lookup(Name);
   5340        !Path.Decls.empty();
   5341        Path.Decls = Path.Decls.slice(1)) {
   5342     NamedDecl *D = Path.Decls.front();
   5343     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
   5344       MD = MD->getCanonicalDecl();
   5345       foundSameNameMethod = true;
   5346       // Interested only in hidden virtual methods.
   5347       if (!MD->isVirtual())
   5348         continue;
   5349       // If the method we are checking overrides a method from its base
   5350       // don't warn about the other overloaded methods.
   5351       if (!Data.S->IsOverload(Data.Method, MD, false))
   5352         return true;
   5353       // Collect the overload only if its hidden.
   5354       if (!CheckMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods))
   5355         overloadedMethods.push_back(MD);
   5356     }
   5357   }
   5358 
   5359   if (foundSameNameMethod)
   5360     Data.OverloadedMethods.append(overloadedMethods.begin(),
   5361                                    overloadedMethods.end());
   5362   return foundSameNameMethod;
   5363 }
   5364 
   5365 /// \brief Add the most overriden methods from MD to Methods
   5366 static void AddMostOverridenMethods(const CXXMethodDecl *MD,
   5367                          llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
   5368   if (MD->size_overridden_methods() == 0)
   5369     Methods.insert(MD->getCanonicalDecl());
   5370   for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
   5371                                       E = MD->end_overridden_methods();
   5372        I != E; ++I)
   5373     AddMostOverridenMethods(*I, Methods);
   5374 }
   5375 
   5376 /// \brief See if a method overloads virtual methods in a base class without
   5377 /// overriding any.
   5378 void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
   5379   if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
   5380                                MD->getLocation()) == DiagnosticsEngine::Ignored)
   5381     return;
   5382   if (!MD->getDeclName().isIdentifier())
   5383     return;
   5384 
   5385   CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
   5386                      /*bool RecordPaths=*/false,
   5387                      /*bool DetectVirtual=*/false);
   5388   FindHiddenVirtualMethodData Data;
   5389   Data.Method = MD;
   5390   Data.S = this;
   5391 
   5392   // Keep the base methods that were overriden or introduced in the subclass
   5393   // by 'using' in a set. A base method not in this set is hidden.
   5394   DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
   5395   for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
   5396     NamedDecl *ND = *I;
   5397     if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
   5398       ND = shad->getTargetDecl();
   5399     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
   5400       AddMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods);
   5401   }
   5402 
   5403   if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
   5404       !Data.OverloadedMethods.empty()) {
   5405     Diag(MD->getLocation(), diag::warn_overloaded_virtual)
   5406       << MD << (Data.OverloadedMethods.size() > 1);
   5407 
   5408     for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
   5409       CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
   5410       Diag(overloadedMD->getLocation(),
   5411            diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
   5412     }
   5413   }
   5414 }
   5415 
   5416 void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
   5417                                              Decl *TagDecl,
   5418                                              SourceLocation LBrac,
   5419                                              SourceLocation RBrac,
   5420                                              AttributeList *AttrList) {
   5421   if (!TagDecl)
   5422     return;
   5423 
   5424   AdjustDeclIfTemplate(TagDecl);
   5425 
   5426   for (const AttributeList* l = AttrList; l; l = l->getNext()) {
   5427     if (l->getKind() != AttributeList::AT_Visibility)
   5428       continue;
   5429     l->setInvalid();
   5430     Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
   5431       l->getName();
   5432   }
   5433 
   5434   ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
   5435               // strict aliasing violation!
   5436               reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
   5437               FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
   5438 
   5439   CheckCompletedCXXClass(
   5440                         dyn_cast_or_null<CXXRecordDecl>(TagDecl));
   5441 }
   5442 
   5443 /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
   5444 /// special functions, such as the default constructor, copy
   5445 /// constructor, or destructor, to the given C++ class (C++
   5446 /// [special]p1).  This routine can only be executed just before the
   5447 /// definition of the class is complete.
   5448 void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
   5449   if (!ClassDecl->hasUserDeclaredConstructor())
   5450     ++ASTContext::NumImplicitDefaultConstructors;
   5451 
   5452   if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
   5453     ++ASTContext::NumImplicitCopyConstructors;
   5454 
   5455     // If the properties or semantics of the copy constructor couldn't be
   5456     // determined while the class was being declared, force a declaration
   5457     // of it now.
   5458     if (ClassDecl->needsOverloadResolutionForCopyConstructor())
   5459       DeclareImplicitCopyConstructor(ClassDecl);
   5460   }
   5461 
   5462   if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
   5463     ++ASTContext::NumImplicitMoveConstructors;
   5464 
   5465     if (ClassDecl->needsOverloadResolutionForMoveConstructor())
   5466       DeclareImplicitMoveConstructor(ClassDecl);
   5467   }
   5468 
   5469   if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
   5470     ++ASTContext::NumImplicitCopyAssignmentOperators;
   5471 
   5472     // If we have a dynamic class, then the copy assignment operator may be
   5473     // virtual, so we have to declare it immediately. This ensures that, e.g.,
   5474     // it shows up in the right place in the vtable and that we diagnose
   5475     // problems with the implicit exception specification.
   5476     if (ClassDecl->isDynamicClass() ||
   5477         ClassDecl->needsOverloadResolutionForCopyAssignment())
   5478       DeclareImplicitCopyAssignment(ClassDecl);
   5479   }
   5480 
   5481   if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
   5482     ++ASTContext::NumImplicitMoveAssignmentOperators;
   5483 
   5484     // Likewise for the move assignment operator.
   5485     if (ClassDecl->isDynamicClass() ||
   5486         ClassDecl->needsOverloadResolutionForMoveAssignment())
   5487       DeclareImplicitMoveAssignment(ClassDecl);
   5488   }
   5489 
   5490   if (!ClassDecl->hasUserDeclaredDestructor()) {
   5491     ++ASTContext::NumImplicitDestructors;
   5492 
   5493     // If we have a dynamic class, then the destructor may be virtual, so we
   5494     // have to declare the destructor immediately. This ensures that, e.g., it
   5495     // shows up in the right place in the vtable and that we diagnose problems
   5496     // with the implicit exception specification.
   5497     if (ClassDecl->isDynamicClass() ||
   5498         ClassDecl->needsOverloadResolutionForDestructor())
   5499       DeclareImplicitDestructor(ClassDecl);
   5500   }
   5501 }
   5502 
   5503 void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
   5504   if (!D)
   5505     return;
   5506 
   5507   int NumParamList = D->getNumTemplateParameterLists();
   5508   for (int i = 0; i < NumParamList; i++) {
   5509     TemplateParameterList* Params = D->getTemplateParameterList(i);
   5510     for (TemplateParameterList::iterator Param = Params->begin(),
   5511                                       ParamEnd = Params->end();
   5512           Param != ParamEnd; ++Param) {
   5513       NamedDecl *Named = cast<NamedDecl>(*Param);
   5514       if (Named->getDeclName()) {
   5515         S->AddDecl(Named);
   5516         IdResolver.AddDecl(Named);
   5517       }
   5518     }
   5519   }
   5520 }
   5521 
   5522 void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
   5523   if (!D)
   5524     return;
   5525 
   5526   TemplateParameterList *Params = 0;
   5527   if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
   5528     Params = Template->getTemplateParameters();
   5529   else if (ClassTemplatePartialSpecializationDecl *PartialSpec
   5530            = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
   5531     Params = PartialSpec->getTemplateParameters();
   5532   else
   5533     return;
   5534 
   5535   for (TemplateParameterList::iterator Param = Params->begin(),
   5536                                     ParamEnd = Params->end();
   5537        Param != ParamEnd; ++Param) {
   5538     NamedDecl *Named = cast<NamedDecl>(*Param);
   5539     if (Named->getDeclName()) {
   5540       S->AddDecl(Named);
   5541       IdResolver.AddDecl(Named);
   5542     }
   5543   }
   5544 }
   5545 
   5546 void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
   5547   if (!RecordD) return;
   5548   AdjustDeclIfTemplate(RecordD);
   5549   CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
   5550   PushDeclContext(S, Record);
   5551 }
   5552 
   5553 void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
   5554   if (!RecordD) return;
   5555   PopDeclContext();
   5556 }
   5557 
   5558 /// ActOnStartDelayedCXXMethodDeclaration - We have completed
   5559 /// parsing a top-level (non-nested) C++ class, and we are now
   5560 /// parsing those parts of the given Method declaration that could
   5561 /// not be parsed earlier (C++ [class.mem]p2), such as default
   5562 /// arguments. This action should enter the scope of the given
   5563 /// Method declaration as if we had just parsed the qualified method
   5564 /// name. However, it should not bring the parameters into scope;
   5565 /// that will be performed by ActOnDelayedCXXMethodParameter.
   5566 void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
   5567 }
   5568 
   5569 /// ActOnDelayedCXXMethodParameter - We've already started a delayed
   5570 /// C++ method declaration. We're (re-)introducing the given
   5571 /// function parameter into scope for use in parsing later parts of
   5572 /// the method declaration. For example, we could see an
   5573 /// ActOnParamDefaultArgument event for this parameter.
   5574 void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
   5575   if (!ParamD)
   5576     return;
   5577 
   5578   ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
   5579 
   5580   // If this parameter has an unparsed default argument, clear it out
   5581   // to make way for the parsed default argument.
   5582   if (Param->hasUnparsedDefaultArg())
   5583     Param->setDefaultArg(0);
   5584 
   5585   S->AddDecl(Param);
   5586   if (Param->getDeclName())
   5587     IdResolver.AddDecl(Param);
   5588 }
   5589 
   5590 /// ActOnFinishDelayedCXXMethodDeclaration - We have finished
   5591 /// processing the delayed method declaration for Method. The method
   5592 /// declaration is now considered finished. There may be a separate
   5593 /// ActOnStartOfFunctionDef action later (not necessarily
   5594 /// immediately!) for this method, if it was also defined inside the
   5595 /// class body.
   5596 void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
   5597   if (!MethodD)
   5598     return;
   5599 
   5600   AdjustDeclIfTemplate(MethodD);
   5601 
   5602   FunctionDecl *Method = cast<FunctionDecl>(MethodD);
   5603 
   5604   // Now that we have our default arguments, check the constructor
   5605   // again. It could produce additional diagnostics or affect whether
   5606   // the class has implicitly-declared destructors, among other
   5607   // things.
   5608   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
   5609     CheckConstructor(Constructor);
   5610 
   5611   // Check the default arguments, which we may have added.
   5612   if (!Method->isInvalidDecl())
   5613     CheckCXXDefaultArguments(Method);
   5614 }
   5615 
   5616 /// CheckConstructorDeclarator - Called by ActOnDeclarator to check
   5617 /// the well-formedness of the constructor declarator @p D with type @p
   5618 /// R. If there are any errors in the declarator, this routine will
   5619 /// emit diagnostics and set the invalid bit to true.  In any case, the type
   5620 /// will be updated to reflect a well-formed type for the constructor and
   5621 /// returned.
   5622 QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
   5623                                           StorageClass &SC) {
   5624   bool isVirtual = D.getDeclSpec().isVirtualSpecified();
   5625 
   5626   // C++ [class.ctor]p3:
   5627   //   A constructor shall not be virtual (10.3) or static (9.4). A
   5628   //   constructor can be invoked for a const, volatile or const
   5629   //   volatile object. A constructor shall not be declared const,
   5630   //   volatile, or const volatile (9.3.2).
   5631   if (isVirtual) {
   5632     if (!D.isInvalidType())
   5633       Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
   5634         << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
   5635         << SourceRange(D.getIdentifierLoc());
   5636     D.setInvalidType();
   5637   }
   5638   if (SC == SC_Static) {
   5639     if (!D.isInvalidType())
   5640       Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
   5641         << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
   5642         << SourceRange(D.getIdentifierLoc());
   5643     D.setInvalidType();
   5644     SC = SC_None;
   5645   }
   5646 
   5647   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
   5648   if (FTI.TypeQuals != 0) {
   5649     if (FTI.TypeQuals & Qualifiers::Const)
   5650       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
   5651         << "const" << SourceRange(D.getIdentifierLoc());
   5652     if (FTI.TypeQuals & Qualifiers::Volatile)
   5653       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
   5654         << "volatile" << SourceRange(D.getIdentifierLoc());
   5655     if (FTI.TypeQuals & Qualifiers::Restrict)
   5656       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
   5657         << "restrict" << SourceRange(D.getIdentifierLoc());
   5658     D.setInvalidType();
   5659   }
   5660 
   5661   // C++0x [class.ctor]p4:
   5662   //   A constructor shall not be declared with a ref-qualifier.
   5663   if (FTI.hasRefQualifier()) {
   5664     Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
   5665       << FTI.RefQualifierIsLValueRef
   5666       << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
   5667     D.setInvalidType();
   5668   }
   5669 
   5670   // Rebuild the function type "R" without any type qualifiers (in
   5671   // case any of the errors above fired) and with "void" as the
   5672   // return type, since constructors don't have return types.
   5673   const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
   5674   if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
   5675     return R;
   5676 
   5677   FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
   5678   EPI.TypeQuals = 0;
   5679   EPI.RefQualifier = RQ_None;
   5680 
   5681   return Context.getFunctionType(Context.VoidTy, Proto->getArgTypes(), EPI);
   5682 }
   5683 
   5684 /// CheckConstructor - Checks a fully-formed constructor for
   5685 /// well-formedness, issuing any diagnostics required. Returns true if
   5686 /// the constructor declarator is invalid.
   5687 void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
   5688   CXXRecordDecl *ClassDecl
   5689     = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
   5690   if (!ClassDecl)
   5691     return Constructor->setInvalidDecl();
   5692 
   5693   // C++ [class.copy]p3:
   5694   //   A declaration of a constructor for a class X is ill-formed if
   5695   //   its first parameter is of type (optionally cv-qualified) X and
   5696   //   either there are no other parameters or else all other
   5697   //   parameters have default arguments.
   5698   if (!Constructor->isInvalidDecl() &&
   5699       ((Constructor->getNumParams() == 1) ||
   5700        (Constructor->getNumParams() > 1 &&
   5701         Constructor->getParamDecl(1)->hasDefaultArg())) &&
   5702       Constructor->getTemplateSpecializationKind()
   5703                                               != TSK_ImplicitInstantiation) {
   5704     QualType ParamType = Constructor->getParamDecl(0)->getType();
   5705     QualType ClassTy = Context.getTagDeclType(ClassDecl);
   5706     if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
   5707       SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
   5708       const char *ConstRef
   5709         = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
   5710                                                         : " const &";
   5711       Diag(ParamLoc, diag::err_constructor_byvalue_arg)
   5712         << FixItHint::CreateInsertion(ParamLoc, ConstRef);
   5713 
   5714       // FIXME: Rather that making the constructor invalid, we should endeavor
   5715       // to fix the type.
   5716       Constructor->setInvalidDecl();
   5717     }
   5718   }
   5719 }
   5720 
   5721 /// CheckDestructor - Checks a fully-formed destructor definition for
   5722 /// well-formedness, issuing any diagnostics required.  Returns true
   5723 /// on error.
   5724 bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
   5725   CXXRecordDecl *RD = Destructor->getParent();
   5726 
   5727   if (Destructor->isVirtual()) {
   5728     SourceLocation Loc;
   5729 
   5730     if (!Destructor->isImplicit())
   5731       Loc = Destructor->getLocation();
   5732     else
   5733       Loc = RD->getLocation();
   5734 
   5735     // If we have a virtual destructor, look up the deallocation function
   5736     FunctionDecl *OperatorDelete = 0;
   5737     DeclarationName Name =
   5738     Context.DeclarationNames.getCXXOperatorName(OO_Delete);
   5739     if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
   5740       return true;
   5741 
   5742     MarkFunctionReferenced(Loc, OperatorDelete);
   5743 
   5744     Destructor->setOperatorDelete(OperatorDelete);
   5745   }
   5746 
   5747   return false;
   5748 }
   5749 
   5750 static inline bool
   5751 FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
   5752   return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
   5753           FTI.ArgInfo[0].Param &&
   5754           cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
   5755 }
   5756 
   5757 /// CheckDestructorDeclarator - Called by ActOnDeclarator to check
   5758 /// the well-formednes of the destructor declarator @p D with type @p
   5759 /// R. If there are any errors in the declarator, this routine will
   5760 /// emit diagnostics and set the declarator to invalid.  Even if this happens,
   5761 /// will be updated to reflect a well-formed type for the destructor and
   5762 /// returned.
   5763 QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
   5764                                          StorageClass& SC) {
   5765   // C++ [class.dtor]p1:
   5766   //   [...] A typedef-name that names a class is a class-name
   5767   //   (7.1.3); however, a typedef-name that names a class shall not
   5768   //   be used as the identifier in the declarator for a destructor
   5769   //   declaration.
   5770   QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
   5771   if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
   5772     Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
   5773       << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
   5774   else if (const TemplateSpecializationType *TST =
   5775              DeclaratorType->getAs<TemplateSpecializationType>())
   5776     if (TST->isTypeAlias())
   5777       Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
   5778         << DeclaratorType << 1;
   5779 
   5780   // C++ [class.dtor]p2:
   5781   //   A destructor is used to destroy objects of its class type. A
   5782   //   destructor takes no parameters, and no return type can be
   5783   //   specified for it (not even void). The address of a destructor
   5784   //   shall not be taken. A destructor shall not be static. A
   5785   //   destructor can be invoked for a const, volatile or const
   5786   //   volatile object. A destructor shall not be declared const,
   5787   //   volatile or const volatile (9.3.2).
   5788   if (SC == SC_Static) {
   5789     if (!D.isInvalidType())
   5790       Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
   5791         << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
   5792         << SourceRange(D.getIdentifierLoc())
   5793         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
   5794 
   5795     SC = SC_None;
   5796   }
   5797   if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
   5798     // Destructors don't have return types, but the parser will
   5799     // happily parse something like:
   5800     //
   5801     //   class X {
   5802     //     float ~X();
   5803     //   };
   5804     //
   5805     // The return type will be eliminated later.
   5806     Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
   5807       << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
   5808       << SourceRange(D.getIdentifierLoc());
   5809   }
   5810 
   5811   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
   5812   if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
   5813     if (FTI.TypeQuals & Qualifiers::Const)
   5814       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
   5815         << "const" << SourceRange(D.getIdentifierLoc());
   5816     if (FTI.TypeQuals & Qualifiers::Volatile)
   5817       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
   5818         << "volatile" << SourceRange(D.getIdentifierLoc());
   5819     if (FTI.TypeQuals & Qualifiers::Restrict)
   5820       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
   5821         << "restrict" << SourceRange(D.getIdentifierLoc());
   5822     D.setInvalidType();
   5823   }
   5824 
   5825   // C++0x [class.dtor]p2:
   5826   //   A destructor shall not be declared with a ref-qualifier.
   5827   if (FTI.hasRefQualifier()) {
   5828     Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
   5829       << FTI.RefQualifierIsLValueRef
   5830       << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
   5831     D.setInvalidType();
   5832   }
   5833 
   5834   // Make sure we don't have any parameters.
   5835   if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
   5836     Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
   5837 
   5838     // Delete the parameters.
   5839     FTI.freeArgs();
   5840     D.setInvalidType();
   5841   }
   5842 
   5843   // Make sure the destructor isn't variadic.
   5844   if (FTI.isVariadic) {
   5845     Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
   5846     D.setInvalidType();
   5847   }
   5848 
   5849   // Rebuild the function type "R" without any type qualifiers or
   5850   // parameters (in case any of the errors above fired) and with
   5851   // "void" as the return type, since destructors don't have return
   5852   // types.
   5853   if (!D.isInvalidType())
   5854     return R;
   5855 
   5856   const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
   5857   FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
   5858   EPI.Variadic = false;
   5859   EPI.TypeQuals = 0;
   5860   EPI.RefQualifier = RQ_None;
   5861   return Context.getFunctionType(Context.VoidTy, ArrayRef<QualType>(), EPI);
   5862 }
   5863 
   5864 /// CheckConversionDeclarator - Called by ActOnDeclarator to check the
   5865 /// well-formednes of the conversion function declarator @p D with
   5866 /// type @p R. If there are any errors in the declarator, this routine
   5867 /// will emit diagnostics and return true. Otherwise, it will return
   5868 /// false. Either way, the type @p R will be updated to reflect a
   5869 /// well-formed type for the conversion operator.
   5870 void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
   5871                                      StorageClass& SC) {
   5872   // C++ [class.conv.fct]p1:
   5873   //   Neither parameter types nor return type can be specified. The
   5874   //   type of a conversion function (8.3.5) is "function taking no
   5875   //   parameter returning conversion-type-id."
   5876   if (SC == SC_Static) {
   5877     if (!D.isInvalidType())
   5878       Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
   5879         << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
   5880         << SourceRange(D.getIdentifierLoc());
   5881     D.setInvalidType();
   5882     SC = SC_None;
   5883   }
   5884 
   5885   QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
   5886 
   5887   if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
   5888     // Conversion functions don't have return types, but the parser will
   5889     // happily parse something like:
   5890     //
   5891     //   class X {
   5892     //     float operator bool();
   5893     //   };
   5894     //
   5895     // The return type will be changed later anyway.
   5896     Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
   5897       << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
   5898       << SourceRange(D.getIdentifierLoc());
   5899     D.setInvalidType();
   5900   }
   5901 
   5902   const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
   5903 
   5904   // Make sure we don't have any parameters.
   5905   if (Proto->getNumArgs() > 0) {
   5906     Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
   5907 
   5908     // Delete the parameters.
   5909     D.getFunctionTypeInfo().freeArgs();
   5910     D.setInvalidType();
   5911   } else if (Proto->isVariadic()) {
   5912     Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
   5913     D.setInvalidType();
   5914   }
   5915 
   5916   // Diagnose "&operator bool()" and other such nonsense.  This
   5917   // is actually a gcc extension which we don't support.
   5918   if (Proto->getResultType() != ConvType) {
   5919     Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
   5920       << Proto->getResultType();
   5921     D.setInvalidType();
   5922     ConvType = Proto->getResultType();
   5923   }
   5924 
   5925   // C++ [class.conv.fct]p4:
   5926   //   The conversion-type-id shall not represent a function type nor
   5927   //   an array type.
   5928   if (ConvType->isArrayType()) {
   5929     Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
   5930     ConvType = Context.getPointerType(ConvType);
   5931     D.setInvalidType();
   5932   } else if (ConvType->isFunctionType()) {
   5933     Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
   5934     ConvType = Context.getPointerType(ConvType);
   5935     D.setInvalidType();
   5936   }
   5937 
   5938   // Rebuild the function type "R" without any parameters (in case any
   5939   // of the errors above fired) and with the conversion type as the
   5940   // return type.
   5941   if (D.isInvalidType())
   5942     R = Context.getFunctionType(ConvType, ArrayRef<QualType>(),
   5943                                 Proto->getExtProtoInfo());
   5944 
   5945   // C++0x explicit conversion operators.
   5946   if (D.getDeclSpec().isExplicitSpecified())
   5947     Diag(D.getDeclSpec().getExplicitSpecLoc(),
   5948          getLangOpts().CPlusPlus11 ?
   5949            diag::warn_cxx98_compat_explicit_conversion_functions :
   5950            diag::ext_explicit_conversion_functions)
   5951       << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
   5952 }
   5953 
   5954 /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
   5955 /// the declaration of the given C++ conversion function. This routine
   5956 /// is responsible for recording the conversion function in the C++
   5957 /// class, if possible.
   5958 Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
   5959   assert(Conversion && "Expected to receive a conversion function declaration");
   5960 
   5961   CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
   5962 
   5963   // Make sure we aren't redeclaring the conversion function.
   5964   QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
   5965 
   5966   // C++ [class.conv.fct]p1:
   5967   //   [...] A conversion function is never used to convert a
   5968   //   (possibly cv-qualified) object to the (possibly cv-qualified)
   5969   //   same object type (or a reference to it), to a (possibly
   5970   //   cv-qualified) base class of that type (or a reference to it),
   5971   //   or to (possibly cv-qualified) void.
   5972   // FIXME: Suppress this warning if the conversion function ends up being a
   5973   // virtual function that overrides a virtual function in a base class.
   5974   QualType ClassType
   5975     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
   5976   if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
   5977     ConvType = ConvTypeRef->getPointeeType();
   5978   if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
   5979       Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
   5980     /* Suppress diagnostics for instantiations. */;
   5981   else if (ConvType->isRecordType()) {
   5982     ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
   5983     if (ConvType == ClassType)
   5984       Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
   5985         << ClassType;
   5986     else if (IsDerivedFrom(ClassType, ConvType))
   5987       Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
   5988         <<  ClassType << ConvType;
   5989   } else if (ConvType->isVoidType()) {
   5990     Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
   5991       << ClassType << ConvType;
   5992   }
   5993 
   5994   if (FunctionTemplateDecl *ConversionTemplate
   5995                                 = Conversion->getDescribedFunctionTemplate())
   5996     return ConversionTemplate;
   5997 
   5998   return Conversion;
   5999 }
   6000 
   6001 //===----------------------------------------------------------------------===//
   6002 // Namespace Handling
   6003 //===----------------------------------------------------------------------===//
   6004 
   6005 /// \brief Diagnose a mismatch in 'inline' qualifiers when a namespace is
   6006 /// reopened.
   6007 static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
   6008                                             SourceLocation Loc,
   6009                                             IdentifierInfo *II, bool *IsInline,
   6010                                             NamespaceDecl *PrevNS) {
   6011   assert(*IsInline != PrevNS->isInline());
   6012 
   6013   // HACK: Work around a bug in libstdc++4.6's <atomic>, where
   6014   // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
   6015   // inline namespaces, with the intention of bringing names into namespace std.
   6016   //
   6017   // We support this just well enough to get that case working; this is not
   6018   // sufficient to support reopening namespaces as inline in general.
   6019   if (*IsInline && II && II->getName().startswith("__atomic") &&
   6020       S.getSourceManager().isInSystemHeader(Loc)) {
   6021     // Mark all prior declarations of the namespace as inline.
   6022     for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
   6023          NS = NS->getPreviousDecl())
   6024       NS->setInline(*IsInline);
   6025     // Patch up the lookup table for the containing namespace. This isn't really
   6026     // correct, but it's good enough for this particular case.
   6027     for (DeclContext::decl_iterator I = PrevNS->decls_begin(),
   6028                                     E = PrevNS->decls_end(); I != E; ++I)
   6029       if (NamedDecl *ND = dyn_cast<NamedDecl>(*I))
   6030         PrevNS->getParent()->makeDeclVisibleInContext(ND);
   6031     return;
   6032   }
   6033 
   6034   if (PrevNS->isInline())
   6035     // The user probably just forgot the 'inline', so suggest that it
   6036     // be added back.
   6037     S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
   6038       << FixItHint::CreateInsertion(KeywordLoc, "inline ");
   6039   else
   6040     S.Diag(Loc, diag::err_inline_namespace_mismatch)
   6041       << IsInline;
   6042 
   6043   S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
   6044   *IsInline = PrevNS->isInline();
   6045 }
   6046 
   6047 /// ActOnStartNamespaceDef - This is called at the start of a namespace
   6048 /// definition.
   6049 Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
   6050                                    SourceLocation InlineLoc,
   6051                                    SourceLocation NamespaceLoc,
   6052                                    SourceLocation IdentLoc,
   6053                                    IdentifierInfo *II,
   6054                                    SourceLocation LBrace,
   6055                                    AttributeList *AttrList) {
   6056   SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
   6057   // For anonymous namespace, take the location of the left brace.
   6058   SourceLocation Loc = II ? IdentLoc : LBrace;
   6059   bool IsInline = InlineLoc.isValid();
   6060   bool IsInvalid = false;
   6061   bool IsStd = false;
   6062   bool AddToKnown = false;
   6063   Scope *DeclRegionScope = NamespcScope->getParent();
   6064 
   6065   NamespaceDecl *PrevNS = 0;
   6066   if (II) {
   6067     // C++ [namespace.def]p2:
   6068     //   The identifier in an original-namespace-definition shall not
   6069     //   have been previously defined in the declarative region in
   6070     //   which the original-namespace-definition appears. The
   6071     //   identifier in an original-namespace-definition is the name of
   6072     //   the namespace. Subsequently in that declarative region, it is
   6073     //   treated as an original-namespace-name.
   6074     //
   6075     // Since namespace names are unique in their scope, and we don't
   6076     // look through using directives, just look for any ordinary names.
   6077 
   6078     const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
   6079     Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
   6080     Decl::IDNS_Namespace;
   6081     NamedDecl *PrevDecl = 0;
   6082     DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
   6083     for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
   6084          ++I) {
   6085       if ((*I)->getIdentifierNamespace() & IDNS) {
   6086         PrevDecl = *I;
   6087         break;
   6088       }
   6089     }
   6090 
   6091     PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
   6092 
   6093     if (PrevNS) {
   6094       // This is an extended namespace definition.
   6095       if (IsInline != PrevNS->isInline())
   6096         DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
   6097                                         &IsInline, PrevNS);
   6098     } else if (PrevDecl) {
   6099       // This is an invalid name redefinition.
   6100       Diag(Loc, diag::err_redefinition_different_kind)
   6101         << II;
   6102       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   6103       IsInvalid = true;
   6104       // Continue on to push Namespc as current DeclContext and return it.
   6105     } else if (II->isStr("std") &&
   6106                CurContext->getRedeclContext()->isTranslationUnit()) {
   6107       // This is the first "real" definition of the namespace "std", so update
   6108       // our cache of the "std" namespace to point at this definition.
   6109       PrevNS = getStdNamespace();
   6110       IsStd = true;
   6111       AddToKnown = !IsInline;
   6112     } else {
   6113       // We've seen this namespace for the first time.
   6114       AddToKnown = !IsInline;
   6115     }
   6116   } else {
   6117     // Anonymous namespaces.
   6118 
   6119     // Determine whether the parent already has an anonymous namespace.
   6120     DeclContext *Parent = CurContext->getRedeclContext();
   6121     if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
   6122       PrevNS = TU->getAnonymousNamespace();
   6123     } else {
   6124       NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
   6125       PrevNS = ND->getAnonymousNamespace();
   6126     }
   6127 
   6128     if (PrevNS && IsInline != PrevNS->isInline())
   6129       DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
   6130                                       &IsInline, PrevNS);
   6131   }
   6132 
   6133   NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
   6134                                                  StartLoc, Loc, II, PrevNS);
   6135   if (IsInvalid)
   6136     Namespc->setInvalidDecl();
   6137 
   6138   ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
   6139 
   6140   // FIXME: Should we be merging attributes?
   6141   if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
   6142     PushNamespaceVisibilityAttr(Attr, Loc);
   6143 
   6144   if (IsStd)
   6145     StdNamespace = Namespc;
   6146   if (AddToKnown)
   6147     KnownNamespaces[Namespc] = false;
   6148 
   6149   if (II) {
   6150     PushOnScopeChains(Namespc, DeclRegionScope);
   6151   } else {
   6152     // Link the anonymous namespace into its parent.
   6153     DeclContext *Parent = CurContext->getRedeclContext();
   6154     if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
   6155       TU->setAnonymousNamespace(Namespc);
   6156     } else {
   6157       cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
   6158     }
   6159 
   6160     CurContext->addDecl(Namespc);
   6161 
   6162     // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
   6163     //   behaves as if it were replaced by
   6164     //     namespace unique { /* empty body */ }
   6165     //     using namespace unique;
   6166     //     namespace unique { namespace-body }
   6167     //   where all occurrences of 'unique' in a translation unit are
   6168     //   replaced by the same identifier and this identifier differs
   6169     //   from all other identifiers in the entire program.
   6170 
   6171     // We just create the namespace with an empty name and then add an
   6172     // implicit using declaration, just like the standard suggests.
   6173     //
   6174     // CodeGen enforces the "universally unique" aspect by giving all
   6175     // declarations semantically contained within an anonymous
   6176     // namespace internal linkage.
