Home | History | Annotate | Download | only in AST
      1 //===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements the ASTContext interface.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/AST/ASTContext.h"
     15 #include "CXXABI.h"
     16 #include "clang/AST/ASTMutationListener.h"
     17 #include "clang/AST/Attr.h"
     18 #include "clang/AST/CharUnits.h"
     19 #include "clang/AST/Comment.h"
     20 #include "clang/AST/CommentCommandTraits.h"
     21 #include "clang/AST/DeclCXX.h"
     22 #include "clang/AST/DeclObjC.h"
     23 #include "clang/AST/DeclTemplate.h"
     24 #include "clang/AST/Expr.h"
     25 #include "clang/AST/ExprCXX.h"
     26 #include "clang/AST/ExternalASTSource.h"
     27 #include "clang/AST/Mangle.h"
     28 #include "clang/AST/RecordLayout.h"
     29 #include "clang/AST/TypeLoc.h"
     30 #include "clang/Basic/Builtins.h"
     31 #include "clang/Basic/SourceManager.h"
     32 #include "clang/Basic/TargetInfo.h"
     33 #include "llvm/ADT/SmallString.h"
     34 #include "llvm/ADT/StringExtras.h"
     35 #include "llvm/Support/Capacity.h"
     36 #include "llvm/Support/MathExtras.h"
     37 #include "llvm/Support/raw_ostream.h"
     38 #include <map>
     39 
     40 using namespace clang;
     41 
     42 unsigned ASTContext::NumImplicitDefaultConstructors;
     43 unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
     44 unsigned ASTContext::NumImplicitCopyConstructors;
     45 unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
     46 unsigned ASTContext::NumImplicitMoveConstructors;
     47 unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
     48 unsigned ASTContext::NumImplicitCopyAssignmentOperators;
     49 unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
     50 unsigned ASTContext::NumImplicitMoveAssignmentOperators;
     51 unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
     52 unsigned ASTContext::NumImplicitDestructors;
     53 unsigned ASTContext::NumImplicitDestructorsDeclared;
     54 
     55 enum FloatingRank {
     56   HalfRank, FloatRank, DoubleRank, LongDoubleRank
     57 };
     58 
     59 RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
     60   if (!CommentsLoaded && ExternalSource) {
     61     ExternalSource->ReadComments();
     62     CommentsLoaded = true;
     63   }
     64 
     65   assert(D);
     66 
     67   // User can not attach documentation to implicit declarations.
     68   if (D->isImplicit())
     69     return NULL;
     70 
     71   // User can not attach documentation to implicit instantiations.
     72   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
     73     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
     74       return NULL;
     75   }
     76 
     77   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
     78     if (VD->isStaticDataMember() &&
     79         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
     80       return NULL;
     81   }
     82 
     83   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
     84     if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
     85       return NULL;
     86   }
     87 
     88   if (const ClassTemplateSpecializationDecl *CTSD =
     89           dyn_cast<ClassTemplateSpecializationDecl>(D)) {
     90     TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
     91     if (TSK == TSK_ImplicitInstantiation ||
     92         TSK == TSK_Undeclared)
     93       return NULL;
     94   }
     95 
     96   if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
     97     if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
     98       return NULL;
     99   }
    100 
    101   // TODO: handle comments for function parameters properly.
    102   if (isa<ParmVarDecl>(D))
    103     return NULL;
    104 
    105   // TODO: we could look up template parameter documentation in the template
    106   // documentation.
    107   if (isa<TemplateTypeParmDecl>(D) ||
    108       isa<NonTypeTemplateParmDecl>(D) ||
    109       isa<TemplateTemplateParmDecl>(D))
    110     return NULL;
    111 
    112   ArrayRef<RawComment *> RawComments = Comments.getComments();
    113 
    114   // If there are no comments anywhere, we won't find anything.
    115   if (RawComments.empty())
    116     return NULL;
    117 
    118   // Find declaration location.
    119   // For Objective-C declarations we generally don't expect to have multiple
    120   // declarators, thus use declaration starting location as the "declaration
    121   // location".
    122   // For all other declarations multiple declarators are used quite frequently,
    123   // so we use the location of the identifier as the "declaration location".
    124   SourceLocation DeclLoc;
    125   if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
    126       isa<ObjCPropertyDecl>(D) ||
    127       isa<RedeclarableTemplateDecl>(D) ||
    128       isa<ClassTemplateSpecializationDecl>(D))
    129     DeclLoc = D->getLocStart();
    130   else
    131     DeclLoc = D->getLocation();
    132 
    133   // If the declaration doesn't map directly to a location in a file, we
    134   // can't find the comment.
    135   if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
    136     return NULL;
    137 
    138   // Find the comment that occurs just after this declaration.
    139   ArrayRef<RawComment *>::iterator Comment;
    140   {
    141     // When searching for comments during parsing, the comment we are looking
    142     // for is usually among the last two comments we parsed -- check them
    143     // first.
    144     RawComment CommentAtDeclLoc(SourceMgr, SourceRange(DeclLoc));
    145     BeforeThanCompare<RawComment> Compare(SourceMgr);
    146     ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
    147     bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
    148     if (!Found && RawComments.size() >= 2) {
    149       MaybeBeforeDecl--;
    150       Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
    151     }
    152 
    153     if (Found) {
    154       Comment = MaybeBeforeDecl + 1;
    155       assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
    156                                          &CommentAtDeclLoc, Compare));
    157     } else {
    158       // Slow path.
    159       Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
    160                                  &CommentAtDeclLoc, Compare);
    161     }
    162   }
    163 
    164   // Decompose the location for the declaration and find the beginning of the
    165   // file buffer.
    166   std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
    167 
    168   // First check whether we have a trailing comment.
    169   if (Comment != RawComments.end() &&
    170       (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
    171       (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D))) {
    172     std::pair<FileID, unsigned> CommentBeginDecomp
    173       = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
    174     // Check that Doxygen trailing comment comes after the declaration, starts
    175     // on the same line and in the same file as the declaration.
    176     if (DeclLocDecomp.first == CommentBeginDecomp.first &&
    177         SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
    178           == SourceMgr.getLineNumber(CommentBeginDecomp.first,
    179                                      CommentBeginDecomp.second)) {
    180       return *Comment;
    181     }
    182   }
    183 
    184   // The comment just after the declaration was not a trailing comment.
    185   // Let's look at the previous comment.
    186   if (Comment == RawComments.begin())
    187     return NULL;
    188   --Comment;
    189 
    190   // Check that we actually have a non-member Doxygen comment.
    191   if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
    192     return NULL;
    193 
    194   // Decompose the end of the comment.
    195   std::pair<FileID, unsigned> CommentEndDecomp
    196     = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
    197 
    198   // If the comment and the declaration aren't in the same file, then they
    199   // aren't related.
    200   if (DeclLocDecomp.first != CommentEndDecomp.first)
    201     return NULL;
    202 
    203   // Get the corresponding buffer.
    204   bool Invalid = false;
    205   const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
    206                                                &Invalid).data();
    207   if (Invalid)
    208     return NULL;
    209 
    210   // Extract text between the comment and declaration.
    211   StringRef Text(Buffer + CommentEndDecomp.second,
    212                  DeclLocDecomp.second - CommentEndDecomp.second);
    213 
    214   // There should be no other declarations or preprocessor directives between
    215   // comment and declaration.
    216   if (Text.find_first_of(",;{}#@") != StringRef::npos)
    217     return NULL;
    218 
    219   return *Comment;
    220 }
    221 
    222 namespace {
    223 /// If we have a 'templated' declaration for a template, adjust 'D' to
    224 /// refer to the actual template.
    225 /// If we have an implicit instantiation, adjust 'D' to refer to template.
    226 const Decl *adjustDeclToTemplate(const Decl *D) {
    227   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    228     // Is this function declaration part of a function template?
    229     if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
    230       return FTD;
    231 
    232     // Nothing to do if function is not an implicit instantiation.
    233     if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
    234       return D;
    235 
    236     // Function is an implicit instantiation of a function template?
    237     if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
    238       return FTD;
    239 
    240     // Function is instantiated from a member definition of a class template?
    241     if (const FunctionDecl *MemberDecl =
    242             FD->getInstantiatedFromMemberFunction())
    243       return MemberDecl;
    244 
    245     return D;
    246   }
    247   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
    248     // Static data member is instantiated from a member definition of a class
    249     // template?
    250     if (VD->isStaticDataMember())
    251       if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
    252         return MemberDecl;
    253 
    254     return D;
    255   }
    256   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
    257     // Is this class declaration part of a class template?
    258     if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
    259       return CTD;
    260 
    261     // Class is an implicit instantiation of a class template or partial
    262     // specialization?
    263     if (const ClassTemplateSpecializationDecl *CTSD =
    264             dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
    265       if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
    266         return D;
    267       llvm::PointerUnion<ClassTemplateDecl *,
    268                          ClassTemplatePartialSpecializationDecl *>
    269           PU = CTSD->getSpecializedTemplateOrPartial();
    270       return PU.is<ClassTemplateDecl*>() ?
    271           static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
    272           static_cast<const Decl*>(
    273               PU.get<ClassTemplatePartialSpecializationDecl *>());
    274     }
    275 
    276     // Class is instantiated from a member definition of a class template?
    277     if (const MemberSpecializationInfo *Info =
    278                    CRD->getMemberSpecializationInfo())
    279       return Info->getInstantiatedFrom();
    280 
    281     return D;
    282   }
    283   if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
    284     // Enum is instantiated from a member definition of a class template?
    285     if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
    286       return MemberDecl;
    287 
    288     return D;
    289   }
    290   // FIXME: Adjust alias templates?
    291   return D;
    292 }
    293 } // unnamed namespace
    294 
    295 const RawComment *ASTContext::getRawCommentForAnyRedecl(
    296                                                 const Decl *D,
    297                                                 const Decl **OriginalDecl) const {
    298   D = adjustDeclToTemplate(D);
    299 
    300   // Check whether we have cached a comment for this declaration already.
    301   {
    302     llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
    303         RedeclComments.find(D);
    304     if (Pos != RedeclComments.end()) {
    305       const RawCommentAndCacheFlags &Raw = Pos->second;
    306       if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
    307         if (OriginalDecl)
    308           *OriginalDecl = Raw.getOriginalDecl();
    309         return Raw.getRaw();
    310       }
    311     }
    312   }
    313 
    314   // Search for comments attached to declarations in the redeclaration chain.
    315   const RawComment *RC = NULL;
    316   const Decl *OriginalDeclForRC = NULL;
    317   for (Decl::redecl_iterator I = D->redecls_begin(),
    318                              E = D->redecls_end();
    319        I != E; ++I) {
    320     llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
    321         RedeclComments.find(*I);
    322     if (Pos != RedeclComments.end()) {
    323       const RawCommentAndCacheFlags &Raw = Pos->second;
    324       if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
    325         RC = Raw.getRaw();
    326         OriginalDeclForRC = Raw.getOriginalDecl();
    327         break;
    328       }
    329     } else {
    330       RC = getRawCommentForDeclNoCache(*I);
    331       OriginalDeclForRC = *I;
    332       RawCommentAndCacheFlags Raw;
    333       if (RC) {
    334         Raw.setRaw(RC);
    335         Raw.setKind(RawCommentAndCacheFlags::FromDecl);
    336       } else
    337         Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
    338       Raw.setOriginalDecl(*I);
    339       RedeclComments[*I] = Raw;
    340       if (RC)
    341         break;
    342     }
    343   }
    344 
    345   // If we found a comment, it should be a documentation comment.
    346   assert(!RC || RC->isDocumentation());
    347 
    348   if (OriginalDecl)
    349     *OriginalDecl = OriginalDeclForRC;
    350 
    351   // Update cache for every declaration in the redeclaration chain.
    352   RawCommentAndCacheFlags Raw;
    353   Raw.setRaw(RC);
    354   Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
    355   Raw.setOriginalDecl(OriginalDeclForRC);
    356 
    357   for (Decl::redecl_iterator I = D->redecls_begin(),
    358                              E = D->redecls_end();
    359        I != E; ++I) {
    360     RawCommentAndCacheFlags &R = RedeclComments[*I];
    361     if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
    362       R = Raw;
    363   }
    364 
    365   return RC;
    366 }
    367 
    368 static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
    369                    SmallVectorImpl<const NamedDecl *> &Redeclared) {
    370   const DeclContext *DC = ObjCMethod->getDeclContext();
    371   if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) {
    372     const ObjCInterfaceDecl *ID = IMD->getClassInterface();
    373     if (!ID)
    374       return;
    375     // Add redeclared method here.
    376     for (ObjCInterfaceDecl::known_extensions_iterator
    377            Ext = ID->known_extensions_begin(),
    378            ExtEnd = ID->known_extensions_end();
    379          Ext != ExtEnd; ++Ext) {
    380       if (ObjCMethodDecl *RedeclaredMethod =
    381             Ext->getMethod(ObjCMethod->getSelector(),
    382                                   ObjCMethod->isInstanceMethod()))
    383         Redeclared.push_back(RedeclaredMethod);
    384     }
    385   }
    386 }
    387 
    388 comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
    389                                                     const Decl *D) const {
    390   comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo;
    391   ThisDeclInfo->CommentDecl = D;
    392   ThisDeclInfo->IsFilled = false;
    393   ThisDeclInfo->fill();
    394   ThisDeclInfo->CommentDecl = FC->getDecl();
    395   comments::FullComment *CFC =
    396     new (*this) comments::FullComment(FC->getBlocks(),
    397                                       ThisDeclInfo);
    398   return CFC;
    399 
    400 }
    401 
    402 comments::FullComment *ASTContext::getCommentForDecl(
    403                                               const Decl *D,
    404                                               const Preprocessor *PP) const {
    405   D = adjustDeclToTemplate(D);
    406 
    407   const Decl *Canonical = D->getCanonicalDecl();
    408   llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
    409       ParsedComments.find(Canonical);
    410 
    411   if (Pos != ParsedComments.end()) {
    412     if (Canonical != D) {
    413       comments::FullComment *FC = Pos->second;
    414       comments::FullComment *CFC = cloneFullComment(FC, D);
    415       return CFC;
    416     }
    417     return Pos->second;
    418   }
    419 
    420   const Decl *OriginalDecl;
    421 
    422   const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
    423   if (!RC) {
    424     if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
    425       SmallVector<const NamedDecl*, 8> Overridden;
    426       const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D);
    427       if (OMD && OMD->isPropertyAccessor())
    428         if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
    429           if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
    430             return cloneFullComment(FC, D);
    431       if (OMD)
    432         addRedeclaredMethods(OMD, Overridden);
    433       getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
    434       for (unsigned i = 0, e = Overridden.size(); i < e; i++)
    435         if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
    436           return cloneFullComment(FC, D);
    437     }
    438     else if (const TypedefDecl *TD = dyn_cast<TypedefDecl>(D)) {
    439       // Attach any tag type's documentation to its typedef if latter
    440       // does not have one of its own.
    441       QualType QT = TD->getUnderlyingType();
    442       if (const TagType *TT = QT->getAs<TagType>())
    443         if (const Decl *TD = TT->getDecl())
    444           if (comments::FullComment *FC = getCommentForDecl(TD, PP))
    445             return cloneFullComment(FC, D);
    446     }
    447     return NULL;
    448   }
    449 
    450   // If the RawComment was attached to other redeclaration of this Decl, we
    451   // should parse the comment in context of that other Decl.  This is important
    452   // because comments can contain references to parameter names which can be
    453   // different across redeclarations.
    454   if (D != OriginalDecl)
    455     return getCommentForDecl(OriginalDecl, PP);
    456 
    457   comments::FullComment *FC = RC->parse(*this, PP, D);
    458   ParsedComments[Canonical] = FC;
    459   return FC;
    460 }
    461 
    462 void
    463 ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
    464                                                TemplateTemplateParmDecl *Parm) {
    465   ID.AddInteger(Parm->getDepth());
    466   ID.AddInteger(Parm->getPosition());
    467   ID.AddBoolean(Parm->isParameterPack());
    468 
    469   TemplateParameterList *Params = Parm->getTemplateParameters();
    470   ID.AddInteger(Params->size());
    471   for (TemplateParameterList::const_iterator P = Params->begin(),
    472                                           PEnd = Params->end();
    473        P != PEnd; ++P) {
    474     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
    475       ID.AddInteger(0);
    476       ID.AddBoolean(TTP->isParameterPack());
    477       continue;
    478     }
    479 
    480     if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
    481       ID.AddInteger(1);
    482       ID.AddBoolean(NTTP->isParameterPack());
    483       ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
    484       if (NTTP->isExpandedParameterPack()) {
    485         ID.AddBoolean(true);
    486         ID.AddInteger(NTTP->getNumExpansionTypes());
    487         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
    488           QualType T = NTTP->getExpansionType(I);
    489           ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
    490         }
    491       } else
    492         ID.AddBoolean(false);
    493       continue;
    494     }
    495 
    496     TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
    497     ID.AddInteger(2);
    498     Profile(ID, TTP);
    499   }
    500 }
    501 
    502 TemplateTemplateParmDecl *
    503 ASTContext::getCanonicalTemplateTemplateParmDecl(
    504                                           TemplateTemplateParmDecl *TTP) const {
    505   // Check if we already have a canonical template template parameter.
    506   llvm::FoldingSetNodeID ID;
    507   CanonicalTemplateTemplateParm::Profile(ID, TTP);
    508   void *InsertPos = 0;
    509   CanonicalTemplateTemplateParm *Canonical
    510     = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
    511   if (Canonical)
    512     return Canonical->getParam();
    513 
    514   // Build a canonical template parameter list.
    515   TemplateParameterList *Params = TTP->getTemplateParameters();
    516   SmallVector<NamedDecl *, 4> CanonParams;
    517   CanonParams.reserve(Params->size());
    518   for (TemplateParameterList::const_iterator P = Params->begin(),
    519                                           PEnd = Params->end();
    520        P != PEnd; ++P) {
    521     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
    522       CanonParams.push_back(
    523                   TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
    524                                                SourceLocation(),
    525                                                SourceLocation(),
    526                                                TTP->getDepth(),
    527                                                TTP->getIndex(), 0, false,
    528                                                TTP->isParameterPack()));
    529     else if (NonTypeTemplateParmDecl *NTTP
    530              = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
    531       QualType T = getCanonicalType(NTTP->getType());
    532       TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
    533       NonTypeTemplateParmDecl *Param;
    534       if (NTTP->isExpandedParameterPack()) {
    535         SmallVector<QualType, 2> ExpandedTypes;
    536         SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
    537         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
    538           ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
    539           ExpandedTInfos.push_back(
    540                                 getTrivialTypeSourceInfo(ExpandedTypes.back()));
    541         }
    542 
    543         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
    544                                                 SourceLocation(),
    545                                                 SourceLocation(),
    546                                                 NTTP->getDepth(),
    547                                                 NTTP->getPosition(), 0,
    548                                                 T,
    549                                                 TInfo,
    550                                                 ExpandedTypes.data(),
    551                                                 ExpandedTypes.size(),
    552                                                 ExpandedTInfos.data());
    553       } else {
    554         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
    555                                                 SourceLocation(),
    556                                                 SourceLocation(),
    557                                                 NTTP->getDepth(),
    558                                                 NTTP->getPosition(), 0,
    559                                                 T,
    560                                                 NTTP->isParameterPack(),
    561                                                 TInfo);
    562       }
    563       CanonParams.push_back(Param);
    564 
    565     } else
    566       CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
    567                                            cast<TemplateTemplateParmDecl>(*P)));
    568   }
    569 
    570   TemplateTemplateParmDecl *CanonTTP
    571     = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
    572                                        SourceLocation(), TTP->getDepth(),
    573                                        TTP->getPosition(),
    574                                        TTP->isParameterPack(),
    575                                        0,
    576                          TemplateParameterList::Create(*this, SourceLocation(),
    577                                                        SourceLocation(),
    578                                                        CanonParams.data(),
    579                                                        CanonParams.size(),
    580                                                        SourceLocation()));
    581 
    582   // Get the new insert position for the node we care about.