   6177 
   6178     if (!PrevNS) {
   6179       UsingDirectiveDecl* UD
   6180         = UsingDirectiveDecl::Create(Context, Parent,
   6181                                      /* 'using' */ LBrace,
   6182                                      /* 'namespace' */ SourceLocation(),
   6183                                      /* qualifier */ NestedNameSpecifierLoc(),
   6184                                      /* identifier */ SourceLocation(),
   6185                                      Namespc,
   6186                                      /* Ancestor */ Parent);
   6187       UD->setImplicit();
   6188       Parent->addDecl(UD);
   6189     }
   6190   }
   6191 
   6192   ActOnDocumentableDecl(Namespc);
   6193 
   6194   // Although we could have an invalid decl (i.e. the namespace name is a
   6195   // redefinition), push it as current DeclContext and try to continue parsing.
   6196   // FIXME: We should be able to push Namespc here, so that the each DeclContext
   6197   // for the namespace has the declarations that showed up in that particular
   6198   // namespace definition.
   6199   PushDeclContext(NamespcScope, Namespc);
   6200   return Namespc;
   6201 }
   6202 
   6203 /// getNamespaceDecl - Returns the namespace a decl represents. If the decl
   6204 /// is a namespace alias, returns the namespace it points to.
   6205 static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
   6206   if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
   6207     return AD->getNamespace();
   6208   return dyn_cast_or_null<NamespaceDecl>(D);
   6209 }
   6210 
   6211 /// ActOnFinishNamespaceDef - This callback is called after a namespace is
   6212 /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
   6213 void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
   6214   NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
   6215   assert(Namespc && "Invalid parameter, expected NamespaceDecl");
   6216   Namespc->setRBraceLoc(RBrace);
   6217   PopDeclContext();
   6218   if (Namespc->hasAttr<VisibilityAttr>())
   6219     PopPragmaVisibility(true, RBrace);
   6220 }
   6221 
   6222 CXXRecordDecl *Sema::getStdBadAlloc() const {
   6223   return cast_or_null<CXXRecordDecl>(
   6224                                   StdBadAlloc.get(Context.getExternalSource()));
   6225 }
   6226 
   6227 NamespaceDecl *Sema::getStdNamespace() const {
   6228   return cast_or_null<NamespaceDecl>(
   6229                                  StdNamespace.get(Context.getExternalSource()));
   6230 }
   6231 
   6232 /// \brief Retrieve the special "std" namespace, which may require us to
   6233 /// implicitly define the namespace.
   6234 NamespaceDecl *Sema::getOrCreateStdNamespace() {
   6235   if (!StdNamespace) {
   6236     // The "std" namespace has not yet been defined, so build one implicitly.
   6237     StdNamespace = NamespaceDecl::Create(Context,
   6238                                          Context.getTranslationUnitDecl(),
   6239                                          /*Inline=*/false,
   6240                                          SourceLocation(), SourceLocation(),
   6241                                          &PP.getIdentifierTable().get("std"),
   6242                                          /*PrevDecl=*/0);
   6243     getStdNamespace()->setImplicit(true);
   6244   }
   6245 
   6246   return getStdNamespace();
   6247 }
   6248 
   6249 bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
   6250   assert(getLangOpts().CPlusPlus &&
   6251          "Looking for std::initializer_list outside of C++.");
   6252 
   6253   // We're looking for implicit instantiations of
   6254   // template <typename E> class std::initializer_list.
   6255 
   6256   if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
   6257     return false;
   6258 
   6259   ClassTemplateDecl *Template = 0;
   6260   const TemplateArgument *Arguments = 0;
   6261 
   6262   if (const RecordType *RT = Ty->getAs<RecordType>()) {
   6263 
   6264     ClassTemplateSpecializationDecl *Specialization =
   6265         dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
   6266     if (!Specialization)
   6267       return false;
   6268 
   6269     Template = Specialization->getSpecializedTemplate();
   6270     Arguments = Specialization->getTemplateArgs().data();
   6271   } else if (const TemplateSpecializationType *TST =
   6272                  Ty->getAs<TemplateSpecializationType>()) {
   6273     Template = dyn_cast_or_null<ClassTemplateDecl>(
   6274         TST->getTemplateName().getAsTemplateDecl());
   6275     Arguments = TST->getArgs();
   6276   }
   6277   if (!Template)
   6278     return false;
   6279 
   6280   if (!StdInitializerList) {
   6281     // Haven't recognized std::initializer_list yet, maybe this is it.
   6282     CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
   6283     if (TemplateClass->getIdentifier() !=
   6284             &PP.getIdentifierTable().get("initializer_list") ||
   6285         !getStdNamespace()->InEnclosingNamespaceSetOf(
   6286             TemplateClass->getDeclContext()))
   6287       return false;
   6288     // This is a template called std::initializer_list, but is it the right
   6289     // template?
   6290     TemplateParameterList *Params = Template->getTemplateParameters();
   6291     if (Params->getMinRequiredArguments() != 1)
   6292       return false;
   6293     if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
   6294       return false;
   6295 
   6296     // It's the right template.
   6297     StdInitializerList = Template;
   6298   }
   6299 
   6300   if (Template != StdInitializerList)
   6301     return false;
   6302 
   6303   // This is an instance of std::initializer_list. Find the argument type.
   6304   if (Element)
   6305     *Element = Arguments[0].getAsType();
   6306   return true;
   6307 }
   6308 
   6309 static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
   6310   NamespaceDecl *Std = S.getStdNamespace();
   6311   if (!Std) {
   6312     S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
   6313     return 0;
   6314   }
   6315 
   6316   LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
   6317                       Loc, Sema::LookupOrdinaryName);
   6318   if (!S.LookupQualifiedName(Result, Std)) {
   6319     S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
   6320     return 0;
   6321   }
   6322   ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
   6323   if (!Template) {
   6324     Result.suppressDiagnostics();
   6325     // We found something weird. Complain about the first thing we found.
   6326     NamedDecl *Found = *Result.begin();
   6327     S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
   6328     return 0;
   6329   }
   6330 
   6331   // We found some template called std::initializer_list. Now verify that it's
   6332   // correct.
   6333   TemplateParameterList *Params = Template->getTemplateParameters();
   6334   if (Params->getMinRequiredArguments() != 1 ||
   6335       !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
   6336     S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
   6337     return 0;
   6338   }
   6339 
   6340   return Template;
   6341 }
   6342 
   6343 QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
   6344   if (!StdInitializerList) {
   6345     StdInitializerList = LookupStdInitializerList(*this, Loc);
   6346     if (!StdInitializerList)
   6347       return QualType();
   6348   }
   6349 
   6350   TemplateArgumentListInfo Args(Loc, Loc);
   6351   Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
   6352                                        Context.getTrivialTypeSourceInfo(Element,
   6353                                                                         Loc)));
   6354   return Context.getCanonicalType(
   6355       CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
   6356 }
   6357 
   6358 bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
   6359   // C++ [dcl.init.list]p2:
   6360   //   A constructor is an initializer-list constructor if its first parameter
   6361   //   is of type std::initializer_list<E> or reference to possibly cv-qualified
   6362   //   std::initializer_list<E> for some type E, and either there are no other
   6363   //   parameters or else all other parameters have default arguments.
   6364   if (Ctor->getNumParams() < 1 ||
   6365       (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
   6366     return false;
   6367 
   6368   QualType ArgType = Ctor->getParamDecl(0)->getType();
   6369   if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
   6370     ArgType = RT->getPointeeType().getUnqualifiedType();
   6371 
   6372   return isStdInitializerList(ArgType, 0);
   6373 }
   6374 
   6375 /// \brief Determine whether a using statement is in a context where it will be
   6376 /// apply in all contexts.
   6377 static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
   6378   switch (CurContext->getDeclKind()) {
   6379     case Decl::TranslationUnit:
   6380       return true;
   6381     case Decl::LinkageSpec:
   6382       return IsUsingDirectiveInToplevelContext(CurContext->getParent());
   6383     default:
   6384       return false;
   6385   }
   6386 }
   6387 
   6388 namespace {
   6389 
   6390 // Callback to only accept typo corrections that are namespaces.
   6391 class NamespaceValidatorCCC : public CorrectionCandidateCallback {
   6392  public:
   6393   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
   6394     if (NamedDecl *ND = candidate.getCorrectionDecl()) {
   6395       return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
   6396     }
   6397     return false;
   6398   }
   6399 };
   6400 
   6401 }
   6402 
   6403 static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
   6404                                        CXXScopeSpec &SS,
   6405                                        SourceLocation IdentLoc,
   6406                                        IdentifierInfo *Ident) {
   6407   NamespaceValidatorCCC Validator;
   6408   R.clear();
   6409   if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
   6410                                                R.getLookupKind(), Sc, &SS,
   6411                                                Validator)) {
   6412     std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
   6413     std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOpts()));
   6414     if (DeclContext *DC = S.computeDeclContext(SS, false))
   6415       S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
   6416         << Ident << DC << CorrectedQuotedStr << SS.getRange()
   6417         << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
   6418                                         CorrectedStr);
   6419     else
   6420       S.Diag(IdentLoc, diag::err_using_directive_suggest)
   6421         << Ident << CorrectedQuotedStr
   6422         << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
   6423 
   6424     S.Diag(Corrected.getCorrectionDecl()->getLocation(),
   6425          diag::note_namespace_defined_here) << CorrectedQuotedStr;
   6426 
   6427     R.addDecl(Corrected.getCorrectionDecl());
   6428     return true;
   6429   }
   6430   return false;
   6431 }
   6432 
   6433 Decl *Sema::ActOnUsingDirective(Scope *S,
   6434                                           SourceLocation UsingLoc,
   6435                                           SourceLocation NamespcLoc,
   6436                                           CXXScopeSpec &SS,
   6437                                           SourceLocation IdentLoc,
   6438                                           IdentifierInfo *NamespcName,
   6439                                           AttributeList *AttrList) {
   6440   assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
   6441   assert(NamespcName && "Invalid NamespcName.");
   6442   assert(IdentLoc.isValid() && "Invalid NamespceName location.");
   6443 
   6444   // This can only happen along a recovery path.
   6445   while (S->getFlags() & Scope::TemplateParamScope)
   6446     S = S->getParent();
   6447   assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
   6448 
   6449   UsingDirectiveDecl *UDir = 0;
   6450   NestedNameSpecifier *Qualifier = 0;
   6451   if (SS.isSet())
   6452     Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
   6453 
   6454   // Lookup namespace name.
   6455   LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
   6456   LookupParsedName(R, S, &SS);
   6457   if (R.isAmbiguous())
   6458     return 0;
   6459 
   6460   if (R.empty()) {
   6461     R.clear();
   6462     // Allow "using namespace std;" or "using namespace ::std;" even if
   6463     // "std" hasn't been defined yet, for GCC compatibility.
   6464     if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
   6465         NamespcName->isStr("std")) {
   6466       Diag(IdentLoc, diag::ext_using_undefined_std);
   6467       R.addDecl(getOrCreateStdNamespace());
   6468       R.resolveKind();
   6469     }
   6470     // Otherwise, attempt typo correction.
   6471     else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
   6472   }
   6473 
   6474   if (!R.empty()) {
   6475     NamedDecl *Named = R.getFoundDecl();
   6476     assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
   6477         && "expected namespace decl");
   6478     // C++ [namespace.udir]p1:
   6479     //   A using-directive specifies that the names in the nominated
   6480     //   namespace can be used in the scope in which the
   6481     //   using-directive appears after the using-directive. During
   6482     //   unqualified name lookup (3.4.1), the names appear as if they
   6483     //   were declared in the nearest enclosing namespace which
   6484     //   contains both the using-directive and the nominated
   6485     //   namespace. [Note: in this context, "contains" means "contains
   6486     //   directly or indirectly". ]
   6487 
   6488     // Find enclosing context containing both using-directive and
   6489     // nominated namespace.
   6490     NamespaceDecl *NS = getNamespaceDecl(Named);
   6491     DeclContext *CommonAncestor = cast<DeclContext>(NS);
   6492     while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
   6493       CommonAncestor = CommonAncestor->getParent();
   6494 
   6495     UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
   6496                                       SS.getWithLocInContext(Context),
   6497                                       IdentLoc, Named, CommonAncestor);
   6498 
   6499     if (IsUsingDirectiveInToplevelContext(CurContext) &&
   6500         !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
   6501       Diag(IdentLoc, diag::warn_using_directive_in_header);
   6502     }
   6503 
   6504     PushUsingDirective(S, UDir);
   6505   } else {
   6506     Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
   6507   }
   6508 
   6509   if (UDir)
   6510     ProcessDeclAttributeList(S, UDir, AttrList);
   6511 
   6512   return UDir;
   6513 }
   6514 
   6515 void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
   6516   // If the scope has an associated entity and the using directive is at
   6517   // namespace or translation unit scope, add the UsingDirectiveDecl into
   6518   // its lookup structure so qualified name lookup can find it.
   6519   DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
   6520   if (Ctx && !Ctx->isFunctionOrMethod())
   6521     Ctx->addDecl(UDir);
   6522   else
   6523     // Otherwise, it is at block sope. The using-directives will affect lookup
   6524     // only to the end of the scope.
   6525     S->PushUsingDirective(UDir);
   6526 }
   6527 
   6528 
   6529 Decl *Sema::ActOnUsingDeclaration(Scope *S,
   6530                                   AccessSpecifier AS,
   6531                                   bool HasUsingKeyword,
   6532                                   SourceLocation UsingLoc,
   6533                                   CXXScopeSpec &SS,
   6534                                   UnqualifiedId &Name,
   6535                                   AttributeList *AttrList,
   6536                                   bool IsTypeName,
   6537                                   SourceLocation TypenameLoc) {
   6538   assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
   6539 
   6540   switch (Name.getKind()) {
   6541   case UnqualifiedId::IK_ImplicitSelfParam:
   6542   case UnqualifiedId::IK_Identifier:
   6543   case UnqualifiedId::IK_OperatorFunctionId:
   6544   case UnqualifiedId::IK_LiteralOperatorId:
   6545   case UnqualifiedId::IK_ConversionFunctionId:
   6546     break;
   6547 
   6548   case UnqualifiedId::IK_ConstructorName:
   6549   case UnqualifiedId::IK_ConstructorTemplateId:
   6550     // C++11 inheriting constructors.
   6551     Diag(Name.getLocStart(),
   6552          getLangOpts().CPlusPlus11 ?
   6553            diag::warn_cxx98_compat_using_decl_constructor :
   6554            diag::err_using_decl_constructor)
   6555       << SS.getRange();
   6556 
   6557     if (getLangOpts().CPlusPlus11) break;
   6558 
   6559     return 0;
   6560 
   6561   case UnqualifiedId::IK_DestructorName:
   6562     Diag(Name.getLocStart(), diag::err_using_decl_destructor)
   6563       << SS.getRange();
   6564     return 0;
   6565 
   6566   case UnqualifiedId::IK_TemplateId:
   6567     Diag(Name.getLocStart(), diag::err_using_decl_template_id)
   6568       << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
   6569     return 0;
   6570   }
   6571 
   6572   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
   6573   DeclarationName TargetName = TargetNameInfo.getName();
   6574   if (!TargetName)
   6575     return 0;
   6576 
   6577   // Warn about access declarations.
   6578   // TODO: store that the declaration was written without 'using' and
   6579   // talk about access decls instead of using decls in the
   6580   // diagnostics.
   6581   if (!HasUsingKeyword) {
   6582     UsingLoc = Name.getLocStart();
   6583 
   6584     Diag(UsingLoc, diag::warn_access_decl_deprecated)
   6585       << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
   6586   }
   6587 
   6588   if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
   6589       DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
   6590     return 0;
   6591 
   6592   NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
   6593                                         TargetNameInfo, AttrList,
   6594                                         /* IsInstantiation */ false,
   6595                                         IsTypeName, TypenameLoc);
   6596   if (UD)
   6597     PushOnScopeChains(UD, S, /*AddToContext*/ false);
   6598 
   6599   return UD;
   6600 }
   6601 
   6602 /// \brief Determine whether a using declaration considers the given
   6603 /// declarations as "equivalent", e.g., if they are redeclarations of
   6604 /// the same entity or are both typedefs of the same type.
   6605 static bool
   6606 IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
   6607                          bool &SuppressRedeclaration) {
   6608   if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
   6609     SuppressRedeclaration = false;
   6610     return true;
   6611   }
   6612 
   6613   if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
   6614     if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
   6615       SuppressRedeclaration = true;
   6616       return Context.hasSameType(TD1->getUnderlyingType(),
   6617                                  TD2->getUnderlyingType());
   6618     }
   6619 
   6620   return false;
   6621 }
   6622 
   6623 
   6624 /// Determines whether to create a using shadow decl for a particular
   6625 /// decl, given the set of decls existing prior to this using lookup.
   6626 bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
   6627                                 const LookupResult &Previous) {
   6628   // Diagnose finding a decl which is not from a base class of the
   6629   // current class.  We do this now because there are cases where this
   6630   // function will silently decide not to build a shadow decl, which
   6631   // will pre-empt further diagnostics.
   6632   //
   6633   // We don't need to do this in C++0x because we do the check once on
   6634   // the qualifier.
   6635   //
   6636   // FIXME: diagnose the following if we care enough:
   6637   //   struct A { int foo; };
   6638   //   struct B : A { using A::foo; };
   6639   //   template <class T> struct C : A {};
   6640   //   template <class T> struct D : C<T> { using B::foo; } // <---
   6641   // This is invalid (during instantiation) in C++03 because B::foo
   6642   // resolves to the using decl in B, which is not a base class of D<T>.
   6643   // We can't diagnose it immediately because C<T> is an unknown
   6644   // specialization.  The UsingShadowDecl in D<T> then points directly
   6645   // to A::foo, which will look well-formed when we instantiate.
   6646   // The right solution is to not collapse the shadow-decl chain.
   6647   if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) {
   6648     DeclContext *OrigDC = Orig->getDeclContext();
   6649 
   6650     // Handle enums and anonymous structs.
   6651     if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
   6652     CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
   6653     while (OrigRec->isAnonymousStructOrUnion())
   6654       OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
   6655 
   6656     if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
   6657       if (OrigDC == CurContext) {
   6658         Diag(Using->getLocation(),
   6659              diag::err_using_decl_nested_name_specifier_is_current_class)
   6660           << Using->getQualifierLoc().getSourceRange();
   6661         Diag(Orig->getLocation(), diag::note_using_decl_target);
   6662         return true;
   6663       }
   6664 
   6665       Diag(Using->getQualifierLoc().getBeginLoc(),
   6666            diag::err_using_decl_nested_name_specifier_is_not_base_class)
   6667         << Using->getQualifier()
   6668         << cast<CXXRecordDecl>(CurContext)
   6669         << Using->getQualifierLoc().getSourceRange();
   6670       Diag(Orig->getLocation(), diag::note_using_decl_target);
   6671       return true;
   6672     }
   6673   }
   6674 
   6675   if (Previous.empty()) return false;
   6676 
   6677   NamedDecl *Target = Orig;
   6678   if (isa<UsingShadowDecl>(Target))
   6679     Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
   6680 
   6681   // If the target happens to be one of the previous declarations, we
   6682   // don't have a conflict.
   6683   //
   6684   // FIXME: but we might be increasing its access, in which case we
   6685   // should redeclare it.
   6686   NamedDecl *NonTag = 0, *Tag = 0;
   6687   for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
   6688          I != E; ++I) {
   6689     NamedDecl *D = (*I)->getUnderlyingDecl();
   6690     bool Result;
   6691     if (IsEquivalentForUsingDecl(Context, D, Target, Result))
   6692       return Result;
   6693 
   6694     (isa<TagDecl>(D) ? Tag : NonTag) = D;
   6695   }
   6696 
   6697   if (Target->isFunctionOrFunctionTemplate()) {
   6698     FunctionDecl *FD;
   6699     if (isa<FunctionTemplateDecl>(Target))
   6700       FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
   6701     else
   6702       FD = cast<FunctionDecl>(Target);
   6703 
   6704     NamedDecl *OldDecl = 0;
   6705     switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
   6706     case Ovl_Overload:
   6707       return false;
   6708 
   6709     case Ovl_NonFunction:
   6710       Diag(Using->getLocation(), diag::err_using_decl_conflict);
   6711       break;
   6712 
   6713     // We found a decl with the exact signature.
   6714     case Ovl_Match:
   6715       // If we're in a record, we want to hide the target, so we
   6716       // return true (without a diagnostic) to tell the caller not to
   6717       // build a shadow decl.
   6718       if (CurContext->isRecord())
   6719         return true;
   6720 
   6721       // If we're not in a record, this is an error.
   6722       Diag(Using->getLocation(), diag::err_using_decl_conflict);
   6723       break;
   6724     }
   6725 
   6726     Diag(Target->getLocation(), diag::note_using_decl_target);
   6727     Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
   6728     return true;
   6729   }
   6730 
   6731   // Target is not a function.
   6732 
   6733   if (isa<TagDecl>(Target)) {
   6734     // No conflict between a tag and a non-tag.
   6735     if (!Tag) return false;
   6736 
   6737     Diag(Using->getLocation(), diag::err_using_decl_conflict);
   6738     Diag(Target->getLocation(), diag::note_using_decl_target);
   6739     Diag(Tag->getLocation(), diag::note_using_decl_conflict);
   6740     return true;
   6741   }
   6742 
   6743   // No conflict between a tag and a non-tag.
   6744   if (!NonTag) return false;
   6745 
   6746   Diag(Using->getLocation(), diag::err_using_decl_conflict);
   6747   Diag(Target->getLocation(), diag::note_using_decl_target);
   6748   Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
   6749   return true;
   6750 }
   6751 
   6752 /// Builds a shadow declaration corresponding to a 'using' declaration.
   6753 UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
   6754                                             UsingDecl *UD,
   6755                                             NamedDecl *Orig) {
   6756 
   6757   // If we resolved to another shadow declaration, just coalesce them.
   6758   NamedDecl *Target = Orig;
   6759   if (isa<UsingShadowDecl>(Target)) {
   6760     Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
   6761     assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
   6762   }
   6763 
   6764   UsingShadowDecl *Shadow
   6765     = UsingShadowDecl::Create(Context, CurContext,
   6766                               UD->getLocation(), UD, Target);
   6767   UD->addShadowDecl(Shadow);
   6768 
   6769   Shadow->setAccess(UD->getAccess());
   6770   if (Orig->isInvalidDecl() || UD->isInvalidDecl())
   6771     Shadow->setInvalidDecl();
   6772 
   6773   if (S)
   6774     PushOnScopeChains(Shadow, S);
   6775   else
   6776     CurContext->addDecl(Shadow);
   6777 
   6778 
   6779   return Shadow;
   6780 }
   6781 
   6782 /// Hides a using shadow declaration.  This is required by the current
   6783 /// using-decl implementation when a resolvable using declaration in a
   6784 /// class is followed by a declaration which would hide or override
   6785 /// one or more of the using decl's targets; for example:
   6786 ///
   6787 ///   struct Base { void foo(int); };
   6788 ///   struct Derived : Base {
   6789 ///     using Base::foo;
   6790 ///     void foo(int);
   6791 ///   };
   6792 ///
   6793 /// The governing language is C++03 [namespace.udecl]p12:
   6794 ///
   6795 ///   When a using-declaration brings names from a base class into a
   6796 ///   derived class scope, member functions in the derived class
   6797 ///   override and/or hide member functions with the same name and
   6798 ///   parameter types in a base class (rather than conflicting).
   6799 ///
   6800 /// There are two ways to implement this:
   6801 ///   (1) optimistically create shadow decls when they're not hidden
   6802 ///       by existing declarations, or
   6803 ///   (2) don't create any shadow decls (or at least don't make them
   6804 ///       visible) until we've fully parsed/instantiated the class.
   6805 /// The problem with (1) is that we might have to retroactively remove
   6806 /// a shadow decl, which requires several O(n) operations because the
   6807 /// decl structures are (very reasonably) not designed for removal.
   6808 /// (2) avoids this but is very fiddly and phase-dependent.
   6809 void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
   6810   if (Shadow->getDeclName().getNameKind() ==
   6811         DeclarationName::CXXConversionFunctionName)
   6812     cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
   6813 
   6814   // Remove it from the DeclContext...
   6815   Shadow->getDeclContext()->removeDecl(Shadow);
   6816 
   6817   // ...and the scope, if applicable...
   6818   if (S) {
   6819     S->RemoveDecl(Shadow);
   6820     IdResolver.RemoveDecl(Shadow);
   6821   }
   6822 
   6823   // ...and the using decl.
   6824   Shadow->getUsingDecl()->removeShadowDecl(Shadow);
   6825 
   6826   // TODO: complain somehow if Shadow was used.  It shouldn't
   6827   // be possible for this to happen, because...?
   6828 }
   6829 
   6830 /// Builds a using declaration.
   6831 ///
   6832 /// \param IsInstantiation - Whether this call arises from an
   6833 ///   instantiation of an unresolved using declaration.  We treat
   6834 ///   the lookup differently for these declarations.
   6835 NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
   6836                                        SourceLocation UsingLoc,
   6837                                        CXXScopeSpec &SS,
   6838                                        const DeclarationNameInfo &NameInfo,
   6839                                        AttributeList *AttrList,
   6840                                        bool IsInstantiation,
   6841                                        bool IsTypeName,
   6842                                        SourceLocation TypenameLoc) {
   6843   assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
   6844   SourceLocation IdentLoc = NameInfo.getLoc();
   6845   assert(IdentLoc.isValid() && "Invalid TargetName location.");
   6846 
   6847   // FIXME: We ignore attributes for now.
   6848 
   6849   if (SS.isEmpty()) {
   6850     Diag(IdentLoc, diag::err_using_requires_qualname);
   6851     return 0;
   6852   }
   6853 
   6854   // Do the redeclaration lookup in the current scope.
   6855   LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
   6856                         ForRedeclaration);
   6857   Previous.setHideTags(false);
   6858   if (S) {
   6859     LookupName(Previous, S);
   6860 
   6861     // It is really dumb that we have to do this.
   6862     LookupResult::Filter F = Previous.makeFilter();
   6863     while (F.hasNext()) {
   6864       NamedDecl *D = F.next();
   6865       if (!isDeclInScope(D, CurContext, S))
   6866         F.erase();
   6867     }
   6868     F.done();
   6869   } else {
   6870     assert(IsInstantiation && "no scope in non-instantiation");
   6871     assert(CurContext->isRecord() && "scope not record in instantiation");
   6872     LookupQualifiedName(Previous, CurContext);
   6873   }
   6874 
   6875   // Check for invalid redeclarations.
   6876   if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
   6877     return 0;
   6878 
   6879   // Check for bad qualifiers.
   6880   if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
   6881     return 0;
   6882 
   6883   DeclContext *LookupContext = computeDeclContext(SS);
   6884   NamedDecl *D;
   6885   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
   6886   if (!LookupContext) {
   6887     if (IsTypeName) {
   6888       // FIXME: not all declaration name kinds are legal here
   6889       D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
   6890                                               UsingLoc, TypenameLoc,
   6891                                               QualifierLoc,
   6892                                               IdentLoc, NameInfo.getName());
   6893     } else {
   6894       D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
   6895                                            QualifierLoc, NameInfo);
   6896     }
   6897   } else {
   6898     D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
   6899                           NameInfo, IsTypeName);
   6900   }
   6901   D->setAccess(AS);
   6902   CurContext->addDecl(D);
   6903 
   6904   if (!LookupContext) return D;
   6905   UsingDecl *UD = cast<UsingDecl>(D);
   6906 
   6907   if (RequireCompleteDeclContext(SS, LookupContext)) {
   6908     UD->setInvalidDecl();
   6909     return UD;
   6910   }
   6911 
   6912   // The normal rules do not apply to inheriting constructor declarations.
   6913   if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
   6914     if (CheckInheritingConstructorUsingDecl(UD))
   6915       UD->setInvalidDecl();
   6916     return UD;
   6917   }
   6918 
   6919   // Otherwise, look up the target name.
   6920 
   6921   LookupResult R(*this, NameInfo, LookupOrdinaryName);
   6922 
   6923   // Unlike most lookups, we don't always want to hide tag
   6924   // declarations: tag names are visible through the using declaration
   6925   // even if hidden by ordinary names, *except* in a dependent context
   6926   // where it's important for the sanity of two-phase lookup.
   6927   if (!IsInstantiation)
   6928     R.setHideTags(false);
   6929 
   6930   // For the purposes of this lookup, we have a base object type
   6931   // equal to that of the current context.
   6932   if (CurContext->isRecord()) {
   6933     R.setBaseObjectType(
   6934                    Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
   6935   }
   6936 
   6937   LookupQualifiedName(R, LookupContext);
   6938 
   6939   if (R.empty()) {
   6940     Diag(IdentLoc, diag::err_no_member)
   6941       << NameInfo.getName() << LookupContext << SS.getRange();
   6942     UD->setInvalidDecl();
   6943     return UD;
   6944   }
   6945 
   6946   if (R.isAmbiguous()) {
   6947     UD->setInvalidDecl();
   6948     return UD;
   6949   }
   6950 
   6951   if (IsTypeName) {
   6952     // If we asked for a typename and got a non-type decl, error out.
   6953     if (!R.getAsSingle<TypeDecl>()) {
   6954       Diag(IdentLoc, diag::err_using_typename_non_type);
   6955       for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
   6956         Diag((*I)->getUnderlyingDecl()->getLocation(),
   6957              diag::note_using_decl_target);
   6958       UD->setInvalidDecl();
   6959       return UD;
   6960     }
   6961   } else {
   6962     // If we asked for a non-typename and we got a type, error out,
   6963     // but only if this is an instantiation of an unresolved using
   6964     // decl.  Otherwise just silently find the type name.
   6965     if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
   6966       Diag(IdentLoc, diag::err_using_dependent_value_is_type);
   6967       Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
   6968       UD->setInvalidDecl();
   6969       return UD;
   6970     }
   6971   }
   6972 
   6973   // C++0x N2914 [namespace.udecl]p6:
   6974   // A using-declaration shall not name a namespace.
   6975   if (R.getAsSingle<NamespaceDecl>()) {
   6976     Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
   6977       << SS.getRange();
   6978     UD->setInvalidDecl();
   6979     return UD;
   6980   }
   6981 
   6982   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
   6983     if (!CheckUsingShadowDecl(UD, *I, Previous))
   6984       BuildUsingShadowDecl(S, UD, *I);
   6985   }
   6986 
   6987   return UD;
   6988 }
   6989 
   6990 /// Additional checks for a using declaration referring to a constructor name.
   6991 bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
   6992   assert(!UD->isTypeName() && "expecting a constructor name");
   6993 
   6994   const Type *SourceType = UD->getQualifier()->getAsType();
   6995   assert(SourceType &&
   6996          "Using decl naming constructor doesn't have type in scope spec.");
   6997   CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
   6998 
   6999   // Check whether the named type is a direct base class.
   7000   CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
   7001   CXXRecordDecl::base_class_iterator BaseIt, BaseE;
   7002   for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
   7003        BaseIt != BaseE; ++BaseIt) {
   7004     CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
   7005     if (CanonicalSourceType == BaseType)
   7006       break;
   7007     if (BaseIt->getType()->isDependentType())
   7008       break;
   7009   }
   7010 
   7011   if (BaseIt == BaseE) {
   7012     // Did not find SourceType in the bases.
   7013     Diag(UD->getUsingLocation(),
   7014          diag::err_using_decl_constructor_not_in_direct_base)
   7015       << UD->getNameInfo().getSourceRange()
   7016       << QualType(SourceType, 0) << TargetClass;
   7017     return true;
   7018   }
   7019 
   7020   if (!CurContext->isDependentContext())
   7021     BaseIt->setInheritConstructors();
   7022 
   7023   return false;
   7024 }
   7025 
   7026 /// Checks that the given using declaration is not an invalid
   7027 /// redeclaration.  Note that this is checking only for the using decl
   7028 /// itself, not for any ill-formedness among the UsingShadowDecls.
   7029 bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
   7030                                        bool isTypeName,
   7031                                        const CXXScopeSpec &SS,
   7032                                        SourceLocation NameLoc,
   7033                                        const LookupResult &Prev) {
   7034   // C++03 [namespace.udecl]p8:
   7035   // C++0x [namespace.udecl]p10:
   7036   //   A using-declaration is a declaration and can therefore be used
   7037   //   repeatedly where (and only where) multiple declarations are
   7038   //   allowed.
   7039   //
   7040   // That's in non-member contexts.
   7041   if (!CurContext->getRedeclContext()->isRecord())
   7042     return false;
   7043 
   7044   NestedNameSpecifier *Qual
   7045     = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
   7046 
   7047   for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
   7048     NamedDecl *D = *I;
   7049 
   7050     bool DTypename;
   7051     NestedNameSpecifier *DQual;
   7052     if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
   7053       DTypename = UD->isTypeName();
   7054       DQual = UD->getQualifier();
   7055     } else if (UnresolvedUsingValueDecl *UD
   7056                  = dyn_cast<UnresolvedUsingValueDecl>(D)) {
   7057       DTypename = false;
   7058       DQual = UD->getQualifier();
   7059     } else if (UnresolvedUsingTypenameDecl *UD
   7060                  = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
   7061       DTypename = true;
   7062       DQual = UD->getQualifier();
   7063     } else continue;
   7064 
   7065     // using decls differ if one says 'typename' and the other doesn't.
   7066     // FIXME: non-dependent using decls?
   7067     if (isTypeName != DTypename) continue;
   7068 
   7069     // using decls differ if they name different scopes (but note that
   7070     // template instantiation can cause this check to trigger when it
   7071     // didn't before instantiation).
   7072     if (Context.getCanonicalNestedNameSpecifier(Qual) !=
   7073         Context.getCanonicalNestedNameSpecifier(DQual))
   7074       continue;
   7075 
   7076     Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
   7077     Diag(D->getLocation(), diag::note_using_decl) << 1;
   7078     return true;
   7079   }
   7080 
   7081   return false;
   7082 }
   7083 
   7084 
   7085 /// Checks that the given nested-name qualifier used in a using decl
   7086 /// in the current context is appropriately related to the current
   7087 /// scope.  If an error is found, diagnoses it and returns true.
   7088 bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
   7089                                    const CXXScopeSpec &SS,
   7090                                    SourceLocation NameLoc) {
   7091   DeclContext *NamedContext = computeDeclContext(SS);
   7092 
   7093   if (!CurContext->isRecord()) {
   7094     // C++03 [namespace.udecl]p3:
   7095     // C++0x [namespace.udecl]p8:
   7096     //   A using-declaration for a class member shall be a member-declaration.
   7097 
   7098     // If we weren't able to compute a valid scope, it must be a
   7099     // dependent class scope.
   7100     if (!NamedContext || NamedContext->isRecord()) {
   7101       Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
   7102         << SS.getRange();
   7103       return true;
   7104     }
   7105 
   7106     // Otherwise, everything is known to be fine.
   7107     return false;
   7108   }
   7109 
   7110   // The current scope is a record.
   7111 
   7112   // If the named context is dependent, we can't decide much.
   7113   if (!NamedContext) {
   7114     // FIXME: in C++0x, we can diagnose if we can prove that the
   7115     // nested-name-specifier does not refer to a base class, which is
   7116     // still possible in some cases.
   7117 
   7118     // Otherwise we have to conservatively report that things might be
   7119     // okay.
   7120     return false;
   7121   }
   7122 
   7123   if (!NamedContext->isRecord()) {
   7124     // Ideally this would point at the last name in the specifier,
   7125     // but we don't have that level of source info.
   7126     Diag(SS.getRange().getBegin(),
   7127          diag::err_using_decl_nested_name_specifier_is_not_class)
   7128       << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
   7129     return true;
   7130   }
   7131 
   7132   if (!NamedContext->isDependentContext() &&
   7133       RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
   7134     return true;
   7135 
   7136   if (getLangOpts().CPlusPlus11) {
   7137     // C++0x [namespace.udecl]p3:
   7138     //   In a using-declaration used as a member-declaration, the
   7139     //   nested-name-specifier shall name a base class of the class
   7140     //   being defined.
   7141 
   7142     if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
   7143                                  cast<CXXRecordDecl>(NamedContext))) {
   7144       if (CurContext == NamedContext) {
   7145         Diag(NameLoc,
   7146              diag::err_using_decl_nested_name_specifier_is_current_class)
   7147           << SS.getRange();
   7148         return true;
   7149       }
   7150 
   7151       Diag(SS.getRange().getBegin(),
   7152            diag::err_using_decl_nested_name_specifier_is_not_base_class)
   7153         << (NestedNameSpecifier*) SS.getScopeRep()
   7154         << cast<CXXRecordDecl>(CurContext)
   7155         << SS.getRange();
   7156       return true;
   7157     }
   7158 
   7159     return false;
   7160   }
   7161 
   7162   // C++03 [namespace.udecl]p4:
   7163   //   A using-declaration used as a member-declaration shall refer
   7164   //   to a member of a base class of the class being defined [etc.].
   7165 
   7166   // Salient point: SS doesn't have to name a base class as long as
   7167   // lookup only finds members from base classes.  Therefore we can
   7168   // diagnose here only if we can prove that that can't happen,
   7169   // i.e. if the class hierarchies provably don't intersect.
   7170 
   7171   // TODO: it would be nice if "definitely valid" results were cached
   7172   // in the UsingDecl and UsingShadowDecl so that these checks didn't
   7173   // need to be repeated.
   7174 
   7175   struct UserData {
   7176     llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
   7177 
   7178     static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
   7179       UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
   7180       Data->Bases.insert(Base);
   7181       return true;
   7182     }
   7183 
   7184     bool hasDependentBases(const CXXRecordDecl *Class) {
   7185       return !Class->forallBases(collect, this);
   7186     }
   7187 
   7188     /// Returns true if the base is dependent or is one of the
   7189     /// accumulated base classes.
   7190     static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
   7191       UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
   7192       return !Data->Bases.count(Base);
   7193     }
   7194 
   7195     bool mightShareBases(const CXXRecordDecl *Class) {
   7196       return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
   7197     }
   7198   };
   7199 
   7200   UserData Data;
   7201 
   7202   // Returns false if we find a dependent base.
   7203   if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
   7204     return false;
   7205 
   7206   // Returns false if the class has a dependent base or if it or one
   7207   // of its bases is present in the base set of the current context.
   7208   if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
   7209     return false;
   7210 
   7211   Diag(SS.getRange().getBegin(),
   7212        diag::err_using_decl_nested_name_specifier_is_not_base_class)
   7213     << (NestedNameSpecifier*) SS.getScopeRep()
   7214     << cast<CXXRecordDecl>(CurContext)
   7215     << SS.getRange();
   7216 
   7217   return true;
   7218 }
   7219 
   7220 Decl *Sema::ActOnAliasDeclaration(Scope *S,
   7221                                   AccessSpecifier AS,
   7222                                   MultiTemplateParamsArg TemplateParamLists,
   7223                                   SourceLocation UsingLoc,
   7224                                   UnqualifiedId &Name,
   7225                                   AttributeList *AttrList,
   7226                                   TypeResult Type) {
   7227   // Skip up to the relevant declaration scope.
   7228   while (S->getFlags() & Scope::TemplateParamScope)
   7229     S = S->getParent();
   7230   assert((S->getFlags() & Scope::DeclScope) &&
   7231          "got alias-declaration outside of declaration scope");
   7232 
   7233   if (Type.isInvalid())
   7234     return 0;
   7235 
   7236   bool Invalid = false;
   7237   DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
   7238   TypeSourceInfo *TInfo = 0;
   7239   GetTypeFromParser(Type.get(), &TInfo);
   7240 
   7241   if (DiagnoseClassNameShadow(CurContext, NameInfo))
   7242     return 0;
   7243 
   7244   if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
   7245                                       UPPC_DeclarationType)) {
   7246     Invalid = true;
   7247     TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
   7248                                              TInfo->getTypeLoc().getBeginLoc());
   7249   }
   7250 
   7251   LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
   7252   LookupName(Previous, S);
   7253 
   7254   // Warn about shadowing the name of a template parameter.
   7255   if (Previous.isSingleResult() &&
   7256       Previous.getFoundDecl()->isTemplateParameter()) {
   7257     DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
   7258     Previous.clear();
   7259   }
   7260 
   7261   assert(Name.Kind == UnqualifiedId::IK_Identifier &&
   7262          "name in alias declaration must be an identifier");
   7263   TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
   7264                                                Name.StartLocation,
   7265                                                Name.Identifier, TInfo);
   7266 
   7267   NewTD->setAccess(AS);
   7268 
   7269   if (Invalid)
   7270     NewTD->setInvalidDecl();
   7271 
   7272   ProcessDeclAttributeList(S, NewTD, AttrList);
   7273 
   7274   CheckTypedefForVariablyModifiedType(S, NewTD);
   7275   Invalid |= NewTD->isInvalidDecl();
   7276 
   7277   bool Redeclaration = false;
   7278 
   7279   NamedDecl *NewND;
   7280   if (TemplateParamLists.size()) {
   7281     TypeAliasTemplateDecl *OldDecl = 0;
   7282     TemplateParameterList *OldTemplateParams = 0;
   7283 
   7284     if (TemplateParamLists.size() != 1) {
   7285       Diag(UsingLoc, diag::err_alias_template_extra_headers)
   7286         << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
   7287          TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
   7288     }
   7289     TemplateParameterList *TemplateParams = TemplateParamLists[0];
   7290 
   7291     // Only consider previous declarations in the same scope.
   7292     FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
   7293                          /*ExplicitInstantiationOrSpecialization*/false);
   7294     if (!Previous.empty()) {
   7295       Redeclaration = true;
   7296 
   7297       OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
   7298       if (!OldDecl && !Invalid) {
   7299         Diag(UsingLoc, diag::err_redefinition_different_kind)
   7300           << Name.Identifier;
   7301 
   7302         NamedDecl *OldD = Previous.getRepresentativeDecl();
   7303         if (OldD->getLocation().isValid())
   7304           Diag(OldD->getLocation(), diag::note_previous_definition);
   7305 
   7306         Invalid = true;
   7307       }
   7308 
   7309       if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
   7310         if (TemplateParameterListsAreEqual(TemplateParams,
   7311                                            OldDecl->getTemplateParameters(),
   7312                                            /*Complain=*/true,
   7313                                            TPL_TemplateMatch))
   7314           OldTemplateParams = OldDecl->getTemplateParameters();
   7315         else
   7316           Invalid = true;
   7317 
   7318         TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
   7319         if (!Invalid &&
   7320             !Context.hasSameType(OldTD->getUnderlyingType(),
   7321                                  NewTD->getUnderlyingType())) {
   7322           // FIXME: The C++0x standard does not clearly say this is ill-formed,
   7323           // but we can't reasonably accept it.
   7324           Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
   7325             << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
   7326           if (OldTD->getLocation().isValid())
   7327             Diag(OldTD->getLocation(), diag::note_previous_definition);
   7328           Invalid = true;
   7329         }
   7330       }
   7331     }
   7332 
   7333     // Merge any previous default template arguments into our parameters,
   7334     // and check the parameter list.
   7335     if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
   7336                                    TPC_TypeAliasTemplate))
   7337       return 0;
   7338 
   7339     TypeAliasTemplateDecl *NewDecl =
   7340       TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
   7341                                     Name.Identifier, TemplateParams,
   7342                                     NewTD);
   7343 
   7344     NewDecl->setAccess(AS);
   7345 
   7346     if (Invalid)
   7347       NewDecl->setInvalidDecl();
   7348     else if (OldDecl)
   7349       NewDecl->setPreviousDeclaration(OldDecl);
   7350 
   7351     NewND = NewDecl;
   7352   } else {
   7353     ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
   7354     NewND = NewTD;
   7355   }
   7356 
   7357   if (!Redeclaration)
   7358     PushOnScopeChains(NewND, S);
   7359 
   7360   ActOnDocumentableDecl(NewND);
   7361   return NewND;
   7362 }
   7363 
   7364 Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
   7365                                              SourceLocation NamespaceLoc,
   7366                                              SourceLocation AliasLoc,
   7367                                              IdentifierInfo *Alias,
   7368                                              CXXScopeSpec &SS,
   7369                                              SourceLocation IdentLoc,
   7370                                              IdentifierInfo *Ident) {
   7371 
   7372   // Lookup the namespace name.
   7373   LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
   7374   LookupParsedName(R, S, &SS);
   7375 
   7376   // Check if we have a previous declaration with the same name.
   7377   NamedDecl *PrevDecl
   7378     = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
   7379                        ForRedeclaration);
   7380   if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
   7381     PrevDecl = 0;
   7382 
   7383   if (PrevDecl) {
   7384     if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
   7385       // We already have an alias with the same name that points to the same
   7386       // namespace, so don't create a new one.
   7387       // FIXME: At some point, we'll want to create the (redundant)
   7388       // declaration to maintain better source information.
   7389       if (!R.isAmbiguous() && !R.empty() &&
   7390           AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
   7391         return 0;
   7392     }
   7393 
   7394     unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
   7395       diag::err_redefinition_different_kind;
   7396     Diag(AliasLoc, DiagID) << Alias;
   7397     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   7398     return 0;
   7399   }
   7400 
   7401   if (R.isAmbiguous())
   7402     return 0;
   7403 
   7404   if (R.empty()) {
   7405     if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
   7406       Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
   7407       return 0;
   7408     }
   7409   }
   7410 
   7411   NamespaceAliasDecl *AliasDecl =
   7412     NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
   7413                                Alias, SS.getWithLocInContext(Context),
   7414                                IdentLoc, R.getFoundDecl());
   7415 
   7416   PushOnScopeChains(AliasDecl, S);
   7417   return AliasDecl;
   7418 }
   7419 
   7420 Sema::ImplicitExceptionSpecification
   7421 Sema::ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,
   7422                                                CXXMethodDecl *MD) {
   7423   CXXRecordDecl *ClassDecl = MD->getParent();
   7424 
   7425   // C++ [except.spec]p14:
   7426   //   An implicitly declared special member function (Clause 12) shall have an
   7427   //   exception-specification. [...]
   7428   ImplicitExceptionSpecification ExceptSpec(*this);
   7429   if (ClassDecl->isInvalidDecl())
   7430     return ExceptSpec;
   7431 
   7432   // Direct base-class constructors.
   7433   for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
   7434                                        BEnd = ClassDecl->bases_end();
   7435        B != BEnd; ++B) {
   7436     if (B->isVirtual()) // Handled below.
   7437       continue;
   7438 
   7439     if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
   7440       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
   7441       CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
   7442       // If this is a deleted function, add it anyway. This might be conformant
   7443       // with the standard. This might not. I'm not sure. It might not matter.
   7444       if (Constructor)
   7445         ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
   7446     }
   7447   }
   7448 
   7449   // Virtual base-class constructors.
   7450   for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
   7451                                        BEnd = ClassDecl->vbases_end();
   7452        B != BEnd; ++B) {
   7453     if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
   7454       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
   7455       CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
   7456       // If this is a deleted function, add it anyway. This might be conformant
   7457       // with the standard. This might not. I'm not sure. It might not matter.
   7458       if (Constructor)
   7459         ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
   7460     }
   7461   }
   7462 
   7463   // Field constructors.
   7464   for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
   7465                                FEnd = ClassDecl->field_end();
   7466        F != FEnd; ++F) {
   7467     if (F->hasInClassInitializer()) {
   7468       if (Expr *E = F->getInClassInitializer())
   7469         ExceptSpec.CalledExpr(E);
   7470       else if (!F->isInvalidDecl())
   7471         // DR1351:
   7472         //   If the brace-or-equal-initializer of a non-static data member
   7473         //   invokes a defaulted default constructor of its class or of an
   7474         //   enclosing class in a potentially evaluated subexpression, the
   7475         //   program is ill-formed.
   7476         //
   7477         // This resolution is unworkable: the exception specification of the
   7478         // default constructor can be needed in an unevaluated context, in
   7479         // particular, in the operand of a noexcept-expression, and we can be
   7480         // unable to compute an exception specification for an enclosed class.
   7481         //
   7482         // We do not allow an in-class initializer to require the evaluation
   7483         // of the exception specification for any in-class initializer whose
   7484         // definition is not lexically complete.
   7485         Diag(Loc, diag::err_in_class_initializer_references_def_ctor) << MD;
   7486     } else if (const RecordType *RecordTy
   7487               = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
   7488       CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
   7489       CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
   7490       // If this is a deleted function, add it anyway. This might be conformant
   7491       // with the standard. This might not. I'm not sure. It might not matter.
   7492       // In particular, the problem is that this function never gets called. It
   7493       // might just be ill-formed because this function attempts to refer to
   7494       // a deleted function here.
   7495       if (Constructor)
   7496         ExceptSpec.CalledDecl(F->getLocation(), Constructor);
   7497     }
   7498   }
   7499 
   7500   return ExceptSpec;
   7501 }
   7502 
   7503 Sema::ImplicitExceptionSpecification
   7504 Sema::ComputeInheritingCtorExceptionSpec(CXXMethodDecl *MD) {
   7505   ImplicitExceptionSpecification ExceptSpec(*this);
   7506   // FIXME: Compute the exception spec.
   7507   return ExceptSpec;
   7508 }
   7509 
   7510 namespace {
   7511 /// RAII object to register a special member as being currently declared.
   7512 struct DeclaringSpecialMember {
   7513   Sema &S;
   7514   Sema::SpecialMemberDecl D;
   7515   bool WasAlreadyBeingDeclared;
   7516 
   7517   DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
   7518     : S(S), D(RD, CSM) {
   7519     WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D);
   7520     if (WasAlreadyBeingDeclared)
   7521       // This almost never happens, but if it does, ensure that our cache
   7522       // doesn't contain a stale result.
   7523       S.SpecialMemberCache.clear();
   7524 
   7525     // FIXME: Register a note to be produced if we encounter an error while
   7526     // declaring the special member.
   7527   }
   7528   ~DeclaringSpecialMember() {
   7529     if (!WasAlreadyBeingDeclared)
   7530       S.SpecialMembersBeingDeclared.erase(D);
   7531   }
   7532 
   7533   /// \brief Are we already trying to declare this special member?
   7534   bool isAlreadyBeingDeclared() const {
   7535     return WasAlreadyBeingDeclared;
   7536   }
   7537 };
   7538 }
   7539 
   7540 CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
   7541                                                      CXXRecordDecl *ClassDecl) {
   7542   // C++ [class.ctor]p5:
   7543   //   A default constructor for a class X is a constructor of class X
   7544   //   that can be called without an argument. If there is no
   7545   //   user-declared constructor for class X, a default constructor is
   7546   //   implicitly declared. An implicitly-declared default constructor
   7547   //   is an inline public member of its class.
   7548   assert(ClassDecl->needsImplicitDefaultConstructor() &&
   7549          "Should not build implicit default constructor!");
   7550 
   7551   DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
   7552   if (DSM.isAlreadyBeingDeclared())
   7553     return 0;
   7554 
   7555   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
   7556                                                      CXXDefaultConstructor,
   7557                                                      false);
   7558 
   7559   // Create the actual constructor declaration.
   7560   CanQualType ClassType
   7561     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
   7562   SourceLocation ClassLoc = ClassDecl->getLocation();
   7563   DeclarationName Name
   7564     = Context.DeclarationNames.getCXXConstructorName(ClassType);
   7565   DeclarationNameInfo NameInfo(Name, ClassLoc);
   7566   CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
   7567       Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(), /*TInfo=*/0,
   7568       /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
   7569       Constexpr);
   7570   DefaultCon->setAccess(AS_public);
   7571   DefaultCon->setDefaulted();
   7572   DefaultCon->setImplicit();
   7573 
   7574   // Build an exception specification pointing back at this constructor.
   7575   FunctionProtoType::ExtProtoInfo EPI;
   7576   EPI.ExceptionSpecType = EST_Unevaluated;
   7577   EPI.ExceptionSpecDecl = DefaultCon;
   7578   DefaultCon->setType(Context.getFunctionType(Context.VoidTy,
   7579                                               ArrayRef<QualType>(),
   7580                                               EPI));
   7581 
   7582   // We don't need to use SpecialMemberIsTrivial here; triviality for default
   7583   // constructors is easy to compute.
   7584   DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
   7585 
   7586   if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
   7587     DefaultCon->setDeletedAsWritten();
   7588 
   7589   // Note that we have declared this constructor.
   7590   ++ASTContext::NumImplicitDefaultConstructorsDeclared;
   7591 
   7592   if (Scope *S = getScopeForContext(ClassDecl))
   7593     PushOnScopeChains(DefaultCon, S, false);
   7594   ClassDecl->addDecl(DefaultCon);
   7595 
   7596   return DefaultCon;
   7597 }
   7598 
   7599 void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
   7600                                             CXXConstructorDecl *Constructor) {
   7601   assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
   7602           !Constructor->doesThisDeclarationHaveABody() &&
   7603           !Constructor->isDeleted()) &&
   7604     "DefineImplicitDefaultConstructor - call it for implicit default ctor");
   7605 
   7606   CXXRecordDecl *ClassDecl = Constructor->getParent();
   7607   assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
   7608 
   7609   SynthesizedFunctionScope Scope(*this, Constructor);
   7610   DiagnosticErrorTrap Trap(Diags);
   7611   if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
   7612       Trap.hasErrorOccurred()) {
   7613     Diag(CurrentLocation, diag::note_member_synthesized_at)
   7614       << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
   7615     Constructor->setInvalidDecl();
   7616     return;
   7617   }
   7618 
   7619   SourceLocation Loc = Constructor->getLocation();
   7620   Constructor->setBody(new (Context) CompoundStmt(Loc));
   7621 
   7622   Constructor->setUsed();
   7623   MarkVTableUsed(CurrentLocation, ClassDecl);
   7624 
   7625   if (ASTMutationListener *L = getASTMutationListener()) {
   7626     L->CompletedImplicitDefinition(Constructor);
   7627   }
   7628 }
   7629 
   7630 void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
   7631   // Check that any explicitly-defaulted methods have exception specifications
   7632   // compatible with their implicit exception specifications.
   7633   CheckDelayedExplicitlyDefaultedMemberExceptionSpecs();
   7634 }
   7635 
   7636 void Sema::DeclareInheritingConstructors(CXXRecordDecl *ClassDecl) {
   7637   // We start with an initial pass over the base classes to collect those that
   7638   // inherit constructors from. If there are none, we can forgo all further
   7639   // processing.
   7640   typedef SmallVector<const RecordType *, 4> BasesVector;
   7641   BasesVector BasesToInheritFrom;
   7642   for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
   7643                                           BaseE = ClassDecl->bases_end();
   7644          BaseIt != BaseE; ++BaseIt) {
   7645     if (BaseIt->getInheritConstructors()) {
   7646       QualType Base = BaseIt->getType();
   7647       if (Base->isDependentType()) {
   7648         // If we inherit constructors from anything that is dependent, just
   7649         // abort processing altogether. We'll get another chance for the
   7650         // instantiations.
   7651         // FIXME: We need to ensure that any call to a constructor of this class
   7652         // is considered instantiation-dependent in this case.
   7653         return;
   7654       }
   7655       BasesToInheritFrom.push_back(Base->castAs<RecordType>());
   7656     }
   7657   }
   7658   if (BasesToInheritFrom.empty())
   7659     return;
   7660 
   7661   // FIXME: Constructor templates.
   7662 
   7663   // Now collect the constructors that we already have in the current class.
   7664   // Those take precedence over inherited constructors.
   7665   // C++11 [class.inhctor]p3: [...] a constructor is implicitly declared [...]
   7666   //   unless there is a user-declared constructor with the same signature in
   7667   //   the class where the using-declaration appears.
   7668   llvm::SmallSet<const Type *, 8> ExistingConstructors;
   7669   for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
   7670                                     CtorE = ClassDecl->ctor_end();
   7671        CtorIt != CtorE; ++CtorIt)
   7672     ExistingConstructors.insert(
   7673         Context.getCanonicalType(CtorIt->getType()).getTypePtr());
   7674 
   7675   DeclarationName CreatedCtorName =
   7676       Context.DeclarationNames.getCXXConstructorName(
   7677           ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
   7678 
   7679   // Now comes the true work.
   7680   // First, we keep a map from constructor types to the base that introduced
   7681   // them. Needed for finding conflicting constructors. We also keep the
   7682   // actually inserted declarations in there, for pretty diagnostics.
   7683   typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
   7684   typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
   7685   ConstructorToSourceMap InheritedConstructors;
   7686   for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
   7687                              BaseE = BasesToInheritFrom.end();
   7688        BaseIt != BaseE; ++BaseIt) {
   7689     const RecordType *Base = *BaseIt;
   7690     CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
   7691     CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
   7692     for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
   7693                                       CtorE = BaseDecl->ctor_end();
   7694          CtorIt != CtorE; ++CtorIt) {
   7695       // Find the using declaration for inheriting this base's constructors.
   7696       // FIXME: Don't perform name lookup just to obtain a source location!
   7697       DeclarationName Name =
   7698           Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
   7699       LookupResult Result(*this, Name, SourceLocation(), LookupUsingDeclName);
   7700       LookupQualifiedName(Result, CurContext);
   7701       UsingDecl *UD = Result.getAsSingle<UsingDecl>();
   7702       SourceLocation UsingLoc = UD ? UD->getLocation() :
   7703                                      ClassDecl->getLocation();
   7704 
   7705       // C++11 [class.inhctor]p1:
   7706       //   The candidate set of inherited constructors from the class X named in
   7707       //   the using-declaration consists of actual constructors and notional
   7708       //   constructors that result from the transformation of defaulted
   7709       //   parameters as follows:
   7710       //   - all non-template constructors of X, and
   7711       //   - for each non-template constructor of X that has at least one
   7712       //     parameter with a default argument, the set of constructors that
   7713       //     results from omitting any ellipsis parameter specification and
   7714       //     successively omitting parameters with a default argument from the
   7715       //     end of the parameter-type-list, and
   7716       // FIXME: ...also constructor templates.
   7717       CXXConstructorDecl *BaseCtor = *CtorIt;
   7718       bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
   7719       const FunctionProtoType *BaseCtorType =
   7720           BaseCtor->getType()->getAs<FunctionProtoType>();
   7721 
   7722       // Determine whether this would be a copy or move constructor for the
   7723       // derived class.
   7724       if (BaseCtorType->getNumArgs() >= 1 &&
   7725           BaseCtorType->getArgType(0)->isReferenceType() &&
   7726           Context.hasSameUnqualifiedType(
   7727             BaseCtorType->getArgType(0)->getPointeeType(),
   7728             Context.getTagDeclType(ClassDecl)))
   7729         CanBeCopyOrMove = true;
   7730 
   7731       ArrayRef<QualType> ArgTypes(BaseCtorType->getArgTypes());
   7732       FunctionProtoType::ExtProtoInfo EPI = BaseCtorType->getExtProtoInfo();
   7733       // Core issue (no number yet): the ellipsis is always discarded.
   7734       if (EPI.Variadic) {
   7735         Diag(UsingLoc, diag::warn_using_decl_constructor_ellipsis);
   7736         Diag(BaseCtor->getLocation(),
   7737              diag::note_using_decl_constructor_ellipsis);
   7738         EPI.Variadic = false;
   7739       }
   7740 
   7741       for (unsigned Params = BaseCtor->getMinRequiredArguments(),
   7742                     MaxParams = BaseCtor->getNumParams();
   7743            Params <= MaxParams; ++Params) {
   7744         // Skip default constructors. They're never inherited.
   7745         if (Params == 0)
   7746           continue;
   7747 
   7748         // Skip copy and move constructors for both base and derived class
   7749         // for the same reason.
   7750         if (CanBeCopyOrMove && Params == 1)
   7751           continue;
   7752 
   7753         // Build up a function type for this particular constructor.
   7754         QualType NewCtorType =
   7755             Context.getFunctionType(Context.VoidTy, ArgTypes.slice(0, Params),
   7756                                     EPI);
   7757         const Type *CanonicalNewCtorType =
   7758             Context.getCanonicalType(NewCtorType).getTypePtr();
   7759 
   7760         // C++11 [class.inhctor]p3:
   7761         //   ... a constructor is implicitly declared with the same constructor
   7762         //   characteristics unless there is a user-declared constructor with
   7763         //   the same signature in the class where the using-declaration appears
   7764         if (ExistingConstructors.count(CanonicalNewCtorType))
   7765           continue;
   7766 
   7767         // C++11 [class.inhctor]p7:
   7768         //   If two using-declarations declare inheriting constructors with the
   7769         //   same signature, the program is ill-formed
   7770         std::pair<ConstructorToSourceMap::iterator, bool> result =
   7771             InheritedConstructors.insert(std::make_pair(
   7772                 CanonicalNewCtorType,
   7773                 std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
   7774         if (!result.second) {
   7775           // Already in the map. If it came from a different class, that's an
   7776           // error. Not if it's from the same.
   7777           CanQualType PreviousBase = result.first->second.first;
   7778           if (CanonicalBase != PreviousBase) {
   7779             const CXXConstructorDecl *PrevCtor = result.first->second.second;
   7780             const CXXConstructorDecl *PrevBaseCtor =
   7781                 PrevCtor->getInheritedConstructor();
   7782             assert(PrevBaseCtor && "Conflicting constructor was not inherited");
   7783 
   7784             Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
   7785             Diag(BaseCtor->getLocation(),
   7786                  diag::note_using_decl_constructor_conflict_current_ctor);
   7787             Diag(PrevBaseCtor->getLocation(),
   7788                  diag::note_using_decl_constructor_conflict_previous_ctor);
   7789             Diag(PrevCtor->getLocation(),
   7790                  diag::note_using_decl_constructor_conflict_previous_using);
   7791           } else {
   7792             // Core issue (no number): if the same inheriting constructor is
   7793             // produced by multiple base class constructors from the same base
   7794             // class, the inheriting constructor is defined as deleted.
   7795             result.first->second.second->setDeletedAsWritten();
   7796           }
   7797           continue;
   7798         }
   7799 
   7800         // OK, we're there, now add the constructor.
   7801         DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
   7802         CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
   7803             Context, ClassDecl, UsingLoc, DNI, NewCtorType,
   7804             /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
   7805             /*ImplicitlyDeclared=*/true, /*Constexpr=*/BaseCtor->isConstexpr());
   7806         NewCtor->setAccess(BaseCtor->getAccess());
   7807 
   7808         // Build an unevaluated exception specification for this constructor.
   7809         EPI.ExceptionSpecType = EST_Unevaluated;
   7810         EPI.ExceptionSpecDecl = NewCtor;
   7811         NewCtor->setType(Context.getFunctionType(Context.VoidTy,
   7812                                                  ArgTypes.slice(0, Params),
   7813                                                  EPI));
   7814 
   7815         // Build up the parameter decls and add them.