    583   Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
    584   assert(Canonical == 0 && "Shouldn't be in the map!");
    585   (void)Canonical;
    586 
    587   // Create the canonical template template parameter entry.
    588   Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
    589   CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
    590   return CanonTTP;
    591 }
    592 
    593 CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
    594   if (!LangOpts.CPlusPlus) return 0;
    595 
    596   switch (T.getCXXABI().getKind()) {
    597   case TargetCXXABI::GenericARM:
    598   case TargetCXXABI::iOS:
    599     return CreateARMCXXABI(*this);
    600   case TargetCXXABI::GenericAArch64: // Same as Itanium at this level
    601   case TargetCXXABI::GenericItanium:
    602     return CreateItaniumCXXABI(*this);
    603   case TargetCXXABI::Microsoft:
    604     return CreateMicrosoftCXXABI(*this);
    605   }
    606   llvm_unreachable("Invalid CXXABI type!");
    607 }
    608 
    609 static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
    610                                              const LangOptions &LOpts) {
    611   if (LOpts.FakeAddressSpaceMap) {
    612     // The fake address space map must have a distinct entry for each
    613     // language-specific address space.
    614     static const unsigned FakeAddrSpaceMap[] = {
    615       1, // opencl_global
    616       2, // opencl_local
    617       3, // opencl_constant
    618       4, // cuda_device
    619       5, // cuda_constant
    620       6  // cuda_shared
    621     };
    622     return &FakeAddrSpaceMap;
    623   } else {
    624     return &T.getAddressSpaceMap();
    625   }
    626 }
    627 
    628 ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
    629                        const TargetInfo *t,
    630                        IdentifierTable &idents, SelectorTable &sels,
    631                        Builtin::Context &builtins,
    632                        unsigned size_reserve,
    633                        bool DelayInitialization)
    634   : FunctionProtoTypes(this_()),
    635     TemplateSpecializationTypes(this_()),
    636     DependentTemplateSpecializationTypes(this_()),
    637     SubstTemplateTemplateParmPacks(this_()),
    638     GlobalNestedNameSpecifier(0),
    639     Int128Decl(0), UInt128Decl(0),
    640     BuiltinVaListDecl(0),
    641     ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
    642     BOOLDecl(0),
    643     CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
    644     FILEDecl(0),
    645     jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
    646     BlockDescriptorType(0), BlockDescriptorExtendedType(0),
    647     cudaConfigureCallDecl(0),
    648     NullTypeSourceInfo(QualType()),
    649     FirstLocalImport(), LastLocalImport(),
    650     SourceMgr(SM), LangOpts(LOpts),
    651     AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
    652     Idents(idents), Selectors(sels),
    653     BuiltinInfo(builtins),
    654     DeclarationNames(*this),
    655     ExternalSource(0), Listener(0),
    656     Comments(SM), CommentsLoaded(false),
    657     CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
    658     LastSDM(0, 0),
    659     UniqueBlockByRefTypeID(0)
    660 {
    661   if (size_reserve > 0) Types.reserve(size_reserve);
    662   TUDecl = TranslationUnitDecl::Create(*this);
    663 
    664   if (!DelayInitialization) {
    665     assert(t && "No target supplied for ASTContext initialization");
    666     InitBuiltinTypes(*t);
    667   }
    668 }
    669 
    670 ASTContext::~ASTContext() {
    671   // Release the DenseMaps associated with DeclContext objects.
    672   // FIXME: Is this the ideal solution?
    673   ReleaseDeclContextMaps();
    674 
    675   // Call all of the deallocation functions.
    676   for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
    677     Deallocations[I].first(Deallocations[I].second);
    678 
    679   // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
    680   // because they can contain DenseMaps.
    681   for (llvm::DenseMap<const ObjCContainerDecl*,
    682        const ASTRecordLayout*>::iterator
    683        I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
    684     // Increment in loop to prevent using deallocated memory.
    685     if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
    686       R->Destroy(*this);
    687 
    688   for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
    689        I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
    690     // Increment in loop to prevent using deallocated memory.
    691     if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
    692       R->Destroy(*this);
    693   }
    694 
    695   for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
    696                                                     AEnd = DeclAttrs.end();
    697        A != AEnd; ++A)
    698     A->second->~AttrVec();
    699 }
    700 
    701 void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
    702   Deallocations.push_back(std::make_pair(Callback, Data));
    703 }
    704 
    705 void
    706 ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
    707   ExternalSource.reset(Source.take());
    708 }
    709 
    710 void ASTContext::PrintStats() const {
    711   llvm::errs() << "\n*** AST Context Stats:\n";
    712   llvm::errs() << "  " << Types.size() << " types total.\n";
    713 
    714   unsigned counts[] = {
    715 #define TYPE(Name, Parent) 0,
    716 #define ABSTRACT_TYPE(Name, Parent)
    717 #include "clang/AST/TypeNodes.def"
    718     0 // Extra
    719   };
    720 
    721   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
    722     Type *T = Types[i];
    723     counts[(unsigned)T->getTypeClass()]++;
    724   }
    725 
    726   unsigned Idx = 0;
    727   unsigned TotalBytes = 0;
    728 #define TYPE(Name, Parent)                                              \
    729   if (counts[Idx])                                                      \
    730     llvm::errs() << "    " << counts[Idx] << " " << #Name               \
    731                  << " types\n";                                         \
    732   TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
    733   ++Idx;
    734 #define ABSTRACT_TYPE(Name, Parent)
    735 #include "clang/AST/TypeNodes.def"
    736 
    737   llvm::errs() << "Total bytes = " << TotalBytes << "\n";
    738 
    739   // Implicit special member functions.
    740   llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
    741                << NumImplicitDefaultConstructors
    742                << " implicit default constructors created\n";
    743   llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
    744                << NumImplicitCopyConstructors
    745                << " implicit copy constructors created\n";
    746   if (getLangOpts().CPlusPlus)
    747     llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
    748                  << NumImplicitMoveConstructors
    749                  << " implicit move constructors created\n";
    750   llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
    751                << NumImplicitCopyAssignmentOperators
    752                << " implicit copy assignment operators created\n";
    753   if (getLangOpts().CPlusPlus)
    754     llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
    755                  << NumImplicitMoveAssignmentOperators
    756                  << " implicit move assignment operators created\n";
    757   llvm::errs() << NumImplicitDestructorsDeclared << "/"
    758                << NumImplicitDestructors
    759                << " implicit destructors created\n";
    760 
    761   if (ExternalSource.get()) {
    762     llvm::errs() << "\n";
    763     ExternalSource->PrintStats();
    764   }
    765 
    766   BumpAlloc.PrintStats();
    767 }
    768 
    769 TypedefDecl *ASTContext::getInt128Decl() const {
    770   if (!Int128Decl) {
    771     TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
    772     Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
    773                                      getTranslationUnitDecl(),
    774                                      SourceLocation(),
    775                                      SourceLocation(),
    776                                      &Idents.get("__int128_t"),
    777                                      TInfo);
    778   }
    779 
    780   return Int128Decl;
    781 }
    782 
    783 TypedefDecl *ASTContext::getUInt128Decl() const {
    784   if (!UInt128Decl) {
    785     TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
    786     UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
    787                                      getTranslationUnitDecl(),
    788                                      SourceLocation(),
    789                                      SourceLocation(),
    790                                      &Idents.get("__uint128_t"),
    791                                      TInfo);
    792   }
    793 
    794   return UInt128Decl;
    795 }
    796 
    797 void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
    798   BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
    799   R = CanQualType::CreateUnsafe(QualType(Ty, 0));
    800   Types.push_back(Ty);
    801 }
    802 
    803 void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
    804   assert((!this->Target || this->Target == &Target) &&
    805          "Incorrect target reinitialization");
    806   assert(VoidTy.isNull() && "Context reinitialized?");
    807 
    808   this->Target = &Target;
    809 
    810   ABI.reset(createCXXABI(Target));
    811   AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
    812 
    813   // C99 6.2.5p19.
    814   InitBuiltinType(VoidTy,              BuiltinType::Void);
    815 
    816   // C99 6.2.5p2.
    817   InitBuiltinType(BoolTy,              BuiltinType::Bool);
    818   // C99 6.2.5p3.
    819   if (LangOpts.CharIsSigned)
    820     InitBuiltinType(CharTy,            BuiltinType::Char_S);
    821   else
    822     InitBuiltinType(CharTy,            BuiltinType::Char_U);
    823   // C99 6.2.5p4.
    824   InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
    825   InitBuiltinType(ShortTy,             BuiltinType::Short);
    826   InitBuiltinType(IntTy,               BuiltinType::Int);
    827   InitBuiltinType(LongTy,              BuiltinType::Long);
    828   InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
    829 
    830   // C99 6.2.5p6.
    831   InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
    832   InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
    833   InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
    834   InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
    835   InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
    836 
    837   // C99 6.2.5p10.
    838   InitBuiltinType(FloatTy,             BuiltinType::Float);
    839   InitBuiltinType(DoubleTy,            BuiltinType::Double);
    840   InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
    841 
    842   // GNU extension, 128-bit integers.
    843   InitBuiltinType(Int128Ty,            BuiltinType::Int128);
    844   InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
    845 
    846   if (LangOpts.CPlusPlus && LangOpts.WChar) { // C++ 3.9.1p5
    847     if (TargetInfo::isTypeSigned(Target.getWCharType()))
    848       InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
    849     else  // -fshort-wchar makes wchar_t be unsigned.
    850       InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
    851   } else // C99 (or C++ using -fno-wchar)
    852     WCharTy = getFromTargetType(Target.getWCharType());
    853 
    854   WIntTy = getFromTargetType(Target.getWIntType());
    855 
    856   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
    857     InitBuiltinType(Char16Ty,           BuiltinType::Char16);
    858   else // C99
    859     Char16Ty = getFromTargetType(Target.getChar16Type());
    860 
    861   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
    862     InitBuiltinType(Char32Ty,           BuiltinType::Char32);
    863   else // C99
    864     Char32Ty = getFromTargetType(Target.getChar32Type());
    865 
    866   // Placeholder type for type-dependent expressions whose type is
    867   // completely unknown. No code should ever check a type against
    868   // DependentTy and users should never see it; however, it is here to
    869   // help diagnose failures to properly check for type-dependent
    870   // expressions.
    871   InitBuiltinType(DependentTy,         BuiltinType::Dependent);
    872 
    873   // Placeholder type for functions.
    874   InitBuiltinType(OverloadTy,          BuiltinType::Overload);
    875 
    876   // Placeholder type for bound members.
    877   InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
    878 
    879   // Placeholder type for pseudo-objects.
    880   InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
    881 
    882   // "any" type; useful for debugger-like clients.
    883   InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
    884 
    885   // Placeholder type for unbridged ARC casts.
    886   InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
    887 
    888   // Placeholder type for builtin functions.
    889   InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
    890 
    891   // C99 6.2.5p11.
    892   FloatComplexTy      = getComplexType(FloatTy);
    893   DoubleComplexTy     = getComplexType(DoubleTy);
    894   LongDoubleComplexTy = getComplexType(LongDoubleTy);
    895 
    896   // Builtin types for 'id', 'Class', and 'SEL'.
    897   InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
    898   InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
    899   InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
    900 
    901   if (LangOpts.OpenCL) {
    902     InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d);
    903     InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray);
    904     InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer);
    905     InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d);
    906     InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray);
    907     InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d);
    908 
    909     InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
    910     InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
    911   }
    912 
    913   // Builtin type for __objc_yes and __objc_no
    914   ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
    915                        SignedCharTy : BoolTy);
    916 
    917   ObjCConstantStringType = QualType();
    918 
    919   ObjCSuperType = QualType();
    920 
    921   // void * type
    922   VoidPtrTy = getPointerType(VoidTy);
    923 
    924   // nullptr type (C++0x 2.14.7)
    925   InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
    926 
    927   // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
    928   InitBuiltinType(HalfTy, BuiltinType::Half);
    929 
    930   // Builtin type used to help define __builtin_va_list.
    931   VaListTagTy = QualType();
    932 }
    933 
    934 DiagnosticsEngine &ASTContext::getDiagnostics() const {
    935   return SourceMgr.getDiagnostics();
    936 }
    937 
    938 AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
    939   AttrVec *&Result = DeclAttrs[D];
    940   if (!Result) {
    941     void *Mem = Allocate(sizeof(AttrVec));
    942     Result = new (Mem) AttrVec;
    943   }
    944 
    945   return *Result;
    946 }
    947 
    948 /// \brief Erase the attributes corresponding to the given declaration.
    949 void ASTContext::eraseDeclAttrs(const Decl *D) {
    950   llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
    951   if (Pos != DeclAttrs.end()) {
    952     Pos->second->~AttrVec();
    953     DeclAttrs.erase(Pos);
    954   }
    955 }
    956 
    957 MemberSpecializationInfo *
    958 ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
    959   assert(Var->isStaticDataMember() && "Not a static data member");
    960   llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
    961     = InstantiatedFromStaticDataMember.find(Var);
    962   if (Pos == InstantiatedFromStaticDataMember.end())
    963     return 0;
    964 
    965   return Pos->second;
    966 }
    967 
    968 void
    969 ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
    970                                                 TemplateSpecializationKind TSK,
    971                                           SourceLocation PointOfInstantiation) {
    972   assert(Inst->isStaticDataMember() && "Not a static data member");
    973   assert(Tmpl->isStaticDataMember() && "Not a static data member");
    974   assert(!InstantiatedFromStaticDataMember[Inst] &&
    975          "Already noted what static data member was instantiated from");
    976   InstantiatedFromStaticDataMember[Inst]
    977     = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
    978 }
    979 
    980 FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
    981                                                      const FunctionDecl *FD){
    982   assert(FD && "Specialization is 0");
    983   llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
    984     = ClassScopeSpecializationPattern.find(FD);
    985   if (Pos == ClassScopeSpecializationPattern.end())
    986     return 0;
    987 
    988   return Pos->second;
    989 }
    990 
    991 void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
    992                                         FunctionDecl *Pattern) {
    993   assert(FD && "Specialization is 0");
    994   assert(Pattern && "Class scope specialization pattern is 0");
    995   ClassScopeSpecializationPattern[FD] = Pattern;
    996 }
    997 
    998 NamedDecl *
    999 ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
   1000   llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
   1001     = InstantiatedFromUsingDecl.find(UUD);
   1002   if (Pos == InstantiatedFromUsingDecl.end())
   1003     return 0;
   1004 
   1005   return Pos->second;
   1006 }
   1007 
   1008 void
   1009 ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
   1010   assert((isa<UsingDecl>(Pattern) ||
   1011           isa<UnresolvedUsingValueDecl>(Pattern) ||
   1012           isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
   1013          "pattern decl is not a using decl");
   1014   assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
   1015   InstantiatedFromUsingDecl[Inst] = Pattern;
   1016 }
   1017 
   1018 UsingShadowDecl *
   1019 ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
   1020   llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
   1021     = InstantiatedFromUsingShadowDecl.find(Inst);
   1022   if (Pos == InstantiatedFromUsingShadowDecl.end())
   1023     return 0;
   1024 
   1025   return Pos->second;
   1026 }
   1027 
   1028 void
   1029 ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
   1030                                                UsingShadowDecl *Pattern) {
   1031   assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
   1032   InstantiatedFromUsingShadowDecl[Inst] = Pattern;
   1033 }
   1034 
   1035 FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
   1036   llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
   1037     = InstantiatedFromUnnamedFieldDecl.find(Field);
   1038   if (Pos == InstantiatedFromUnnamedFieldDecl.end())
   1039     return 0;
   1040 
   1041   return Pos->second;
   1042 }
   1043 
   1044 void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
   1045                                                      FieldDecl *Tmpl) {
   1046   assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
   1047   assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
   1048   assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
   1049          "Already noted what unnamed field was instantiated from");
   1050 
   1051   InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
   1052 }
   1053 
   1054 bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
   1055                                     const FieldDecl *LastFD) const {
   1056   return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
   1057           FD->getBitWidthValue(*this) == 0);
   1058 }
   1059 
   1060 bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
   1061                                              const FieldDecl *LastFD) const {
   1062   return (FD->isBitField() && LastFD && LastFD->isBitField() &&
   1063           FD->getBitWidthValue(*this) == 0 &&
   1064           LastFD->getBitWidthValue(*this) != 0);
   1065 }
   1066 
   1067 bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
   1068                                          const FieldDecl *LastFD) const {
   1069   return (FD->isBitField() && LastFD && LastFD->isBitField() &&
   1070           FD->getBitWidthValue(*this) &&
   1071           LastFD->getBitWidthValue(*this));
   1072 }
   1073 
   1074 bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
   1075                                          const FieldDecl *LastFD) const {
   1076   return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
   1077           LastFD->getBitWidthValue(*this));
   1078 }
   1079 
   1080 bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
   1081                                              const FieldDecl *LastFD) const {
   1082   return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
   1083           FD->getBitWidthValue(*this));
   1084 }
   1085 
   1086 ASTContext::overridden_cxx_method_iterator
   1087 ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
   1088   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
   1089     = OverriddenMethods.find(Method->getCanonicalDecl());
   1090   if (Pos == OverriddenMethods.end())
   1091     return 0;
   1092 
   1093   return Pos->second.begin();
   1094 }
   1095 
   1096 ASTContext::overridden_cxx_method_iterator
   1097 ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
   1098   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
   1099     = OverriddenMethods.find(Method->getCanonicalDecl());
   1100   if (Pos == OverriddenMethods.end())
   1101     return 0;
   1102 
   1103   return Pos->second.end();
   1104 }
   1105 
   1106 unsigned
   1107 ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
   1108   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
   1109     = OverriddenMethods.find(Method->getCanonicalDecl());
   1110   if (Pos == OverriddenMethods.end())
   1111     return 0;
   1112 
   1113   return Pos->second.size();
   1114 }
   1115 
   1116 void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
   1117                                      const CXXMethodDecl *Overridden) {
   1118   assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
   1119   OverriddenMethods[Method].push_back(Overridden);
   1120 }
   1121 
   1122 void ASTContext::getOverriddenMethods(
   1123                       const NamedDecl *D,
   1124                       SmallVectorImpl<const NamedDecl *> &Overridden) const {
   1125   assert(D);
   1126 
   1127   if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
   1128     Overridden.append(CXXMethod->begin_overridden_methods(),
   1129                       CXXMethod->end_overridden_methods());
   1130     return;
   1131   }
   1132 
   1133   const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D);
   1134   if (!Method)
   1135     return;
   1136 
   1137   SmallVector<const ObjCMethodDecl *, 8> OverDecls;
   1138   Method->getOverriddenMethods(OverDecls);
   1139   Overridden.append(OverDecls.begin(), OverDecls.end());
   1140 }
   1141 
   1142 void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
   1143   assert(!Import->NextLocalImport && "Import declaration already in the chain");
   1144   assert(!Import->isFromASTFile() && "Non-local import declaration");
   1145   if (!FirstLocalImport) {
   1146     FirstLocalImport = Import;
   1147     LastLocalImport = Import;
   1148     return;
   1149   }
   1150 
   1151   LastLocalImport->NextLocalImport = Import;
   1152   LastLocalImport = Import;
   1153 }
   1154 
   1155 //===----------------------------------------------------------------------===//
   1156 //                         Type Sizing and Analysis
   1157 //===----------------------------------------------------------------------===//
   1158 
   1159 /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
   1160 /// scalar floating point type.