   7816         SmallVector<ParmVarDecl *, 16> ParamDecls;
   7817         for (unsigned i = 0; i < Params; ++i) {
   7818           ParmVarDecl *PD = ParmVarDecl::Create(Context, NewCtor,
   7819                                                 UsingLoc, UsingLoc,
   7820                                                 /*IdentifierInfo=*/0,
   7821                                                 BaseCtorType->getArgType(i),
   7822                                                 /*TInfo=*/0, SC_None,
   7823                                                 SC_None, /*DefaultArg=*/0);
   7824           PD->setScopeInfo(0, i);
   7825           PD->setImplicit();
   7826           ParamDecls.push_back(PD);
   7827         }
   7828         NewCtor->setParams(ParamDecls);
   7829         NewCtor->setInheritedConstructor(BaseCtor);
   7830         if (BaseCtor->isDeleted())
   7831           NewCtor->setDeletedAsWritten();
   7832 
   7833         ClassDecl->addDecl(NewCtor);
   7834         result.first->second.second = NewCtor;
   7835       }
   7836     }
   7837   }
   7838 }
   7839 
   7840 void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
   7841                                        CXXConstructorDecl *Constructor) {
   7842   CXXRecordDecl *ClassDecl = Constructor->getParent();
   7843   assert(Constructor->getInheritedConstructor() &&
   7844          !Constructor->doesThisDeclarationHaveABody() &&
   7845          !Constructor->isDeleted());
   7846 
   7847   SynthesizedFunctionScope Scope(*this, Constructor);
   7848   DiagnosticErrorTrap Trap(Diags);
   7849   if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
   7850       Trap.hasErrorOccurred()) {
   7851     Diag(CurrentLocation, diag::note_inhctor_synthesized_at)
   7852       << Context.getTagDeclType(ClassDecl);
   7853     Constructor->setInvalidDecl();
   7854     return;
   7855   }
   7856 
   7857   SourceLocation Loc = Constructor->getLocation();
   7858   Constructor->setBody(new (Context) CompoundStmt(Loc));
   7859 
   7860   Constructor->setUsed();
   7861   MarkVTableUsed(CurrentLocation, ClassDecl);
   7862 
   7863   if (ASTMutationListener *L = getASTMutationListener()) {
   7864     L->CompletedImplicitDefinition(Constructor);
   7865   }
   7866 }
   7867 
   7868 
   7869 Sema::ImplicitExceptionSpecification
   7870 Sema::ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD) {
   7871   CXXRecordDecl *ClassDecl = MD->getParent();
   7872 
   7873   // C++ [except.spec]p14:
   7874   //   An implicitly declared special member function (Clause 12) shall have
   7875   //   an exception-specification.
   7876   ImplicitExceptionSpecification ExceptSpec(*this);
   7877   if (ClassDecl->isInvalidDecl())
   7878     return ExceptSpec;
   7879 
   7880   // Direct base-class destructors.
   7881   for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
   7882                                        BEnd = ClassDecl->bases_end();
   7883        B != BEnd; ++B) {
   7884     if (B->isVirtual()) // Handled below.
   7885       continue;
   7886 
   7887     if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
   7888       ExceptSpec.CalledDecl(B->getLocStart(),
   7889                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
   7890   }
   7891 
   7892   // Virtual base-class destructors.
   7893   for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
   7894                                        BEnd = ClassDecl->vbases_end();
   7895        B != BEnd; ++B) {
   7896     if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
   7897       ExceptSpec.CalledDecl(B->getLocStart(),
   7898                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
   7899   }
   7900 
   7901   // Field destructors.
   7902   for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
   7903                                FEnd = ClassDecl->field_end();
   7904        F != FEnd; ++F) {
   7905     if (const RecordType *RecordTy
   7906         = Context.getBaseElementType(F->getType())->getAs<RecordType>())
   7907       ExceptSpec.CalledDecl(F->getLocation(),
   7908                   LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
   7909   }
   7910 
   7911   return ExceptSpec;
   7912 }
   7913 
   7914 CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
   7915   // C++ [class.dtor]p2:
   7916   //   If a class has no user-declared destructor, a destructor is
   7917   //   declared implicitly. An implicitly-declared destructor is an
   7918   //   inline public member of its class.
   7919   assert(ClassDecl->needsImplicitDestructor());
   7920 
   7921   DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
   7922   if (DSM.isAlreadyBeingDeclared())
   7923     return 0;
   7924 
   7925   // Create the actual destructor declaration.
   7926   CanQualType ClassType
   7927     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
   7928   SourceLocation ClassLoc = ClassDecl->getLocation();
   7929   DeclarationName Name
   7930     = Context.DeclarationNames.getCXXDestructorName(ClassType);
   7931   DeclarationNameInfo NameInfo(Name, ClassLoc);
   7932   CXXDestructorDecl *Destructor
   7933       = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
   7934                                   QualType(), 0, /*isInline=*/true,
   7935                                   /*isImplicitlyDeclared=*/true);
   7936   Destructor->setAccess(AS_public);
   7937   Destructor->setDefaulted();
   7938   Destructor->setImplicit();
   7939 
   7940   // Build an exception specification pointing back at this destructor.
   7941   FunctionProtoType::ExtProtoInfo EPI;
   7942   EPI.ExceptionSpecType = EST_Unevaluated;
   7943   EPI.ExceptionSpecDecl = Destructor;
   7944   Destructor->setType(Context.getFunctionType(Context.VoidTy,
   7945                                               ArrayRef<QualType>(),
   7946                                               EPI));
   7947 
   7948   AddOverriddenMethods(ClassDecl, Destructor);
   7949 
   7950   // We don't need to use SpecialMemberIsTrivial here; triviality for
   7951   // destructors is easy to compute.
   7952   Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
   7953 
   7954   if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
   7955     Destructor->setDeletedAsWritten();
   7956 
   7957   // Note that we have declared this destructor.
   7958   ++ASTContext::NumImplicitDestructorsDeclared;
   7959 
   7960   // Introduce this destructor into its scope.
   7961   if (Scope *S = getScopeForContext(ClassDecl))
   7962     PushOnScopeChains(Destructor, S, false);
   7963   ClassDecl->addDecl(Destructor);
   7964 
   7965   return Destructor;
   7966 }
   7967 
   7968 void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
   7969                                     CXXDestructorDecl *Destructor) {
   7970   assert((Destructor->isDefaulted() &&
   7971           !Destructor->doesThisDeclarationHaveABody() &&
   7972           !Destructor->isDeleted()) &&
   7973          "DefineImplicitDestructor - call it for implicit default dtor");
   7974   CXXRecordDecl *ClassDecl = Destructor->getParent();
   7975   assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
   7976 
   7977   if (Destructor->isInvalidDecl())
   7978     return;
   7979 
   7980   SynthesizedFunctionScope Scope(*this, Destructor);
   7981 
   7982   DiagnosticErrorTrap Trap(Diags);
   7983   MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
   7984                                          Destructor->getParent());
   7985 
   7986   if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
   7987     Diag(CurrentLocation, diag::note_member_synthesized_at)
   7988       << CXXDestructor << Context.getTagDeclType(ClassDecl);
   7989 
   7990     Destructor->setInvalidDecl();
   7991     return;
   7992   }
   7993 
   7994   SourceLocation Loc = Destructor->getLocation();
   7995   Destructor->setBody(new (Context) CompoundStmt(Loc));
   7996   Destructor->setImplicitlyDefined(true);
   7997   Destructor->setUsed();
   7998   MarkVTableUsed(CurrentLocation, ClassDecl);
   7999 
   8000   if (ASTMutationListener *L = getASTMutationListener()) {
   8001     L->CompletedImplicitDefinition(Destructor);
   8002   }
   8003 }
   8004 
   8005 /// \brief Perform any semantic analysis which needs to be delayed until all
   8006 /// pending class member declarations have been parsed.
   8007 void Sema::ActOnFinishCXXMemberDecls() {
   8008   // If the context is an invalid C++ class, just suppress these checks.
   8009   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
   8010     if (Record->isInvalidDecl()) {
   8011       DelayedDestructorExceptionSpecChecks.clear();
   8012       return;
   8013     }
   8014   }
   8015 
   8016   // Perform any deferred checking of exception specifications for virtual
   8017   // destructors.
   8018   for (unsigned i = 0, e = DelayedDestructorExceptionSpecChecks.size();
   8019        i != e; ++i) {
   8020     const CXXDestructorDecl *Dtor =
   8021         DelayedDestructorExceptionSpecChecks[i].first;
   8022     assert(!Dtor->getParent()->isDependentType() &&
   8023            "Should not ever add destructors of templates into the list.");
   8024     CheckOverridingFunctionExceptionSpec(Dtor,
   8025         DelayedDestructorExceptionSpecChecks[i].second);
   8026   }
   8027   DelayedDestructorExceptionSpecChecks.clear();
   8028 }
   8029 
   8030 void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
   8031                                          CXXDestructorDecl *Destructor) {
   8032   assert(getLangOpts().CPlusPlus11 &&
   8033          "adjusting dtor exception specs was introduced in c++11");
   8034 
   8035   // C++11 [class.dtor]p3:
   8036   //   A declaration of a destructor that does not have an exception-
   8037   //   specification is implicitly considered to have the same exception-
   8038   //   specification as an implicit declaration.
   8039   const FunctionProtoType *DtorType = Destructor->getType()->
   8040                                         getAs<FunctionProtoType>();
   8041   if (DtorType->hasExceptionSpec())
   8042     return;
   8043 
   8044   // Replace the destructor's type, building off the existing one. Fortunately,
   8045   // the only thing of interest in the destructor type is its extended info.
   8046   // The return and arguments are fixed.
   8047   FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
   8048   EPI.ExceptionSpecType = EST_Unevaluated;
   8049   EPI.ExceptionSpecDecl = Destructor;
   8050   Destructor->setType(Context.getFunctionType(Context.VoidTy,
   8051                                               ArrayRef<QualType>(),
   8052                                               EPI));
   8053 
   8054   // FIXME: If the destructor has a body that could throw, and the newly created
   8055   // spec doesn't allow exceptions, we should emit a warning, because this
   8056   // change in behavior can break conforming C++03 programs at runtime.
   8057   // However, we don't have a body or an exception specification yet, so it
   8058   // needs to be done somewhere else.
   8059 }
   8060 
   8061 /// When generating a defaulted copy or move assignment operator, if a field
   8062 /// should be copied with __builtin_memcpy rather than via explicit assignments,
   8063 /// do so. This optimization only applies for arrays of scalars, and for arrays
   8064 /// of class type where the selected copy/move-assignment operator is trivial.
   8065 static StmtResult
   8066 buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
   8067                            Expr *To, Expr *From) {
   8068   // Compute the size of the memory buffer to be copied.
   8069   QualType SizeType = S.Context.getSizeType();
   8070   llvm::APInt Size(S.Context.getTypeSize(SizeType),
   8071                    S.Context.getTypeSizeInChars(T).getQuantity());
   8072 
   8073   // Take the address of the field references for "from" and "to". We
   8074   // directly construct UnaryOperators here because semantic analysis
   8075   // does not permit us to take the address of an xvalue.
   8076   From = new (S.Context) UnaryOperator(From, UO_AddrOf,
   8077                          S.Context.getPointerType(From->getType()),
   8078                          VK_RValue, OK_Ordinary, Loc);
   8079   To = new (S.Context) UnaryOperator(To, UO_AddrOf,
   8080                        S.Context.getPointerType(To->getType()),
   8081                        VK_RValue, OK_Ordinary, Loc);
   8082 
   8083   const Type *E = T->getBaseElementTypeUnsafe();
   8084   bool NeedsCollectableMemCpy =
   8085     E->isRecordType() && E->getAs<RecordType>()->getDecl()->hasObjectMember();
   8086 
   8087   // Create a reference to the __builtin_objc_memmove_collectable function
   8088   StringRef MemCpyName = NeedsCollectableMemCpy ?
   8089     "__builtin_objc_memmove_collectable" :
   8090     "__builtin_memcpy";
   8091   LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
   8092                  Sema::LookupOrdinaryName);
   8093   S.LookupName(R, S.TUScope, true);
   8094 
   8095   FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
   8096   if (!MemCpy)
   8097     // Something went horribly wrong earlier, and we will have complained
   8098     // about it.
   8099     return StmtError();
   8100 
   8101   ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
   8102                                             VK_RValue, Loc, 0);
   8103   assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");
   8104 
   8105   Expr *CallArgs[] = {
   8106     To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
   8107   };
   8108   ExprResult Call = S.ActOnCallExpr(/*Scope=*/0, MemCpyRef.take(),
   8109                                     Loc, CallArgs, Loc);
   8110 
   8111   assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
   8112   return S.Owned(Call.takeAs<Stmt>());
   8113 }
   8114 
   8115 /// \brief Builds a statement that copies/moves the given entity from \p From to
   8116 /// \c To.
   8117 ///
   8118 /// This routine is used to copy/move the members of a class with an
   8119 /// implicitly-declared copy/move assignment operator. When the entities being
   8120 /// copied are arrays, this routine builds for loops to copy them.
   8121 ///
   8122 /// \param S The Sema object used for type-checking.
   8123 ///
   8124 /// \param Loc The location where the implicit copy/move is being generated.
   8125 ///
   8126 /// \param T The type of the expressions being copied/moved. Both expressions
   8127 /// must have this type.
   8128 ///
   8129 /// \param To The expression we are copying/moving to.
   8130 ///
   8131 /// \param From The expression we are copying/moving from.
   8132 ///
   8133 /// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
   8134 /// Otherwise, it's a non-static member subobject.
   8135 ///
   8136 /// \param Copying Whether we're copying or moving.
   8137 ///
   8138 /// \param Depth Internal parameter recording the depth of the recursion.
   8139 ///
   8140 /// \returns A statement or a loop that copies the expressions, or StmtResult(0)
   8141 /// if a memcpy should be used instead.
   8142 static StmtResult
   8143 buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
   8144                                  Expr *To, Expr *From,
   8145                                  bool CopyingBaseSubobject, bool Copying,
   8146                                  unsigned Depth = 0) {
   8147   // C++11 [class.copy]p28:
   8148   //   Each subobject is assigned in the manner appropriate to its type:
   8149   //
   8150   //     - if the subobject is of class type, as if by a call to operator= with
   8151   //       the subobject as the object expression and the corresponding
   8152   //       subobject of x as a single function argument (as if by explicit
   8153   //       qualification; that is, ignoring any possible virtual overriding
   8154   //       functions in more derived classes);
   8155   //
   8156   // C++03 [class.copy]p13:
   8157   //     - if the subobject is of class type, the copy assignment operator for
   8158   //       the class is used (as if by explicit qualification; that is,
   8159   //       ignoring any possible virtual overriding functions in more derived
   8160   //       classes);
   8161   if (const RecordType *RecordTy = T->getAs<RecordType>()) {
   8162     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
   8163 
   8164     // Look for operator=.
   8165     DeclarationName Name
   8166       = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
   8167     LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
   8168     S.LookupQualifiedName(OpLookup, ClassDecl, false);
   8169 
   8170     // Prior to C++11, filter out any result that isn't a copy/move-assignment
   8171     // operator.
   8172     if (!S.getLangOpts().CPlusPlus11) {
   8173       LookupResult::Filter F = OpLookup.makeFilter();
   8174       while (F.hasNext()) {
   8175         NamedDecl *D = F.next();
   8176         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
   8177           if (Method->isCopyAssignmentOperator() ||
   8178               (!Copying && Method->isMoveAssignmentOperator()))
   8179             continue;
   8180 
   8181         F.erase();
   8182       }
   8183       F.done();
   8184     }
   8185 
   8186     // Suppress the protected check (C++ [class.protected]) for each of the
   8187     // assignment operators we found. This strange dance is required when
   8188     // we're assigning via a base classes's copy-assignment operator. To
   8189     // ensure that we're getting the right base class subobject (without
   8190     // ambiguities), we need to cast "this" to that subobject type; to
   8191     // ensure that we don't go through the virtual call mechanism, we need
   8192     // to qualify the operator= name with the base class (see below). However,
   8193     // this means that if the base class has a protected copy assignment
   8194     // operator, the protected member access check will fail. So, we
   8195     // rewrite "protected" access to "public" access in this case, since we
   8196     // know by construction that we're calling from a derived class.
   8197     if (CopyingBaseSubobject) {
   8198       for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
   8199            L != LEnd; ++L) {
   8200         if (L.getAccess() == AS_protected)
   8201           L.setAccess(AS_public);
   8202       }
   8203     }
   8204 
   8205     // Create the nested-name-specifier that will be used to qualify the
   8206     // reference to operator=; this is required to suppress the virtual
   8207     // call mechanism.
   8208     CXXScopeSpec SS;
   8209     const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
   8210     SS.MakeTrivial(S.Context,
   8211                    NestedNameSpecifier::Create(S.Context, 0, false,
   8212                                                CanonicalT),
   8213                    Loc);
   8214 
   8215     // Create the reference to operator=.
   8216     ExprResult OpEqualRef
   8217       = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
   8218                                    /*TemplateKWLoc=*/SourceLocation(),
   8219                                    /*FirstQualifierInScope=*/0,
   8220                                    OpLookup,
   8221                                    /*TemplateArgs=*/0,
   8222                                    /*SuppressQualifierCheck=*/true);
   8223     if (OpEqualRef.isInvalid())
   8224       return StmtError();
   8225 
   8226     // Build the call to the assignment operator.
   8227 
   8228     ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
   8229                                                   OpEqualRef.takeAs<Expr>(),
   8230                                                   Loc, &From, 1, Loc);
   8231     if (Call.isInvalid())
   8232       return StmtError();
   8233 
   8234     // If we built a call to a trivial 'operator=' while copying an array,
   8235     // bail out. We'll replace the whole shebang with a memcpy.
   8236     CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
   8237     if (CE && CE->getMethodDecl()->isTrivial() && Depth)
   8238       return StmtResult((Stmt*)0);
   8239 
   8240     // Convert to an expression-statement, and clean up any produced
   8241     // temporaries.
   8242     return S.ActOnExprStmt(Call);
   8243   }
   8244 
   8245   //     - if the subobject is of scalar type, the built-in assignment
   8246   //       operator is used.
   8247   const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
   8248   if (!ArrayTy) {
   8249     ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
   8250     if (Assignment.isInvalid())
   8251       return StmtError();
   8252     return S.ActOnExprStmt(Assignment);
   8253   }
   8254 
   8255   //     - if the subobject is an array, each element is assigned, in the
   8256   //       manner appropriate to the element type;
   8257 
   8258   // Construct a loop over the array bounds, e.g.,
   8259   //
   8260   //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
   8261   //
   8262   // that will copy each of the array elements.
   8263   QualType SizeType = S.Context.getSizeType();
   8264 
   8265   // Create the iteration variable.
   8266   IdentifierInfo *IterationVarName = 0;
   8267   {
   8268     SmallString<8> Str;
   8269     llvm::raw_svector_ostream OS(Str);
   8270     OS << "__i" << Depth;
   8271     IterationVarName = &S.Context.Idents.get(OS.str());
   8272   }
   8273   VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
   8274                                           IterationVarName, SizeType,
   8275                             S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
   8276                                           SC_None, SC_None);
   8277 
   8278   // Initialize the iteration variable to zero.
   8279   llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
   8280   IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
   8281 
   8282   // Create a reference to the iteration variable; we'll use this several
   8283   // times throughout.
   8284   Expr *IterationVarRef
   8285     = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
   8286   assert(IterationVarRef && "Reference to invented variable cannot fail!");
   8287   Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
   8288   assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
   8289 
   8290   // Create the DeclStmt that holds the iteration variable.
   8291   Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
   8292 
   8293   // Subscript the "from" and "to" expressions with the iteration variable.
   8294   From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
   8295                                                          IterationVarRefRVal,
   8296                                                          Loc));
   8297   To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
   8298                                                        IterationVarRefRVal,
   8299                                                        Loc));
   8300   if (!Copying) // Cast to rvalue
   8301     From = CastForMoving(S, From);
   8302 
   8303   // Build the copy/move for an individual element of the array.
   8304   StmtResult Copy =
   8305     buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
   8306                                      To, From, CopyingBaseSubobject,
   8307                                      Copying, Depth + 1);
   8308   // Bail out if copying fails or if we determined that we should use memcpy.
   8309   if (Copy.isInvalid() || !Copy.get())
   8310     return Copy;
   8311 
   8312   // Create the comparison against the array bound.
   8313   llvm::APInt Upper
   8314     = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
   8315   Expr *Comparison
   8316     = new (S.Context) BinaryOperator(IterationVarRefRVal,
   8317                      IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
   8318                                      BO_NE, S.Context.BoolTy,
   8319                                      VK_RValue, OK_Ordinary, Loc, false);
   8320 
   8321   // Create the pre-increment of the iteration variable.
   8322   Expr *Increment
   8323     = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
   8324                                     VK_LValue, OK_Ordinary, Loc);
   8325 
   8326   // Construct the loop that copies all elements of this array.
   8327   return S.ActOnForStmt(Loc, Loc, InitStmt,
   8328                         S.MakeFullExpr(Comparison),
   8329                         0, S.MakeFullDiscardedValueExpr(Increment),
   8330                         Loc, Copy.take());
   8331 }
   8332 
   8333 static StmtResult
   8334 buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
   8335                       Expr *To, Expr *From,
   8336                       bool CopyingBaseSubobject, bool Copying) {
   8337   // Maybe we should use a memcpy?
   8338   if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
   8339       T.isTriviallyCopyableType(S.Context))
   8340     return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
   8341 
   8342   StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
   8343                                                      CopyingBaseSubobject,
   8344                                                      Copying, 0));
   8345 
   8346   // If we ended up picking a trivial assignment operator for an array of a
   8347   // non-trivially-copyable class type, just emit a memcpy.
   8348   if (!Result.isInvalid() && !Result.get())
   8349     return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
   8350 
   8351   return Result;
   8352 }
   8353 
   8354 Sema::ImplicitExceptionSpecification
   8355 Sema::ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD) {
   8356   CXXRecordDecl *ClassDecl = MD->getParent();
   8357 
   8358   ImplicitExceptionSpecification ExceptSpec(*this);
   8359   if (ClassDecl->isInvalidDecl())
   8360     return ExceptSpec;
   8361 
   8362   const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
   8363   assert(T->getNumArgs() == 1 && "not a copy assignment op");
   8364   unsigned ArgQuals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
   8365 
   8366   // C++ [except.spec]p14:
   8367   //   An implicitly declared special member function (Clause 12) shall have an
   8368   //   exception-specification. [...]
   8369 
   8370   // It is unspecified whether or not an implicit copy assignment operator
   8371   // attempts to deduplicate calls to assignment operators of virtual bases are
   8372   // made. As such, this exception specification is effectively unspecified.
   8373   // Based on a similar decision made for constness in C++0x, we're erring on
   8374   // the side of assuming such calls to be made regardless of whether they
   8375   // actually happen.
   8376   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
   8377                                        BaseEnd = ClassDecl->bases_end();
   8378        Base != BaseEnd; ++Base) {
   8379     if (Base->isVirtual())
   8380       continue;
   8381 
   8382     CXXRecordDecl *BaseClassDecl
   8383       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
   8384     if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
   8385                                                             ArgQuals, false, 0))
   8386       ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
   8387   }
   8388 
   8389   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
   8390                                        BaseEnd = ClassDecl->vbases_end();
   8391        Base != BaseEnd; ++Base) {
   8392     CXXRecordDecl *BaseClassDecl
   8393       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
   8394     if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
   8395                                                             ArgQuals, false, 0))
   8396       ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
   8397   }
   8398 
   8399   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
   8400                                   FieldEnd = ClassDecl->field_end();
   8401        Field != FieldEnd;
   8402        ++Field) {
   8403     QualType FieldType = Context.getBaseElementType(Field->getType());
   8404     if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
   8405       if (CXXMethodDecl *CopyAssign =
   8406           LookupCopyingAssignment(FieldClassDecl,
   8407                                   ArgQuals | FieldType.getCVRQualifiers(),
   8408                                   false, 0))
   8409         ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
   8410     }
   8411   }
   8412 
   8413   return ExceptSpec;
   8414 }
   8415 
   8416 CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
   8417   // Note: The following rules are largely analoguous to the copy
   8418   // constructor rules. Note that virtual bases are not taken into account
   8419   // for determining the argument type of the operator. Note also that
   8420   // operators taking an object instead of a reference are allowed.
   8421   assert(ClassDecl->needsImplicitCopyAssignment());
   8422 
   8423   DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
   8424   if (DSM.isAlreadyBeingDeclared())
   8425     return 0;
   8426 
   8427   QualType ArgType = Context.getTypeDeclType(ClassDecl);
   8428   QualType RetType = Context.getLValueReferenceType(ArgType);
   8429   if (ClassDecl->implicitCopyAssignmentHasConstParam())
   8430     ArgType = ArgType.withConst();
   8431   ArgType = Context.getLValueReferenceType(ArgType);
   8432 
   8433   //   An implicitly-declared copy assignment operator is an inline public
   8434   //   member of its class.
   8435   DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
   8436   SourceLocation ClassLoc = ClassDecl->getLocation();
   8437   DeclarationNameInfo NameInfo(Name, ClassLoc);
   8438   CXXMethodDecl *CopyAssignment
   8439     = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
   8440                             /*TInfo=*/0, /*isStatic=*/false,
   8441                             /*StorageClassAsWritten=*/SC_None,
   8442                             /*isInline=*/true, /*isConstexpr=*/false,
   8443                             SourceLocation());
   8444   CopyAssignment->setAccess(AS_public);
   8445   CopyAssignment->setDefaulted();
   8446   CopyAssignment->setImplicit();
   8447 
   8448   // Build an exception specification pointing back at this member.
   8449   FunctionProtoType::ExtProtoInfo EPI;
   8450   EPI.ExceptionSpecType = EST_Unevaluated;
   8451   EPI.ExceptionSpecDecl = CopyAssignment;
   8452   CopyAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
   8453 
   8454   // Add the parameter to the operator.
   8455   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
   8456                                                ClassLoc, ClassLoc, /*Id=*/0,
   8457                                                ArgType, /*TInfo=*/0,
   8458                                                SC_None,
   8459                                                SC_None, 0);
   8460   CopyAssignment->setParams(FromParam);
   8461 
   8462   AddOverriddenMethods(ClassDecl, CopyAssignment);
   8463 
   8464   CopyAssignment->setTrivial(
   8465     ClassDecl->needsOverloadResolutionForCopyAssignment()
   8466       ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
   8467       : ClassDecl->hasTrivialCopyAssignment());
   8468 
   8469   // C++0x [class.copy]p19:
   8470   //   ....  If the class definition does not explicitly declare a copy
   8471   //   assignment operator, there is no user-declared move constructor, and
   8472   //   there is no user-declared move assignment operator, a copy assignment
   8473   //   operator is implicitly declared as defaulted.
   8474   if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
   8475     CopyAssignment->setDeletedAsWritten();
   8476 
   8477   // Note that we have added this copy-assignment operator.
   8478   ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
   8479 
   8480   if (Scope *S = getScopeForContext(ClassDecl))
   8481     PushOnScopeChains(CopyAssignment, S, false);
   8482   ClassDecl->addDecl(CopyAssignment);
   8483 
   8484   return CopyAssignment;
   8485 }
   8486 
   8487 void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
   8488                                         CXXMethodDecl *CopyAssignOperator) {
   8489   assert((CopyAssignOperator->isDefaulted() &&
   8490           CopyAssignOperator->isOverloadedOperator() &&
   8491           CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
   8492           !CopyAssignOperator->doesThisDeclarationHaveABody() &&
   8493           !CopyAssignOperator->isDeleted()) &&
   8494          "DefineImplicitCopyAssignment called for wrong function");
   8495 
   8496   CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
   8497 
   8498   if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
   8499     CopyAssignOperator->setInvalidDecl();
   8500     return;
   8501   }
   8502 
   8503   CopyAssignOperator->setUsed();
   8504 
   8505   SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
   8506   DiagnosticErrorTrap Trap(Diags);
   8507 
   8508   // C++0x [class.copy]p30:
   8509   //   The implicitly-defined or explicitly-defaulted copy assignment operator
   8510   //   for a non-union class X performs memberwise copy assignment of its
   8511   //   subobjects. The direct base classes of X are assigned first, in the
   8512   //   order of their declaration in the base-specifier-list, and then the
   8513   //   immediate non-static data members of X are assigned, in the order in
   8514   //   which they were declared in the class definition.
   8515 
   8516   // The statements that form the synthesized function body.
   8517   SmallVector<Stmt*, 8> Statements;
   8518 
   8519   // The parameter for the "other" object, which we are copying from.
   8520   ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
   8521   Qualifiers OtherQuals = Other->getType().getQualifiers();
   8522   QualType OtherRefType = Other->getType();
   8523   if (const LValueReferenceType *OtherRef
   8524                                 = OtherRefType->getAs<LValueReferenceType>()) {
   8525     OtherRefType = OtherRef->getPointeeType();
   8526     OtherQuals = OtherRefType.getQualifiers();
   8527   }
   8528 
   8529   // Our location for everything implicitly-generated.
   8530   SourceLocation Loc = CopyAssignOperator->getLocation();
   8531 
   8532   // Construct a reference to the "other" object. We'll be using this
   8533   // throughout the generated ASTs.
   8534   Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
   8535   assert(OtherRef && "Reference to parameter cannot fail!");
   8536 
   8537   // Construct the "this" pointer. We'll be using this throughout the generated
   8538   // ASTs.
   8539   Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
   8540   assert(This && "Reference to this cannot fail!");
   8541 
   8542   // Assign base classes.
   8543   bool Invalid = false;
   8544   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
   8545        E = ClassDecl->bases_end(); Base != E; ++Base) {
   8546     // Form the assignment:
   8547     //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
   8548     QualType BaseType = Base->getType().getUnqualifiedType();
   8549     if (!BaseType->isRecordType()) {
   8550       Invalid = true;
   8551       continue;
   8552     }
   8553 
   8554     CXXCastPath BasePath;
   8555     BasePath.push_back(Base);
   8556 
   8557     // Construct the "from" expression, which is an implicit cast to the
   8558     // appropriately-qualified base type.
   8559     Expr *From = OtherRef;
   8560     From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
   8561                              CK_UncheckedDerivedToBase,
   8562                              VK_LValue, &BasePath).take();
   8563 
   8564     // Dereference "this".
   8565     ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
   8566 
   8567     // Implicitly cast "this" to the appropriately-qualified base type.
   8568     To = ImpCastExprToType(To.take(),
   8569                            Context.getCVRQualifiedType(BaseType,
   8570                                      CopyAssignOperator->getTypeQualifiers()),
   8571                            CK_UncheckedDerivedToBase,
   8572                            VK_LValue, &BasePath);
   8573 
   8574     // Build the copy.
   8575     StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
   8576                                             To.get(), From,
   8577                                             /*CopyingBaseSubobject=*/true,
   8578                                             /*Copying=*/true);
   8579     if (Copy.isInvalid()) {
   8580       Diag(CurrentLocation, diag::note_member_synthesized_at)
   8581         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
   8582       CopyAssignOperator->setInvalidDecl();
   8583       return;
   8584     }
   8585 
   8586     // Success! Record the copy.
   8587     Statements.push_back(Copy.takeAs<Expr>());
   8588   }
   8589 
   8590   // Assign non-static members.
   8591   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
   8592                                   FieldEnd = ClassDecl->field_end();
   8593        Field != FieldEnd; ++Field) {
   8594     if (Field->isUnnamedBitfield())
   8595       continue;
   8596 
   8597     // Check for members of reference type; we can't copy those.
   8598     if (Field->getType()->isReferenceType()) {
   8599       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
   8600         << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
   8601       Diag(Field->getLocation(), diag::note_declared_at);
   8602       Diag(CurrentLocation, diag::note_member_synthesized_at)
   8603         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
   8604       Invalid = true;
   8605       continue;
   8606     }
   8607 
   8608     // Check for members of const-qualified, non-class type.
   8609     QualType BaseType = Context.getBaseElementType(Field->getType());
   8610     if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
   8611       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
   8612         << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
   8613       Diag(Field->getLocation(), diag::note_declared_at);
   8614       Diag(CurrentLocation, diag::note_member_synthesized_at)
   8615         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
   8616       Invalid = true;
   8617       continue;
   8618     }
   8619 
   8620     // Suppress assigning zero-width bitfields.