   1161 const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
   1162   const BuiltinType *BT = T->getAs<BuiltinType>();
   1163   assert(BT && "Not a floating point type!");
   1164   switch (BT->getKind()) {
   1165   default: llvm_unreachable("Not a floating point type!");
   1166   case BuiltinType::Half:       return Target->getHalfFormat();
   1167   case BuiltinType::Float:      return Target->getFloatFormat();
   1168   case BuiltinType::Double:     return Target->getDoubleFormat();
   1169   case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
   1170   }
   1171 }
   1172 
   1173 /// getDeclAlign - Return a conservative estimate of the alignment of the
   1174 /// specified decl.  Note that bitfields do not have a valid alignment, so
   1175 /// this method will assert on them.
   1176 /// If @p RefAsPointee, references are treated like their underlying type
   1177 /// (for alignof), else they're treated like pointers (for CodeGen).
   1178 CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
   1179   unsigned Align = Target->getCharWidth();
   1180 
   1181   bool UseAlignAttrOnly = false;
   1182   if (unsigned AlignFromAttr = D->getMaxAlignment()) {
   1183     Align = AlignFromAttr;
   1184 
   1185     // __attribute__((aligned)) can increase or decrease alignment
   1186     // *except* on a struct or struct member, where it only increases
   1187     // alignment unless 'packed' is also specified.
   1188     //
   1189     // It is an error for alignas to decrease alignment, so we can
   1190     // ignore that possibility;  Sema should diagnose it.
   1191     if (isa<FieldDecl>(D)) {
   1192       UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
   1193         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
   1194     } else {
   1195       UseAlignAttrOnly = true;
   1196     }
   1197   }
   1198   else if (isa<FieldDecl>(D))
   1199       UseAlignAttrOnly =
   1200         D->hasAttr<PackedAttr>() ||
   1201         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
   1202 
   1203   // If we're using the align attribute only, just ignore everything
   1204   // else about the declaration and its type.
   1205   if (UseAlignAttrOnly) {
   1206     // do nothing
   1207 
   1208   } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
   1209     QualType T = VD->getType();
   1210     if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
   1211       if (RefAsPointee)
   1212         T = RT->getPointeeType();
   1213       else
   1214         T = getPointerType(RT->getPointeeType());
   1215     }
   1216     if (!T->isIncompleteType() && !T->isFunctionType()) {
   1217       // Adjust alignments of declarations with array type by the
   1218       // large-array alignment on the target.
   1219       unsigned MinWidth = Target->getLargeArrayMinWidth();
   1220       const ArrayType *arrayType;
   1221       if (MinWidth && (arrayType = getAsArrayType(T))) {
   1222         if (isa<VariableArrayType>(arrayType))
   1223           Align = std::max(Align, Target->getLargeArrayAlign());
   1224         else if (isa<ConstantArrayType>(arrayType) &&
   1225                  MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
   1226           Align = std::max(Align, Target->getLargeArrayAlign());
   1227 
   1228         // Walk through any array types while we're at it.
   1229         T = getBaseElementType(arrayType);
   1230       }
   1231       Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
   1232     }
   1233 
   1234     // Fields can be subject to extra alignment constraints, like if
   1235     // the field is packed, the struct is packed, or the struct has a
   1236     // a max-field-alignment constraint (#pragma pack).  So calculate
   1237     // the actual alignment of the field within the struct, and then
   1238     // (as we're expected to) constrain that by the alignment of the type.
   1239     if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
   1240       // So calculate the alignment of the field.
   1241       const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
   1242 
   1243       // Start with the record's overall alignment.
   1244       unsigned fieldAlign = toBits(layout.getAlignment());
   1245 
   1246       // Use the GCD of that and the offset within the record.
   1247       uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
   1248       if (offset > 0) {
   1249         // Alignment is always a power of 2, so the GCD will be a power of 2,
   1250         // which means we get to do this crazy thing instead of Euclid's.
   1251         uint64_t lowBitOfOffset = offset & (~offset + 1);
   1252         if (lowBitOfOffset < fieldAlign)
   1253           fieldAlign = static_cast<unsigned>(lowBitOfOffset);
   1254       }
   1255 
   1256       Align = std::min(Align, fieldAlign);
   1257     }
   1258   }
   1259 
   1260   return toCharUnitsFromBits(Align);
   1261 }
   1262 
   1263 // getTypeInfoDataSizeInChars - Return the size of a type, in
   1264 // chars. If the type is a record, its data size is returned.  This is
   1265 // the size of the memcpy that's performed when assigning this type
   1266 // using a trivial copy/move assignment operator.
   1267 std::pair<CharUnits, CharUnits>
   1268 ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
   1269   std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
   1270 
   1271   // In C++, objects can sometimes be allocated into the tail padding
   1272   // of a base-class subobject.  We decide whether that's possible
   1273   // during class layout, so here we can just trust the layout results.
   1274   if (getLangOpts().CPlusPlus) {
   1275     if (const RecordType *RT = T->getAs<RecordType>()) {
   1276       const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
   1277       sizeAndAlign.first = layout.getDataSize();
   1278     }
   1279   }
   1280 
   1281   return sizeAndAlign;
   1282 }
   1283 
   1284 std::pair<CharUnits, CharUnits>
   1285 ASTContext::getTypeInfoInChars(const Type *T) const {
   1286   std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
   1287   return std::make_pair(toCharUnitsFromBits(Info.first),
   1288                         toCharUnitsFromBits(Info.second));
   1289 }
   1290 
   1291 std::pair<CharUnits, CharUnits>
   1292 ASTContext::getTypeInfoInChars(QualType T) const {
   1293   return getTypeInfoInChars(T.getTypePtr());
   1294 }
   1295 
   1296 std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
   1297   TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
   1298   if (it != MemoizedTypeInfo.end())
   1299     return it->second;
   1300 
   1301   std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
   1302   MemoizedTypeInfo.insert(std::make_pair(T, Info));
   1303   return Info;
   1304 }
   1305 
   1306 /// getTypeInfoImpl - Return the size of the specified type, in bits.  This
   1307 /// method does not work on incomplete types.
   1308 ///
   1309 /// FIXME: Pointers into different addr spaces could have different sizes and
   1310 /// alignment requirements: getPointerInfo should take an AddrSpace, this
   1311 /// should take a QualType, &c.
   1312 std::pair<uint64_t, unsigned>
   1313 ASTContext::getTypeInfoImpl(const Type *T) const {
   1314   uint64_t Width=0;
   1315   unsigned Align=8;
   1316   switch (T->getTypeClass()) {
   1317 #define TYPE(Class, Base)
   1318 #define ABSTRACT_TYPE(Class, Base)
   1319 #define NON_CANONICAL_TYPE(Class, Base)
   1320 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
   1321 #include "clang/AST/TypeNodes.def"
   1322     llvm_unreachable("Should not see dependent types");
   1323 
   1324   case Type::FunctionNoProto:
   1325   case Type::FunctionProto:
   1326     // GCC extension: alignof(function) = 32 bits
   1327     Width = 0;
   1328     Align = 32;
   1329     break;
   1330 
   1331   case Type::IncompleteArray:
   1332   case Type::VariableArray:
   1333     Width = 0;
   1334     Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
   1335     break;
   1336 
   1337   case Type::ConstantArray: {
   1338     const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
   1339 
   1340     std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
   1341     uint64_t Size = CAT->getSize().getZExtValue();
   1342     assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
   1343            "Overflow in array type bit size evaluation");
   1344     Width = EltInfo.first*Size;
   1345     Align = EltInfo.second;
   1346     Width = llvm::RoundUpToAlignment(Width, Align);
   1347     break;
   1348   }
   1349   case Type::ExtVector:
   1350   case Type::Vector: {
   1351     const VectorType *VT = cast<VectorType>(T);
   1352     std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
   1353     Width = EltInfo.first*VT->getNumElements();
   1354     Align = Width;
   1355     // If the alignment is not a power of 2, round up to the next power of 2.
   1356     // This happens for non-power-of-2 length vectors.
   1357     if (Align & (Align-1)) {
   1358       Align = llvm::NextPowerOf2(Align);
   1359       Width = llvm::RoundUpToAlignment(Width, Align);
   1360     }
   1361     // Adjust the alignment based on the target max.
   1362     uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
   1363     if (TargetVectorAlign && TargetVectorAlign < Align)
   1364       Align = TargetVectorAlign;
   1365     break;
   1366   }
   1367 
   1368   case Type::Builtin:
   1369     switch (cast<BuiltinType>(T)->getKind()) {
   1370     default: llvm_unreachable("Unknown builtin type!");
   1371     case BuiltinType::Void:
   1372       // GCC extension: alignof(void) = 8 bits.
   1373       Width = 0;
   1374       Align = 8;
   1375       break;
   1376 
   1377     case BuiltinType::Bool:
   1378       Width = Target->getBoolWidth();
   1379       Align = Target->getBoolAlign();
   1380       break;
   1381     case BuiltinType::Char_S:
   1382     case BuiltinType::Char_U:
   1383     case BuiltinType::UChar:
   1384     case BuiltinType::SChar:
   1385       Width = Target->getCharWidth();
   1386       Align = Target->getCharAlign();
   1387       break;
   1388     case BuiltinType::WChar_S:
   1389     case BuiltinType::WChar_U:
   1390       Width = Target->getWCharWidth();
   1391       Align = Target->getWCharAlign();
   1392       break;
   1393     case BuiltinType::Char16:
   1394       Width = Target->getChar16Width();
   1395       Align = Target->getChar16Align();
   1396       break;
   1397     case BuiltinType::Char32:
   1398       Width = Target->getChar32Width();
   1399       Align = Target->getChar32Align();
   1400       break;
   1401     case BuiltinType::UShort:
   1402     case BuiltinType::Short:
   1403       Width = Target->getShortWidth();
   1404       Align = Target->getShortAlign();
   1405       break;
   1406     case BuiltinType::UInt:
   1407     case BuiltinType::Int:
   1408       Width = Target->getIntWidth();
   1409       Align = Target->getIntAlign();
   1410       break;
   1411     case BuiltinType::ULong:
   1412     case BuiltinType::Long:
   1413       Width = Target->getLongWidth();
   1414       Align = Target->getLongAlign();
   1415       break;
   1416     case BuiltinType::ULongLong:
   1417     case BuiltinType::LongLong:
   1418       Width = Target->getLongLongWidth();
   1419       Align = Target->getLongLongAlign();
   1420       break;
   1421     case BuiltinType::Int128:
   1422     case BuiltinType::UInt128:
   1423       Width = 128;
   1424       Align = 128; // int128_t is 128-bit aligned on all targets.
   1425       break;
   1426     case BuiltinType::Half:
   1427       Width = Target->getHalfWidth();
   1428       Align = Target->getHalfAlign();
   1429       break;
   1430     case BuiltinType::Float:
   1431       Width = Target->getFloatWidth();
   1432       Align = Target->getFloatAlign();
   1433       break;
   1434     case BuiltinType::Double:
   1435       Width = Target->getDoubleWidth();
   1436       Align = Target->getDoubleAlign();
   1437       break;
   1438     case BuiltinType::LongDouble:
   1439       Width = Target->getLongDoubleWidth();
   1440       Align = Target->getLongDoubleAlign();
   1441       break;
   1442     case BuiltinType::NullPtr:
   1443       Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
   1444       Align = Target->getPointerAlign(0); //   == sizeof(void*)
   1445       break;
   1446     case BuiltinType::ObjCId:
   1447     case BuiltinType::ObjCClass:
   1448     case BuiltinType::ObjCSel:
   1449       Width = Target->getPointerWidth(0);
   1450       Align = Target->getPointerAlign(0);
   1451       break;
   1452     case BuiltinType::OCLSampler:
   1453       // Samplers are modeled as integers.
   1454       Width = Target->getIntWidth();
   1455       Align = Target->getIntAlign();
   1456       break;
   1457     case BuiltinType::OCLEvent:
   1458     case BuiltinType::OCLImage1d:
   1459     case BuiltinType::OCLImage1dArray:
   1460     case BuiltinType::OCLImage1dBuffer:
   1461     case BuiltinType::OCLImage2d:
   1462     case BuiltinType::OCLImage2dArray:
   1463     case BuiltinType::OCLImage3d:
   1464       // Currently these types are pointers to opaque types.
   1465       Width = Target->getPointerWidth(0);
   1466       Align = Target->getPointerAlign(0);
   1467       break;
   1468     }
   1469     break;
   1470   case Type::ObjCObjectPointer:
   1471     Width = Target->getPointerWidth(0);
   1472     Align = Target->getPointerAlign(0);
   1473     break;
   1474   case Type::BlockPointer: {
   1475     unsigned AS = getTargetAddressSpace(
   1476         cast<BlockPointerType>(T)->getPointeeType());
   1477     Width = Target->getPointerWidth(AS);
   1478     Align = Target->getPointerAlign(AS);
   1479     break;
   1480   }
   1481   case Type::LValueReference:
   1482   case Type::RValueReference: {
   1483     // alignof and sizeof should never enter this code path here, so we go
   1484     // the pointer route.
   1485     unsigned AS = getTargetAddressSpace(
   1486         cast<ReferenceType>(T)->getPointeeType());
   1487     Width = Target->getPointerWidth(AS);
   1488     Align = Target->getPointerAlign(AS);
   1489     break;
   1490   }
   1491   case Type::Pointer: {
   1492     unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
   1493     Width = Target->getPointerWidth(AS);
   1494     Align = Target->getPointerAlign(AS);
   1495     break;
   1496   }
   1497   case Type::MemberPointer: {
   1498     const MemberPointerType *MPT = cast<MemberPointerType>(T);
   1499     std::pair<uint64_t, unsigned> PtrDiffInfo =
   1500       getTypeInfo(getPointerDiffType());
   1501     Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
   1502     Align = PtrDiffInfo.second;
   1503     break;
   1504   }
   1505   case Type::Complex: {
   1506     // Complex types have the same alignment as their elements, but twice the
   1507     // size.
   1508     std::pair<uint64_t, unsigned> EltInfo =
   1509       getTypeInfo(cast<ComplexType>(T)->getElementType());
   1510     Width = EltInfo.first*2;
   1511     Align = EltInfo.second;
   1512     break;
   1513   }
   1514   case Type::ObjCObject:
   1515     return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
   1516   case Type::ObjCInterface: {
   1517     const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
   1518     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
   1519     Width = toBits(Layout.getSize());
   1520     Align = toBits(Layout.getAlignment());
   1521     break;
   1522   }
   1523   case Type::Record:
   1524   case Type::Enum: {
   1525     const TagType *TT = cast<TagType>(T);
   1526 
   1527     if (TT->getDecl()->isInvalidDecl()) {
   1528       Width = 8;
   1529       Align = 8;
   1530       break;
   1531     }
   1532 
   1533     if (const EnumType *ET = dyn_cast<EnumType>(TT))
   1534       return getTypeInfo(ET->getDecl()->getIntegerType());
   1535 
   1536     const RecordType *RT = cast<RecordType>(TT);
   1537     const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
   1538     Width = toBits(Layout.getSize());
   1539     Align = toBits(Layout.getAlignment());
   1540     break;
   1541   }
   1542 
   1543   case Type::SubstTemplateTypeParm:
   1544     return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
   1545                        getReplacementType().getTypePtr());
   1546 
   1547   case Type::Auto: {
   1548     const AutoType *A = cast<AutoType>(T);
   1549     assert(A->isDeduced() && "Cannot request the size of a dependent type");
   1550     return getTypeInfo(A->getDeducedType().getTypePtr());
   1551   }
   1552 
   1553   case Type::Paren:
   1554     return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
   1555 
   1556   case Type::Typedef: {
   1557     const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
   1558     std::pair<uint64_t, unsigned> Info
   1559       = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
   1560     // If the typedef has an aligned attribute on it, it overrides any computed
   1561     // alignment we have.  This violates the GCC documentation (which says that
   1562     // attribute(aligned) can only round up) but matches its implementation.
   1563     if (unsigned AttrAlign = Typedef->getMaxAlignment())
   1564       Align = AttrAlign;
   1565     else
   1566       Align = Info.second;
   1567     Width = Info.first;
   1568     break;
   1569   }
   1570 
   1571   case Type::TypeOfExpr:
   1572     return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
   1573                          .getTypePtr());
   1574 
   1575   case Type::TypeOf:
   1576     return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
   1577 
   1578   case Type::Decltype:
   1579     return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
   1580                         .getTypePtr());
   1581 
   1582   case Type::UnaryTransform:
   1583     return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
   1584 
   1585   case Type::Elaborated:
   1586     return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
   1587 
   1588   case Type::Attributed:
   1589     return getTypeInfo(
   1590                   cast<AttributedType>(T)->getEquivalentType().getTypePtr());
   1591 
   1592   case Type::TemplateSpecialization: {
   1593     assert(getCanonicalType(T) != T &&
   1594            "Cannot request the size of a dependent type");
   1595     const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
   1596     // A type alias template specialization may refer to a typedef with the
   1597     // aligned attribute on it.
   1598     if (TST->isTypeAlias())
   1599       return getTypeInfo(TST->getAliasedType().getTypePtr());
   1600     else
   1601       return getTypeInfo(getCanonicalType(T));
   1602   }
   1603 
   1604   case Type::Atomic: {
   1605     // Start with the base type information.
   1606     std::pair<uint64_t, unsigned> Info
   1607       = getTypeInfo(cast<AtomicType>(T)->getValueType());
   1608     Width = Info.first;
   1609     Align = Info.second;
   1610 
   1611     // If the size of the type doesn't exceed the platform's max
   1612     // atomic promotion width, make the size and alignment more
   1613     // favorable to atomic operations:
   1614     if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth()) {
   1615       // Round the size up to a power of 2.
   1616       if (!llvm::isPowerOf2_64(Width))
   1617         Width = llvm::NextPowerOf2(Width);
   1618 
   1619       // Set the alignment equal to the size.
   1620       Align = static_cast<unsigned>(Width);
   1621     }
   1622   }
   1623 
   1624   }
   1625 
   1626   assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
   1627   return std::make_pair(Width, Align);
   1628 }
   1629 
   1630 /// toCharUnitsFromBits - Convert a size in bits to a size in characters.
   1631 CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
   1632   return CharUnits::fromQuantity(BitSize / getCharWidth());
   1633 }
   1634 
   1635 /// toBits - Convert a size in characters to a size in characters.
   1636 int64_t ASTContext::toBits(CharUnits CharSize) const {
   1637   return CharSize.getQuantity() * getCharWidth();
   1638 }
   1639 
   1640 /// getTypeSizeInChars - Return the size of the specified type, in characters.
   1641 /// This method does not work on incomplete types.
   1642 CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
   1643   return toCharUnitsFromBits(getTypeSize(T));
   1644 }
   1645 CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
   1646   return toCharUnitsFromBits(getTypeSize(T));
   1647 }
   1648 
   1649 /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
   1650 /// characters. This method does not work on incomplete types.
   1651 CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
   1652   return toCharUnitsFromBits(getTypeAlign(T));
   1653 }
   1654 CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
   1655   return toCharUnitsFromBits(getTypeAlign(T));
   1656 }
   1657 
   1658 /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
   1659 /// type for the current target in bits.  This can be different than the ABI
   1660 /// alignment in cases where it is beneficial for performance to overalign
   1661 /// a data type.
   1662 unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
   1663   unsigned ABIAlign = getTypeAlign(T);
   1664 
   1665   // Double and long long should be naturally aligned if possible.
   1666   if (const ComplexType* CT = T->getAs<ComplexType>())
   1667     T = CT->getElementType().getTypePtr();
   1668   if (T->isSpecificBuiltinType(BuiltinType::Double) ||
   1669       T->isSpecificBuiltinType(BuiltinType::LongLong) ||
   1670       T->isSpecificBuiltinType(BuiltinType::ULongLong))
   1671     return std::max(ABIAlign, (unsigned)getTypeSize(T));
   1672 
   1673   return ABIAlign;
   1674 }
   1675 
   1676 /// DeepCollectObjCIvars -
   1677 /// This routine first collects all declared, but not synthesized, ivars in
   1678 /// super class and then collects all ivars, including those synthesized for
   1679 /// current class. This routine is used for implementation of current class
   1680 /// when all ivars, declared and synthesized are known.
   1681 ///
   1682 void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
   1683                                       bool leafClass,
   1684                             SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
   1685   if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
   1686     DeepCollectObjCIvars(SuperClass, false, Ivars);
   1687   if (!leafClass) {
   1688     for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
   1689          E = OI->ivar_end(); I != E; ++I)
   1690       Ivars.push_back(*I);
   1691   } else {
   1692     ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
   1693     for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
   1694          Iv= Iv->getNextIvar())
   1695       Ivars.push_back(Iv);
   1696   }
   1697 }
   1698 
   1699 /// CollectInheritedProtocols - Collect all protocols in current class and
   1700 /// those inherited by it.
   1701 void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
   1702                           llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
   1703   if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
   1704     // We can use protocol_iterator here instead of
   1705     // all_referenced_protocol_iterator since we are walking all categories.
   1706     for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
   1707          PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
   1708       ObjCProtocolDecl *Proto = (*P);
   1709       Protocols.insert(Proto->getCanonicalDecl());
   1710       for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
   1711            PE = Proto->protocol_end(); P != PE; ++P) {
   1712         Protocols.insert((*P)->getCanonicalDecl());
   1713         CollectInheritedProtocols(*P, Protocols);
   1714       }
   1715     }
   1716 
   1717     // Categories of this Interface.
   1718     for (ObjCInterfaceDecl::visible_categories_iterator
   1719            Cat = OI->visible_categories_begin(),
   1720            CatEnd = OI->visible_categories_end();
   1721          Cat != CatEnd; ++Cat) {
   1722       CollectInheritedProtocols(*Cat, Protocols);
   1723     }
   1724 
   1725     if (ObjCInterfaceDecl *SD = OI->getSuperClass())
   1726       while (SD) {
   1727         CollectInheritedProtocols(SD, Protocols);
   1728         SD = SD->getSuperClass();
   1729       }
   1730   } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
   1731     for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
   1732          PE = OC->protocol_end(); P != PE; ++P) {
   1733       ObjCProtocolDecl *Proto = (*P);
   1734       Protocols.insert(Proto->getCanonicalDecl());
   1735       for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
   1736            PE = Proto->protocol_end(); P != PE; ++P)
   1737         CollectInheritedProtocols(*P, Protocols);
   1738     }
   1739   } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
   1740     for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
   1741          PE = OP->protocol_end(); P != PE; ++P) {
   1742       ObjCProtocolDecl *Proto = (*P);
   1743       Protocols.insert(Proto->getCanonicalDecl());
   1744       for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
   1745            PE = Proto->protocol_end(); P != PE; ++P)
   1746         CollectInheritedProtocols(*P, Protocols);
   1747     }
   1748   }
   1749 }
   1750 
   1751 unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
   1752   unsigned count = 0;
   1753   // Count ivars declared in class extension.
   1754   for (ObjCInterfaceDecl::known_extensions_iterator
   1755          Ext = OI->known_extensions_begin(),
   1756          ExtEnd = OI->known_extensions_end();
   1757        Ext != ExtEnd; ++Ext) {
   1758     count += Ext->ivar_size();
   1759   }
   1760 
   1761   // Count ivar defined in this class's implementation.  This
   1762   // includes synthesized ivars.
   1763   if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
   1764     count += ImplDecl->ivar_size();
   1765 
   1766   return count;
   1767 }
   1768 
   1769 bool ASTContext::isSentinelNullExpr(const Expr *E) {
   1770   if (!E)
   1771     return false;
   1772 
   1773   // nullptr_t is always treated as null.
   1774   if (E->getType()->isNullPtrType()) return true;
   1775 
   1776   if (E->getType()->isAnyPointerType() &&
   1777       E->IgnoreParenCasts()->isNullPointerConstant(*this,
   1778                                                 Expr::NPC_ValueDependentIsNull))
   1779     return true;
   1780 
   1781   // Unfortunately, __null has type 'int'.
   1782   if (isa<GNUNullExpr>(E)) return true;
   1783 
   1784   return false;
   1785 }
   1786 
   1787 /// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
   1788 ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
   1789   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
   1790     I = ObjCImpls.find(D);
   1791   if (I != ObjCImpls.end())
   1792     return cast<ObjCImplementationDecl>(I->second);
   1793   return 0;
   1794 }
   1795 /// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
   1796 ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
   1797   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
   1798     I = ObjCImpls.find(D);
   1799   if (I != ObjCImpls.end())
   1800     return cast<ObjCCategoryImplDecl>(I->second);
   1801   return 0;
   1802 }
   1803 
   1804 /// \brief Set the implementation of ObjCInterfaceDecl.
   1805 void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
   1806                            ObjCImplementationDecl *ImplD) {
   1807   assert(IFaceD && ImplD && "Passed null params");
   1808   ObjCImpls[IFaceD] = ImplD;
   1809 }
   1810 /// \brief Set the implementation of ObjCCategoryDecl.
   1811 void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
   1812                            ObjCCategoryImplDecl *ImplD) {
   1813   assert(CatD && ImplD && "Passed null params");
   1814   ObjCImpls[CatD] = ImplD;
   1815 }
   1816 
   1817 const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
   1818                                               const NamedDecl *ND) const {
   1819   if (const ObjCInterfaceDecl *ID =
   1820           dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
   1821     return ID;
   1822   if (const ObjCCategoryDecl *CD =
   1823           dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
   1824     return CD->getClassInterface();
   1825   if (const ObjCImplDecl *IMD =
   1826           dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
   1827     return IMD->getClassInterface();
   1828 
   1829   return 0;
   1830 }
   1831 
   1832 /// \brief Get the copy initialization expression of VarDecl,or NULL if
   1833 /// none exists.
   1834 Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
   1835   assert(VD && "Passed null params");
   1836   assert(VD->hasAttr<BlocksAttr>() &&
   1837          "getBlockVarCopyInits - not __block var");
   1838   llvm::DenseMap<const VarDecl*, Expr*>::iterator
   1839     I = BlockVarCopyInits.find(VD);
   1840   return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
   1841 }
   1842 
   1843 /// \brief Set the copy inialization expression of a block var decl.
   1844 void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
   1845   assert(VD && Init && "Passed null params");
   1846   assert(VD->hasAttr<BlocksAttr>() &&
   1847          "setBlockVarCopyInits - not __block var");
   1848   BlockVarCopyInits[VD] = Init;
   1849 }
   1850 
   1851 TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
   1852                                                  unsigned DataSize) const {
   1853   if (!DataSize)
   1854     DataSize = TypeLoc::getFullDataSizeForType(T);
   1855   else
   1856     assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
   1857            "incorrect data size provided to CreateTypeSourceInfo!");
   1858 
   1859   TypeSourceInfo *TInfo =
   1860     (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
   1861   new (TInfo) TypeSourceInfo(T);
   1862   return TInfo;
   1863 }
   1864 
   1865 TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
   1866                                                      SourceLocation L) const {
   1867   TypeSourceInfo *DI = CreateTypeSourceInfo(T);
   1868   DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
   1869   return DI;
   1870 }
   1871 
   1872 const ASTRecordLayout &
   1873 ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
   1874   return getObjCLayout(D, 0);
   1875 }
   1876 
   1877 const ASTRecordLayout &
   1878 ASTContext::getASTObjCImplementationLayout(
   1879                                         const ObjCImplementationDecl *D) const {
   1880   return getObjCLayout(D->getClassInterface(), D);
   1881 }
   1882 
   1883 //===----------------------------------------------------------------------===//
   1884 //                   Type creation/memoization methods
   1885 //===----------------------------------------------------------------------===//
   1886 
   1887 QualType
   1888 ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
   1889   unsigned fastQuals = quals.getFastQualifiers();
   1890   quals.removeFastQualifiers();
   1891 
   1892   // Check if we've already instantiated this type.
   1893   llvm::FoldingSetNodeID ID;
   1894   ExtQuals::Profile(ID, baseType, quals);
   1895   void *insertPos = 0;
   1896   if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
   1897     assert(eq->getQualifiers() == quals);
   1898     return QualType(eq, fastQuals);
   1899   }
   1900 
   1901   // If the base type is not canonical, make the appropriate canonical type.
   1902   QualType canon;
   1903   if (!baseType->isCanonicalUnqualified()) {
   1904     SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
   1905     canonSplit.Quals.addConsistentQualifiers(quals);
   1906     canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
   1907 
   1908     // Re-find the insert position.
   1909     (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
   1910   }
   1911 
   1912   ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
   1913   ExtQualNodes.InsertNode(eq, insertPos);
   1914   return QualType(eq, fastQuals);
   1915 }
   1916 
   1917 QualType
   1918 ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
   1919   QualType CanT = getCanonicalType(T);
   1920   if (CanT.getAddressSpace() == AddressSpace)
   1921     return T;
   1922 
   1923   // If we are composing extended qualifiers together, merge together
   1924   // into one ExtQuals node.
   1925   QualifierCollector Quals;
   1926   const Type *TypeNode = Quals.strip(T);
   1927 
   1928   // If this type already has an address space specified, it cannot get
   1929   // another one.
   1930   assert(!Quals.hasAddressSpace() &&
   1931          "Type cannot be in multiple addr spaces!");
   1932   Quals.addAddressSpace(AddressSpace);
   1933 
   1934   return getExtQualType(TypeNode, Quals);
   1935 }
   1936 
   1937 QualType ASTContext::getObjCGCQualType(QualType T,
   1938                                        Qualifiers::GC GCAttr) const {
   1939   QualType CanT = getCanonicalType(T);
   1940   if (CanT.getObjCGCAttr() == GCAttr)
   1941     return T;
   1942 
   1943   if (const PointerType *ptr = T->getAs<PointerType>()) {
   1944     QualType Pointee = ptr->getPointeeType();
   1945     if (Pointee->isAnyPointerType()) {
   1946       QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
   1947       return getPointerType(ResultType);
   1948     }
   1949   }
   1950 
   1951   // If we are composing extended qualifiers together, merge together
   1952   // into one ExtQuals node.
   1953   QualifierCollector Quals;
   1954   const Type *TypeNode = Quals.strip(T);
   1955 
   1956   // If this type already has an ObjCGC specified, it cannot get
   1957   // another one.
   1958   assert(!Quals.hasObjCGCAttr() &&
   1959          "Type cannot have multiple ObjCGCs!");
   1960   Quals.addObjCGCAttr(GCAttr);
   1961 
   1962   return getExtQualType(TypeNode, Quals);
   1963 }
   1964 
   1965 const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
   1966                                                    FunctionType::ExtInfo Info) {
   1967   if (T->getExtInfo() == Info)
   1968     return T;
   1969 
   1970   QualType Result;
   1971   if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
   1972     Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
   1973   } else {
   1974     const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
   1975     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
   1976     EPI.ExtInfo = Info;
   1977     Result = getFunctionType(FPT->getResultType(),
   1978                              ArrayRef<QualType>(FPT->arg_type_begin(),
   1979                                                 FPT->getNumArgs()),
   1980                              EPI);
   1981   }
   1982 
   1983   return cast<FunctionType>(Result.getTypePtr());
   1984 }
   1985 
   1986 /// getComplexType - Return the uniqued reference to the type for a complex
   1987 /// number with the specified element type.
   1988 QualType ASTContext::getComplexType(QualType T) const {
   1989   // Unique pointers, to guarantee there is only one pointer of a particular
   1990   // structure.
   1991   llvm::FoldingSetNodeID ID;
   1992   ComplexType::Profile(ID, T);
   1993 
   1994   void *InsertPos = 0;
   1995   if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
   1996     return QualType(CT, 0);
   1997 
   1998   // If the pointee type isn't canonical, this won't be a canonical type either,
   1999   // so fill in the canonical type field.
   2000   QualType Canonical;
   2001   if (!T.isCanonical()) {
   2002     Canonical = getComplexType(getCanonicalType(T));
   2003 
   2004     // Get the new insert position for the node we care about.
   2005     ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
   2006     assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
   2007   }
   2008   ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
   2009   Types.push_back(New);
   2010   ComplexTypes.InsertNode(New, InsertPos);
   2011   return QualType(New, 0);
   2012 }
   2013 
   2014 /// getPointerType - Return the uniqued reference to the type for a pointer to
   2015 /// the specified type.
   2016 QualType ASTContext::getPointerType(QualType T) const {
   2017   // Unique pointers, to guarantee there is only one pointer of a particular
   2018   // structure.
   2019   llvm::FoldingSetNodeID ID;
   2020   PointerType::Profile(ID, T);
   2021 
   2022   void *InsertPos = 0;
   2023   if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
   2024     return QualType(PT, 0);
   2025 
   2026   // If the pointee type isn't canonical, this won't be a canonical type either,
   2027   // so fill in the canonical type field.
   2028   QualType Canonical;
   2029   if (!T.isCanonical()) {
   2030     Canonical = getPointerType(getCanonicalType(T));
   2031 
   2032     // Get the new insert position for the node we care about.
   2033     PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
   2034     assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
   2035   }
   2036   PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
   2037   Types.push_back(New);
   2038   PointerTypes.InsertNode(New, InsertPos);
   2039   return QualType(New, 0);
   2040 }
   2041 
   2042 /// getBlockPointerType - Return the uniqued reference to the type for
   2043 /// a pointer to the specified block.
   2044 QualType ASTContext::getBlockPointerType(QualType T) const {
   2045   assert(T->isFunctionType() && "block of function types only");
   2046   // Unique pointers, to guarantee there is only one block of a particular
   2047   // structure.
   2048   llvm::FoldingSetNodeID ID;
   2049   BlockPointerType::Profile(ID, T);
   2050 
   2051   void *InsertPos = 0;
   2052   if (BlockPointerType *PT =
   2053         BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
   2054     return QualType(PT, 0);
   2055 
   2056   // If the block pointee type isn't canonical, this won't be a canonical
   2057   // type either so fill in the canonical type field.
   2058   QualType Canonical;
   2059   if (!T.isCanonical()) {
   2060     Canonical = getBlockPointerType(getCanonicalType(T));
   2061 
   2062     // Get the new insert position for the node we care about.
   2063     BlockPointerType *NewIP =
   2064       BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
   2065     assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
   2066   }
   2067   BlockPointerType *New
   2068     = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
   2069   Types.push_back(New);
   2070   BlockPointerTypes.InsertNode(New, InsertPos);
   2071   return QualType(New, 0);
   2072 }
   2073 
   2074 /// getLValueReferenceType - Return the uniqued reference to the type for an
   2075 /// lvalue reference to the specified type.
   2076 QualType
   2077 ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
   2078   assert(getCanonicalType(T) != OverloadTy &&
   2079          "Unresolved overloaded function type");
   2080 
   2081   // Unique pointers, to guarantee there is only one pointer of a particular
   2082   // structure.
   2083   llvm::FoldingSetNodeID ID;
   2084   ReferenceType::Profile(ID, T, SpelledAsLValue);
   2085 
   2086   void *InsertPos = 0;
   2087   if (LValueReferenceType *RT =
   2088         LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
   2089     return QualType(RT, 0);
   2090 
   2091   const ReferenceType *InnerRef = T->getAs<ReferenceType>();
   2092 
   2093   // If the referencee type isn't canonical, this won't be a canonical type
   2094   // either, so fill in the canonical type field.
   2095   QualType Canonical;
   2096   if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
   2097     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
   2098     Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
   2099 
   2100     // Get the new insert position for the node we care about.
   2101     LValueReferenceType *NewIP =
   2102       LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
   2103     assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
   2104   }
   2105 
   2106   LValueReferenceType *New
   2107     = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
   2108                                                      SpelledAsLValue);
   2109   Types.push_back(New);
   2110   LValueReferenceTypes.InsertNode(New, InsertPos);
   2111 
   2112   return QualType(New, 0);
   2113 }
   2114 
   2115 /// getRValueReferenceType - Return the uniqued reference to the type for an
   2116 /// rvalue reference to the specified type.