   8621     if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
   8622       continue;
   8623 
   8624     QualType FieldType = Field->getType().getNonReferenceType();
   8625     if (FieldType->isIncompleteArrayType()) {
   8626       assert(ClassDecl->hasFlexibleArrayMember() &&
   8627              "Incomplete array type is not valid");
   8628       continue;
   8629     }
   8630 
   8631     // Build references to the field in the object we're copying from and to.
   8632     CXXScopeSpec SS; // Intentionally empty
   8633     LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
   8634                               LookupMemberName);
   8635     MemberLookup.addDecl(*Field);
   8636     MemberLookup.resolveKind();
   8637     ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
   8638                                                Loc, /*IsArrow=*/false,
   8639                                                SS, SourceLocation(), 0,
   8640                                                MemberLookup, 0);
   8641     ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
   8642                                              Loc, /*IsArrow=*/true,
   8643                                              SS, SourceLocation(), 0,
   8644                                              MemberLookup, 0);
   8645     assert(!From.isInvalid() && "Implicit field reference cannot fail");
   8646     assert(!To.isInvalid() && "Implicit field reference cannot fail");
   8647 
   8648     // Build the copy of this field.
   8649     StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
   8650                                             To.get(), From.get(),
   8651                                             /*CopyingBaseSubobject=*/false,
   8652                                             /*Copying=*/true);
   8653     if (Copy.isInvalid()) {
   8654       Diag(CurrentLocation, diag::note_member_synthesized_at)
   8655         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
   8656       CopyAssignOperator->setInvalidDecl();
   8657       return;
   8658     }
   8659 
   8660     // Success! Record the copy.
   8661     Statements.push_back(Copy.takeAs<Stmt>());
   8662   }
   8663 
   8664   if (!Invalid) {
   8665     // Add a "return *this;"
   8666     ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
   8667 
   8668     StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
   8669     if (Return.isInvalid())
   8670       Invalid = true;
   8671     else {
   8672       Statements.push_back(Return.takeAs<Stmt>());
   8673 
   8674       if (Trap.hasErrorOccurred()) {
   8675         Diag(CurrentLocation, diag::note_member_synthesized_at)
   8676           << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
   8677         Invalid = true;
   8678       }
   8679     }
   8680   }
   8681 
   8682   if (Invalid) {
   8683     CopyAssignOperator->setInvalidDecl();
   8684     return;
   8685   }
   8686 
   8687   StmtResult Body;
   8688   {
   8689     CompoundScopeRAII CompoundScope(*this);
   8690     Body = ActOnCompoundStmt(Loc, Loc, Statements,
   8691                              /*isStmtExpr=*/false);
   8692     assert(!Body.isInvalid() && "Compound statement creation cannot fail");
   8693   }
   8694   CopyAssignOperator->setBody(Body.takeAs<Stmt>());
   8695 
   8696   if (ASTMutationListener *L = getASTMutationListener()) {
   8697     L->CompletedImplicitDefinition(CopyAssignOperator);
   8698   }
   8699 }
   8700 
   8701 Sema::ImplicitExceptionSpecification
   8702 Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD) {
   8703   CXXRecordDecl *ClassDecl = MD->getParent();
   8704 
   8705   ImplicitExceptionSpecification ExceptSpec(*this);
   8706   if (ClassDecl->isInvalidDecl())
   8707     return ExceptSpec;
   8708 
   8709   // C++0x [except.spec]p14:
   8710   //   An implicitly declared special member function (Clause 12) shall have an
   8711   //   exception-specification. [...]
   8712 
   8713   // It is unspecified whether or not an implicit move assignment operator
   8714   // attempts to deduplicate calls to assignment operators of virtual bases are
   8715   // made. As such, this exception specification is effectively unspecified.
   8716   // Based on a similar decision made for constness in C++0x, we're erring on
   8717   // the side of assuming such calls to be made regardless of whether they
   8718   // actually happen.
   8719   // Note that a move constructor is not implicitly declared when there are
   8720   // virtual bases, but it can still be user-declared and explicitly defaulted.
   8721   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
   8722                                        BaseEnd = ClassDecl->bases_end();
   8723        Base != BaseEnd; ++Base) {
   8724     if (Base->isVirtual())
   8725       continue;
   8726 
   8727     CXXRecordDecl *BaseClassDecl
   8728       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
   8729     if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
   8730                                                            0, false, 0))
   8731       ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
   8732   }
   8733 
   8734   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
   8735                                        BaseEnd = ClassDecl->vbases_end();
   8736        Base != BaseEnd; ++Base) {
   8737     CXXRecordDecl *BaseClassDecl
   8738       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
   8739     if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
   8740                                                            0, false, 0))
   8741       ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
   8742   }
   8743 
   8744   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
   8745                                   FieldEnd = ClassDecl->field_end();
   8746        Field != FieldEnd;
   8747        ++Field) {
   8748     QualType FieldType = Context.getBaseElementType(Field->getType());
   8749     if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
   8750       if (CXXMethodDecl *MoveAssign =
   8751               LookupMovingAssignment(FieldClassDecl,
   8752                                      FieldType.getCVRQualifiers(),
   8753                                      false, 0))
   8754         ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
   8755     }
   8756   }
   8757 
   8758   return ExceptSpec;
   8759 }
   8760 
   8761 /// Determine whether the class type has any direct or indirect virtual base
   8762 /// classes which have a non-trivial move assignment operator.
   8763 static bool
   8764 hasVirtualBaseWithNonTrivialMoveAssignment(Sema &S, CXXRecordDecl *ClassDecl) {
   8765   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
   8766                                           BaseEnd = ClassDecl->vbases_end();
   8767        Base != BaseEnd; ++Base) {
   8768     CXXRecordDecl *BaseClass =
   8769         cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
   8770 
   8771     // Try to declare the move assignment. If it would be deleted, then the
   8772     // class does not have a non-trivial move assignment.
   8773     if (BaseClass->needsImplicitMoveAssignment())
   8774       S.DeclareImplicitMoveAssignment(BaseClass);
   8775 
   8776     if (BaseClass->hasNonTrivialMoveAssignment())
   8777       return true;
   8778   }
   8779 
   8780   return false;
   8781 }
   8782 
   8783 /// Determine whether the given type either has a move constructor or is
   8784 /// trivially copyable.
   8785 static bool
   8786 hasMoveOrIsTriviallyCopyable(Sema &S, QualType Type, bool IsConstructor) {
   8787   Type = S.Context.getBaseElementType(Type);
   8788 
   8789   // FIXME: Technically, non-trivially-copyable non-class types, such as
   8790   // reference types, are supposed to return false here, but that appears
   8791   // to be a standard defect.
   8792   CXXRecordDecl *ClassDecl = Type->getAsCXXRecordDecl();
   8793   if (!ClassDecl || !ClassDecl->getDefinition() || ClassDecl->isInvalidDecl())
   8794     return true;
   8795 
   8796   if (Type.isTriviallyCopyableType(S.Context))
   8797     return true;
   8798 
   8799   if (IsConstructor) {
   8800     // FIXME: Need this because otherwise hasMoveConstructor isn't guaranteed to
   8801     // give the right answer.
   8802     if (ClassDecl->needsImplicitMoveConstructor())
   8803       S.DeclareImplicitMoveConstructor(ClassDecl);
   8804     return ClassDecl->hasMoveConstructor();
   8805   }
   8806 
   8807   // FIXME: Need this because otherwise hasMoveAssignment isn't guaranteed to
   8808   // give the right answer.
   8809   if (ClassDecl->needsImplicitMoveAssignment())
   8810     S.DeclareImplicitMoveAssignment(ClassDecl);
   8811   return ClassDecl->hasMoveAssignment();
   8812 }
   8813 
   8814 /// Determine whether all non-static data members and direct or virtual bases
   8815 /// of class \p ClassDecl have either a move operation, or are trivially
   8816 /// copyable.
   8817 static bool subobjectsHaveMoveOrTrivialCopy(Sema &S, CXXRecordDecl *ClassDecl,
   8818                                             bool IsConstructor) {
   8819   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
   8820                                           BaseEnd = ClassDecl->bases_end();
   8821        Base != BaseEnd; ++Base) {
   8822     if (Base->isVirtual())
   8823       continue;
   8824 
   8825     if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
   8826       return false;
   8827   }
   8828 
   8829   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
   8830                                           BaseEnd = ClassDecl->vbases_end();
   8831        Base != BaseEnd; ++Base) {
   8832     if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
   8833       return false;
   8834   }
   8835 
   8836   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
   8837                                      FieldEnd = ClassDecl->field_end();
   8838        Field != FieldEnd; ++Field) {
   8839     if (!hasMoveOrIsTriviallyCopyable(S, Field->getType(), IsConstructor))
   8840       return false;
   8841   }
   8842 
   8843   return true;
   8844 }
   8845 
   8846 CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
   8847   // C++11 [class.copy]p20:
   8848   //   If the definition of a class X does not explicitly declare a move
   8849   //   assignment operator, one will be implicitly declared as defaulted
   8850   //   if and only if:
   8851   //
   8852   //   - [first 4 bullets]
   8853   assert(ClassDecl->needsImplicitMoveAssignment());
   8854 
   8855   DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
   8856   if (DSM.isAlreadyBeingDeclared())
   8857     return 0;
   8858 
   8859   // [Checked after we build the declaration]
   8860   //   - the move assignment operator would not be implicitly defined as
   8861   //     deleted,
   8862 
   8863   // [DR1402]:
   8864   //   - X has no direct or indirect virtual base class with a non-trivial
   8865   //     move assignment operator, and
   8866   //   - each of X's non-static data members and direct or virtual base classes
   8867   //     has a type that either has a move assignment operator or is trivially
   8868   //     copyable.
   8869   if (hasVirtualBaseWithNonTrivialMoveAssignment(*this, ClassDecl) ||
   8870       !subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl,/*Constructor*/false)) {
   8871     ClassDecl->setFailedImplicitMoveAssignment();
   8872     return 0;
   8873   }
   8874 
   8875   // Note: The following rules are largely analoguous to the move
   8876   // constructor rules.
   8877 
   8878   QualType ArgType = Context.getTypeDeclType(ClassDecl);
   8879   QualType RetType = Context.getLValueReferenceType(ArgType);
   8880   ArgType = Context.getRValueReferenceType(ArgType);
   8881 
   8882   //   An implicitly-declared move assignment operator is an inline public
   8883   //   member of its class.
   8884   DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
   8885   SourceLocation ClassLoc = ClassDecl->getLocation();
   8886   DeclarationNameInfo NameInfo(Name, ClassLoc);
   8887   CXXMethodDecl *MoveAssignment
   8888     = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
   8889                             /*TInfo=*/0, /*isStatic=*/false,
   8890                             /*StorageClassAsWritten=*/SC_None,
   8891                             /*isInline=*/true,
   8892                             /*isConstexpr=*/false,
   8893                             SourceLocation());
   8894   MoveAssignment->setAccess(AS_public);
   8895   MoveAssignment->setDefaulted();
   8896   MoveAssignment->setImplicit();
   8897 
   8898   // Build an exception specification pointing back at this member.
   8899   FunctionProtoType::ExtProtoInfo EPI;
   8900   EPI.ExceptionSpecType = EST_Unevaluated;
   8901   EPI.ExceptionSpecDecl = MoveAssignment;
   8902   MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
   8903 
   8904   // Add the parameter to the operator.
   8905   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
   8906                                                ClassLoc, ClassLoc, /*Id=*/0,
   8907                                                ArgType, /*TInfo=*/0,
   8908                                                SC_None,
   8909                                                SC_None, 0);
   8910   MoveAssignment->setParams(FromParam);
   8911 
   8912   AddOverriddenMethods(ClassDecl, MoveAssignment);
   8913 
   8914   MoveAssignment->setTrivial(
   8915     ClassDecl->needsOverloadResolutionForMoveAssignment()
   8916       ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
   8917       : ClassDecl->hasTrivialMoveAssignment());
   8918 
   8919   // C++0x [class.copy]p9:
   8920   //   If the definition of a class X does not explicitly declare a move
   8921   //   assignment operator, one will be implicitly declared as defaulted if and
   8922   //   only if:
   8923   //   [...]
   8924   //   - the move assignment operator would not be implicitly defined as
   8925   //     deleted.
   8926   if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
   8927     // Cache this result so that we don't try to generate this over and over
   8928     // on every lookup, leaking memory and wasting time.
   8929     ClassDecl->setFailedImplicitMoveAssignment();
   8930     return 0;
   8931   }
   8932 
   8933   // Note that we have added this copy-assignment operator.
   8934   ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
   8935 
   8936   if (Scope *S = getScopeForContext(ClassDecl))
   8937     PushOnScopeChains(MoveAssignment, S, false);
   8938   ClassDecl->addDecl(MoveAssignment);
   8939 
   8940   return MoveAssignment;
   8941 }
   8942 
   8943 void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
   8944                                         CXXMethodDecl *MoveAssignOperator) {
   8945   assert((MoveAssignOperator->isDefaulted() &&
   8946           MoveAssignOperator->isOverloadedOperator() &&
   8947           MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
   8948           !MoveAssignOperator->doesThisDeclarationHaveABody() &&
   8949           !MoveAssignOperator->isDeleted()) &&
   8950          "DefineImplicitMoveAssignment called for wrong function");
   8951 
   8952   CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
   8953 
   8954   if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
   8955     MoveAssignOperator->setInvalidDecl();
   8956     return;
   8957   }
   8958 
   8959   MoveAssignOperator->setUsed();
   8960 
   8961   SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
   8962   DiagnosticErrorTrap Trap(Diags);
   8963 
   8964   // C++0x [class.copy]p28:
   8965   //   The implicitly-defined or move assignment operator for a non-union class
   8966   //   X performs memberwise move assignment of its subobjects. The direct base
   8967   //   classes of X are assigned first, in the order of their declaration in the
   8968   //   base-specifier-list, and then the immediate non-static data members of X
   8969   //   are assigned, in the order in which they were declared in the class
   8970   //   definition.
   8971 
   8972   // The statements that form the synthesized function body.
   8973   SmallVector<Stmt*, 8> Statements;
   8974 
   8975   // The parameter for the "other" object, which we are move from.
   8976   ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
   8977   QualType OtherRefType = Other->getType()->
   8978       getAs<RValueReferenceType>()->getPointeeType();
   8979   assert(OtherRefType.getQualifiers() == 0 &&
   8980          "Bad argument type of defaulted move assignment");
   8981 
   8982   // Our location for everything implicitly-generated.
   8983   SourceLocation Loc = MoveAssignOperator->getLocation();
   8984 
   8985   // Construct a reference to the "other" object. We'll be using this
   8986   // throughout the generated ASTs.
   8987   Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
   8988   assert(OtherRef && "Reference to parameter cannot fail!");
   8989   // Cast to rvalue.
   8990   OtherRef = CastForMoving(*this, OtherRef);
   8991 
   8992   // Construct the "this" pointer. We'll be using this throughout the generated
   8993   // ASTs.
   8994   Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
   8995   assert(This && "Reference to this cannot fail!");
   8996 
   8997   // Assign base classes.
   8998   bool Invalid = false;
   8999   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
   9000        E = ClassDecl->bases_end(); Base != E; ++Base) {
   9001     // Form the assignment:
   9002     //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
   9003     QualType BaseType = Base->getType().getUnqualifiedType();
   9004     if (!BaseType->isRecordType()) {
   9005       Invalid = true;
   9006       continue;
   9007     }
   9008 
   9009     CXXCastPath BasePath;
   9010     BasePath.push_back(Base);
   9011 
   9012     // Construct the "from" expression, which is an implicit cast to the
   9013     // appropriately-qualified base type.
   9014     Expr *From = OtherRef;
   9015     From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
   9016                              VK_XValue, &BasePath).take();
   9017 
   9018     // Dereference "this".
   9019     ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
   9020 
   9021     // Implicitly cast "this" to the appropriately-qualified base type.
   9022     To = ImpCastExprToType(To.take(),
   9023                            Context.getCVRQualifiedType(BaseType,
   9024                                      MoveAssignOperator->getTypeQualifiers()),
   9025                            CK_UncheckedDerivedToBase,
   9026                            VK_LValue, &BasePath);
   9027 
   9028     // Build the move.
   9029     StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
   9030                                             To.get(), From,
   9031                                             /*CopyingBaseSubobject=*/true,
   9032                                             /*Copying=*/false);
   9033     if (Move.isInvalid()) {
   9034       Diag(CurrentLocation, diag::note_member_synthesized_at)
   9035         << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
   9036       MoveAssignOperator->setInvalidDecl();
   9037       return;
   9038     }
   9039 
   9040     // Success! Record the move.
   9041     Statements.push_back(Move.takeAs<Expr>());
   9042   }
   9043 
   9044   // Assign non-static members.
   9045   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
   9046                                   FieldEnd = ClassDecl->field_end();
   9047        Field != FieldEnd; ++Field) {
   9048     if (Field->isUnnamedBitfield())
   9049       continue;
   9050 
   9051     // Check for members of reference type; we can't move those.
   9052     if (Field->getType()->isReferenceType()) {
   9053       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
   9054         << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
   9055       Diag(Field->getLocation(), diag::note_declared_at);
   9056       Diag(CurrentLocation, diag::note_member_synthesized_at)
   9057         << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
   9058       Invalid = true;
   9059       continue;
   9060     }
   9061 
   9062     // Check for members of const-qualified, non-class type.
   9063     QualType BaseType = Context.getBaseElementType(Field->getType());
   9064     if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
   9065       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
   9066         << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
   9067       Diag(Field->getLocation(), diag::note_declared_at);
   9068       Diag(CurrentLocation, diag::note_member_synthesized_at)
   9069         << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
   9070       Invalid = true;
   9071       continue;
   9072     }
   9073 
   9074     // Suppress assigning zero-width bitfields.
   9075     if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
   9076       continue;
   9077 
   9078     QualType FieldType = Field->getType().getNonReferenceType();
   9079     if (FieldType->isIncompleteArrayType()) {
   9080       assert(ClassDecl->hasFlexibleArrayMember() &&
   9081              "Incomplete array type is not valid");
   9082       continue;
   9083     }
   9084 
   9085     // Build references to the field in the object we're copying from and to.
   9086     CXXScopeSpec SS; // Intentionally empty
   9087     LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
   9088                               LookupMemberName);
   9089     MemberLookup.addDecl(*Field);
   9090     MemberLookup.resolveKind();
   9091     ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
   9092                                                Loc, /*IsArrow=*/false,
   9093                                                SS, SourceLocation(), 0,
   9094                                                MemberLookup, 0);
   9095     ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
   9096                                              Loc, /*IsArrow=*/true,
   9097                                              SS, SourceLocation(), 0,
   9098                                              MemberLookup, 0);
   9099     assert(!From.isInvalid() && "Implicit field reference cannot fail");
   9100     assert(!To.isInvalid() && "Implicit field reference cannot fail");
   9101 
   9102     assert(!From.get()->isLValue() && // could be xvalue or prvalue
   9103         "Member reference with rvalue base must be rvalue except for reference "
   9104         "members, which aren't allowed for move assignment.");
   9105 
   9106     // Build the move of this field.
   9107     StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
   9108                                             To.get(), From.get(),
   9109                                             /*CopyingBaseSubobject=*/false,
   9110                                             /*Copying=*/false);
   9111     if (Move.isInvalid()) {
   9112       Diag(CurrentLocation, diag::note_member_synthesized_at)
   9113         << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
   9114       MoveAssignOperator->setInvalidDecl();
   9115       return;
   9116     }
   9117 
   9118     // Success! Record the copy.
   9119     Statements.push_back(Move.takeAs<Stmt>());
   9120   }
   9121 
   9122   if (!Invalid) {
   9123     // Add a "return *this;"
   9124     ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
   9125 
   9126     StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
   9127     if (Return.isInvalid())
   9128       Invalid = true;
   9129     else {
   9130       Statements.push_back(Return.takeAs<Stmt>());
   9131 
   9132       if (Trap.hasErrorOccurred()) {
   9133         Diag(CurrentLocation, diag::note_member_synthesized_at)
   9134           << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
   9135         Invalid = true;
   9136       }
   9137     }
   9138   }
   9139 
   9140   if (Invalid) {
   9141     MoveAssignOperator->setInvalidDecl();
   9142     return;
   9143   }
   9144 
   9145   StmtResult Body;
   9146   {
   9147     CompoundScopeRAII CompoundScope(*this);
   9148     Body = ActOnCompoundStmt(Loc, Loc, Statements,
   9149                              /*isStmtExpr=*/false);
   9150     assert(!Body.isInvalid() && "Compound statement creation cannot fail");
   9151   }
   9152   MoveAssignOperator->setBody(Body.takeAs<Stmt>());
   9153 
   9154   if (ASTMutationListener *L = getASTMutationListener()) {
   9155     L->CompletedImplicitDefinition(MoveAssignOperator);
   9156   }
   9157 }
   9158 
   9159 Sema::ImplicitExceptionSpecification
   9160 Sema::ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD) {
   9161   CXXRecordDecl *ClassDecl = MD->getParent();
   9162 
   9163   ImplicitExceptionSpecification ExceptSpec(*this);
   9164   if (ClassDecl->isInvalidDecl())
   9165     return ExceptSpec;
   9166 
   9167   const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
   9168   assert(T->getNumArgs() >= 1 && "not a copy ctor");
   9169   unsigned Quals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
   9170 
   9171   // C++ [except.spec]p14:
   9172   //   An implicitly declared special member function (Clause 12) shall have an
   9173   //   exception-specification. [...]
   9174   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
   9175                                        BaseEnd = ClassDecl->bases_end();
   9176        Base != BaseEnd;
   9177        ++Base) {
   9178     // Virtual bases are handled below.
   9179     if (Base->isVirtual())
   9180       continue;
   9181 
   9182     CXXRecordDecl *BaseClassDecl
   9183       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
   9184     if (CXXConstructorDecl *CopyConstructor =
   9185           LookupCopyingConstructor(BaseClassDecl, Quals))
   9186       ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
   9187   }
   9188   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
   9189                                        BaseEnd = ClassDecl->vbases_end();
   9190        Base != BaseEnd;
   9191        ++Base) {
   9192     CXXRecordDecl *BaseClassDecl
   9193       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
   9194     if (CXXConstructorDecl *CopyConstructor =
   9195           LookupCopyingConstructor(BaseClassDecl, Quals))
   9196       ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
   9197   }
   9198   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
   9199                                   FieldEnd = ClassDecl->field_end();
   9200        Field != FieldEnd;
   9201        ++Field) {
   9202     QualType FieldType = Context.getBaseElementType(Field->getType());
   9203     if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
   9204       if (CXXConstructorDecl *CopyConstructor =
   9205               LookupCopyingConstructor(FieldClassDecl,
   9206                                        Quals | FieldType.getCVRQualifiers()))
   9207       ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
   9208     }
   9209   }
   9210 
   9211   return ExceptSpec;
   9212 }
   9213 
   9214 CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
   9215                                                     CXXRecordDecl *ClassDecl) {
   9216   // C++ [class.copy]p4:
   9217   //   If the class definition does not explicitly declare a copy
   9218   //   constructor, one is declared implicitly.
   9219   assert(ClassDecl->needsImplicitCopyConstructor());
   9220 
   9221   DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
   9222   if (DSM.isAlreadyBeingDeclared())
   9223     return 0;
   9224 
   9225   QualType ClassType = Context.getTypeDeclType(ClassDecl);
   9226   QualType ArgType = ClassType;
   9227   bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
   9228   if (Const)
   9229     ArgType = ArgType.withConst();
   9230   ArgType = Context.getLValueReferenceType(ArgType);
   9231 
   9232   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
   9233                                                      CXXCopyConstructor,
   9234                                                      Const);
   9235 
   9236   DeclarationName Name
   9237     = Context.DeclarationNames.getCXXConstructorName(
   9238                                            Context.getCanonicalType(ClassType));
   9239   SourceLocation ClassLoc = ClassDecl->getLocation();
   9240   DeclarationNameInfo NameInfo(Name, ClassLoc);
   9241 
   9242   //   An implicitly-declared copy constructor is an inline public
   9243   //   member of its class.
   9244   CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
   9245       Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
   9246       /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
   9247       Constexpr);
   9248   CopyConstructor->setAccess(AS_public);
   9249   CopyConstructor->setDefaulted();
   9250 
   9251   // Build an exception specification pointing back at this member.
   9252   FunctionProtoType::ExtProtoInfo EPI;
   9253   EPI.ExceptionSpecType = EST_Unevaluated;
   9254   EPI.ExceptionSpecDecl = CopyConstructor;
   9255   CopyConstructor->setType(
   9256       Context.getFunctionType(Context.VoidTy, ArgType, EPI));
   9257 
   9258   // Add the parameter to the constructor.
   9259   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
   9260                                                ClassLoc, ClassLoc,
   9261                                                /*IdentifierInfo=*/0,
   9262                                                ArgType, /*TInfo=*/0,
   9263                                                SC_None,
   9264                                                SC_None, 0);
   9265   CopyConstructor->setParams(FromParam);
   9266 
   9267   CopyConstructor->setTrivial(
   9268     ClassDecl->needsOverloadResolutionForCopyConstructor()
   9269       ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
   9270       : ClassDecl->hasTrivialCopyConstructor());
   9271 
   9272   // C++11 [class.copy]p8:
   9273   //   ... If the class definition does not explicitly declare a copy
   9274   //   constructor, there is no user-declared move constructor, and there is no
   9275   //   user-declared move assignment operator, a copy constructor is implicitly
   9276   //   declared as defaulted.
   9277   if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
   9278     CopyConstructor->setDeletedAsWritten();
   9279 
   9280   // Note that we have declared this constructor.
   9281   ++ASTContext::NumImplicitCopyConstructorsDeclared;
   9282 
   9283   if (Scope *S = getScopeForContext(ClassDecl))
   9284     PushOnScopeChains(CopyConstructor, S, false);
   9285   ClassDecl->addDecl(CopyConstructor);
   9286 
   9287   return CopyConstructor;
   9288 }
   9289 
   9290 void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
   9291                                    CXXConstructorDecl *CopyConstructor) {
   9292   assert((CopyConstructor->isDefaulted() &&
   9293           CopyConstructor->isCopyConstructor() &&
   9294           !CopyConstructor->doesThisDeclarationHaveABody() &&
   9295           !CopyConstructor->isDeleted()) &&
   9296          "DefineImplicitCopyConstructor - call it for implicit copy ctor");
   9297 
   9298   CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
   9299   assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
   9300 
   9301   SynthesizedFunctionScope Scope(*this, CopyConstructor);
   9302   DiagnosticErrorTrap Trap(Diags);
   9303 
   9304   if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false) ||
   9305       Trap.hasErrorOccurred()) {
   9306     Diag(CurrentLocation, diag::note_member_synthesized_at)
   9307       << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
   9308     CopyConstructor->setInvalidDecl();
   9309   }  else {
   9310     Sema::CompoundScopeRAII CompoundScope(*this);
   9311     CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
   9312                                                CopyConstructor->getLocation(),
   9313                                                MultiStmtArg(),
   9314                                                /*isStmtExpr=*/false)
   9315                                                               .takeAs<Stmt>());
   9316     CopyConstructor->setImplicitlyDefined(true);
   9317   }
   9318 
   9319   CopyConstructor->setUsed();
   9320   if (ASTMutationListener *L = getASTMutationListener()) {
   9321     L->CompletedImplicitDefinition(CopyConstructor);
   9322   }
   9323 }
   9324 
   9325 Sema::ImplicitExceptionSpecification
   9326 Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD) {
   9327   CXXRecordDecl *ClassDecl = MD->getParent();
   9328 
   9329   // C++ [except.spec]p14:
   9330   //   An implicitly declared special member function (Clause 12) shall have an
   9331   //   exception-specification. [...]
   9332   ImplicitExceptionSpecification ExceptSpec(*this);
   9333   if (ClassDecl->isInvalidDecl())
   9334     return ExceptSpec;
   9335 
   9336   // Direct base-class constructors.
   9337   for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
   9338                                        BEnd = ClassDecl->bases_end();
   9339        B != BEnd; ++B) {
   9340     if (B->isVirtual()) // Handled below.
   9341       continue;
   9342 
   9343     if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
   9344       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
   9345       CXXConstructorDecl *Constructor =
   9346           LookupMovingConstructor(BaseClassDecl, 0);
   9347       // If this is a deleted function, add it anyway. This might be conformant
   9348       // with the standard. This might not. I'm not sure. It might not matter.
   9349       if (Constructor)
   9350         ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
   9351     }
   9352   }
   9353 
   9354   // Virtual base-class constructors.
   9355   for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
   9356                                        BEnd = ClassDecl->vbases_end();
   9357        B != BEnd; ++B) {
   9358     if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
   9359       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
   9360       CXXConstructorDecl *Constructor =
   9361           LookupMovingConstructor(BaseClassDecl, 0);
   9362       // If this is a deleted function, add it anyway. This might be conformant
   9363       // with the standard. This might not. I'm not sure. It might not matter.
   9364       if (Constructor)
   9365         ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
   9366     }
   9367   }
   9368 
   9369   // Field constructors.
   9370   for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
   9371                                FEnd = ClassDecl->field_end();
   9372        F != FEnd; ++F) {
   9373     QualType FieldType = Context.getBaseElementType(F->getType());
   9374     if (CXXRecordDecl *FieldRecDecl = FieldType->getAsCXXRecordDecl()) {
   9375       CXXConstructorDecl *Constructor =
   9376           LookupMovingConstructor(FieldRecDecl, FieldType.getCVRQualifiers());
   9377       // If this is a deleted function, add it anyway. This might be conformant
   9378       // with the standard. This might not. I'm not sure. It might not matter.
   9379       // In particular, the problem is that this function never gets called. It
   9380       // might just be ill-formed because this function attempts to refer to
   9381       // a deleted function here.
   9382       if (Constructor)
   9383         ExceptSpec.CalledDecl(F->getLocation(), Constructor);
   9384     }
   9385   }
   9386 
   9387   return ExceptSpec;
   9388 }
   9389 
   9390 CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
   9391                                                     CXXRecordDecl *ClassDecl) {
   9392   // C++11 [class.copy]p9:
   9393   //   If the definition of a class X does not explicitly declare a move
   9394   //   constructor, one will be implicitly declared as defaulted if and only if:
   9395   //
   9396   //   - [first 4 bullets]
   9397   assert(ClassDecl->needsImplicitMoveConstructor());
   9398 
   9399   DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
   9400   if (DSM.isAlreadyBeingDeclared())
   9401     return 0;
   9402 
   9403   // [Checked after we build the declaration]
   9404   //   - the move assignment operator would not be implicitly defined as
   9405   //     deleted,
   9406 
   9407   // [DR1402]:
   9408   //   - each of X's non-static data members and direct or virtual base classes
   9409   //     has a type that either has a move constructor or is trivially copyable.
   9410   if (!subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl, /*Constructor*/true)) {
   9411     ClassDecl->setFailedImplicitMoveConstructor();
   9412     return 0;
   9413   }
   9414 
   9415   QualType ClassType = Context.getTypeDeclType(ClassDecl);
   9416   QualType ArgType = Context.getRValueReferenceType(ClassType);
   9417 
   9418   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
   9419                                                      CXXMoveConstructor,
   9420                                                      false);
   9421 
   9422   DeclarationName Name
   9423     = Context.DeclarationNames.getCXXConstructorName(
   9424                                            Context.getCanonicalType(ClassType));
   9425   SourceLocation ClassLoc = ClassDecl->getLocation();
   9426   DeclarationNameInfo NameInfo(Name, ClassLoc);
   9427 
   9428   // C++0x [class.copy]p11:
   9429   //   An implicitly-declared copy/move constructor is an inline public
   9430   //   member of its class.
   9431   CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
   9432       Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
   9433       /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
   9434       Constexpr);
   9435   MoveConstructor->setAccess(AS_public);
   9436   MoveConstructor->setDefaulted();
   9437 
   9438   // Build an exception specification pointing back at this member.