   2117 QualType ASTContext::getRValueReferenceType(QualType T) const {
   2118   // Unique pointers, to guarantee there is only one pointer of a particular
   2119   // structure.
   2120   llvm::FoldingSetNodeID ID;
   2121   ReferenceType::Profile(ID, T, false);
   2122 
   2123   void *InsertPos = 0;
   2124   if (RValueReferenceType *RT =
   2125         RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
   2126     return QualType(RT, 0);
   2127 
   2128   const ReferenceType *InnerRef = T->getAs<ReferenceType>();
   2129 
   2130   // If the referencee type isn't canonical, this won't be a canonical type
   2131   // either, so fill in the canonical type field.
   2132   QualType Canonical;
   2133   if (InnerRef || !T.isCanonical()) {
   2134     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
   2135     Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
   2136 
   2137     // Get the new insert position for the node we care about.
   2138     RValueReferenceType *NewIP =
   2139       RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
   2140     assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
   2141   }
   2142 
   2143   RValueReferenceType *New
   2144     = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
   2145   Types.push_back(New);
   2146   RValueReferenceTypes.InsertNode(New, InsertPos);
   2147   return QualType(New, 0);
   2148 }
   2149 
   2150 /// getMemberPointerType - Return the uniqued reference to the type for a
   2151 /// member pointer to the specified type, in the specified class.
   2152 QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
   2153   // Unique pointers, to guarantee there is only one pointer of a particular
   2154   // structure.
   2155   llvm::FoldingSetNodeID ID;
   2156   MemberPointerType::Profile(ID, T, Cls);
   2157 
   2158   void *InsertPos = 0;
   2159   if (MemberPointerType *PT =
   2160       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
   2161     return QualType(PT, 0);
   2162 
   2163   // If the pointee or class type isn't canonical, this won't be a canonical
   2164   // type either, so fill in the canonical type field.
   2165   QualType Canonical;
   2166   if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
   2167     Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
   2168 
   2169     // Get the new insert position for the node we care about.
   2170     MemberPointerType *NewIP =
   2171       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
   2172     assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
   2173   }
   2174   MemberPointerType *New
   2175     = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
   2176   Types.push_back(New);
   2177   MemberPointerTypes.InsertNode(New, InsertPos);
   2178   return QualType(New, 0);
   2179 }
   2180 
   2181 /// getConstantArrayType - Return the unique reference to the type for an
   2182 /// array of the specified element type.
   2183 QualType ASTContext::getConstantArrayType(QualType EltTy,
   2184                                           const llvm::APInt &ArySizeIn,
   2185                                           ArrayType::ArraySizeModifier ASM,
   2186                                           unsigned IndexTypeQuals) const {
   2187   assert((EltTy->isDependentType() ||
   2188           EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
   2189          "Constant array of VLAs is illegal!");
   2190 
   2191   // Convert the array size into a canonical width matching the pointer size for
   2192   // the target.
   2193   llvm::APInt ArySize(ArySizeIn);
   2194   ArySize =
   2195     ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
   2196 
   2197   llvm::FoldingSetNodeID ID;
   2198   ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
   2199 
   2200   void *InsertPos = 0;
   2201   if (ConstantArrayType *ATP =
   2202       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
   2203     return QualType(ATP, 0);
   2204 
   2205   // If the element type isn't canonical or has qualifiers, this won't
   2206   // be a canonical type either, so fill in the canonical type field.
   2207   QualType Canon;
   2208   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
   2209     SplitQualType canonSplit = getCanonicalType(EltTy).split();
   2210     Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
   2211                                  ASM, IndexTypeQuals);
   2212     Canon = getQualifiedType(Canon, canonSplit.Quals);
   2213 
   2214     // Get the new insert position for the node we care about.
   2215     ConstantArrayType *NewIP =
   2216       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
   2217     assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
   2218   }
   2219 
   2220   ConstantArrayType *New = new(*this,TypeAlignment)
   2221     ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
   2222   ConstantArrayTypes.InsertNode(New, InsertPos);
   2223   Types.push_back(New);
   2224   return QualType(New, 0);
   2225 }
   2226 
   2227 /// getVariableArrayDecayedType - Turns the given type, which may be
   2228 /// variably-modified, into the corresponding type with all the known
   2229 /// sizes replaced with [*].
   2230 QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
   2231   // Vastly most common case.
   2232   if (!type->isVariablyModifiedType()) return type;
   2233 
   2234   QualType result;
   2235 
   2236   SplitQualType split = type.getSplitDesugaredType();
   2237   const Type *ty = split.Ty;
   2238   switch (ty->getTypeClass()) {
   2239 #define TYPE(Class, Base)
   2240 #define ABSTRACT_TYPE(Class, Base)
   2241 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
   2242 #include "clang/AST/TypeNodes.def"
   2243     llvm_unreachable("didn't desugar past all non-canonical types?");
   2244 
   2245   // These types should never be variably-modified.
   2246   case Type::Builtin:
   2247   case Type::Complex:
   2248   case Type::Vector:
   2249   case Type::ExtVector:
   2250   case Type::DependentSizedExtVector:
   2251   case Type::ObjCObject:
   2252   case Type::ObjCInterface:
   2253   case Type::ObjCObjectPointer:
   2254   case Type::Record:
   2255   case Type::Enum:
   2256   case Type::UnresolvedUsing:
   2257   case Type::TypeOfExpr:
   2258   case Type::TypeOf:
   2259   case Type::Decltype:
   2260   case Type::UnaryTransform:
   2261   case Type::DependentName:
   2262   case Type::InjectedClassName:
   2263   case Type::TemplateSpecialization:
   2264   case Type::DependentTemplateSpecialization:
   2265   case Type::TemplateTypeParm:
   2266   case Type::SubstTemplateTypeParmPack:
   2267   case Type::Auto:
   2268   case Type::PackExpansion:
   2269     llvm_unreachable("type should never be variably-modified");
   2270 
   2271   // These types can be variably-modified but should never need to
   2272   // further decay.
   2273   case Type::FunctionNoProto:
   2274   case Type::FunctionProto:
   2275   case Type::BlockPointer:
   2276   case Type::MemberPointer:
   2277     return type;
   2278 
   2279   // These types can be variably-modified.  All these modifications
   2280   // preserve structure except as noted by comments.
   2281   // TODO: if we ever care about optimizing VLAs, there are no-op
   2282   // optimizations available here.
   2283   case Type::Pointer:
   2284     result = getPointerType(getVariableArrayDecayedType(
   2285                               cast<PointerType>(ty)->getPointeeType()));
   2286     break;
   2287 
   2288   case Type::LValueReference: {
   2289     const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
   2290     result = getLValueReferenceType(
   2291                  getVariableArrayDecayedType(lv->getPointeeType()),
   2292                                     lv->isSpelledAsLValue());
   2293     break;
   2294   }
   2295 
   2296   case Type::RValueReference: {
   2297     const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
   2298     result = getRValueReferenceType(
   2299                  getVariableArrayDecayedType(lv->getPointeeType()));
   2300     break;
   2301   }
   2302 
   2303   case Type::Atomic: {
   2304     const AtomicType *at = cast<AtomicType>(ty);
   2305     result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
   2306     break;
   2307   }
   2308 
   2309   case Type::ConstantArray: {
   2310     const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
   2311     result = getConstantArrayType(
   2312                  getVariableArrayDecayedType(cat->getElementType()),
   2313                                   cat->getSize(),
   2314                                   cat->getSizeModifier(),
   2315                                   cat->getIndexTypeCVRQualifiers());
   2316     break;
   2317   }
   2318 
   2319   case Type::DependentSizedArray: {
   2320     const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
   2321     result = getDependentSizedArrayType(
   2322                  getVariableArrayDecayedType(dat->getElementType()),
   2323                                         dat->getSizeExpr(),
   2324                                         dat->getSizeModifier(),
   2325                                         dat->getIndexTypeCVRQualifiers(),
   2326                                         dat->getBracketsRange());
   2327     break;
   2328   }
   2329 
   2330   // Turn incomplete types into [*] types.
   2331   case Type::IncompleteArray: {
   2332     const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
   2333     result = getVariableArrayType(
   2334                  getVariableArrayDecayedType(iat->getElementType()),
   2335                                   /*size*/ 0,
   2336                                   ArrayType::Normal,
   2337                                   iat->getIndexTypeCVRQualifiers(),
   2338                                   SourceRange());
   2339     break;
   2340   }
   2341 
   2342   // Turn VLA types into [*] types.
   2343   case Type::VariableArray: {
   2344     const VariableArrayType *vat = cast<VariableArrayType>(ty);
   2345     result = getVariableArrayType(
   2346                  getVariableArrayDecayedType(vat->getElementType()),
   2347                                   /*size*/ 0,
   2348                                   ArrayType::Star,
   2349                                   vat->getIndexTypeCVRQualifiers(),
   2350                                   vat->getBracketsRange());
   2351     break;
   2352   }
   2353   }
   2354 
   2355   // Apply the top-level qualifiers from the original.
   2356   return getQualifiedType(result, split.Quals);
   2357 }
   2358 
   2359 /// getVariableArrayType - Returns a non-unique reference to the type for a
   2360 /// variable array of the specified element type.
   2361 QualType ASTContext::getVariableArrayType(QualType EltTy,
   2362                                           Expr *NumElts,
   2363                                           ArrayType::ArraySizeModifier ASM,
   2364                                           unsigned IndexTypeQuals,
   2365                                           SourceRange Brackets) const {
   2366   // Since we don't unique expressions, it isn't possible to unique VLA's
   2367   // that have an expression provided for their size.
   2368   QualType Canon;
   2369 
   2370   // Be sure to pull qualifiers off the element type.
   2371   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
   2372     SplitQualType canonSplit = getCanonicalType(EltTy).split();
   2373     Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
   2374                                  IndexTypeQuals, Brackets);
   2375     Canon = getQualifiedType(Canon, canonSplit.Quals);
   2376   }
   2377 
   2378   VariableArrayType *New = new(*this, TypeAlignment)
   2379     VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
   2380 
   2381   VariableArrayTypes.push_back(New);
   2382   Types.push_back(New);
   2383   return QualType(New, 0);
   2384 }
   2385 
   2386 /// getDependentSizedArrayType - Returns a non-unique reference to
   2387 /// the type for a dependently-sized array of the specified element
   2388 /// type.
   2389 QualType ASTContext::getDependentSizedArrayType(QualType elementType,
   2390                                                 Expr *numElements,
   2391                                                 ArrayType::ArraySizeModifier ASM,
   2392                                                 unsigned elementTypeQuals,
   2393                                                 SourceRange brackets) const {
   2394   assert((!numElements || numElements->isTypeDependent() ||
   2395           numElements->isValueDependent()) &&
   2396          "Size must be type- or value-dependent!");
   2397 
   2398   // Dependently-sized array types that do not have a specified number
   2399   // of elements will have their sizes deduced from a dependent
   2400   // initializer.  We do no canonicalization here at all, which is okay
   2401   // because they can't be used in most locations.
   2402   if (!numElements) {
   2403     DependentSizedArrayType *newType
   2404       = new (*this, TypeAlignment)
   2405           DependentSizedArrayType(*this, elementType, QualType(),
   2406                                   numElements, ASM, elementTypeQuals,
   2407                                   brackets);
   2408     Types.push_back(newType);
   2409     return QualType(newType, 0);
   2410   }
   2411 
   2412   // Otherwise, we actually build a new type every time, but we
   2413   // also build a canonical type.
   2414 
   2415   SplitQualType canonElementType = getCanonicalType(elementType).split();
   2416 
   2417   void *insertPos = 0;
   2418   llvm::FoldingSetNodeID ID;
   2419   DependentSizedArrayType::Profile(ID, *this,
   2420                                    QualType(canonElementType.Ty, 0),
   2421                                    ASM, elementTypeQuals, numElements);
   2422 
   2423   // Look for an existing type with these properties.
   2424   DependentSizedArrayType *canonTy =
   2425     DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
   2426 
   2427   // If we don't have one, build one.
   2428   if (!canonTy) {
   2429     canonTy = new (*this, TypeAlignment)
   2430       DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
   2431                               QualType(), numElements, ASM, elementTypeQuals,
   2432                               brackets);
   2433     DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
   2434     Types.push_back(canonTy);
   2435   }
   2436 
   2437   // Apply qualifiers from the element type to the array.
   2438   QualType canon = getQualifiedType(QualType(canonTy,0),
   2439                                     canonElementType.Quals);
   2440 
   2441   // If we didn't need extra canonicalization for the element type,
   2442   // then just use that as our result.
   2443   if (QualType(canonElementType.Ty, 0) == elementType)
   2444     return canon;
   2445 
   2446   // Otherwise, we need to build a type which follows the spelling
   2447   // of the element type.
   2448   DependentSizedArrayType *sugaredType
   2449     = new (*this, TypeAlignment)
   2450         DependentSizedArrayType(*this, elementType, canon, numElements,
   2451                                 ASM, elementTypeQuals, brackets);
   2452   Types.push_back(sugaredType);
   2453   return QualType(sugaredType, 0);
   2454 }
   2455 
   2456 QualType ASTContext::getIncompleteArrayType(QualType elementType,
   2457                                             ArrayType::ArraySizeModifier ASM,
   2458                                             unsigned elementTypeQuals) const {
   2459   llvm::FoldingSetNodeID ID;
   2460   IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
   2461 
   2462   void *insertPos = 0;
   2463   if (IncompleteArrayType *iat =
   2464        IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
   2465     return QualType(iat, 0);
   2466 
   2467   // If the element type isn't canonical, this won't be a canonical type
   2468   // either, so fill in the canonical type field.  We also have to pull
   2469   // qualifiers off the element type.
   2470   QualType canon;
   2471 
   2472   if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
   2473     SplitQualType canonSplit = getCanonicalType(elementType).split();
   2474     canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
   2475                                    ASM, elementTypeQuals);
   2476     canon = getQualifiedType(canon, canonSplit.Quals);
   2477 
   2478     // Get the new insert position for the node we care about.
   2479     IncompleteArrayType *existing =
   2480       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
   2481     assert(!existing && "Shouldn't be in the map!"); (void) existing;
   2482   }
   2483 
   2484   IncompleteArrayType *newType = new (*this, TypeAlignment)
   2485     IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
   2486 
   2487   IncompleteArrayTypes.InsertNode(newType, insertPos);
   2488   Types.push_back(newType);
   2489   return QualType(newType, 0);
   2490 }
   2491 
   2492 /// getVectorType - Return the unique reference to a vector type of
   2493 /// the specified element type and size. VectorType must be a built-in type.
   2494 QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
   2495                                    VectorType::VectorKind VecKind) const {
   2496   assert(vecType->isBuiltinType());
   2497 
   2498   // Check if we've already instantiated a vector of this type.
   2499   llvm::FoldingSetNodeID ID;
   2500   VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
   2501 
   2502   void *InsertPos = 0;
   2503   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
   2504     return QualType(VTP, 0);
   2505 
   2506   // If the element type isn't canonical, this won't be a canonical type either,
   2507   // so fill in the canonical type field.
   2508   QualType Canonical;
   2509   if (!vecType.isCanonical()) {
   2510     Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
   2511 
   2512     // Get the new insert position for the node we care about.
   2513     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
   2514     assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
   2515   }
   2516   VectorType *New = new (*this, TypeAlignment)
   2517     VectorType(vecType, NumElts, Canonical, VecKind);
   2518   VectorTypes.InsertNode(New, InsertPos);
   2519   Types.push_back(New);
   2520   return QualType(New, 0);
   2521 }
   2522 
   2523 /// getExtVectorType - Return the unique reference to an extended vector type of
   2524 /// the specified element type and size. VectorType must be a built-in type.
   2525 QualType
   2526 ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
   2527   assert(vecType->isBuiltinType() || vecType->isDependentType());
   2528 
   2529   // Check if we've already instantiated a vector of this type.
   2530   llvm::FoldingSetNodeID ID;
   2531   VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
   2532                       VectorType::GenericVector);
   2533   void *InsertPos = 0;
   2534   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
   2535     return QualType(VTP, 0);
   2536 
   2537   // If the element type isn't canonical, this won't be a canonical type either,
   2538   // so fill in the canonical type field.
   2539   QualType Canonical;
   2540   if (!vecType.isCanonical()) {
   2541     Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
   2542 
   2543     // Get the new insert position for the node we care about.
   2544     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
   2545     assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
   2546   }
   2547   ExtVectorType *New = new (*this, TypeAlignment)
   2548     ExtVectorType(vecType, NumElts, Canonical);
   2549   VectorTypes.InsertNode(New, InsertPos);
   2550   Types.push_back(New);
   2551   return QualType(New, 0);
   2552 }
   2553 
   2554 QualType
   2555 ASTContext::getDependentSizedExtVectorType(QualType vecType,
   2556                                            Expr *SizeExpr,
   2557                                            SourceLocation AttrLoc) const {
   2558   llvm::FoldingSetNodeID ID;
   2559   DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
   2560                                        SizeExpr);
   2561 
   2562   void *InsertPos = 0;
   2563   DependentSizedExtVectorType *Canon
   2564     = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
   2565   DependentSizedExtVectorType *New;
   2566   if (Canon) {
   2567     // We already have a canonical version of this array type; use it as
   2568     // the canonical type for a newly-built type.
   2569     New = new (*this, TypeAlignment)
   2570       DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
   2571                                   SizeExpr, AttrLoc);
   2572   } else {
   2573     QualType CanonVecTy = getCanonicalType(vecType);
   2574     if (CanonVecTy == vecType) {
   2575       New = new (*this, TypeAlignment)
   2576         DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
   2577                                     AttrLoc);
   2578 
   2579       DependentSizedExtVectorType *CanonCheck
   2580         = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
   2581       assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
   2582       (void)CanonCheck;
   2583       DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
   2584     } else {
   2585       QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
   2586                                                       SourceLocation());
   2587       New = new (*this, TypeAlignment)
   2588         DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
   2589     }
   2590   }
   2591 
   2592   Types.push_back(New);
   2593   return QualType(New, 0);
   2594 }
   2595 
   2596 /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
   2597 ///
   2598 QualType
   2599 ASTContext::getFunctionNoProtoType(QualType ResultTy,
   2600                                    const FunctionType::ExtInfo &Info) const {
   2601   const CallingConv DefaultCC = Info.getCC();
   2602   const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
   2603                                CC_X86StdCall : DefaultCC;
   2604   // Unique functions, to guarantee there is only one function of a particular
   2605   // structure.