   9439   FunctionProtoType::ExtProtoInfo EPI;
   9440   EPI.ExceptionSpecType = EST_Unevaluated;
   9441   EPI.ExceptionSpecDecl = MoveConstructor;
   9442   MoveConstructor->setType(
   9443       Context.getFunctionType(Context.VoidTy, ArgType, EPI));
   9444 
   9445   // Add the parameter to the constructor.
   9446   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
   9447                                                ClassLoc, ClassLoc,
   9448                                                /*IdentifierInfo=*/0,
   9449                                                ArgType, /*TInfo=*/0,
   9450                                                SC_None,
   9451                                                SC_None, 0);
   9452   MoveConstructor->setParams(FromParam);
   9453 
   9454   MoveConstructor->setTrivial(
   9455     ClassDecl->needsOverloadResolutionForMoveConstructor()
   9456       ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
   9457       : ClassDecl->hasTrivialMoveConstructor());
   9458 
   9459   // C++0x [class.copy]p9:
   9460   //   If the definition of a class X does not explicitly declare a move
   9461   //   constructor, one will be implicitly declared as defaulted if and only if:
   9462   //   [...]
   9463   //   - the move constructor would not be implicitly defined as deleted.
   9464   if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
   9465     // Cache this result so that we don't try to generate this over and over
   9466     // on every lookup, leaking memory and wasting time.
   9467     ClassDecl->setFailedImplicitMoveConstructor();
   9468     return 0;
   9469   }
   9470 
   9471   // Note that we have declared this constructor.
   9472   ++ASTContext::NumImplicitMoveConstructorsDeclared;
   9473 
   9474   if (Scope *S = getScopeForContext(ClassDecl))
   9475     PushOnScopeChains(MoveConstructor, S, false);
   9476   ClassDecl->addDecl(MoveConstructor);
   9477 
   9478   return MoveConstructor;
   9479 }
   9480 
   9481 void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
   9482                                    CXXConstructorDecl *MoveConstructor) {
   9483   assert((MoveConstructor->isDefaulted() &&
   9484           MoveConstructor->isMoveConstructor() &&
   9485           !MoveConstructor->doesThisDeclarationHaveABody() &&
   9486           !MoveConstructor->isDeleted()) &&
   9487          "DefineImplicitMoveConstructor - call it for implicit move ctor");
   9488 
   9489   CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
   9490   assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
   9491 
   9492   SynthesizedFunctionScope Scope(*this, MoveConstructor);
   9493   DiagnosticErrorTrap Trap(Diags);
   9494 
   9495   if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false) ||
   9496       Trap.hasErrorOccurred()) {
   9497     Diag(CurrentLocation, diag::note_member_synthesized_at)
   9498       << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
   9499     MoveConstructor->setInvalidDecl();
   9500   }  else {
   9501     Sema::CompoundScopeRAII CompoundScope(*this);
   9502     MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
   9503                                                MoveConstructor->getLocation(),
   9504                                                MultiStmtArg(),
   9505                                                /*isStmtExpr=*/false)
   9506                                                               .takeAs<Stmt>());
   9507     MoveConstructor->setImplicitlyDefined(true);
   9508   }
   9509 
   9510   MoveConstructor->setUsed();
   9511 
   9512   if (ASTMutationListener *L = getASTMutationListener()) {
   9513     L->CompletedImplicitDefinition(MoveConstructor);
   9514   }
   9515 }
   9516 
   9517 bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
   9518   return FD->isDeleted() &&
   9519          (FD->isDefaulted() || FD->isImplicit()) &&
   9520          isa<CXXMethodDecl>(FD);
   9521 }
   9522 
   9523 /// \brief Mark the call operator of the given lambda closure type as "used".
   9524 static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
   9525   CXXMethodDecl *CallOperator
   9526     = cast<CXXMethodDecl>(
   9527         Lambda->lookup(
   9528           S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
   9529   CallOperator->setReferenced();
   9530   CallOperator->setUsed();
   9531 }
   9532 
   9533 void Sema::DefineImplicitLambdaToFunctionPointerConversion(
   9534        SourceLocation CurrentLocation,
   9535        CXXConversionDecl *Conv)
   9536 {
   9537   CXXRecordDecl *Lambda = Conv->getParent();
   9538 
   9539   // Make sure that the lambda call operator is marked used.
   9540   markLambdaCallOperatorUsed(*this, Lambda);
   9541 
   9542   Conv->setUsed();
   9543 
   9544   SynthesizedFunctionScope Scope(*this, Conv);
   9545   DiagnosticErrorTrap Trap(Diags);
   9546 
   9547   // Return the address of the __invoke function.
   9548   DeclarationName InvokeName = &Context.Idents.get("__invoke");
   9549   CXXMethodDecl *Invoke
   9550     = cast<CXXMethodDecl>(Lambda->lookup(InvokeName).front());
   9551   Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
   9552                                        VK_LValue, Conv->getLocation()).take();
   9553   assert(FunctionRef && "Can't refer to __invoke function?");
   9554   Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
   9555   Conv->setBody(new (Context) CompoundStmt(Context, Return,
   9556                                            Conv->getLocation(),
   9557                                            Conv->getLocation()));
   9558 
   9559   // Fill in the __invoke function with a dummy implementation. IR generation
   9560   // will fill in the actual details.
   9561   Invoke->setUsed();
   9562   Invoke->setReferenced();
   9563   Invoke->setBody(new (Context) CompoundStmt(Conv->getLocation()));
   9564 
   9565   if (ASTMutationListener *L = getASTMutationListener()) {
   9566     L->CompletedImplicitDefinition(Conv);
   9567     L->CompletedImplicitDefinition(Invoke);
   9568   }
   9569 }
   9570 
   9571 void Sema::DefineImplicitLambdaToBlockPointerConversion(
   9572        SourceLocation CurrentLocation,
   9573        CXXConversionDecl *Conv)
   9574 {
   9575   Conv->setUsed();
   9576 
   9577   SynthesizedFunctionScope Scope(*this, Conv);
   9578   DiagnosticErrorTrap Trap(Diags);
   9579 
   9580   // Copy-initialize the lambda object as needed to capture it.
   9581   Expr *This = ActOnCXXThis(CurrentLocation).take();
   9582   Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
   9583 
   9584   ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
   9585                                                         Conv->getLocation(),
   9586                                                         Conv, DerefThis);
   9587 
   9588   // If we're not under ARC, make sure we still get the _Block_copy/autorelease
   9589   // behavior.  Note that only the general conversion function does this
   9590   // (since it's unusable otherwise); in the case where we inline the
   9591   // block literal, it has block literal lifetime semantics.
   9592   if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
   9593     BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
   9594                                           CK_CopyAndAutoreleaseBlockObject,
   9595                                           BuildBlock.get(), 0, VK_RValue);
   9596 
   9597   if (BuildBlock.isInvalid()) {
   9598     Diag(CurrentLocation, diag::note_lambda_to_block_conv);
   9599     Conv->setInvalidDecl();
   9600     return;
   9601   }
   9602 
   9603   // Create the return statement that returns the block from the conversion
   9604   // function.
   9605   StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
   9606   if (Return.isInvalid()) {
   9607     Diag(CurrentLocation, diag::note_lambda_to_block_conv);
   9608     Conv->setInvalidDecl();
   9609     return;
   9610   }
   9611 
   9612   // Set the body of the conversion function.
   9613   Stmt *ReturnS = Return.take();
   9614   Conv->setBody(new (Context) CompoundStmt(Context, ReturnS,
   9615                                            Conv->getLocation(),
   9616                                            Conv->getLocation()));
   9617 
   9618   // We're done; notify the mutation listener, if any.
   9619   if (ASTMutationListener *L = getASTMutationListener()) {
   9620     L->CompletedImplicitDefinition(Conv);
   9621   }
   9622 }
   9623 
   9624 /// \brief Determine whether the given list arguments contains exactly one
   9625 /// "real" (non-default) argument.
   9626 static bool hasOneRealArgument(MultiExprArg Args) {
   9627   switch (Args.size()) {
   9628   case 0:
   9629     return false;
   9630 
   9631   default:
   9632     if (!Args[1]->isDefaultArgument())
   9633       return false;
   9634 
   9635     // fall through
   9636   case 1:
   9637     return !Args[0]->isDefaultArgument();
   9638   }
   9639 
   9640   return false;
   9641 }
   9642 
   9643 ExprResult
   9644 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
   9645                             CXXConstructorDecl *Constructor,
   9646                             MultiExprArg ExprArgs,
   9647                             bool HadMultipleCandidates,
   9648                             bool IsListInitialization,
   9649                             bool RequiresZeroInit,
   9650                             unsigned ConstructKind,
   9651                             SourceRange ParenRange) {
   9652   bool Elidable = false;
   9653 
   9654   // C++0x [class.copy]p34:
   9655   //   When certain criteria are met, an implementation is allowed to
   9656   //   omit the copy/move construction of a class object, even if the
   9657   //   copy/move constructor and/or destructor for the object have
   9658   //   side effects. [...]
   9659   //     - when a temporary class object that has not been bound to a
   9660   //       reference (12.2) would be copied/moved to a class object
   9661   //       with the same cv-unqualified type, the copy/move operation
   9662   //       can be omitted by constructing the temporary object
   9663   //       directly into the target of the omitted copy/move
   9664   if (ConstructKind == CXXConstructExpr::CK_Complete &&
   9665       Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
   9666     Expr *SubExpr = ExprArgs[0];
   9667     Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
   9668   }
   9669 
   9670   return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
   9671                                Elidable, ExprArgs, HadMultipleCandidates,
   9672                                IsListInitialization, RequiresZeroInit,
   9673                                ConstructKind, ParenRange);
   9674 }
   9675 
   9676 /// BuildCXXConstructExpr - Creates a complete call to a constructor,
   9677 /// including handling of its default argument expressions.
   9678 ExprResult
   9679 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
   9680                             CXXConstructorDecl *Constructor, bool Elidable,
   9681                             MultiExprArg ExprArgs,
   9682                             bool HadMultipleCandidates,
   9683                             bool IsListInitialization,
   9684                             bool RequiresZeroInit,
   9685                             unsigned ConstructKind,
   9686                             SourceRange ParenRange) {
   9687   MarkFunctionReferenced(ConstructLoc, Constructor);
   9688   return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
   9689                                         Constructor, Elidable, ExprArgs,
   9690                                         HadMultipleCandidates,
   9691                                         IsListInitialization, RequiresZeroInit,
   9692               static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
   9693                                         ParenRange));
   9694 }
   9695 
   9696 void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
   9697   if (VD->isInvalidDecl()) return;
   9698 
   9699   CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
   9700   if (ClassDecl->isInvalidDecl()) return;
   9701   if (ClassDecl->hasIrrelevantDestructor()) return;
   9702   if (ClassDecl->isDependentContext()) return;
   9703 
   9704   CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
   9705   MarkFunctionReferenced(VD->getLocation(), Destructor);
   9706   CheckDestructorAccess(VD->getLocation(), Destructor,
   9707                         PDiag(diag::err_access_dtor_var)
   9708                         << VD->getDeclName()
   9709                         << VD->getType());
   9710   DiagnoseUseOfDecl(Destructor, VD->getLocation());
   9711 
   9712   if (!VD->hasGlobalStorage()) return;
   9713 
   9714   // Emit warning for non-trivial dtor in global scope (a real global,
   9715   // class-static, function-static).
   9716   Diag(VD->getLocation(), diag::warn_exit_time_destructor);
   9717 
   9718   // TODO: this should be re-enabled for static locals by !CXAAtExit
   9719   if (!VD->isStaticLocal())
   9720     Diag(VD->getLocation(), diag::warn_global_destructor);
   9721 }
   9722 
   9723 /// \brief Given a constructor and the set of arguments provided for the
   9724 /// constructor, convert the arguments and add any required default arguments
   9725 /// to form a proper call to this constructor.
   9726 ///
   9727 /// \returns true if an error occurred, false otherwise.
   9728 bool
   9729 Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
   9730                               MultiExprArg ArgsPtr,
   9731                               SourceLocation Loc,
   9732                               SmallVectorImpl<Expr*> &ConvertedArgs,
   9733                               bool AllowExplicit,
   9734                               bool IsListInitialization) {
   9735   // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
   9736   unsigned NumArgs = ArgsPtr.size();
   9737   Expr **Args = ArgsPtr.data();
   9738 
   9739   const FunctionProtoType *Proto
   9740     = Constructor->getType()->getAs<FunctionProtoType>();
   9741   assert(Proto && "Constructor without a prototype?");
   9742   unsigned NumArgsInProto = Proto->getNumArgs();
   9743 
   9744   // If too few arguments are available, we'll fill in the rest with defaults.
   9745   if (NumArgs < NumArgsInProto)
   9746     ConvertedArgs.reserve(NumArgsInProto);
   9747   else
   9748     ConvertedArgs.reserve(NumArgs);
   9749 
   9750   VariadicCallType CallType =
   9751     Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
   9752   SmallVector<Expr *, 8> AllArgs;
   9753   bool Invalid = GatherArgumentsForCall(Loc, Constructor,
   9754                                         Proto, 0, Args, NumArgs, AllArgs,
   9755                                         CallType, AllowExplicit,
   9756                                         IsListInitialization);
   9757   ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
   9758 
   9759   DiagnoseSentinelCalls(Constructor, Loc, AllArgs.data(), AllArgs.size());
   9760 
   9761   CheckConstructorCall(Constructor,
   9762                        llvm::makeArrayRef<const Expr *>(AllArgs.data(),
   9763                                                         AllArgs.size()),
   9764                        Proto, Loc);
   9765 
   9766   return Invalid;
   9767 }
   9768 
   9769 static inline bool
   9770 CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
   9771                                        const FunctionDecl *FnDecl) {
   9772   const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
   9773   if (isa<NamespaceDecl>(DC)) {
   9774     return SemaRef.Diag(FnDecl->getLocation(),
   9775                         diag::err_operator_new_delete_declared_in_namespace)
   9776       << FnDecl->getDeclName();
   9777   }
   9778 
   9779   if (isa<TranslationUnitDecl>(DC) &&
   9780       FnDecl->getStorageClass() == SC_Static) {
   9781     return SemaRef.Diag(FnDecl->getLocation(),
   9782                         diag::err_operator_new_delete_declared_static)
   9783       << FnDecl->getDeclName();
   9784   }
   9785 
   9786   return false;
   9787 }
   9788 
   9789 static inline bool
   9790 CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
   9791                             CanQualType ExpectedResultType,
   9792                             CanQualType ExpectedFirstParamType,
   9793                             unsigned DependentParamTypeDiag,
   9794                             unsigned InvalidParamTypeDiag) {
   9795   QualType ResultType =
   9796     FnDecl->getType()->getAs<FunctionType>()->getResultType();
   9797 
   9798   // Check that the result type is not dependent.
   9799   if (ResultType->isDependentType())
   9800     return SemaRef.Diag(FnDecl->getLocation(),
   9801                         diag::err_operator_new_delete_dependent_result_type)
   9802     << FnDecl->getDeclName() << ExpectedResultType;
   9803 
   9804   // Check that the result type is what we expect.
   9805   if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
   9806     return SemaRef.Diag(FnDecl->getLocation(),
   9807                         diag::err_operator_new_delete_invalid_result_type)
   9808     << FnDecl->getDeclName() << ExpectedResultType;
   9809 
   9810   // A function template must have at least 2 parameters.
   9811   if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
   9812     return SemaRef.Diag(FnDecl->getLocation(),
   9813                       diag::err_operator_new_delete_template_too_few_parameters)
   9814         << FnDecl->getDeclName();
   9815 
   9816   // The function decl must have at least 1 parameter.
   9817   if (FnDecl->getNumParams() == 0)
   9818     return SemaRef.Diag(FnDecl->getLocation(),
   9819                         diag::err_operator_new_delete_too_few_parameters)
   9820       << FnDecl->getDeclName();
   9821 
   9822   // Check the first parameter type is not dependent.
   9823   QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
   9824   if (FirstParamType->isDependentType())
   9825     return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
   9826       << FnDecl->getDeclName() << ExpectedFirstParamType;
   9827 
   9828   // Check that the first parameter type is what we expect.
   9829   if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
   9830       ExpectedFirstParamType)
   9831     return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
   9832     << FnDecl->getDeclName() << ExpectedFirstParamType;
   9833 
   9834   return false;
   9835 }
   9836 
   9837 static bool
   9838 CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
   9839   // C++ [basic.stc.dynamic.allocation]p1:
   9840   //   A program is ill-formed if an allocation function is declared in a
   9841   //   namespace scope other than global scope or declared static in global
   9842   //   scope.
   9843   if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
   9844     return true;
   9845 
   9846   CanQualType SizeTy =
   9847     SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
   9848 
   9849   // C++ [basic.stc.dynamic.allocation]p1:
   9850   //  The return type shall be void*. The first parameter shall have type
   9851   //  std::size_t.
   9852   if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
   9853                                   SizeTy,
   9854                                   diag::err_operator_new_dependent_param_type,
   9855                                   diag::err_operator_new_param_type))
   9856     return true;
   9857 
   9858   // C++ [basic.stc.dynamic.allocation]p1:
   9859   //  The first parameter shall not have an associated default argument.
   9860   if (FnDecl->getParamDecl(0)->hasDefaultArg())
   9861     return SemaRef.Diag(FnDecl->getLocation(),
   9862                         diag::err_operator_new_default_arg)
   9863       << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
   9864 
   9865   return false;
   9866 }
   9867 
   9868 static bool
   9869 CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
   9870   // C++ [basic.stc.dynamic.deallocation]p1:
   9871   //   A program is ill-formed if deallocation functions are declared in a
   9872   //   namespace scope other than global scope or declared static in global
   9873   //   scope.
   9874   if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
   9875     return true;
   9876 
   9877   // C++ [basic.stc.dynamic.deallocation]p2:
   9878   //   Each deallocation function shall return void and its first parameter
   9879   //   shall be void*.
   9880   if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
   9881                                   SemaRef.Context.VoidPtrTy,
   9882                                  diag::err_operator_delete_dependent_param_type,
   9883                                  diag::err_operator_delete_param_type))
   9884     return true;
   9885 
   9886   return false;
   9887 }
   9888 
   9889 /// CheckOverloadedOperatorDeclaration - Check whether the declaration
   9890 /// of this overloaded operator is well-formed. If so, returns false;
   9891 /// otherwise, emits appropriate diagnostics and returns true.
   9892 bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
   9893   assert(FnDecl && FnDecl->isOverloadedOperator() &&
   9894          "Expected an overloaded operator declaration");
   9895 
   9896   OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
   9897 
   9898   // C++ [over.oper]p5:
   9899   //   The allocation and deallocation functions, operator new,
   9900   //   operator new[], operator delete and operator delete[], are
   9901   //   described completely in 3.7.3. The attributes and restrictions
   9902   //   found in the rest of this subclause do not apply to them unless
   9903   //   explicitly stated in 3.7.3.
   9904   if (Op == OO_Delete || Op == OO_Array_Delete)
   9905     return CheckOperatorDeleteDeclaration(*this, FnDecl);
   9906 
   9907   if (Op == OO_New || Op == OO_Array_New)
   9908     return CheckOperatorNewDeclaration(*this, FnDecl);
   9909 
   9910   // C++ [over.oper]p6:
   9911   //   An operator function shall either be a non-static member
   9912   //   function or be a non-member function and have at least one
   9913   //   parameter whose type is a class, a reference to a class, an
   9914   //   enumeration, or a reference to an enumeration.
   9915   if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
   9916     if (MethodDecl->isStatic())
   9917       return Diag(FnDecl->getLocation(),
   9918                   diag::err_operator_overload_static) << FnDecl->getDeclName();
   9919   } else {
   9920     bool ClassOrEnumParam = false;
   9921     for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
   9922                                    ParamEnd = FnDecl->param_end();
   9923          Param != ParamEnd; ++Param) {
   9924       QualType ParamType = (*Param)->getType().getNonReferenceType();
   9925       if (ParamType->isDependentType() || ParamType->isRecordType() ||
   9926           ParamType->isEnumeralType()) {
   9927         ClassOrEnumParam = true;
   9928         break;
   9929       }
   9930     }
   9931 
   9932     if (!ClassOrEnumParam)
   9933       return Diag(FnDecl->getLocation(),
   9934                   diag::err_operator_overload_needs_class_or_enum)
   9935         << FnDecl->getDeclName();
   9936   }
   9937 
   9938   // C++ [over.oper]p8:
   9939   //   An operator function cannot have default arguments (8.3.6),
   9940   //   except where explicitly stated below.
   9941   //
   9942   // Only the function-call operator allows default arguments
   9943   // (C++ [over.call]p1).
   9944   if (Op != OO_Call) {
   9945     for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
   9946          Param != FnDecl->param_end(); ++Param) {
   9947       if ((*Param)->hasDefaultArg())
   9948         return Diag((*Param)->getLocation(),
   9949                     diag::err_operator_overload_default_arg)
   9950           << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
   9951     }
   9952   }
   9953 
   9954   static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
   9955     { false, false, false }
   9956 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
   9957     , { Unary, Binary, MemberOnly }
   9958 #include "clang/Basic/OperatorKinds.def"
   9959   };
   9960 
   9961   bool CanBeUnaryOperator = OperatorUses[Op][0];
   9962   bool CanBeBinaryOperator = OperatorUses[Op][1];
   9963   bool MustBeMemberOperator = OperatorUses[Op][2];
   9964 
   9965   // C++ [over.oper]p8:
   9966   //   [...] Operator functions cannot have more or fewer parameters
   9967   //   than the number required for the corresponding operator, as
   9968   //   described in the rest of this subclause.
   9969   unsigned NumParams = FnDecl->getNumParams()
   9970                      + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
   9971   if (Op != OO_Call &&
   9972       ((NumParams == 1 && !CanBeUnaryOperator) ||
   9973        (NumParams == 2 && !CanBeBinaryOperator) ||
   9974        (NumParams < 1) || (NumParams > 2))) {
   9975     // We have the wrong number of parameters.
   9976     unsigned ErrorKind;
   9977     if (CanBeUnaryOperator && CanBeBinaryOperator) {
   9978       ErrorKind = 2;  // 2 -> unary or binary.
   9979     } else if (CanBeUnaryOperator) {
   9980       ErrorKind = 0;  // 0 -> unary
   9981     } else {
   9982       assert(CanBeBinaryOperator &&
   9983              "All non-call overloaded operators are unary or binary!");
   9984       ErrorKind = 1;  // 1 -> binary
   9985     }
   9986 
   9987     return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
   9988       << FnDecl->getDeclName() << NumParams << ErrorKind;
   9989   }
   9990 
   9991   // Overloaded operators other than operator() cannot be variadic.
   9992   if (Op != OO_Call &&
   9993       FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
   9994     return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
   9995       << FnDecl->getDeclName();
   9996   }
   9997 
   9998   // Some operators must be non-static member functions.
   9999   if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
   10000     return Diag(FnDecl->getLocation(),
   10001                 diag::err_operator_overload_must_be_member)
   10002       << FnDecl->getDeclName();
   10003   }
   10004 
   10005   // C++ [over.inc]p1:
   10006   //   The user-defined function called operator++ implements the
   10007   //   prefix and postfix ++ operator. If this function is a member
   10008   //   function with no parameters, or a non-member function with one
   10009   //   parameter of class or enumeration type, it defines the prefix
   10010   //   increment operator ++ for objects of that type. If the function
   10011   //   is a member function with one parameter (which shall be of type
   10012   //   int) or a non-member function with two parameters (the second
   10013   //   of which shall be of type int), it defines the postfix
   10014   //   increment operator ++ for objects of that type.
   10015   if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
   10016     ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
   10017     bool ParamIsInt = false;
   10018     if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
   10019       ParamIsInt = BT->getKind() == BuiltinType::Int;
   10020 
   10021     if (!ParamIsInt)
   10022       return Diag(LastParam->getLocation(),
   10023                   diag::err_operator_overload_post_incdec_must_be_int)
   10024         << LastParam->getType() << (Op == OO_MinusMinus);
   10025   }
   10026 
   10027   return false;
   10028 }
   10029 
   10030 /// CheckLiteralOperatorDeclaration - Check whether the declaration
   10031 /// of this literal operator function is well-formed. If so, returns
   10032 /// false; otherwise, emits appropriate diagnostics and returns true.
   10033 bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
   10034   if (isa<CXXMethodDecl>(FnDecl)) {
   10035     Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
   10036       << FnDecl->getDeclName();
   10037     return true;
   10038   }
   10039 
   10040   if (FnDecl->isExternC()) {
   10041     Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
   10042     return true;
   10043   }
   10044 
   10045   bool Valid = false;
   10046 
   10047   // This might be the definition of a literal operator template.
   10048   FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
   10049   // This might be a specialization of a literal operator template.
   10050   if (!TpDecl)
   10051     TpDecl = FnDecl->getPrimaryTemplate();
   10052 
   10053   // template <char...> type operator "" name() is the only valid template
   10054   // signature, and the only valid signature with no parameters.
   10055   if (TpDecl) {
   10056     if (FnDecl->param_size() == 0) {
   10057       // Must have only one template parameter
   10058       TemplateParameterList *Params = TpDecl->getTemplateParameters();
   10059       if (Params->size() == 1) {
   10060         NonTypeTemplateParmDecl *PmDecl =
   10061           dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(0));
   10062 
   10063         // The template parameter must be a char parameter pack.
   10064         if (PmDecl && PmDecl->isTemplateParameterPack() &&
   10065             Context.hasSameType(PmDecl->getType(), Context.CharTy))
   10066           Valid = true;
   10067       }
   10068     }
   10069   } else if (FnDecl->param_size()) {
   10070     // Check the first parameter
   10071     FunctionDecl::param_iterator Param = FnDecl->param_begin();
   10072 
   10073     QualType T = (*Param)->getType().getUnqualifiedType();
   10074 
   10075     // unsigned long long int, long double, and any character type are allowed
   10076     // as the only parameters.
   10077     if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
   10078         Context.hasSameType(T, Context.LongDoubleTy) ||
   10079         Context.hasSameType(T, Context.CharTy) ||
   10080         Context.hasSameType(T, Context.WCharTy) ||
   10081         Context.hasSameType(T, Context.Char16Ty) ||
   10082         Context.hasSameType(T, Context.Char32Ty)) {
   10083       if (++Param == FnDecl->param_end())
   10084         Valid = true;
   10085       goto FinishedParams;
   10086     }
   10087 
   10088     // Otherwise it must be a pointer to const; let's strip those qualifiers.
   10089     const PointerType *PT = T->getAs<PointerType>();
   10090     if (!PT)
   10091       goto FinishedParams;
   10092     T = PT->getPointeeType();
   10093     if (!T.isConstQualified() || T.isVolatileQualified())
   10094       goto FinishedParams;
   10095     T = T.getUnqualifiedType();
   10096 
   10097     // Move on to the second parameter;
   10098     ++Param;
   10099 
   10100     // If there is no second parameter, the first must be a const char *
   10101     if (Param == FnDecl->param_end()) {
   10102       if (Context.hasSameType(T, Context.CharTy))
   10103         Valid = true;
   10104       goto FinishedParams;
   10105     }
   10106 
   10107     // const char *, const wchar_t*, const char16_t*, and const char32_t*
   10108     // are allowed as the first parameter to a two-parameter function
   10109     if (!(Context.hasSameType(T, Context.CharTy) ||
   10110           Context.hasSameType(T, Context.WCharTy) ||
   10111           Context.hasSameType(T, Context.Char16Ty) ||
   10112           Context.hasSameType(T, Context.Char32Ty)))
   10113       goto FinishedParams;
   10114 
   10115     // The second and final parameter must be an std::size_t
   10116     T = (*Param)->getType().getUnqualifiedType();
   10117     if (Context.hasSameType(T, Context.getSizeType()) &&
   10118         ++Param == FnDecl->param_end())
   10119       Valid = true;
   10120   }
   10121 
   10122   // FIXME: This diagnostic is absolutely terrible.
   10123 FinishedParams:
   10124   if (!Valid) {
   10125     Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
   10126       << FnDecl->getDeclName();
   10127     return true;
   10128   }
   10129 
   10130   // A parameter-declaration-clause containing a default argument is not
   10131   // equivalent to any of the permitted forms.
   10132   for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
   10133                                     ParamEnd = FnDecl->param_end();
   10134        Param != ParamEnd; ++Param) {
   10135     if ((*Param)->hasDefaultArg()) {
   10136       Diag((*Param)->getDefaultArgRange().getBegin(),
   10137            diag::err_literal_operator_default_argument)
   10138         << (*Param)->getDefaultArgRange();
   10139       break;
   10140     }
   10141   }
   10142 
   10143   StringRef LiteralName
   10144     = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
   10145   if (LiteralName[0] != '_') {
   10146     // C++11 [usrlit.suffix]p1:
   10147     //   Literal suffix identifiers that do not start with an underscore
   10148     //   are reserved for future standardization.
   10149     Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
   10150   }
   10151 
   10152   return false;
   10153 }
   10154 
   10155 /// ActOnStartLinkageSpecification - Parsed the beginning of a C++
   10156 /// linkage specification, including the language and (if present)
   10157 /// the '{'. ExternLoc is the location of the 'extern', LangLoc is
   10158 /// the location of the language string literal, which is provided
   10159 /// by Lang/StrSize. LBraceLoc, if valid, provides the location of
   10160 /// the '{' brace. Otherwise, this linkage specification does not
   10161 /// have any braces.
   10162 Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
   10163                                            SourceLocation LangLoc,
   10164                                            StringRef Lang,
   10165                                            SourceLocation LBraceLoc) {
   10166   LinkageSpecDecl::LanguageIDs Language;
   10167   if (Lang == "\"C\"")
   10168     Language = LinkageSpecDecl::lang_c;
   10169   else if (Lang == "\"C++\"")
   10170     Language = LinkageSpecDecl::lang_cxx;
   10171   else {
   10172     Diag(LangLoc, diag::err_bad_language);
   10173     return 0;
   10174   }
   10175 
   10176   // FIXME: Add all the various semantics of linkage specifications
   10177 
   10178   LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
   10179                                                ExternLoc, LangLoc, Language);
   10180   CurContext->addDecl(D);
   10181   PushDeclContext(S, D);
   10182   return D;
   10183 }
   10184 
   10185 /// ActOnFinishLinkageSpecification - Complete the definition of
   10186 /// the C++ linkage specification LinkageSpec. If RBraceLoc is
   10187 /// valid, it's the position of the closing '}' brace in a linkage
   10188 /// specification that uses braces.
   10189 Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
   10190                                             Decl *LinkageSpec,
   10191                                             SourceLocation RBraceLoc) {
   10192   if (LinkageSpec) {
   10193     if (RBraceLoc.isValid()) {
   10194       LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
   10195       LSDecl->setRBraceLoc(RBraceLoc);
   10196     }
   10197     PopDeclContext();
   10198   }
   10199   return LinkageSpec;
   10200 }
   10201 
   10202 Decl *Sema::ActOnEmptyDeclaration(Scope *S,
   10203                                   AttributeList *AttrList,
   10204                                   SourceLocation SemiLoc) {
   10205   Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
   10206   // Attribute declarations appertain to empty declaration so we handle
   10207   // them here.
   10208   if (AttrList)
   10209     ProcessDeclAttributeList(S, ED, AttrList);
   10210 
   10211   CurContext->addDecl(ED);
   10212   return ED;
   10213 }
   10214 
   10215 /// \brief Perform semantic analysis for the variable declaration that
   10216 /// occurs within a C++ catch clause, returning the newly-created
   10217 /// variable.
   10218 VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
   10219                                          TypeSourceInfo *TInfo,
   10220                                          SourceLocation StartLoc,
   10221                                          SourceLocation Loc,
   10222                                          IdentifierInfo *Name) {
   10223   bool Invalid = false;
   10224   QualType ExDeclType = TInfo->getType();
   10225 
   10226   // Arrays and functions decay.