   2606   llvm::FoldingSetNodeID ID;
   2607   FunctionNoProtoType::Profile(ID, ResultTy, Info);
   2608 
   2609   void *InsertPos = 0;
   2610   if (FunctionNoProtoType *FT =
   2611         FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
   2612     return QualType(FT, 0);
   2613 
   2614   QualType Canonical;
   2615   if (!ResultTy.isCanonical() ||
   2616       getCanonicalCallConv(CallConv) != CallConv) {
   2617     Canonical =
   2618       getFunctionNoProtoType(getCanonicalType(ResultTy),
   2619                      Info.withCallingConv(getCanonicalCallConv(CallConv)));
   2620 
   2621     // Get the new insert position for the node we care about.
   2622     FunctionNoProtoType *NewIP =
   2623       FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
   2624     assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
   2625   }
   2626 
   2627   FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
   2628   FunctionNoProtoType *New = new (*this, TypeAlignment)
   2629     FunctionNoProtoType(ResultTy, Canonical, newInfo);
   2630   Types.push_back(New);
   2631   FunctionNoProtoTypes.InsertNode(New, InsertPos);
   2632   return QualType(New, 0);
   2633 }
   2634 
   2635 /// \brief Determine whether \p T is canonical as the result type of a function.
   2636 static bool isCanonicalResultType(QualType T) {
   2637   return T.isCanonical() &&
   2638          (T.getObjCLifetime() == Qualifiers::OCL_None ||
   2639           T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
   2640 }
   2641 
   2642 /// getFunctionType - Return a normal function type with a typed argument
   2643 /// list.  isVariadic indicates whether the argument list includes '...'.
   2644 QualType
   2645 ASTContext::getFunctionType(QualType ResultTy, ArrayRef<QualType> ArgArray,
   2646                             const FunctionProtoType::ExtProtoInfo &EPI) const {
   2647   size_t NumArgs = ArgArray.size();
   2648 
   2649   // Unique functions, to guarantee there is only one function of a particular
   2650   // structure.
   2651   llvm::FoldingSetNodeID ID;
   2652   FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
   2653                              *this);
   2654 
   2655   void *InsertPos = 0;
   2656   if (FunctionProtoType *FTP =
   2657         FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
   2658     return QualType(FTP, 0);
   2659 
   2660   // Determine whether the type being created is already canonical or not.
   2661   bool isCanonical =
   2662     EPI.ExceptionSpecType == EST_None && isCanonicalResultType(ResultTy) &&
   2663     !EPI.HasTrailingReturn;
   2664   for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
   2665     if (!ArgArray[i].isCanonicalAsParam())
   2666       isCanonical = false;
   2667 
   2668   const CallingConv DefaultCC = EPI.ExtInfo.getCC();
   2669   const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
   2670                                CC_X86StdCall : DefaultCC;
   2671 
   2672   // If this type isn't canonical, get the canonical version of it.
   2673   // The exception spec is not part of the canonical type.
   2674   QualType Canonical;
   2675   if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
   2676     SmallVector<QualType, 16> CanonicalArgs;
   2677     CanonicalArgs.reserve(NumArgs);
   2678     for (unsigned i = 0; i != NumArgs; ++i)
   2679       CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
   2680 
   2681     FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
   2682     CanonicalEPI.HasTrailingReturn = false;
   2683     CanonicalEPI.ExceptionSpecType = EST_None;
   2684     CanonicalEPI.NumExceptions = 0;
   2685     CanonicalEPI.ExtInfo
   2686       = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
   2687 
   2688     // Result types do not have ARC lifetime qualifiers.
   2689     QualType CanResultTy = getCanonicalType(ResultTy);
   2690     if (ResultTy.getQualifiers().hasObjCLifetime()) {
   2691       Qualifiers Qs = CanResultTy.getQualifiers();
   2692       Qs.removeObjCLifetime();
   2693       CanResultTy = getQualifiedType(CanResultTy.getUnqualifiedType(), Qs);
   2694     }
   2695 
   2696     Canonical = getFunctionType(CanResultTy, CanonicalArgs, CanonicalEPI);
   2697 
   2698     // Get the new insert position for the node we care about.
   2699     FunctionProtoType *NewIP =
   2700       FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
   2701     assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
   2702   }
   2703 
   2704   // FunctionProtoType objects are allocated with extra bytes after
   2705   // them for three variable size arrays at the end:
   2706   //  - parameter types
   2707   //  - exception types
   2708   //  - consumed-arguments flags
   2709   // Instead of the exception types, there could be a noexcept
   2710   // expression, or information used to resolve the exception
   2711   // specification.
   2712   size_t Size = sizeof(FunctionProtoType) +
   2713                 NumArgs * sizeof(QualType);
   2714   if (EPI.ExceptionSpecType == EST_Dynamic) {
   2715     Size += EPI.NumExceptions * sizeof(QualType);
   2716   } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
   2717     Size += sizeof(Expr*);
   2718   } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
   2719     Size += 2 * sizeof(FunctionDecl*);
   2720   } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
   2721     Size += sizeof(FunctionDecl*);
   2722   }
   2723   if (EPI.ConsumedArguments)
   2724     Size += NumArgs * sizeof(bool);
   2725 
   2726   FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
   2727   FunctionProtoType::ExtProtoInfo newEPI = EPI;
   2728   newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
   2729   new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
   2730   Types.push_back(FTP);
   2731   FunctionProtoTypes.InsertNode(FTP, InsertPos);
   2732   return QualType(FTP, 0);
   2733 }
   2734 
   2735 #ifndef NDEBUG
   2736 static bool NeedsInjectedClassNameType(const RecordDecl *D) {
   2737   if (!isa<CXXRecordDecl>(D)) return false;
   2738   const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
   2739   if (isa<ClassTemplatePartialSpecializationDecl>(RD))
   2740     return true;
   2741   if (RD->getDescribedClassTemplate() &&
   2742       !isa<ClassTemplateSpecializationDecl>(RD))
   2743     return true;
   2744   return false;
   2745 }
   2746 #endif
   2747 
   2748 /// getInjectedClassNameType - Return the unique reference to the
   2749 /// injected class name type for the specified templated declaration.
   2750 QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
   2751                                               QualType TST) const {
   2752   assert(NeedsInjectedClassNameType(Decl));
   2753   if (Decl->TypeForDecl) {
   2754     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
   2755   } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
   2756     assert(PrevDecl->TypeForDecl && "previous declaration has no type");
   2757     Decl->TypeForDecl = PrevDecl->TypeForDecl;
   2758     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
   2759   } else {
   2760     Type *newType =
   2761       new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
   2762     Decl->TypeForDecl = newType;
   2763     Types.push_back(newType);
   2764   }
   2765   return QualType(Decl->TypeForDecl, 0);
   2766 }
   2767 
   2768 /// getTypeDeclType - Return the unique reference to the type for the
   2769 /// specified type declaration.
   2770 QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
   2771   assert(Decl && "Passed null for Decl param");
   2772   assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
   2773 
   2774   if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
   2775     return getTypedefType(Typedef);
   2776 
   2777   assert(!isa<TemplateTypeParmDecl>(Decl) &&
   2778          "Template type parameter types are always available.");
   2779 
   2780   if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
   2781     assert(!Record->getPreviousDecl() &&
   2782            "struct/union has previous declaration");
   2783     assert(!NeedsInjectedClassNameType(Record));
   2784     return getRecordType(Record);
   2785   } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
   2786     assert(!Enum->getPreviousDecl() &&
   2787            "enum has previous declaration");
   2788     return getEnumType(Enum);
   2789   } else if (const UnresolvedUsingTypenameDecl *Using =
   2790                dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
   2791     Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
   2792     Decl->TypeForDecl = newType;
   2793     Types.push_back(newType);
   2794   } else
   2795     llvm_unreachable("TypeDecl without a type?");
   2796 
   2797   return QualType(Decl->TypeForDecl, 0);
   2798 }
   2799 
   2800 /// getTypedefType - Return the unique reference to the type for the
   2801 /// specified typedef name decl.
   2802 QualType
   2803 ASTContext::getTypedefType(const TypedefNameDecl *Decl,
   2804                            QualType Canonical) const {
   2805   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
   2806 
   2807   if (Canonical.isNull())
   2808     Canonical = getCanonicalType(Decl->getUnderlyingType());
   2809   TypedefType *newType = new(*this, TypeAlignment)
   2810     TypedefType(Type::Typedef, Decl, Canonical);
   2811   Decl->TypeForDecl = newType;
   2812   Types.push_back(newType);
   2813   return QualType(newType, 0);
   2814 }
   2815 
   2816 QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
   2817   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
   2818 
   2819   if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
   2820     if (PrevDecl->TypeForDecl)
   2821       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
   2822 
   2823   RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
   2824   Decl->TypeForDecl = newType;
   2825   Types.push_back(newType);
   2826   return QualType(newType, 0);
   2827 }
   2828 
   2829 QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
   2830   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
   2831 
   2832   if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
   2833     if (PrevDecl->TypeForDecl)
   2834       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
   2835 
   2836   EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
   2837   Decl->TypeForDecl = newType;
   2838   Types.push_back(newType);
   2839   return QualType(newType, 0);
   2840 }
   2841 
   2842 QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
   2843                                        QualType modifiedType,
   2844                                        QualType equivalentType) {
   2845   llvm::FoldingSetNodeID id;
   2846   AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
   2847 
   2848   void *insertPos = 0;
   2849   AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
   2850   if (type) return QualType(type, 0);
   2851 
   2852   QualType canon = getCanonicalType(equivalentType);
   2853   type = new (*this, TypeAlignment)
   2854            AttributedType(canon, attrKind, modifiedType, equivalentType);
   2855 
   2856   Types.push_back(type);
   2857   AttributedTypes.InsertNode(type, insertPos);
   2858 
   2859   return QualType(type, 0);
   2860 }
   2861 
   2862 
   2863 /// \brief Retrieve a substitution-result type.
   2864 QualType
   2865 ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
   2866                                          QualType Replacement) const {
   2867   assert(Replacement.isCanonical()
   2868          && "replacement types must always be canonical");
   2869 
   2870   llvm::FoldingSetNodeID ID;
   2871   SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
   2872   void *InsertPos = 0;
   2873   SubstTemplateTypeParmType *SubstParm
   2874     = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
   2875 
   2876   if (!SubstParm) {
   2877     SubstParm = new (*this, TypeAlignment)
   2878       SubstTemplateTypeParmType(Parm, Replacement);
   2879     Types.push_back(SubstParm);
   2880     SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
   2881   }
   2882 
   2883   return QualType(SubstParm, 0);
   2884 }
   2885 
   2886 /// \brief Retrieve a
   2887 QualType ASTContext::getSubstTemplateTypeParmPackType(
   2888                                           const TemplateTypeParmType *Parm,
   2889                                               const TemplateArgument &ArgPack) {
   2890 #ifndef NDEBUG
   2891   for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
   2892                                     PEnd = ArgPack.pack_end();
   2893        P != PEnd; ++P) {
   2894     assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
   2895     assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
   2896   }
   2897 #endif
   2898 
   2899   llvm::FoldingSetNodeID ID;
   2900   SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
   2901   void *InsertPos = 0;
   2902   if (SubstTemplateTypeParmPackType *SubstParm
   2903         = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
   2904     return QualType(SubstParm, 0);
   2905 
   2906   QualType Canon;
   2907   if (!Parm->isCanonicalUnqualified()) {
   2908     Canon = getCanonicalType(QualType(Parm, 0));
   2909     Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
   2910                                              ArgPack);
   2911     SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
   2912   }
   2913 
   2914   SubstTemplateTypeParmPackType *SubstParm
   2915     = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
   2916                                                                ArgPack);
   2917   Types.push_back(SubstParm);
   2918   SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
   2919   return QualType(SubstParm, 0);
   2920 }
   2921 
   2922 /// \brief Retrieve the template type parameter type for a template
   2923 /// parameter or parameter pack with the given depth, index, and (optionally)
   2924 /// name.
   2925 QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
   2926                                              bool ParameterPack,
   2927                                              TemplateTypeParmDecl *TTPDecl) const {
   2928   llvm::FoldingSetNodeID ID;
   2929   TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
   2930   void *InsertPos = 0;
   2931   TemplateTypeParmType *TypeParm
   2932     = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
   2933 
   2934   if (TypeParm)
   2935     return QualType(TypeParm, 0);
   2936 
   2937   if (TTPDecl) {
   2938     QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
   2939     TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
   2940 
   2941     TemplateTypeParmType *TypeCheck
   2942       = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
   2943     assert(!TypeCheck && "Template type parameter canonical type broken");
   2944     (void)TypeCheck;
   2945   } else
   2946     TypeParm = new (*this, TypeAlignment)
   2947       TemplateTypeParmType(Depth, Index, ParameterPack);
   2948 
   2949   Types.push_back(TypeParm);
   2950   TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
   2951 
   2952   return QualType(TypeParm, 0);
   2953 }
   2954 
   2955 TypeSourceInfo *
   2956 ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
   2957                                               SourceLocation NameLoc,
   2958                                         const TemplateArgumentListInfo &Args,
   2959                                               QualType Underlying) const {
   2960   assert(!Name.getAsDependentTemplateName() &&
   2961          "No dependent template names here!");
   2962   QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
   2963 
   2964   TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
   2965   TemplateSpecializationTypeLoc TL =
   2966       DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
   2967   TL.setTemplateKeywordLoc(SourceLocation());
   2968   TL.setTemplateNameLoc(NameLoc);
   2969   TL.setLAngleLoc(Args.getLAngleLoc());
   2970   TL.setRAngleLoc(Args.getRAngleLoc());
   2971   for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
   2972     TL.setArgLocInfo(i, Args[i].getLocInfo());
   2973   return DI;
   2974 }
   2975 
   2976 QualType
   2977 ASTContext::getTemplateSpecializationType(TemplateName Template,
   2978                                           const TemplateArgumentListInfo &Args,
   2979                                           QualType Underlying) const {
   2980   assert(!Template.getAsDependentTemplateName() &&
   2981          "No dependent template names here!");
   2982 
   2983   unsigned NumArgs = Args.size();
   2984 
   2985   SmallVector<TemplateArgument, 4> ArgVec;
   2986   ArgVec.reserve(NumArgs);
   2987   for (unsigned i = 0; i != NumArgs; ++i)
   2988     ArgVec.push_back(Args[i].getArgument());
   2989 
   2990   return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
   2991                                        Underlying);
   2992 }
   2993 
   2994 #ifndef NDEBUG
   2995 static bool hasAnyPackExpansions(const TemplateArgument *Args,
   2996                                  unsigned NumArgs) {
   2997   for (unsigned I = 0; I != NumArgs; ++I)
   2998     if (Args[I].isPackExpansion())
   2999       return true;
   3000 
   3001   return true;
   3002 }
   3003 #endif
   3004 
   3005 QualType
   3006 ASTContext::getTemplateSpecializationType(TemplateName Template,
   3007                                           const TemplateArgument *Args,
   3008                                           unsigned NumArgs,
   3009                                           QualType Underlying) const {
   3010   assert(!Template.getAsDependentTemplateName() &&
   3011          "No dependent template names here!");
   3012   // Look through qualified template names.
   3013   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
   3014     Template = TemplateName(QTN->getTemplateDecl());
   3015 
   3016   bool IsTypeAlias =
   3017     Template.getAsTemplateDecl() &&
   3018     isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
   3019   QualType CanonType;
   3020   if (!Underlying.isNull())
   3021     CanonType = getCanonicalType(Underlying);
   3022   else {
   3023     // We can get here with an alias template when the specialization contains
   3024     // a pack expansion that does not match up with a parameter pack.
   3025     assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
   3026            "Caller must compute aliased type");
   3027     IsTypeAlias = false;
   3028     CanonType = getCanonicalTemplateSpecializationType(Template, Args,
   3029                                                        NumArgs);
   3030   }
   3031 
   3032   // Allocate the (non-canonical) template specialization type, but don't
   3033   // try to unique it: these types typically have location information that
   3034   // we don't unique and don't want to lose.
   3035   void *Mem = Allocate(sizeof(TemplateSpecializationType) +
   3036                        sizeof(TemplateArgument) * NumArgs +
   3037                        (IsTypeAlias? sizeof(QualType) : 0),
   3038                        TypeAlignment);
   3039   TemplateSpecializationType *Spec
   3040     = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
   3041                                          IsTypeAlias ? Underlying : QualType());
   3042 
   3043   Types.push_back(Spec);
   3044   return QualType(Spec, 0);
   3045 }
   3046 
   3047 QualType
   3048 ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
   3049                                                    const TemplateArgument *Args,
   3050                                                    unsigned NumArgs) const {
   3051   assert(!Template.getAsDependentTemplateName() &&
   3052          "No dependent template names here!");
   3053 
   3054   // Look through qualified template names.
   3055   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
   3056     Template = TemplateName(QTN->getTemplateDecl());
   3057 
   3058   // Build the canonical template specialization type.
   3059   TemplateName CanonTemplate = getCanonicalTemplateName(Template);
   3060   SmallVector<TemplateArgument, 4> CanonArgs;
   3061   CanonArgs.reserve(NumArgs);
   3062   for (unsigned I = 0; I != NumArgs; ++I)
   3063     CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
   3064 
   3065   // Determine whether this canonical template specialization type already
   3066   // exists.
   3067   llvm::FoldingSetNodeID ID;
   3068   TemplateSpecializationType::Profile(ID, CanonTemplate,
   3069                                       CanonArgs.data(), NumArgs, *this);
   3070 
   3071   void *InsertPos = 0;
   3072   TemplateSpecializationType *Spec
   3073     = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
   3074 
   3075   if (!Spec) {
   3076     // Allocate a new canonical template specialization type.
   3077     void *Mem = Allocate((sizeof(TemplateSpecializationType) +
   3078                           sizeof(TemplateArgument) * NumArgs),
   3079                          TypeAlignment);
   3080     Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
   3081                                                 CanonArgs.data(), NumArgs,
   3082                                                 QualType(), QualType());
   3083     Types.push_back(Spec);
   3084     TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
   3085   }
   3086 
   3087   assert(Spec->isDependentType() &&
   3088          "Non-dependent template-id type must have a canonical type");
   3089   return QualType(Spec, 0);
   3090 }
   3091 
   3092 QualType
   3093 ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
   3094                               NestedNameSpecifier *NNS,
   3095                               QualType NamedType) const {
   3096   llvm::FoldingSetNodeID ID;
   3097   ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
   3098 
   3099   void *InsertPos = 0;
   3100   ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
   3101   if (T)
   3102     return QualType(T, 0);
   3103 
   3104   QualType Canon = NamedType;
   3105   if (!Canon.isCanonical()) {
   3106     Canon = getCanonicalType(NamedType);
   3107     ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
   3108     assert(!CheckT && "Elaborated canonical type broken");
   3109     (void)CheckT;
   3110   }
   3111 
   3112   T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
   3113   Types.push_back(T);
   3114   ElaboratedTypes.InsertNode(T, InsertPos);
   3115   return QualType(T, 0);
   3116 }
   3117 
   3118 QualType
   3119 ASTContext::getParenType(QualType InnerType) const {
   3120   llvm::FoldingSetNodeID ID;
   3121   ParenType::Profile(ID, InnerType);
   3122 
   3123   void *InsertPos = 0;
   3124   ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
   3125   if (T)
   3126     return QualType(T, 0);
   3127 
   3128   QualType Canon = InnerType;
   3129   if (!Canon.isCanonical()) {
   3130     Canon = getCanonicalType(InnerType);
   3131     ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
   3132     assert(!CheckT && "Paren canonical type broken");
   3133     (void)CheckT;
   3134   }
   3135 
   3136   T = new (*this) ParenType(InnerType, Canon);
   3137   Types.push_back(T);
   3138   ParenTypes.InsertNode(T, InsertPos);
   3139   return QualType(T, 0);
   3140 }
   3141 
   3142 QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
   3143                                           NestedNameSpecifier *NNS,
   3144                                           const IdentifierInfo *Name,
   3145                                           QualType Canon) const {
   3146   assert(NNS->isDependent() && "nested-name-specifier must be dependent");
   3147 
   3148   if (Canon.isNull()) {
   3149     NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
   3150     ElaboratedTypeKeyword CanonKeyword = Keyword;
   3151     if (Keyword == ETK_None)
   3152       CanonKeyword = ETK_Typename;
   3153 
   3154     if (CanonNNS != NNS || CanonKeyword != Keyword)
   3155       Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
   3156   }
   3157 
   3158   llvm::FoldingSetNodeID ID;
   3159   DependentNameType::Profile(ID, Keyword, NNS, Name);
   3160 
   3161   void *InsertPos = 0;
   3162   DependentNameType *T
   3163     = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
   3164   if (T)
   3165     return QualType(T, 0);
   3166 
   3167   T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
   3168   Types.push_back(T);
   3169   DependentNameTypes.InsertNode(T, InsertPos);
   3170   return QualType(T, 0);
   3171 }
   3172 
   3173 QualType
   3174 ASTContext::getDependentTemplateSpecializationType(
   3175                                  ElaboratedTypeKeyword Keyword,
   3176                                  NestedNameSpecifier *NNS,
   3177                                  const IdentifierInfo *Name,
   3178                                  const TemplateArgumentListInfo &Args) const {
   3179   // TODO: avoid this copy
   3180   SmallVector<TemplateArgument, 16> ArgCopy;
   3181   for (unsigned I = 0, E = Args.size(); I != E; ++I)
   3182     ArgCopy.push_back(Args[I].getArgument());
   3183   return getDependentTemplateSpecializationType(Keyword, NNS, Name,
   3184                                                 ArgCopy.size(),
   3185                                                 ArgCopy.data());
   3186 }
   3187 
   3188 QualType
   3189 ASTContext::getDependentTemplateSpecializationType(
   3190                                  ElaboratedTypeKeyword Keyword,
   3191                                  NestedNameSpecifier *NNS,
   3192                                  const IdentifierInfo *Name,
   3193                                  unsigned NumArgs,
   3194                                  const TemplateArgument *Args) const {
   3195   assert((!NNS || NNS->isDependent()) &&
   3196          "nested-name-specifier must be dependent");
   3197 
   3198   llvm::FoldingSetNodeID ID;
   3199   DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
   3200                                                Name, NumArgs, Args);
   3201 
   3202   void *InsertPos = 0;
   3203   DependentTemplateSpecializationType *T
   3204     = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
   3205   if (T)
   3206     return QualType(T, 0);
   3207 
   3208   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
   3209 
   3210   ElaboratedTypeKeyword CanonKeyword = Keyword;
   3211   if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
   3212 
   3213   bool AnyNonCanonArgs = false;
   3214   SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
   3215   for (unsigned I = 0; I != NumArgs; ++I) {
   3216     CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
   3217     if (!CanonArgs[I].structurallyEquals(Args[I]))
   3218       AnyNonCanonArgs = true;
   3219   }
   3220 
   3221   QualType Canon;
   3222   if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
   3223     Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
   3224                                                    Name, NumArgs,
   3225                                                    CanonArgs.data());
   3226 
   3227     // Find the insert position again.
   3228     DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
   3229   }
   3230 
   3231   void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
   3232                         sizeof(TemplateArgument) * NumArgs),
   3233                        TypeAlignment);
   3234   T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
   3235                                                     Name, NumArgs, Args, Canon);
   3236   Types.push_back(T);
   3237   DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
   3238   return QualType(T, 0);
   3239 }
   3240 
   3241 QualType ASTContext::getPackExpansionType(QualType Pattern,
   3242                                           Optional<unsigned> NumExpansions) {
   3243   llvm::FoldingSetNodeID ID;
   3244   PackExpansionType::Profile(ID, Pattern, NumExpansions);
   3245 
   3246   assert(Pattern->containsUnexpandedParameterPack() &&
   3247          "Pack expansions must expand one or more parameter packs");
   3248   void *InsertPos = 0;
   3249   PackExpansionType *T
   3250     = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
   3251   if (T)
   3252     return QualType(T, 0);
   3253 
   3254   QualType Canon;
   3255   if (!Pattern.isCanonical()) {
   3256     Canon = getCanonicalType(Pattern);
   3257     // The canonical type might not contain an unexpanded parameter pack, if it
   3258     // contains an alias template specialization which ignores one of its
   3259     // parameters.
   3260     if (Canon->containsUnexpandedParameterPack()) {
   3261       Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
   3262 
   3263       // Find the insert position again, in case we inserted an element into
   3264       // PackExpansionTypes and invalidated our insert position.
   3265       PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
   3266     }
   3267   }
   3268 
   3269   T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
   3270   Types.push_back(T);
   3271   PackExpansionTypes.InsertNode(T, InsertPos);
   3272   return QualType(T, 0);
   3273 }
   3274 
   3275 /// CmpProtocolNames - Comparison predicate for sorting protocols
   3276 /// alphabetically.
   3277 static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
   3278                             const ObjCProtocolDecl *RHS) {
   3279   return LHS->getDeclName() < RHS->getDeclName();
   3280 }
   3281 
   3282 static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
   3283                                 unsigned NumProtocols) {
   3284   if (NumProtocols == 0) return true;
   3285 
   3286   if (Protocols[0]->getCanonicalDecl() != Protocols[0])
   3287     return false;
   3288 
   3289   for (unsigned i = 1; i != NumProtocols; ++i)
   3290     if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
   3291         Protocols[i]->getCanonicalDecl() != Protocols[i])
   3292       return false;
   3293   return true;
   3294 }
   3295 
   3296 static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
   3297                                    unsigned &NumProtocols) {
   3298   ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
   3299 
   3300   // Sort protocols, keyed by name.
   3301   std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
   3302 
   3303   // Canonicalize.
   3304   for (unsigned I = 0, N = NumProtocols; I != N; ++I)
   3305     Protocols[I] = Protocols[I]->getCanonicalDecl();
   3306 
   3307   // Remove duplicates.
   3308   ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
   3309   NumProtocols = ProtocolsEnd-Protocols;
   3310 }
   3311 
   3312 QualType ASTContext::getObjCObjectType(QualType BaseType,
   3313                                        ObjCProtocolDecl * const *Protocols,
   3314                                        unsigned NumProtocols) const {
   3315   // If the base type is an interface and there aren't any protocols
   3316   // to add, then the interface type will do just fine.
   3317   if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
   3318     return BaseType;
   3319 
   3320   // Look in the folding set for an existing type.
   3321   llvm::FoldingSetNodeID ID;
   3322   ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
   3323   void *InsertPos = 0;
   3324   if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
   3325     return QualType(QT, 0);
   3326 
   3327   // Build the canonical type, which has the canonical base type and
   3328   // a sorted-and-uniqued list of protocols.
   3329   QualType Canonical;
   3330   bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
   3331   if (!ProtocolsSorted || !BaseType.isCanonical()) {
   3332     if (!ProtocolsSorted) {
   3333       SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
   3334                                                      Protocols + NumProtocols);
   3335       unsigned UniqueCount = NumProtocols;
   3336 
   3337       SortAndUniqueProtocols(&Sorted[0], UniqueCount);
   3338       Canonical = getObjCObjectType(getCanonicalType(BaseType),
   3339                                     &Sorted[0], UniqueCount);
   3340     } else {
   3341       Canonical = getObjCObjectType(getCanonicalType(BaseType),
   3342                                     Protocols, NumProtocols);
   3343     }
   3344 
   3345     // Regenerate InsertPos.
   3346     ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
   3347   }
   3348 
   3349   unsigned Size = sizeof(ObjCObjectTypeImpl);
   3350   Size += NumProtocols * sizeof(ObjCProtocolDecl *);
   3351   void *Mem = Allocate(Size, TypeAlignment);
   3352   ObjCObjectTypeImpl *T =
   3353     new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
   3354 
   3355   Types.push_back(T);
   3356   ObjCObjectTypes.InsertNode(T, InsertPos);
   3357   return QualType(T, 0);
   3358 }
   3359 
   3360 /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
   3361 /// the given object type.
   3362 QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
   3363   llvm::FoldingSetNodeID ID;
   3364   ObjCObjectPointerType::Profile(ID, ObjectT);
   3365 
   3366   void *InsertPos = 0;
   3367   if (ObjCObjectPointerType *QT =
   3368               ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
   3369     return QualType(QT, 0);
   3370 
   3371   // Find the canonical object type.
   3372   QualType Canonical;
   3373   if (!ObjectT.isCanonical()) {
   3374     Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
   3375 
   3376     // Regenerate InsertPos.
   3377     ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
   3378   }
   3379 
   3380   // No match.
   3381   void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
   3382   ObjCObjectPointerType *QType =
   3383     new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
   3384 
   3385   Types.push_back(QType);
   3386   ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
   3387   return QualType(QType, 0);
   3388 }
   3389 
   3390 /// getObjCInterfaceType - Return the unique reference to the type for the
   3391 /// specified ObjC interface decl. The list of protocols is optional.
   3392 QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
   3393                                           ObjCInterfaceDecl *PrevDecl) const {
   3394   if (Decl->TypeForDecl)
   3395     return QualType(Decl->TypeForDecl, 0);
   3396 
   3397   if (PrevDecl) {
   3398     assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
   3399     Decl->TypeForDecl = PrevDecl->TypeForDecl;
   3400     return QualType(PrevDecl->TypeForDecl, 0);
   3401   }
   3402 
   3403   // Prefer the definition, if there is one.
   3404   if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
   3405     Decl = Def;
   3406 
   3407   void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
   3408   ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
   3409   Decl->TypeForDecl = T;
   3410   Types.push_back(T);
   3411   return QualType(T, 0);
   3412 }
   3413 
   3414 /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
   3415 /// TypeOfExprType AST's (since expression's are never shared). For example,
   3416 /// multiple declarations that refer to "typeof(x)" all contain different
   3417 /// DeclRefExpr's. This doesn't effect the type checker, since it operates
   3418 /// on canonical type's (which are always unique).
   3419 QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
   3420   TypeOfExprType *toe;
   3421   if (tofExpr->isTypeDependent()) {
   3422     llvm::FoldingSetNodeID ID;
   3423     DependentTypeOfExprType::Profile(ID, *this, tofExpr);
   3424 
   3425     void *InsertPos = 0;
   3426     DependentTypeOfExprType *Canon
   3427       = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
   3428     if (Canon) {
   3429       // We already have a "canonical" version of an identical, dependent
   3430       // typeof(expr) type. Use that as our canonical type.
   3431       toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
   3432                                           QualType((TypeOfExprType*)Canon, 0));
   3433     } else {
   3434       // Build a new, canonical typeof(expr) type.
   3435       Canon
   3436         = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
   3437       DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
   3438       toe = Canon;
   3439     }
   3440   } else {
   3441     QualType Canonical = getCanonicalType(tofExpr->getType());
   3442     toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
   3443   }
   3444   Types.push_back(toe);
   3445   return QualType(toe, 0);
   3446 }
   3447 
   3448 /// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
   3449 /// TypeOfType AST's. The only motivation to unique these nodes would be
   3450 /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
   3451 /// an issue. This doesn't effect the type checker, since it operates
   3452 /// on canonical type's (which are always unique).
   3453 QualType ASTContext::getTypeOfType(QualType tofType) const {
   3454   QualType Canonical = getCanonicalType(tofType);
   3455   TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
   3456   Types.push_back(tot);
   3457   return QualType(tot, 0);
   3458 }
   3459 
   3460 
   3461 /// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
   3462 /// DecltypeType AST's. The only motivation to unique these nodes would be
   3463 /// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
   3464 /// an issue. This doesn't effect the type checker, since it operates
   3465 /// on canonical types (which are always unique).
   3466 QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
   3467   DecltypeType *dt;
   3468 
   3469   // C++0x [temp.type]p2:
   3470   //   If an expression e involves a template parameter, decltype(e) denotes a
   3471   //   unique dependent type. Two such decltype-specifiers refer to the same
   3472   //   type only if their expressions are equivalent (14.5.6.1).
   3473   if (e->isInstantiationDependent()) {
   3474     llvm::FoldingSetNodeID ID;
   3475     DependentDecltypeType::Profile(ID, *this, e);
   3476 
   3477     void *InsertPos = 0;
   3478     DependentDecltypeType *Canon
   3479       = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
   3480     if (Canon) {
   3481       // We already have a "canonical" version of an equivalent, dependent
   3482       // decltype type. Use that as our canonical type.
   3483       dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
   3484                                        QualType((DecltypeType*)Canon, 0));
   3485     } else {
   3486       // Build a new, canonical typeof(expr) type.
   3487       Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
   3488       DependentDecltypeTypes.InsertNode(Canon, InsertPos);
   3489       dt = Canon;
   3490     }
   3491   } else {
   3492     dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
   3493                                       getCanonicalType(UnderlyingType));
   3494   }
   3495   Types.push_back(dt);
   3496   return QualType(dt, 0);
   3497 }
   3498 
   3499 /// getUnaryTransformationType - We don't unique these, since the memory
   3500 /// savings are minimal and these are rare.
   3501 QualType ASTContext::getUnaryTransformType(QualType BaseType,
   3502                                            QualType UnderlyingType,
   3503                                            UnaryTransformType::UTTKind Kind)
   3504     const {
   3505   UnaryTransformType *Ty =
   3506     new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
   3507                                                    Kind,
   3508                                  UnderlyingType->isDependentType() ?
   3509                                  QualType() : getCanonicalType(UnderlyingType));
   3510   Types.push_back(Ty);
   3511   return QualType(Ty, 0);
   3512 }
   3513 
   3514 /// getAutoType - We only unique auto types after they've been deduced.
   3515 QualType ASTContext::getAutoType(QualType DeducedType) const {
   3516   void *InsertPos = 0;
   3517   if (!DeducedType.isNull()) {
   3518     // Look in the folding set for an existing type.
   3519     llvm::FoldingSetNodeID ID;
   3520     AutoType::Profile(ID, DeducedType);
   3521     if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
   3522       return QualType(AT, 0);
   3523   }
   3524 
   3525   AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
   3526   Types.push_back(AT);
   3527   if (InsertPos)
   3528     AutoTypes.InsertNode(AT, InsertPos);
   3529   return QualType(AT, 0);
   3530 }
   3531 
   3532 /// getAtomicType - Return the uniqued reference to the atomic type for
   3533 /// the given value type.
   3534 QualType ASTContext::getAtomicType(QualType T) const {
   3535   // Unique pointers, to guarantee there is only one pointer of a particular
   3536   // structure.
   3537   llvm::FoldingSetNodeID ID;
   3538   AtomicType::Profile(ID, T);
   3539 
   3540   void *InsertPos = 0;
   3541   if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
   3542     return QualType(AT, 0);
   3543 
   3544   // If the atomic value type isn't canonical, this won't be a canonical type
   3545   // either, so fill in the canonical type field.
   3546   QualType Canonical;
   3547   if (!T.isCanonical()) {
   3548     Canonical = getAtomicType(getCanonicalType(T));
   3549 
   3550     // Get the new insert position for the node we care about.
   3551     AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
   3552     assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
   3553   }
   3554   AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
   3555   Types.push_back(New);
   3556   AtomicTypes.InsertNode(New, InsertPos);
   3557   return QualType(New, 0);
   3558 }
   3559 
   3560 /// getAutoDeductType - Get type pattern for deducing against 'auto'.
   3561 QualType ASTContext::getAutoDeductType() const {
   3562   if (AutoDeductTy.isNull())
   3563     AutoDeductTy = getAutoType(QualType());
   3564   assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
   3565   return AutoDeductTy;
   3566 }
   3567 
   3568 /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
   3569 QualType ASTContext::getAutoRRefDeductType() const {
   3570   if (AutoRRefDeductTy.isNull())
   3571     AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
   3572   assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
   3573   return AutoRRefDeductTy;
   3574 }
   3575 
   3576 /// getTagDeclType - Return the unique reference to the type for the
   3577 /// specified TagDecl (struct/union/class/enum) decl.
   3578 QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
   3579   assert (Decl);
   3580   // FIXME: What is the design on getTagDeclType when it requires casting
   3581   // away const?  mutable?
   3582   return getTypeDeclType(const_cast<TagDecl*>(Decl));
   3583 }
   3584 
   3585 /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
   3586 /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
   3587 /// needs to agree with the definition in <stddef.h>.
   3588 CanQualType ASTContext::getSizeType() const {
   3589   return getFromTargetType(Target->getSizeType());
   3590 }
   3591 
   3592 /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
   3593 CanQualType ASTContext::getIntMaxType() const {
   3594   return getFromTargetType(Target->getIntMaxType());
   3595 }
   3596 
   3597 /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
   3598 CanQualType ASTContext::getUIntMaxType() const {
   3599   return getFromTargetType(Target->getUIntMaxType());
   3600 }
   3601 
   3602 /// getSignedWCharType - Return the type of "signed wchar_t".
   3603 /// Used when in C++, as a GCC extension.
   3604 QualType ASTContext::getSignedWCharType() const {
   3605   // FIXME: derive from "Target" ?
   3606   return WCharTy;
   3607 }
   3608 
   3609 /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
   3610 /// Used when in C++, as a GCC extension.
   3611 QualType ASTContext::getUnsignedWCharType() const {
   3612   // FIXME: derive from "Target" ?
   3613   return UnsignedIntTy;
   3614 }
   3615 
   3616 QualType ASTContext::getIntPtrType() const {
   3617   return getFromTargetType(Target->getIntPtrType());
   3618 }
   3619 
   3620 QualType ASTContext::getUIntPtrType() const {
   3621   return getCorrespondingUnsignedType(getIntPtrType());
   3622 }
   3623 
   3624 /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
   3625 /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
   3626 QualType ASTContext::getPointerDiffType() const {
   3627   return getFromTargetType(Target->getPtrDiffType(0));
   3628 }
   3629 
   3630 /// \brief Return the unique type for "pid_t" defined in
   3631 /// <sys/types.h>. We need this to compute the correct type for vfork().