   10227   if (ExDeclType->isArrayType())
   10228     ExDeclType = Context.getArrayDecayedType(ExDeclType);
   10229   else if (ExDeclType->isFunctionType())
   10230     ExDeclType = Context.getPointerType(ExDeclType);
   10231 
   10232   // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
   10233   // The exception-declaration shall not denote a pointer or reference to an
   10234   // incomplete type, other than [cv] void*.
   10235   // N2844 forbids rvalue references.
   10236   if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
   10237     Diag(Loc, diag::err_catch_rvalue_ref);
   10238     Invalid = true;
   10239   }
   10240 
   10241   QualType BaseType = ExDeclType;
   10242   int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
   10243   unsigned DK = diag::err_catch_incomplete;
   10244   if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
   10245     BaseType = Ptr->getPointeeType();
   10246     Mode = 1;
   10247     DK = diag::err_catch_incomplete_ptr;
   10248   } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
   10249     // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
   10250     BaseType = Ref->getPointeeType();
   10251     Mode = 2;
   10252     DK = diag::err_catch_incomplete_ref;
   10253   }
   10254   if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
   10255       !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
   10256     Invalid = true;
   10257 
   10258   if (!Invalid && !ExDeclType->isDependentType() &&
   10259       RequireNonAbstractType(Loc, ExDeclType,
   10260                              diag::err_abstract_type_in_decl,
   10261                              AbstractVariableType))
   10262     Invalid = true;
   10263 
   10264   // Only the non-fragile NeXT runtime currently supports C++ catches
   10265   // of ObjC types, and no runtime supports catching ObjC types by value.
   10266   if (!Invalid && getLangOpts().ObjC1) {
   10267     QualType T = ExDeclType;
   10268     if (const ReferenceType *RT = T->getAs<ReferenceType>())
   10269       T = RT->getPointeeType();
   10270 
   10271     if (T->isObjCObjectType()) {
   10272       Diag(Loc, diag::err_objc_object_catch);
   10273       Invalid = true;
   10274     } else if (T->isObjCObjectPointerType()) {
   10275       // FIXME: should this be a test for macosx-fragile specifically?
   10276       if (getLangOpts().ObjCRuntime.isFragile())
   10277         Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
   10278     }
   10279   }
   10280 
   10281   VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
   10282                                     ExDeclType, TInfo, SC_None, SC_None);
   10283   ExDecl->setExceptionVariable(true);
   10284 
   10285   // In ARC, infer 'retaining' for variables of retainable type.
   10286   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
   10287     Invalid = true;
   10288 
   10289   if (!Invalid && !ExDeclType->isDependentType()) {
   10290     if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
   10291       // C++ [except.handle]p16:
   10292       //   The object declared in an exception-declaration or, if the
   10293       //   exception-declaration does not specify a name, a temporary (12.2) is
   10294       //   copy-initialized (8.5) from the exception object. [...]
   10295       //   The object is destroyed when the handler exits, after the destruction
   10296       //   of any automatic objects initialized within the handler.
   10297       //
   10298       // We just pretend to initialize the object with itself, then make sure
   10299       // it can be destroyed later.
   10300       QualType initType = ExDeclType;
   10301 
   10302       InitializedEntity entity =
   10303         InitializedEntity::InitializeVariable(ExDecl);
   10304       InitializationKind initKind =
   10305         InitializationKind::CreateCopy(Loc, SourceLocation());
   10306 
   10307       Expr *opaqueValue =
   10308         new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
   10309       InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
   10310       ExprResult result = sequence.Perform(*this, entity, initKind,
   10311                                            MultiExprArg(&opaqueValue, 1));
   10312       if (result.isInvalid())
   10313         Invalid = true;
   10314       else {
   10315         // If the constructor used was non-trivial, set this as the
   10316         // "initializer".
   10317         CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
   10318         if (!construct->getConstructor()->isTrivial()) {
   10319           Expr *init = MaybeCreateExprWithCleanups(construct);
   10320           ExDecl->setInit(init);
   10321         }
   10322 
   10323         // And make sure it's destructable.
   10324         FinalizeVarWithDestructor(ExDecl, recordType);
   10325       }
   10326     }
   10327   }
   10328 
   10329   if (Invalid)
   10330     ExDecl->setInvalidDecl();
   10331 
   10332   return ExDecl;
   10333 }
   10334 
   10335 /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
   10336 /// handler.
   10337 Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
   10338   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   10339   bool Invalid = D.isInvalidType();
   10340 
   10341   // Check for unexpanded parameter packs.
   10342   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
   10343                                       UPPC_ExceptionType)) {
   10344     TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
   10345                                              D.getIdentifierLoc());
   10346     Invalid = true;
   10347   }
   10348 
   10349   IdentifierInfo *II = D.getIdentifier();
   10350   if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
   10351                                              LookupOrdinaryName,
   10352                                              ForRedeclaration)) {
   10353     // The scope should be freshly made just for us. There is just no way
   10354     // it contains any previous declaration.
   10355     assert(!S->isDeclScope(PrevDecl));
   10356     if (PrevDecl->isTemplateParameter()) {
   10357       // Maybe we will complain about the shadowed template parameter.
   10358       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
   10359       PrevDecl = 0;
   10360     }
   10361   }
   10362 
   10363   if (D.getCXXScopeSpec().isSet() && !Invalid) {
   10364     Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
   10365       << D.getCXXScopeSpec().getRange();
   10366     Invalid = true;
   10367   }
   10368 
   10369   VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
   10370                                               D.getLocStart(),
   10371                                               D.getIdentifierLoc(),
   10372                                               D.getIdentifier());
   10373   if (Invalid)
   10374     ExDecl->setInvalidDecl();
   10375 
   10376   // Add the exception declaration into this scope.
   10377   if (II)
   10378     PushOnScopeChains(ExDecl, S);
   10379   else
   10380     CurContext->addDecl(ExDecl);
   10381 
   10382   ProcessDeclAttributes(S, ExDecl, D);
   10383   return ExDecl;
   10384 }
   10385 
   10386 Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
   10387                                          Expr *AssertExpr,
   10388                                          Expr *AssertMessageExpr,
   10389                                          SourceLocation RParenLoc) {
   10390   StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr);
   10391 
   10392   if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
   10393     return 0;
   10394 
   10395   return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
   10396                                       AssertMessage, RParenLoc, false);
   10397 }
   10398 
   10399 Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
   10400                                          Expr *AssertExpr,
   10401                                          StringLiteral *AssertMessage,
   10402                                          SourceLocation RParenLoc,
   10403                                          bool Failed) {
   10404   if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
   10405       !Failed) {
   10406     // In a static_assert-declaration, the constant-expression shall be a
   10407     // constant expression that can be contextually converted to bool.
   10408     ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
   10409     if (Converted.isInvalid())
   10410       Failed = true;
   10411 
   10412     llvm::APSInt Cond;
   10413     if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
   10414           diag::err_static_assert_expression_is_not_constant,
   10415           /*AllowFold=*/false).isInvalid())
   10416       Failed = true;
   10417 
   10418     if (!Failed && !Cond) {
   10419       SmallString<256> MsgBuffer;
   10420       llvm::raw_svector_ostream Msg(MsgBuffer);
   10421       AssertMessage->printPretty(Msg, 0, getPrintingPolicy());
   10422       Diag(StaticAssertLoc, diag::err_static_assert_failed)
   10423         << Msg.str() << AssertExpr->getSourceRange();
   10424       Failed = true;
   10425     }
   10426   }
   10427 
   10428   Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
   10429                                         AssertExpr, AssertMessage, RParenLoc,
   10430                                         Failed);
   10431 
   10432   CurContext->addDecl(Decl);
   10433   return Decl;
   10434 }
   10435 
   10436 /// \brief Perform semantic analysis of the given friend type declaration.
   10437 ///
   10438 /// \returns A friend declaration that.
   10439 FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
   10440                                       SourceLocation FriendLoc,
   10441                                       TypeSourceInfo *TSInfo) {
   10442   assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
   10443 
   10444   QualType T = TSInfo->getType();
   10445   SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
   10446 
   10447   // C++03 [class.friend]p2:
   10448   //   An elaborated-type-specifier shall be used in a friend declaration
   10449   //   for a class.*
   10450   //
   10451   //   * The class-key of the elaborated-type-specifier is required.
   10452   if (!ActiveTemplateInstantiations.empty()) {
   10453     // Do not complain about the form of friend template types during
   10454     // template instantiation; we will already have complained when the
   10455     // template was declared.
   10456   } else {
   10457     if (!T->isElaboratedTypeSpecifier()) {
   10458       // If we evaluated the type to a record type, suggest putting
   10459       // a tag in front.
   10460       if (const RecordType *RT = T->getAs<RecordType>()) {
   10461         RecordDecl *RD = RT->getDecl();
   10462 
   10463         std::string InsertionText = std::string(" ") + RD->getKindName();
   10464 
   10465         Diag(TypeRange.getBegin(),
   10466              getLangOpts().CPlusPlus11 ?
   10467                diag::warn_cxx98_compat_unelaborated_friend_type :
   10468                diag::ext_unelaborated_friend_type)
   10469           << (unsigned) RD->getTagKind()
   10470           << T
   10471           << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
   10472                                         InsertionText);
   10473       } else {
   10474         Diag(FriendLoc,
   10475              getLangOpts().CPlusPlus11 ?
   10476                diag::warn_cxx98_compat_nonclass_type_friend :
   10477                diag::ext_nonclass_type_friend)
   10478           << T
   10479           << TypeRange;
   10480       }
   10481     } else if (T->getAs<EnumType>()) {
   10482       Diag(FriendLoc,
   10483            getLangOpts().CPlusPlus11 ?
   10484              diag::warn_cxx98_compat_enum_friend :
   10485              diag::ext_enum_friend)
   10486         << T
   10487         << TypeRange;
   10488     }
   10489 
   10490     // C++11 [class.friend]p3:
   10491     //   A friend declaration that does not declare a function shall have one
   10492     //   of the following forms:
   10493     //     friend elaborated-type-specifier ;
   10494     //     friend simple-type-specifier ;
   10495     //     friend typename-specifier ;
   10496     if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
   10497       Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
   10498   }
   10499 
   10500   //   If the type specifier in a friend declaration designates a (possibly
   10501   //   cv-qualified) class type, that class is declared as a friend; otherwise,
   10502   //   the friend declaration is ignored.
   10503   return FriendDecl::Create(Context, CurContext, LocStart, TSInfo, FriendLoc);
   10504 }
   10505 
   10506 /// Handle a friend tag declaration where the scope specifier was
   10507 /// templated.
   10508 Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
   10509                                     unsigned TagSpec, SourceLocation TagLoc,
   10510                                     CXXScopeSpec &SS,
   10511                                     IdentifierInfo *Name,
   10512                                     SourceLocation NameLoc,
   10513                                     AttributeList *Attr,
   10514                                     MultiTemplateParamsArg TempParamLists) {
   10515   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
   10516 
   10517   bool isExplicitSpecialization = false;
   10518   bool Invalid = false;
   10519 
   10520   if (TemplateParameterList *TemplateParams
   10521         = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
   10522                                                   TempParamLists.data(),
   10523                                                   TempParamLists.size(),
   10524                                                   /*friend*/ true,
   10525                                                   isExplicitSpecialization,
   10526                                                   Invalid)) {
   10527     if (TemplateParams->size() > 0) {
   10528       // This is a declaration of a class template.
   10529       if (Invalid)
   10530         return 0;
   10531 
   10532       return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
   10533                                 SS, Name, NameLoc, Attr,
   10534                                 TemplateParams, AS_public,
   10535                                 /*ModulePrivateLoc=*/SourceLocation(),
   10536                                 TempParamLists.size() - 1,
   10537                                 TempParamLists.data()).take();
   10538     } else {
   10539       // The "template<>" header is extraneous.
   10540       Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
   10541         << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
   10542       isExplicitSpecialization = true;
   10543     }
   10544   }
   10545 
   10546   if (Invalid) return 0;
   10547 
   10548   bool isAllExplicitSpecializations = true;
   10549   for (unsigned I = TempParamLists.size(); I-- > 0; ) {
   10550     if (TempParamLists[I]->size()) {
   10551       isAllExplicitSpecializations = false;
   10552       break;
   10553     }
   10554   }
   10555 
   10556   // FIXME: don't ignore attributes.
   10557 
   10558   // If it's explicit specializations all the way down, just forget
   10559   // about the template header and build an appropriate non-templated
   10560   // friend.  TODO: for source fidelity, remember the headers.
   10561   if (isAllExplicitSpecializations) {
   10562     if (SS.isEmpty()) {
   10563       bool Owned = false;
   10564       bool IsDependent = false;
   10565       return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
   10566                       Attr, AS_public,
   10567                       /*ModulePrivateLoc=*/SourceLocation(),
   10568                       MultiTemplateParamsArg(), Owned, IsDependent,
   10569                       /*ScopedEnumKWLoc=*/SourceLocation(),
   10570                       /*ScopedEnumUsesClassTag=*/false,
   10571                       /*UnderlyingType=*/TypeResult());
   10572     }
   10573 
   10574     NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
   10575     ElaboratedTypeKeyword Keyword
   10576       = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
   10577     QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
   10578                                    *Name, NameLoc);
   10579     if (T.isNull())
   10580       return 0;
   10581 
   10582     TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
   10583     if (isa<DependentNameType>(T)) {
   10584       DependentNameTypeLoc TL =
   10585           TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
   10586       TL.setElaboratedKeywordLoc(TagLoc);
   10587       TL.setQualifierLoc(QualifierLoc);
   10588       TL.setNameLoc(NameLoc);
   10589     } else {
   10590       ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
   10591       TL.setElaboratedKeywordLoc(TagLoc);
   10592       TL.setQualifierLoc(QualifierLoc);
   10593       TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
   10594     }
   10595 
   10596     FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
   10597                                             TSI, FriendLoc, TempParamLists);
   10598     Friend->setAccess(AS_public);
   10599     CurContext->addDecl(Friend);
   10600     return Friend;
   10601   }
   10602 
   10603   assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
   10604 
   10605 
   10606 
   10607   // Handle the case of a templated-scope friend class.  e.g.
   10608   //   template <class T> class A<T>::B;
   10609   // FIXME: we don't support these right now.
   10610   ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
   10611   QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
   10612   TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
   10613   DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
   10614   TL.setElaboratedKeywordLoc(TagLoc);
   10615   TL.setQualifierLoc(SS.getWithLocInContext(Context));
   10616   TL.setNameLoc(NameLoc);
   10617 
   10618   FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
   10619                                           TSI, FriendLoc, TempParamLists);
   10620   Friend->setAccess(AS_public);
   10621   Friend->setUnsupportedFriend(true);
   10622   CurContext->addDecl(Friend);
   10623   return Friend;
   10624 }
   10625 
   10626 
   10627 /// Handle a friend type declaration.  This works in tandem with
   10628 /// ActOnTag.
   10629 ///
   10630 /// Notes on friend class templates:
   10631 ///
   10632 /// We generally treat friend class declarations as if they were
   10633 /// declaring a class.  So, for example, the elaborated type specifier
   10634 /// in a friend declaration is required to obey the restrictions of a
   10635 /// class-head (i.e. no typedefs in the scope chain), template
   10636 /// parameters are required to match up with simple template-ids, &c.
   10637 /// However, unlike when declaring a template specialization, it's
   10638 /// okay to refer to a template specialization without an empty
   10639 /// template parameter declaration, e.g.
   10640 ///   friend class A<T>::B<unsigned>;
   10641 /// We permit this as a special case; if there are any template
   10642 /// parameters present at all, require proper matching, i.e.
   10643 ///   template <> template \<class T> friend class A<int>::B;
   10644 Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
   10645                                 MultiTemplateParamsArg TempParams) {
   10646   SourceLocation Loc = DS.getLocStart();
   10647 
   10648   assert(DS.isFriendSpecified());
   10649   assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
   10650 
   10651   // Try to convert the decl specifier to a type.  This works for
   10652   // friend templates because ActOnTag never produces a ClassTemplateDecl
   10653   // for a TUK_Friend.
   10654   Declarator TheDeclarator(DS, Declarator::MemberContext);
   10655   TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
   10656   QualType T = TSI->getType();
   10657   if (TheDeclarator.isInvalidType())
   10658     return 0;
   10659 
   10660   if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
   10661     return 0;
   10662 
   10663   // This is definitely an error in C++98.  It's probably meant to
   10664   // be forbidden in C++0x, too, but the specification is just
   10665   // poorly written.
   10666   //
   10667   // The problem is with declarations like the following:
   10668   //   template <T> friend A<T>::foo;
   10669   // where deciding whether a class C is a friend or not now hinges
   10670   // on whether there exists an instantiation of A that causes
   10671   // 'foo' to equal C.  There are restrictions on class-heads
   10672   // (which we declare (by fiat) elaborated friend declarations to
   10673   // be) that makes this tractable.
   10674   //
   10675   // FIXME: handle "template <> friend class A<T>;", which
   10676   // is possibly well-formed?  Who even knows?
   10677   if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
   10678     Diag(Loc, diag::err_tagless_friend_type_template)
   10679       << DS.getSourceRange();
   10680     return 0;
   10681   }
   10682 
   10683   // C++98 [class.friend]p1: A friend of a class is a function
   10684   //   or class that is not a member of the class . . .
   10685   // This is fixed in DR77, which just barely didn't make the C++03
   10686   // deadline.  It's also a very silly restriction that seriously
   10687   // affects inner classes and which nobody else seems to implement;
   10688   // thus we never diagnose it, not even in -pedantic.
   10689   //
   10690   // But note that we could warn about it: it's always useless to
   10691   // friend one of your own members (it's not, however, worthless to
   10692   // friend a member of an arbitrary specialization of your template).
   10693 
   10694   Decl *D;
   10695   if (unsigned NumTempParamLists = TempParams.size())
   10696     D = FriendTemplateDecl::Create(Context, CurContext, Loc,
   10697                                    NumTempParamLists,
   10698                                    TempParams.data(),
   10699                                    TSI,
   10700                                    DS.getFriendSpecLoc());
   10701   else
   10702     D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
   10703 
   10704   if (!D)
   10705     return 0;
   10706 
   10707   D->setAccess(AS_public);
   10708   CurContext->addDecl(D);
   10709 
   10710   return D;
   10711 }
   10712 
   10713 NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
   10714                                         MultiTemplateParamsArg TemplateParams) {
   10715   const DeclSpec &DS = D.getDeclSpec();
   10716 
   10717   assert(DS.isFriendSpecified());
   10718   assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
   10719 
   10720   SourceLocation Loc = D.getIdentifierLoc();
   10721   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   10722 
   10723   // C++ [class.friend]p1
   10724   //   A friend of a class is a function or class....
   10725   // Note that this sees through typedefs, which is intended.
   10726   // It *doesn't* see through dependent types, which is correct
   10727   // according to [temp.arg.type]p3:
   10728   //   If a declaration acquires a function type through a
   10729   //   type dependent on a template-parameter and this causes
   10730   //   a declaration that does not use the syntactic form of a
   10731   //   function declarator to have a function type, the program
   10732   //   is ill-formed.
   10733   if (!TInfo->getType()->isFunctionType()) {
   10734     Diag(Loc, diag::err_unexpected_friend);
   10735 
   10736     // It might be worthwhile to try to recover by creating an
   10737     // appropriate declaration.
   10738     return 0;
   10739   }
   10740 
   10741   // C++ [namespace.memdef]p3
   10742   //  - If a friend declaration in a non-local class first declares a
   10743   //    class or function, the friend class or function is a member
   10744   //    of the innermost enclosing namespace.
   10745   //  - The name of the friend is not found by simple name lookup
   10746   //    until a matching declaration is provided in that namespace
   10747   //    scope (either before or after the class declaration granting
   10748   //    friendship).
   10749   //  - If a friend function is called, its name may be found by the
   10750   //    name lookup that considers functions from namespaces and
   10751   //    classes associated with the types of the function arguments.
   10752   //  - When looking for a prior declaration of a class or a function
   10753   //    declared as a friend, scopes outside the innermost enclosing
   10754   //    namespace scope are not considered.
   10755 
   10756   CXXScopeSpec &SS = D.getCXXScopeSpec();
   10757   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
   10758   DeclarationName Name = NameInfo.getName();
   10759   assert(Name);
   10760 
   10761   // Check for unexpanded parameter packs.
   10762   if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
   10763       DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
   10764       DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
   10765     return 0;
   10766 
   10767   // The context we found the declaration in, or in which we should
   10768   // create the declaration.
   10769   DeclContext *DC;
   10770   Scope *DCScope = S;
   10771   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
   10772                         ForRedeclaration);
   10773 
   10774   // FIXME: there are different rules in local classes
   10775 
   10776   // There are four cases here.
   10777   //   - There's no scope specifier, in which case we just go to the
   10778   //     appropriate scope and look for a function or function template
   10779   //     there as appropriate.
   10780   // Recover from invalid scope qualifiers as if they just weren't there.
   10781   if (SS.isInvalid() || !SS.isSet()) {
   10782     // C++0x [namespace.memdef]p3:
   10783     //   If the name in a friend declaration is neither qualified nor
   10784     //   a template-id and the declaration is a function or an
   10785     //   elaborated-type-specifier, the lookup to determine whether
   10786     //   the entity has been previously declared shall not consider
   10787     //   any scopes outside the innermost enclosing namespace.
   10788     // C++0x [class.friend]p11:
   10789     //   If a friend declaration appears in a local class and the name
   10790     //   specified is an unqualified name, a prior declaration is
   10791     //   looked up without considering scopes that are outside the
   10792     //   innermost enclosing non-class scope. For a friend function
   10793     //   declaration, if there is no prior declaration, the program is
   10794     //   ill-formed.
   10795     bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
   10796     bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
   10797 
   10798     // Find the appropriate context according to the above.
   10799     DC = CurContext;
   10800     while (true) {
   10801       // Skip class contexts.  If someone can cite chapter and verse
   10802       // for this behavior, that would be nice --- it's what GCC and
   10803       // EDG do, and it seems like a reasonable intent, but the spec
   10804       // really only says that checks for unqualified existing
   10805       // declarations should stop at the nearest enclosing namespace,
   10806       // not that they should only consider the nearest enclosing
   10807       // namespace.
   10808       while (DC->isRecord() || DC->isTransparentContext())
   10809         DC = DC->getParent();
   10810 
   10811       LookupQualifiedName(Previous, DC);
   10812 
   10813       // TODO: decide what we think about using declarations.
   10814       if (isLocal || !Previous.empty())
   10815         break;
   10816 
   10817       if (isTemplateId) {
   10818         if (isa<TranslationUnitDecl>(DC)) break;
   10819       } else {
   10820         if (DC->isFileContext()) break;
   10821       }
   10822       DC = DC->getParent();
   10823     }
   10824 
   10825     // C++ [class.friend]p1: A friend of a class is a function or
   10826     //   class that is not a member of the class . . .
   10827     // C++11 changes this for both friend types and functions.
   10828     // Most C++ 98 compilers do seem to give an error here, so
   10829     // we do, too.
   10830     if (!Previous.empty() && DC->Equals(CurContext))
   10831       Diag(DS.getFriendSpecLoc(),
   10832            getLangOpts().CPlusPlus11 ?
   10833              diag::warn_cxx98_compat_friend_is_member :
   10834              diag::err_friend_is_member);
   10835 
   10836     DCScope = getScopeForDeclContext(S, DC);
   10837 
   10838     // C++ [class.friend]p6:
   10839     //   A function can be defined in a friend declaration of a class if and
   10840     //   only if the class is a non-local class (9.8), the function name is
   10841     //   unqualified, and the function has namespace scope.
   10842     if (isLocal && D.isFunctionDefinition()) {
   10843       Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
   10844     }
   10845 
   10846   //   - There's a non-dependent scope specifier, in which case we
   10847   //     compute it and do a previous lookup there for a function
   10848   //     or function template.
   10849   } else if (!SS.getScopeRep()->isDependent()) {
   10850     DC = computeDeclContext(SS);
   10851     if (!DC) return 0;
   10852 
   10853     if (RequireCompleteDeclContext(SS, DC)) return 0;
   10854 
   10855     LookupQualifiedName(Previous, DC);
   10856 
   10857     // Ignore things found implicitly in the wrong scope.
   10858     // TODO: better diagnostics for this case.  Suggesting the right
   10859     // qualified scope would be nice...
   10860     LookupResult::Filter F = Previous.makeFilter();
   10861     while (F.hasNext()) {
   10862       NamedDecl *D = F.next();
   10863       if (!DC->InEnclosingNamespaceSetOf(
   10864               D->getDeclContext()->getRedeclContext()))
   10865         F.erase();
   10866     }
   10867     F.done();
   10868 
   10869     if (Previous.empty()) {
   10870       D.setInvalidType();
   10871       Diag(Loc, diag::err_qualified_friend_not_found)
   10872           << Name << TInfo->getType();
   10873       return 0;
   10874     }
   10875 
   10876     // C++ [class.friend]p1: A friend of a class is a function or
   10877     //   class that is not a member of the class . . .
   10878     if (DC->Equals(CurContext))
   10879       Diag(DS.getFriendSpecLoc(),
   10880            getLangOpts().CPlusPlus11 ?
   10881              diag::warn_cxx98_compat_friend_is_member :
   10882              diag::err_friend_is_member);
   10883 
   10884     if (D.isFunctionDefinition()) {
   10885       // C++ [class.friend]p6:
   10886       //   A function can be defined in a friend declaration of a class if and
   10887       //   only if the class is a non-local class (9.8), the function name is
   10888       //   unqualified, and the function has namespace scope.
   10889       SemaDiagnosticBuilder DB
   10890         = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
   10891 
   10892       DB << SS.getScopeRep();
   10893       if (DC->isFileContext())
   10894         DB << FixItHint::CreateRemoval(SS.getRange());
   10895       SS.clear();
   10896     }
   10897 
   10898   //   - There's a scope specifier that does not match any template
   10899   //     parameter lists, in which case we use some arbitrary context,
   10900   //     create a method or method template, and wait for instantiation.
   10901   //   - There's a scope specifier that does match some template
   10902   //     parameter lists, which we don't handle right now.
   10903   } else {
   10904     if (D.isFunctionDefinition()) {
   10905       // C++ [class.friend]p6:
   10906       //   A function can be defined in a friend declaration of a class if and
   10907       //   only if the class is a non-local class (9.8), the function name is
   10908       //   unqualified, and the function has namespace scope.
   10909       Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
   10910         << SS.getScopeRep();
   10911     }
   10912 
   10913     DC = CurContext;
   10914     assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
   10915   }
   10916 
   10917   if (!DC->isRecord()) {
   10918     // This implies that it has to be an operator or function.
   10919     if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
   10920         D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
   10921         D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
   10922       Diag(Loc, diag::err_introducing_special_friend) <<
   10923         (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
   10924          D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
   10925       return 0;
   10926     }
   10927   }
   10928 
   10929   // FIXME: This is an egregious hack to cope with cases where the scope stack
   10930   // does not contain the declaration context, i.e., in an out-of-line
   10931   // definition of a class.
   10932   Scope FakeDCScope(S, Scope::DeclScope, Diags);
   10933   if (!DCScope) {
   10934     FakeDCScope.setEntity(DC);
   10935     DCScope = &FakeDCScope;
   10936   }
   10937 
   10938   bool AddToScope = true;
   10939   NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
   10940                                           TemplateParams, AddToScope);
   10941   if (!ND) return 0;
   10942 
   10943   assert(ND->getDeclContext() == DC);
   10944   assert(ND->getLexicalDeclContext() == CurContext);
   10945 
   10946   // Add the function declaration to the appropriate lookup tables,
   10947   // adjusting the redeclarations list as necessary.  We don't
   10948   // want to do this yet if the friending class is dependent.
   10949   //
   10950   // Also update the scope-based lookup if the target context's
   10951   // lookup context is in lexical scope.
   10952   if (!CurContext->isDependentContext()) {
   10953     DC = DC->getRedeclContext();
   10954     DC->makeDeclVisibleInContext(ND);
   10955     if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
   10956       PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
   10957   }
   10958 
   10959   FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
   10960                                        D.getIdentifierLoc(), ND,
   10961                                        DS.getFriendSpecLoc());
   10962   FrD->setAccess(AS_public);
   10963   CurContext->addDecl(FrD);
   10964 
   10965   if (ND->isInvalidDecl()) {
   10966     FrD->setInvalidDecl();
   10967   } else {
   10968     if (DC->isRecord()) CheckFriendAccess(ND);
   10969 
   10970     FunctionDecl *FD;
   10971     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
   10972       FD = FTD->getTemplatedDecl();
   10973     else
   10974       FD = cast<FunctionDecl>(ND);
   10975 
   10976     // Mark templated-scope function declarations as unsupported.
   10977     if (FD->getNumTemplateParameterLists())
   10978       FrD->setUnsupportedFriend(true);
   10979   }
   10980 
   10981   return ND;
   10982 }
   10983 
   10984 void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
   10985   AdjustDeclIfTemplate(Dcl);
   10986 
   10987   FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
   10988   if (!Fn) {
   10989     Diag(DelLoc, diag::err_deleted_non_function);
   10990     return;
   10991   }
   10992   if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
   10993     // Don't consider the implicit declaration we generate for explicit
   10994     // specializations. FIXME: Do not generate these implicit declarations.
   10995     if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization
   10996         || Prev->getPreviousDecl()) && !Prev->isDefined()) {
   10997       Diag(DelLoc, diag::err_deleted_decl_not_first);
   10998       Diag(Prev->getLocation(), diag::note_previous_declaration);
   10999     }
   11000     // If the declaration wasn't the first, we delete the function anyway for
   11001     // recovery.
   11002   }
   11003   Fn->setDeletedAsWritten();
   11004 }
   11005 
   11006 void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
   11007   CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Dcl);
   11008 
   11009   if (MD) {
   11010     if (MD->getParent()->isDependentType()) {
   11011       MD->setDefaulted();
   11012       MD->setExplicitlyDefaulted();
   11013       return;
   11014     }
   11015 
   11016     CXXSpecialMember Member = getSpecialMember(MD);
   11017     if (Member == CXXInvalid) {
   11018       Diag(DefaultLoc, diag::err_default_special_members);
   11019       return;
   11020     }
   11021 
   11022     MD->setDefaulted();
   11023     MD->setExplicitlyDefaulted();
   11024 
   11025     // If this definition appears within the record, do the checking when
   11026     // the record is complete.
   11027     const FunctionDecl *Primary = MD;
   11028     if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern())
   11029       // Find the uninstantiated declaration that actually had the '= default'
   11030       // on it.
   11031       Pattern->isDefined(Primary);
   11032 
   11033     if (Primary == Primary->getCanonicalDecl())
   11034       return;
   11035 
   11036     CheckExplicitlyDefaultedSpecialMember(MD);
   11037 
   11038     // The exception specification is needed because we are defining the
   11039     // function.
   11040     ResolveExceptionSpec(DefaultLoc,
   11041                          MD->getType()->castAs<FunctionProtoType>());
   11042 
   11043     switch (Member) {
   11044     case CXXDefaultConstructor: {
   11045       CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
   11046       if (!CD->isInvalidDecl())
   11047         DefineImplicitDefaultConstructor(DefaultLoc, CD);
   11048       break;
   11049     }
   11050 
   11051     case CXXCopyConstructor: {
   11052       CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
   11053       if (!CD->isInvalidDecl())
   11054         DefineImplicitCopyConstructor(DefaultLoc, CD);
   11055       break;
   11056     }
   11057 
   11058     case CXXCopyAssignment: {
   11059       if (!MD->isInvalidDecl())
   11060         DefineImplicitCopyAssignment(DefaultLoc, MD);
   11061       break;
   11062     }
   11063 
   11064     case CXXDestructor: {
   11065       CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
   11066       if (!DD->isInvalidDecl())
   11067         DefineImplicitDestructor(DefaultLoc, DD);
   11068       break;
   11069     }
   11070 
   11071     case CXXMoveConstructor: {
   11072       CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
   11073       if (!CD->isInvalidDecl())
   11074         DefineImplicitMoveConstructor(DefaultLoc, CD);
   11075       break;
   11076     }
   11077 
   11078     case CXXMoveAssignment: {
   11079       if (!MD->isInvalidDecl())
   11080         DefineImplicitMoveAssignment(DefaultLoc, MD);
   11081       break;
   11082     }
   11083 
   11084     case CXXInvalid:
   11085       llvm_unreachable("Invalid special member.");
   11086     }
   11087   } else {
   11088     Diag(DefaultLoc, diag::err_default_special_members);
   11089   }
   11090 }
   11091 
   11092 static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
   11093   for (Stmt::child_range CI = S->children(); CI; ++CI) {
   11094     Stmt *SubStmt = *CI;
   11095     if (!SubStmt)
   11096       continue;
   11097     if (isa<ReturnStmt>(SubStmt))
   11098       Self.Diag(SubStmt->getLocStart(),
   11099            diag::err_return_in_constructor_handler);
   11100     if (!isa<Expr>(SubStmt))
   11101       SearchForReturnInStmt(Self, SubStmt);
   11102   }
   11103 }
   11104 
   11105 void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
   11106   for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
   11107     CXXCatchStmt *Handler = TryBlock->getHandler(I);
   11108     SearchForReturnInStmt(*this, Handler);
   11109   }
   11110 }
   11111 
   11112 bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
   11113                                              const CXXMethodDecl *Old) {
   11114   const FunctionType *NewFT = New->getType()->getAs<FunctionType>();
   11115   const FunctionType *OldFT = Old->getType()->getAs<FunctionType>();
   11116 
   11117   CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
   11118 
   11119   // If the calling conventions match, everything is fine
   11120   if (NewCC == OldCC)
   11121     return false;
   11122 
   11123   // If either of the calling conventions are set to "default", we need to pick
   11124   // something more sensible based on the target. This supports code where the
   11125   // one method explicitly sets thiscall, and another has no explicit calling
   11126   // convention.
   11127   CallingConv Default =
   11128     Context.getTargetInfo().getDefaultCallingConv(TargetInfo::CCMT_Member);
   11129   if (NewCC == CC_Default)
   11130     NewCC = Default;
   11131   if (OldCC == CC_Default)
   11132     OldCC = Default;
   11133 
   11134   // If the calling conventions still don't match, then report the error
   11135   if (NewCC != OldCC) {
   11136     Diag(New->getLocation(),
   11137          diag::err_conflicting_overriding_cc_attributes)
   11138       << New->getDeclName() << New->getType() << Old->getType();
   11139     Diag(Old->getLocation(), diag::note_overridden_virtual_function);
   11140     return true;
   11141   }
   11142 
   11143   return false;
   11144 }
   11145 
   11146 bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
   11147                                              const CXXMethodDecl *Old) {
   11148   QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
   11149   QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
   11150 
   11151   if (Context.hasSameType(NewTy, OldTy) ||
   11152       NewTy->isDependentType() || OldTy->isDependentType())
   11153     return false;
   11154 
   11155   // Check if the return types are covariant
   11156   QualType NewClassTy, OldClassTy;
   11157 
   11158   /// Both types must be pointers or references to classes.
   11159   if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
   11160     if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
   11161       NewClassTy = NewPT->getPointeeType();
   11162       OldClassTy = OldPT->getPointeeType();
   11163     }
   11164   } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
   11165     if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
   11166       if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
   11167         NewClassTy = NewRT->getPointeeType();
   11168         OldClassTy = OldRT->getPointeeType();
   11169       }
   11170     }
   11171   }
   11172 
   11173   // The return types aren't either both pointers or references to a class type.
   11174   if (NewClassTy.isNull()) {
   11175     Diag(New->getLocation(),
   11176          diag::err_different_return_type_for_overriding_virtual_function)
   11177       << New->getDeclName() << NewTy << OldTy;
   11178     Diag(Old->getLocation(), diag::note_overridden_virtual_function);
   11179 
   11180     return true;
   11181   }
   11182 
   11183   // C++ [class.virtual]p6:
   11184   //   If the return type of D::f differs from the return type of B::f, the
   11185   //   class type in the return type of D::f shall be complete at the point of
   11186   //   declaration of D::f or shall be the class type D.
   11187   if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
   11188     if (!RT->isBeingDefined() &&
   11189         RequireCompleteType(New->getLocation(), NewClassTy,
   11190                             diag::err_covariant_return_incomplete,
   11191                             New->getDeclName()))
   11192     return true;
   11193   }
   11194 
   11195   if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
   11196     // Check if the new class derives from the old class.
   11197     if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
   11198       Diag(New->getLocation(),
   11199            diag::err_covariant_return_not_derived)
   11200       << New->getDeclName() << NewTy << OldTy;
   11201       Diag(Old->getLocation(), diag::note_overridden_virtual_function);
   11202       return true;
   11203     }
   11204 
   11205     // Check if we the conversion from derived to base is valid.
   11206     if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
   11207                     diag::err_covariant_return_inaccessible_base,
   11208                     diag::err_covariant_return_ambiguous_derived_to_base_conv,
   11209                     // FIXME: Should this point to the return type?
   11210                     New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
   11211       // FIXME: this note won't trigger for delayed access control
   11212       // diagnostics, and it's impossible to get an undelayed error
   11213       // here from access control during the original parse because
   11214       // the ParsingDeclSpec/ParsingDeclarator are still in scope.
   11215       Diag(Old->getLocation(), diag::note_overridden_virtual_function);
   11216       return true;
   11217     }
   11218   }
   11219 
   11220   // The qualifiers of the return types must be the same.
   11221   if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
   11222     Diag(New->getLocation(),
   11223          diag::err_covariant_return_type_different_qualifications)
   11224     << New->getDeclName() << NewTy << OldTy;
   11225     Diag(Old->getLocation(), diag::note_overridden_virtual_function);
   11226     return true;
   11227   };
   11228 
   11229 
   11230   // The new class type must have the same or less qualifiers as the old type.
   11231   if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
   11232     Diag(New->getLocation(),
   11233          diag::err_covariant_return_type_class_type_more_qualified)
   11234     << New->getDeclName() << NewTy << OldTy;
   11235     Diag(Old->getLocation(), diag::note_overridden_virtual_function);
   11236     return true;
   11237   };
   11238 
   11239   return false;
   11240 }
   11241 
   11242 /// \brief Mark the given method pure.
   11243 ///
   11244 /// \param Method the method to be marked pure.
   11245 ///
   11246 /// \param InitRange the source range that covers the "0" initializer.
   11247 bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
   11248   SourceLocation EndLoc = InitRange.getEnd();
   11249   if (EndLoc.isValid())
   11250     Method->setRangeEnd(EndLoc);
   11251 
   11252   if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
   11253     Method->setPure();
   11254     return false;
   11255   }
   11256 
   11257   if (!Method->isInvalidDecl())
   11258     Diag(Method->getLocation(), diag::err_non_virtual_pure)
   11259       << Method->getDeclName() << InitRange;
   11260   return true;
   11261 }
   11262 
   11263 /// \brief Determine whether the given declaration is a static data member.
   11264 static bool isStaticDataMember(Decl *D) {
   11265   VarDecl *Var = dyn_cast_or_null<VarDecl>(D);
   11266   if (!Var)
   11267     return false;
   11268 
   11269   return Var->isStaticDataMember();
   11270 }
   11271 /// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
   11272 /// an initializer for the out-of-line declaration 'Dcl'.  The scope
   11273 /// is a fresh scope pushed for just this purpose.
   11274 ///
   11275 /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
   11276 /// static data member of class X, names should be looked up in the scope of
   11277 /// class X.
   11278 void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
   11279   // If there is no declaration, there was an error parsing it.
   11280   if (D == 0 || D->isInvalidDecl()) return;
   11281 
   11282   // We should only get called for declarations with scope specifiers, like:
   11283   //   int foo::bar;
   11284   assert(D->isOutOfLine());
   11285   EnterDeclaratorContext(S, D->getDeclContext());
   11286 
   11287   // If we are parsing the initializer for a static data member, push a
   11288   // new expression evaluation context that is associated with this static
   11289   // data member.
   11290   if (isStaticDataMember(D))
   11291     PushExpressionEvaluationContext(PotentiallyEvaluated, D);
   11292 }
   11293 
   11294 /// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
   11295 /// initializer for the out-of-line declaration 'D'.
   11296 void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
   11297   // If there is no declaration, there was an error parsing it.
   11298   if (D == 0 || D->isInvalidDecl()) return;
   11299 
   11300   if (isStaticDataMember(D))
   11301     PopExpressionEvaluationContext();
   11302 
   11303   assert(D->isOutOfLine());
   11304   ExitDeclaratorContext(S);
   11305 }
   11306 
   11307 /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
   11308 /// C++ if/switch/while/for statement.
   11309 /// e.g: "if (int x = f()) {...}"
   11310 DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
   11311   // C++ 6.4p2:
   11312   // The declarator shall not specify a function or an array.
   11313   // The type-specifier-seq shall not contain typedef and shall not declare a
   11314   // new class or enumeration.
   11315   assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
   11316          "Parser allowed 'typedef' as storage class of condition decl.");
   11317 
   11318   Decl *Dcl = ActOnDeclarator(S, D);
   11319   if (!Dcl)
   11320     return true;
   11321 
   11322   if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
   11323     Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
   11324       << D.getSourceRange();
   11325     return true;
   11326   }
   11327 
   11328   return Dcl;
   11329 }
   11330 
   11331 void Sema::LoadExternalVTableUses() {
   11332   if (!ExternalSource)
   11333     return;
   11334 
   11335   SmallVector<ExternalVTableUse, 4> VTables;
   11336   ExternalSource->ReadUsedVTables(VTables);
   11337   SmallVector<VTableUse, 4> NewUses;
   11338   for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
   11339     llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
   11340       = VTablesUsed.find(VTables[I].Record);
   11341     // Even if a definition wasn't required before, it may be required now.
   11342     if (Pos != VTablesUsed.end()) {
   11343       if (!Pos->second && VTables[I].DefinitionRequired)
   11344         Pos->second = true;
   11345       continue;
   11346     }
   11347 
   11348     VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
   11349     NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
   11350   }
   11351 
   11352   VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
   11353 }
   11354 
   11355 void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
   11356                           bool DefinitionRequired) {
   11357   // Ignore any vtable uses in unevaluated operands or for classes that do
   11358   // not have a vtable.
   11359   if (!Class->isDynamicClass() || Class->isDependentContext() ||
   11360       CurContext->isDependentContext() ||
   11361       ExprEvalContexts.back().Context == Unevaluated)
   11362     return;
   11363 
   11364   // Try to insert this class into the map.
   11365   LoadExternalVTableUses();
   11366   Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
   11367   std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
   11368     Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
   11369   if (!Pos.second) {
   11370     // If we already had an entry, check to see if we are promoting this vtable
   11371     // to required a definition. If so, we need to reappend to the VTableUses
   11372     // list, since we may have already processed the first entry.
   11373     if (DefinitionRequired && !Pos.first->second) {
   11374       Pos.first->second = true;
   11375     } else {
   11376       // Otherwise, we can early exit.
   11377       return;
   11378     }
   11379   }
   11380 
   11381   // Local classes need to have their virtual members marked
   11382   // immediately. For all other classes, we mark their virtual members
   11383   // at the end of the translation unit.
   11384   if (Class->isLocalClass())
   11385     MarkVirtualMembersReferenced(Loc, Class);
   11386   else
   11387     VTableUses.push_back(std::make_pair(Class, Loc));
   11388 }
   11389 
   11390 bool Sema::DefineUsedVTables() {
   11391   LoadExternalVTableUses();
   11392   if (VTableUses.empty())
   11393     return false;
   11394 
   11395   // Note: The VTableUses vector could grow as a result of marking
   11396   // the members of a class as "used", so we check the size each
   11397   // time through the loop and prefer indices (which are stable) to
   11398   // iterators (which are not).
   11399   bool DefinedAnything = false;
   11400   for (unsigned I = 0; I != VTableUses.size(); ++I) {
   11401     CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
   11402     if (!Class)
   11403       continue;
   11404 
   11405     SourceLocation Loc = VTableUses[I].second;
   11406 
   11407     bool DefineVTable = true;
   11408 
   11409     // If this class has a key function, but that key function is
   11410     // defined in another translation unit, we don't need to emit the
   11411     // vtable even though we're using it.
   11412     const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
   11413     if (KeyFunction && !KeyFunction->hasBody()) {
   11414       switch (KeyFunction->getTemplateSpecializationKind()) {
   11415       case TSK_Undeclared:
   11416       case TSK_ExplicitSpecialization:
   11417       case TSK_ExplicitInstantiationDeclaration:
   11418         // The key function is in another translation unit.
   11419         DefineVTable = false;
   11420         break;
   11421 
   11422       case TSK_ExplicitInstantiationDefinition:
   11423       case TSK_ImplicitInstantiation:
   11424         // We will be instantiating the key function.
   11425         break;
   11426       }
   11427     } else if (!KeyFunction) {
   11428       // If we have a class with no key function that is the subject
   11429       // of an explicit instantiation declaration, suppress the
   11430       // vtable; it will live with the explicit instantiation
   11431       // definition.
   11432       bool IsExplicitInstantiationDeclaration
   11433         = Class->getTemplateSpecializationKind()
   11434                                       == TSK_ExplicitInstantiationDeclaration;
   11435       for (TagDecl::redecl_iterator R = Class->redecls_begin(),
   11436                                  REnd = Class->redecls_end();
   11437            R != REnd; ++R) {
   11438         TemplateSpecializationKind TSK
   11439           = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
   11440         if (TSK == TSK_ExplicitInstantiationDeclaration)
   11441           IsExplicitInstantiationDeclaration = true;
   11442         else if (TSK == TSK_ExplicitInstantiationDefinition) {
   11443           IsExplicitInstantiationDeclaration = false;
   11444           break;
   11445         }
   11446       }
   11447 
   11448       if (IsExplicitInstantiationDeclaration)
   11449         DefineVTable = false;
   11450     }
   11451 
   11452     // The exception specifications for all virtual members may be needed even
   11453     // if we are not providing an authoritative form of the vtable in this TU.
   11454     // We may choose to emit it available_externally anyway.
   11455     if (!DefineVTable) {
   11456       MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
   11457       continue;
   11458     }
   11459 
   11460     // Mark all of the virtual members of this class as referenced, so
   11461     // that we can build a vtable. Then, tell the AST consumer that a
   11462     // vtable for this class is required.
   11463     DefinedAnything = true;
   11464     MarkVirtualMembersReferenced(Loc, Class);
   11465     CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
   11466     Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
   11467 
   11468     // Optionally warn if we're emitting a weak vtable.
   11469     if (Class->hasExternalLinkage() &&
   11470         Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
   11471       const FunctionDecl *KeyFunctionDef = 0;
   11472       if (!KeyFunction ||
   11473           (KeyFunction->hasBody(KeyFunctionDef) &&
   11474            KeyFunctionDef->isInlined()))
   11475         Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
   11476              TSK_ExplicitInstantiationDefinition
   11477              ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
   11478           << Class;
   11479     }
   11480   }
   11481   VTableUses.clear();
   11482 
   11483   return DefinedAnything;
   11484 }
   11485 
   11486 void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
   11487                                                  const CXXRecordDecl *RD) {
   11488   for (CXXRecordDecl::method_iterator I = RD->method_begin(),
   11489                                       E = RD->method_end(); I != E; ++I)
   11490     if ((*I)->isVirtual() && !(*I)->isPure())
   11491       ResolveExceptionSpec(Loc, (*I)->getType()->castAs<FunctionProtoType>());
   11492 }
   11493 
   11494 void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
   11495                                         const CXXRecordDecl *RD) {
   11496   // Mark all functions which will appear in RD's vtable as used.
   11497   CXXFinalOverriderMap FinalOverriders;
   11498   RD->getFinalOverriders(FinalOverriders);
   11499   for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
   11500                                             E = FinalOverriders.end();
   11501        I != E; ++I) {
   11502     for (OverridingMethods::const_iterator OI = I->second.begin(),
   11503                                            OE = I->second.end();
   11504          OI != OE; ++OI) {
   11505       assert(OI->second.size() > 0 && "no final overrider");
   11506       CXXMethodDecl *Overrider = OI->second.front().Method;
   11507 
   11508       // C++ [basic.def.odr]p2:
   11509       //   [...] A virtual member function is used if it is not pure. [...]
   11510       if (!Overrider->isPure())
   11511         MarkFunctionReferenced(Loc, Overrider);
   11512     }
   11513   }
   11514 
   11515   // Only classes that have virtual bases need a VTT.
   11516   if (RD->getNumVBases() == 0)
   11517     return;
   11518 
   11519   for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
   11520            e = RD->bases_end(); i != e; ++i) {
   11521     const CXXRecordDecl *Base =
   11522         cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
   11523     if (Base->getNumVBases() == 0)
   11524       continue;
   11525     MarkVirtualMembersReferenced(Loc, Base);
   11526   }
   11527 }
   11528 
   11529 /// SetIvarInitializers - This routine builds initialization ASTs for the
   11530 /// Objective-C implementation whose ivars need be initialized.
   11531 void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
   11532   if (!getLangOpts().CPlusPlus)
   11533     return;
   11534   if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
   11535     SmallVector<ObjCIvarDecl*, 8> ivars;
   11536     CollectIvarsToConstructOrDestruct(OID, ivars);
   11537     if (ivars.empty())
   11538       return;
   11539     SmallVector<CXXCtorInitializer*, 32> AllToInit;
   11540     for (unsigned i = 0; i < ivars.size(); i++) {
   11541       FieldDecl *Field = ivars[i];
   11542       if (Field->isInvalidDecl())
   11543         continue;
   11544 
   11545       CXXCtorInitializer *Member;
   11546       InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
   11547       InitializationKind InitKind =
   11548         InitializationKind::CreateDefault(ObjCImplementation->getLocation());
   11549 
   11550       InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
   11551       ExprResult MemberInit =
   11552         InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
   11553       MemberInit = MaybeCreateExprWithCleanups(MemberInit);
   11554       // Note, MemberInit could actually come back empty if no initialization
   11555       // is required (e.g., because it would call a trivial default constructor)
   11556       if (!MemberInit.get() || MemberInit.isInvalid())
   11557         continue;
   11558 
   11559       Member =
   11560         new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
   11561                                          SourceLocation(),
   11562                                          MemberInit.takeAs<Expr>(),
   11563                                          SourceLocation());
   11564       AllToInit.push_back(Member);
   11565 
   11566       // Be sure that the destructor is accessible and is marked as referenced.
   11567       if (const RecordType *RecordTy
   11568                   = Context.getBaseElementType(Field->getType())
   11569                                                         ->getAs<RecordType>()) {
   11570                     CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
   11571         if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
   11572           MarkFunctionReferenced(Field->getLocation(), Destructor);
   11573           CheckDestructorAccess(Field->getLocation(), Destructor,
   11574                             PDiag(diag::err_access_dtor_ivar)
   11575                               << Context.getBaseElementType(Field->getType()));
   11576         }
   11577       }
   11578     }
   11579     ObjCImplementation->setIvarInitializers(Context,
   11580                                             AllToInit.data(), AllToInit.size());
   11581   }
   11582 }
   11583 
   11584 static
   11585 void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
   11586                            llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
   11587                            llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
   11588                            llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
   11589                            Sema &S) {
   11590   llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
   11591                                                    CE = Current.end();
   11592   if (Ctor->isInvalidDecl())
   11593     return;
   11594 
   11595   CXXConstructorDecl *Target = Ctor->getTargetConstructor();
   11596 
   11597   // Target may not be determinable yet, for instance if this is a dependent
   11598   // call in an uninstantiated template.
   11599   if (Target) {
   11600     const FunctionDecl *FNTarget = 0;
   11601     (void)Target->hasBody(FNTarget);
   11602     Target = const_cast<CXXConstructorDecl*>(
   11603       cast_or_null<CXXConstructorDecl>(FNTarget));
   11604   }
   11605 
   11606   CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
   11607                      // Avoid dereferencing a null pointer here.
   11608                      *TCanonical = Target ? Target->getCanonicalDecl() : 0;
   11609 
   11610   if (!Current.insert(Canonical))
   11611     return;
   11612 
   11613   // We know that beyond here, we aren't chaining into a cycle.
   11614   if (!Target || !Target->isDelegatingConstructor() ||
   11615       Target->isInvalidDecl() || Valid.count(TCanonical)) {
   11616     for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
   11617       Valid.insert(*CI);
   11618     Current.clear();
   11619   // We've hit a cycle.
   11620   } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
   11621              Current.count(TCanonical)) {
   11622     // If we haven't diagnosed this cycle yet, do so now.
   11623     if (!Invalid.count(TCanonical)) {
   11624       S.Diag((*Ctor->init_begin())->getSourceLocation(),
   11625              diag::warn_delegating_ctor_cycle)
   11626         << Ctor;
   11627 
   11628       // Don't add a note for a function delegating directly to itself.
   11629       if (TCanonical != Canonical)
   11630         S.Diag(Target->getLocation(), diag::note_it_delegates_to);
   11631 
   11632       CXXConstructorDecl *C = Target;
   11633       while (C->getCanonicalDecl() != Canonical) {
   11634         const FunctionDecl *FNTarget = 0;
   11635         (void)C->getTargetConstructor()->hasBody(FNTarget);
   11636         assert(FNTarget && "Ctor cycle through bodiless function");
   11637 
   11638         C = const_cast<CXXConstructorDecl*>(
   11639           cast<CXXConstructorDecl>(FNTarget));
   11640         S.Diag(C->getLocation(), diag::note_which_delegates_to);
   11641       }
   11642     }
   11643 
   11644     for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
   11645       Invalid.insert(*CI);
   11646     Current.clear();
   11647   } else {
   11648     DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
   11649   }
   11650 }
   11651 
   11652 
   11653 void Sema::CheckDelegatingCtorCycles() {
   11654   llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
   11655 
   11656   llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
   11657                                                    CE = Current.end();
   11658 
   11659   for (DelegatingCtorDeclsType::iterator
   11660          I = DelegatingCtorDecls.begin(ExternalSource),
   11661          E = DelegatingCtorDecls.end();
   11662        I != E; ++I)
   11663     DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
   11664 
   11665   for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
   11666     (*CI)->setInvalidDecl();
   11667 }
   11668 
   11669 namespace {
   11670   /// \brief AST visitor that finds references to the 'this' expression.
   11671   class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
   11672     Sema &S;
   11673 
   11674   public:
   11675     explicit FindCXXThisExpr(Sema &S) : S(S) { }
   11676 
   11677     bool VisitCXXThisExpr(CXXThisExpr *E) {
   11678       S.Diag(E->getLocation(), diag::err_this_static_member_func)
   11679         << E->isImplicit();
   11680       return false;
   11681     }
   11682   };
   11683 }
   11684 
   11685 bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
   11686   TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
   11687   if (!TSInfo)
   11688     return false;
   11689 
   11690   TypeLoc TL = TSInfo->getTypeLoc();
   11691   FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
   11692   if (!ProtoTL)
   11693     return false;
   11694 
   11695   // C++11 [expr.prim.general]p3:
   11696   //   [The expression this] shall not appear before the optional
   11697   //   cv-qualifier-seq and it shall not appear within the declaration of a
   11698   //   static member function (although its type and value category are defined
   11699   //   within a static member function as they are within a non-static member
   11700   //   function). [ Note: this is because declaration matching does not occur
   11701   //  until the complete declarator is known. - end note ]
   11702   const FunctionProtoType *Proto = ProtoTL.getTypePtr();
   11703   FindCXXThisExpr Finder(*this);
   11704 
   11705   // If the return type came after the cv-qualifier-seq, check it now.
   11706   if (Proto->hasTrailingReturn() &&
   11707       !Finder.TraverseTypeLoc(ProtoTL.getResultLoc()))
   11708     return true;
   11709 
   11710   // Check the exception specification.
   11711   if (checkThisInStaticMemberFunctionExceptionSpec(Method))
   11712     return true;
   11713 
   11714   return checkThisInStaticMemberFunctionAttributes(Method);
   11715 }
   11716 
   11717 bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
   11718   TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
   11719   if (!TSInfo)
   11720     return false;
   11721 
   11722   TypeLoc TL = TSInfo->getTypeLoc();
   11723   FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
   11724   if (!ProtoTL)
   11725     return false;
   11726 
   11727   const FunctionProtoType *Proto = ProtoTL.getTypePtr();
   11728   FindCXXThisExpr Finder(*this);
   11729 
   11730   switch (Proto->getExceptionSpecType()) {
   11731   case EST_Uninstantiated:
   11732   case EST_Unevaluated:
   11733   case EST_BasicNoexcept:
   11734   case EST_DynamicNone:
   11735   case EST_MSAny:
   11736   case EST_None:
   11737     break;
   11738 
   11739   case EST_ComputedNoexcept:
   11740     if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
   11741       return true;
   11742 
   11743   case EST_Dynamic:
   11744     for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
   11745          EEnd = Proto->exception_end();
   11746          E != EEnd; ++E) {
   11747       if (!Finder.TraverseType(*E))
   11748         return true;
   11749     }
   11750     break;
   11751   }
   11752 
   11753   return false;
   11754 }
   11755 
   11756 bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
   11757   FindCXXThisExpr Finder(*this);
   11758 
   11759   // Check attributes.
   11760   for (Decl::attr_iterator A = Method->attr_begin(), AEnd = Method->attr_end();
   11761        A != AEnd; ++A) {
   11762     // FIXME: This should be emitted by tblgen.
   11763     Expr *Arg = 0;
   11764     ArrayRef<Expr *> Args;
   11765     if (GuardedByAttr *G = dyn_cast<GuardedByAttr>(*A))
   11766       Arg = G->getArg();
   11767     else if (PtGuardedByAttr *G = dyn_cast<PtGuardedByAttr>(*A))
   11768       Arg = G->getArg();
   11769     else if (AcquiredAfterAttr *AA = dyn_cast<AcquiredAfterAttr>(*A))
   11770       Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
   11771     else if (AcquiredBeforeAttr *AB = dyn_cast<AcquiredBeforeAttr>(*A))
   11772       Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
   11773     else if (ExclusiveLockFunctionAttr *ELF
   11774                = dyn_cast<ExclusiveLockFunctionAttr>(*A))
   11775       Args = ArrayRef<Expr *>(ELF->args_begin(), ELF->args_size());
   11776     else if (SharedLockFunctionAttr *SLF
   11777                = dyn_cast<SharedLockFunctionAttr>(*A))
   11778       Args = ArrayRef<Expr *>(SLF->args_begin(), SLF->args_size());
   11779     else if (ExclusiveTrylockFunctionAttr *ETLF
   11780                = dyn_cast<ExclusiveTrylockFunctionAttr>(*A)) {
   11781       Arg = ETLF->getSuccessValue();
   11782       Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
   11783     } else if (SharedTrylockFunctionAttr *STLF
   11784                  = dyn_cast<SharedTrylockFunctionAttr>(*A)) {
   11785       Arg = STLF->getSuccessValue();
   11786       Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
   11787     } else if (UnlockFunctionAttr *UF = dyn_cast<UnlockFunctionAttr>(*A))
   11788       Args = ArrayRef<Expr *>(UF->args_begin(), UF->args_size());
   11789     else if (LockReturnedAttr *LR = dyn_cast<LockReturnedAttr>(*A))
   11790       Arg = LR->getArg();
   11791     else if (LocksExcludedAttr *LE = dyn_cast<LocksExcludedAttr>(*A))
   11792       Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
   11793     else if (ExclusiveLocksRequiredAttr *ELR
   11794                = dyn_cast<ExclusiveLocksRequiredAttr>(*A))
   11795       Args = ArrayRef<Expr *>(ELR->args_begin(), ELR->args_size());
   11796     else if (SharedLocksRequiredAttr *SLR
   11797                = dyn_cast<SharedLocksRequiredAttr>(*A))
   11798       Args = ArrayRef<Expr *>(SLR->args_begin(), SLR->args_size());
   11799 
   11800     if (Arg && !Finder.TraverseStmt(Arg))
   11801       return true;
   11802 
   11803     for (unsigned I = 0, N = Args.size(); I != N; ++I) {
   11804       if (!Finder.TraverseStmt(Args[I]))
   11805         return true;
   11806     }
   11807   }
   11808 
   11809   return false;
   11810 }
   11811 
   11812 void
   11813 Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
   11814                                   ArrayRef<ParsedType> DynamicExceptions,
   11815                                   ArrayRef<SourceRange> DynamicExceptionRanges,
   11816                                   Expr *NoexceptExpr,
   11817                                   SmallVectorImpl<QualType> &Exceptions,
   11818                                   FunctionProtoType::ExtProtoInfo &EPI) {
   11819   Exceptions.clear();
   11820   EPI.ExceptionSpecType = EST;
   11821   if (EST == EST_Dynamic) {
   11822     Exceptions.reserve(DynamicExceptions.size());
   11823     for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
   11824       // FIXME: Preserve type source info.
   11825       QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
   11826 
   11827       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
   11828       collectUnexpandedParameterPacks(ET, Unexpanded);
   11829       if (!Unexpanded.empty()) {
   11830         DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
   11831                                          UPPC_ExceptionType,
   11832                                          Unexpanded);
   11833         continue;
   11834       }
   11835 
   11836       // Check that the type is valid for an exception spec, and
   11837       // drop it if not.
   11838       if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
   11839         Exceptions.push_back(ET);
   11840     }
   11841     EPI.NumExceptions = Exceptions.size();
   11842     EPI.Exceptions = Exceptions.data();
   11843     return;
   11844   }
   11845 
   11846   if (EST == EST_ComputedNoexcept) {
   11847     // If an error occurred, there's no expression here.
   11848     if (NoexceptExpr) {
   11849       assert((NoexceptExpr->isTypeDependent() ||
   11850               NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
   11851               Context.BoolTy) &&
   11852              "Parser should have made sure that the expression is boolean");
   11853       if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
   11854         EPI.ExceptionSpecType = EST_BasicNoexcept;
   11855         return;
   11856       }
   11857 
   11858       if (!NoexceptExpr->isValueDependent())
   11859         NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, 0,
   11860                          diag::err_noexcept_needs_constant_expression,
   11861                          /*AllowFold*/ false).take();
   11862       EPI.NoexceptExpr = NoexceptExpr;
   11863     }
   11864     return;
   11865   }
   11866 }
   11867 
   11868 /// IdentifyCUDATarget - Determine the CUDA compilation target for this function
   11869 Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
   11870   // Implicitly declared functions (e.g. copy constructors) are
   11871   // __host__ __device__
   11872   if (D->isImplicit())
   11873     return CFT_HostDevice;
   11874 
   11875   if (D->hasAttr<CUDAGlobalAttr>())
   11876     return CFT_Global;
   11877 
   11878   if (D->hasAttr<CUDADeviceAttr>()) {
   11879     if (D->hasAttr<CUDAHostAttr>())
   11880       return CFT_HostDevice;
   11881     else
   11882       return CFT_Device;
   11883   }
   11884 
   11885   return CFT_Host;
   11886 }
   11887 
   11888 bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
   11889                            CUDAFunctionTarget CalleeTarget) {
   11890   // CUDA B.1.1 "The __device__ qualifier declares a function that is...
   11891   // Callable from the device only."
   11892   if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
   11893     return true;
   11894 
   11895   // CUDA B.1.2 "The __global__ qualifier declares a function that is...
   11896   // Callable from the host only."
   11897   // CUDA B.1.3 "The __host__ qualifier declares a function that is...
   11898   // Callable from the host only."
   11899   if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
   11900       (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
   11901     return true;
   11902 
   11903   if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
   11904     return true;
   11905 
   11906   return false;
   11907 }
   11908