   3632 QualType ASTContext::getProcessIDType() const {
   3633   return getFromTargetType(Target->getProcessIDType());
   3634 }
   3635 
   3636 //===----------------------------------------------------------------------===//
   3637 //                              Type Operators
   3638 //===----------------------------------------------------------------------===//
   3639 
   3640 CanQualType ASTContext::getCanonicalParamType(QualType T) const {
   3641   // Push qualifiers into arrays, and then discard any remaining
   3642   // qualifiers.
   3643   T = getCanonicalType(T);
   3644   T = getVariableArrayDecayedType(T);
   3645   const Type *Ty = T.getTypePtr();
   3646   QualType Result;
   3647   if (isa<ArrayType>(Ty)) {
   3648     Result = getArrayDecayedType(QualType(Ty,0));
   3649   } else if (isa<FunctionType>(Ty)) {
   3650     Result = getPointerType(QualType(Ty, 0));
   3651   } else {
   3652     Result = QualType(Ty, 0);
   3653   }
   3654 
   3655   return CanQualType::CreateUnsafe(Result);
   3656 }
   3657 
   3658 QualType ASTContext::getUnqualifiedArrayType(QualType type,
   3659                                              Qualifiers &quals) {
   3660   SplitQualType splitType = type.getSplitUnqualifiedType();
   3661 
   3662   // FIXME: getSplitUnqualifiedType() actually walks all the way to
   3663   // the unqualified desugared type and then drops it on the floor.
   3664   // We then have to strip that sugar back off with
   3665   // getUnqualifiedDesugaredType(), which is silly.
   3666   const ArrayType *AT =
   3667     dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
   3668 
   3669   // If we don't have an array, just use the results in splitType.
   3670   if (!AT) {
   3671     quals = splitType.Quals;
   3672     return QualType(splitType.Ty, 0);
   3673   }
   3674 
   3675   // Otherwise, recurse on the array's element type.
   3676   QualType elementType = AT->getElementType();
   3677   QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
   3678 
   3679   // If that didn't change the element type, AT has no qualifiers, so we
   3680   // can just use the results in splitType.
   3681   if (elementType == unqualElementType) {
   3682     assert(quals.empty()); // from the recursive call
   3683     quals = splitType.Quals;
   3684     return QualType(splitType.Ty, 0);
   3685   }
   3686 
   3687   // Otherwise, add in the qualifiers from the outermost type, then
   3688   // build the type back up.
   3689   quals.addConsistentQualifiers(splitType.Quals);
   3690 
   3691   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
   3692     return getConstantArrayType(unqualElementType, CAT->getSize(),
   3693                                 CAT->getSizeModifier(), 0);
   3694   }
   3695 
   3696   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
   3697     return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
   3698   }
   3699 
   3700   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
   3701     return getVariableArrayType(unqualElementType,
   3702                                 VAT->getSizeExpr(),
   3703                                 VAT->getSizeModifier(),
   3704                                 VAT->getIndexTypeCVRQualifiers(),
   3705                                 VAT->getBracketsRange());
   3706   }
   3707 
   3708   const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
   3709   return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
   3710                                     DSAT->getSizeModifier(), 0,
   3711                                     SourceRange());
   3712 }
   3713 
   3714 /// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
   3715 /// may be similar (C++ 4.4), replaces T1 and T2 with the type that
   3716 /// they point to and return true. If T1 and T2 aren't pointer types
   3717 /// or pointer-to-member types, or if they are not similar at this
   3718 /// level, returns false and leaves T1 and T2 unchanged. Top-level
   3719 /// qualifiers on T1 and T2 are ignored. This function will typically
   3720 /// be called in a loop that successively "unwraps" pointer and
   3721 /// pointer-to-member types to compare them at each level.
   3722 bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
   3723   const PointerType *T1PtrType = T1->getAs<PointerType>(),
   3724                     *T2PtrType = T2->getAs<PointerType>();
   3725   if (T1PtrType && T2PtrType) {
   3726     T1 = T1PtrType->getPointeeType();
   3727     T2 = T2PtrType->getPointeeType();
   3728     return true;
   3729   }
   3730 
   3731   const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
   3732                           *T2MPType = T2->getAs<MemberPointerType>();
   3733   if (T1MPType && T2MPType &&
   3734       hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
   3735                              QualType(T2MPType->getClass(), 0))) {
   3736     T1 = T1MPType->getPointeeType();
   3737     T2 = T2MPType->getPointeeType();
   3738     return true;
   3739   }
   3740 
   3741   if (getLangOpts().ObjC1) {
   3742     const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
   3743                                 *T2OPType = T2->getAs<ObjCObjectPointerType>();
   3744     if (T1OPType && T2OPType) {
   3745       T1 = T1OPType->getPointeeType();
   3746       T2 = T2OPType->getPointeeType();
   3747       return true;
   3748     }
   3749   }
   3750 
   3751   // FIXME: Block pointers, too?
   3752 
   3753   return false;
   3754 }
   3755 
   3756 DeclarationNameInfo
   3757 ASTContext::getNameForTemplate(TemplateName Name,
   3758                                SourceLocation NameLoc) const {
   3759   switch (Name.getKind()) {
   3760   case TemplateName::QualifiedTemplate:
   3761   case TemplateName::Template:
   3762     // DNInfo work in progress: CHECKME: what about DNLoc?
   3763     return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
   3764                                NameLoc);
   3765 
   3766   case TemplateName::OverloadedTemplate: {
   3767     OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
   3768     // DNInfo work in progress: CHECKME: what about DNLoc?
   3769     return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
   3770   }
   3771 
   3772   case TemplateName::DependentTemplate: {
   3773     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
   3774     DeclarationName DName;
   3775     if (DTN->isIdentifier()) {
   3776       DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
   3777       return DeclarationNameInfo(DName, NameLoc);
   3778     } else {
   3779       DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
   3780       // DNInfo work in progress: FIXME: source locations?
   3781       DeclarationNameLoc DNLoc;
   3782       DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
   3783       DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
   3784       return DeclarationNameInfo(DName, NameLoc, DNLoc);
   3785     }
   3786   }
   3787 
   3788   case TemplateName::SubstTemplateTemplateParm: {
   3789     SubstTemplateTemplateParmStorage *subst
   3790       = Name.getAsSubstTemplateTemplateParm();
   3791     return DeclarationNameInfo(subst->getParameter()->getDeclName(),
   3792                                NameLoc);
   3793   }
   3794 
   3795   case TemplateName::SubstTemplateTemplateParmPack: {
   3796     SubstTemplateTemplateParmPackStorage *subst
   3797       = Name.getAsSubstTemplateTemplateParmPack();
   3798     return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
   3799                                NameLoc);
   3800   }
   3801   }
   3802 
   3803   llvm_unreachable("bad template name kind!");
   3804 }
   3805 
   3806 TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
   3807   switch (Name.getKind()) {
   3808   case TemplateName::QualifiedTemplate:
   3809   case TemplateName::Template: {
   3810     TemplateDecl *Template = Name.getAsTemplateDecl();
   3811     if (TemplateTemplateParmDecl *TTP
   3812           = dyn_cast<TemplateTemplateParmDecl>(Template))
   3813       Template = getCanonicalTemplateTemplateParmDecl(TTP);
   3814 
   3815     // The canonical template name is the canonical template declaration.
   3816     return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
   3817   }
   3818 
   3819   case TemplateName::OverloadedTemplate:
   3820     llvm_unreachable("cannot canonicalize overloaded template");
   3821 
   3822   case TemplateName::DependentTemplate: {
   3823     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
   3824     assert(DTN && "Non-dependent template names must refer to template decls.");
   3825     return DTN->CanonicalTemplateName;
   3826   }
   3827 
   3828   case TemplateName::SubstTemplateTemplateParm: {
   3829     SubstTemplateTemplateParmStorage *subst
   3830       = Name.getAsSubstTemplateTemplateParm();
   3831     return getCanonicalTemplateName(subst->getReplacement());
   3832   }
   3833 
   3834   case TemplateName::SubstTemplateTemplateParmPack: {
   3835     SubstTemplateTemplateParmPackStorage *subst
   3836                                   = Name.getAsSubstTemplateTemplateParmPack();
   3837     TemplateTemplateParmDecl *canonParameter
   3838       = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
   3839     TemplateArgument canonArgPack
   3840       = getCanonicalTemplateArgument(subst->getArgumentPack());
   3841     return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
   3842   }
   3843   }
   3844 
   3845   llvm_unreachable("bad template name!");
   3846 }
   3847 
   3848 bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
   3849   X = getCanonicalTemplateName(X);
   3850   Y = getCanonicalTemplateName(Y);
   3851   return X.getAsVoidPointer() == Y.getAsVoidPointer();
   3852 }
   3853 
   3854 TemplateArgument
   3855 ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
   3856   switch (Arg.getKind()) {
   3857     case TemplateArgument::Null:
   3858       return Arg;
   3859 
   3860     case TemplateArgument::Expression:
   3861       return Arg;
   3862 
   3863     case TemplateArgument::Declaration: {
   3864       ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
   3865       return TemplateArgument(D, Arg.isDeclForReferenceParam());
   3866     }
   3867 
   3868     case TemplateArgument::NullPtr:
   3869       return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
   3870                               /*isNullPtr*/true);
   3871 
   3872     case TemplateArgument::Template:
   3873       return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
   3874 
   3875     case TemplateArgument::TemplateExpansion:
   3876       return TemplateArgument(getCanonicalTemplateName(
   3877                                          Arg.getAsTemplateOrTemplatePattern()),
   3878                               Arg.getNumTemplateExpansions());
   3879 
   3880     case TemplateArgument::Integral:
   3881       return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
   3882 
   3883     case TemplateArgument::Type:
   3884       return TemplateArgument(getCanonicalType(Arg.getAsType()));
   3885 
   3886     case TemplateArgument::Pack: {
   3887       if (Arg.pack_size() == 0)
   3888         return Arg;
   3889 
   3890       TemplateArgument *CanonArgs
   3891         = new (*this) TemplateArgument[Arg.pack_size()];
   3892       unsigned Idx = 0;
   3893       for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
   3894                                         AEnd = Arg.pack_end();
   3895            A != AEnd; (void)++A, ++Idx)
   3896         CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
   3897 
   3898       return TemplateArgument(CanonArgs, Arg.pack_size());
   3899     }
   3900   }
   3901 
   3902   // Silence GCC warning
   3903   llvm_unreachable("Unhandled template argument kind");
   3904 }
   3905 
   3906 NestedNameSpecifier *
   3907 ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
   3908   if (!NNS)
   3909     return 0;
   3910 
   3911   switch (NNS->getKind()) {
   3912   case NestedNameSpecifier::Identifier:
   3913     // Canonicalize the prefix but keep the identifier the same.
   3914     return NestedNameSpecifier::Create(*this,
   3915                          getCanonicalNestedNameSpecifier(NNS->getPrefix()),
   3916                                        NNS->getAsIdentifier());
   3917 
   3918   case NestedNameSpecifier::Namespace:
   3919     // A namespace is canonical; build a nested-name-specifier with
   3920     // this namespace and no prefix.
   3921     return NestedNameSpecifier::Create(*this, 0,
   3922                                  NNS->getAsNamespace()->getOriginalNamespace());
   3923 
   3924   case NestedNameSpecifier::NamespaceAlias:
   3925     // A namespace is canonical; build a nested-name-specifier with
   3926     // this namespace and no prefix.
   3927     return NestedNameSpecifier::Create(*this, 0,
   3928                                     NNS->getAsNamespaceAlias()->getNamespace()
   3929                                                       ->getOriginalNamespace());
   3930 
   3931   case NestedNameSpecifier::TypeSpec:
   3932   case NestedNameSpecifier::TypeSpecWithTemplate: {
   3933     QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
   3934 
   3935     // If we have some kind of dependent-named type (e.g., "typename T::type"),
   3936     // break it apart into its prefix and identifier, then reconsititute those
   3937     // as the canonical nested-name-specifier. This is required to canonicalize
   3938     // a dependent nested-name-specifier involving typedefs of dependent-name
   3939     // types, e.g.,
   3940     //   typedef typename T::type T1;
   3941     //   typedef typename T1::type T2;
   3942     if (const DependentNameType *DNT = T->getAs<DependentNameType>())
   3943       return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
   3944                            const_cast<IdentifierInfo *>(DNT->getIdentifier()));
   3945 
   3946     // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
   3947     // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
   3948     // first place?
   3949     return NestedNameSpecifier::Create(*this, 0, false,
   3950                                        const_cast<Type*>(T.getTypePtr()));
   3951   }
   3952 
   3953   case NestedNameSpecifier::Global:
   3954     // The global specifier is canonical and unique.
   3955     return NNS;
   3956   }
   3957 
   3958   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
   3959 }
   3960 
   3961 
   3962 const ArrayType *ASTContext::getAsArrayType(QualType T) const {
   3963   // Handle the non-qualified case efficiently.
   3964   if (!T.hasLocalQualifiers()) {
   3965     // Handle the common positive case fast.
   3966     if (const ArrayType *AT = dyn_cast<ArrayType>(T))
   3967       return AT;
   3968   }
   3969 
   3970   // Handle the common negative case fast.
   3971   if (!isa<ArrayType>(T.getCanonicalType()))
   3972     return 0;
   3973 
   3974   // Apply any qualifiers from the array type to the element type.  This
   3975   // implements C99 6.7.3p8: "If the specification of an array type includes
   3976   // any type qualifiers, the element type is so qualified, not the array type."
   3977 
   3978   // If we get here, we either have type qualifiers on the type, or we have
   3979   // sugar such as a typedef in the way.  If we have type qualifiers on the type
   3980   // we must propagate them down into the element type.
   3981 
   3982   SplitQualType split = T.getSplitDesugaredType();
   3983   Qualifiers qs = split.Quals;
   3984 
   3985   // If we have a simple case, just return now.
   3986   const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
   3987   if (ATy == 0 || qs.empty())
   3988     return ATy;
   3989 
   3990   // Otherwise, we have an array and we have qualifiers on it.  Push the
   3991   // qualifiers into the array element type and return a new array type.
   3992   QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
   3993 
   3994   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
   3995     return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
   3996                                                 CAT->getSizeModifier(),
   3997                                            CAT->getIndexTypeCVRQualifiers()));
   3998   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
   3999     return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
   4000                                                   IAT->getSizeModifier(),
   4001                                            IAT->getIndexTypeCVRQualifiers()));
   4002 
   4003   if (const DependentSizedArrayType *DSAT
   4004         = dyn_cast<DependentSizedArrayType>(ATy))
   4005     return cast<ArrayType>(
   4006                      getDependentSizedArrayType(NewEltTy,
   4007                                                 DSAT->getSizeExpr(),
   4008                                                 DSAT->getSizeModifier(),
   4009                                               DSAT->getIndexTypeCVRQualifiers(),
   4010                                                 DSAT->getBracketsRange()));
   4011 
   4012   const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
   4013   return cast<ArrayType>(getVariableArrayType(NewEltTy,
   4014                                               VAT->getSizeExpr(),
   4015                                               VAT->getSizeModifier(),
   4016                                               VAT->getIndexTypeCVRQualifiers(),
   4017                                               VAT->getBracketsRange()));
   4018 }
   4019 
   4020 QualType ASTContext::getAdjustedParameterType(QualType T) const {
   4021   // C99 6.7.5.3p7:
   4022   //   A declaration of a parameter as "array of type" shall be
   4023   //   adjusted to "qualified pointer to type", where the type
   4024   //   qualifiers (if any) are those specified within the [ and ] of
   4025   //   the array type derivation.
   4026   if (T->isArrayType())
   4027     return getArrayDecayedType(T);
   4028 
   4029   // C99 6.7.5.3p8:
   4030   //   A declaration of a parameter as "function returning type"
   4031   //   shall be adjusted to "pointer to function returning type", as
   4032   //   in 6.3.2.1.
   4033   if (T->isFunctionType())
   4034     return getPointerType(T);
   4035 
   4036   return T;
   4037 }
   4038 
   4039 QualType ASTContext::getSignatureParameterType(QualType T) const {
   4040   T = getVariableArrayDecayedType(T);
   4041   T = getAdjustedParameterType(T);
   4042   return T.getUnqualifiedType();
   4043 }
   4044 
   4045 /// getArrayDecayedType - Return the properly qualified result of decaying the
   4046 /// specified array type to a pointer.  This operation is non-trivial when
   4047 /// handling typedefs etc.  The canonical type of "T" must be an array type,
   4048 /// this returns a pointer to a properly qualified element of the array.
   4049 ///
   4050 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
   4051 QualType ASTContext::getArrayDecayedType(QualType Ty) const {
   4052   // Get the element type with 'getAsArrayType' so that we don't lose any
   4053   // typedefs in the element type of the array.  This also handles propagation
   4054   // of type qualifiers from the array type into the element type if present
   4055   // (C99 6.7.3p8).
   4056   const ArrayType *PrettyArrayType = getAsArrayType(Ty);
   4057   assert(PrettyArrayType && "Not an array type!");
   4058 
   4059   QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
   4060 
   4061   // int x[restrict 4] ->  int *restrict
   4062   return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
   4063 }
   4064 
   4065 QualType ASTContext::getBaseElementType(const ArrayType *array) const {
   4066   return getBaseElementType(array->getElementType());
   4067 }
   4068 
   4069 QualType ASTContext::getBaseElementType(QualType type) const {
   4070   Qualifiers qs;
   4071   while (true) {
   4072     SplitQualType split = type.getSplitDesugaredType();
   4073     const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
   4074     if (!array) break;
   4075 
   4076     type = array->getElementType();
   4077     qs.addConsistentQualifiers(split.Quals);
   4078   }
   4079 
   4080   return getQualifiedType(type, qs);
   4081 }
   4082 
   4083 /// getConstantArrayElementCount - Returns number of constant array elements.
   4084 uint64_t
   4085 ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
   4086   uint64_t ElementCount = 1;
   4087   do {
   4088     ElementCount *= CA->getSize().getZExtValue();
   4089     CA = dyn_cast_or_null<ConstantArrayType>(
   4090       CA->getElementType()->getAsArrayTypeUnsafe());
   4091   } while (CA);
   4092   return ElementCount;
   4093 }
   4094 
   4095 /// getFloatingRank - Return a relative rank for floating point types.
   4096 /// This routine will assert if passed a built-in type that isn't a float.
   4097 static FloatingRank getFloatingRank(QualType T) {
   4098   if (const ComplexType *CT = T->getAs<ComplexType>())
   4099     return getFloatingRank(CT->getElementType());
   4100 
   4101   assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
   4102   switch (T->getAs<BuiltinType>()->getKind()) {
   4103   default: llvm_unreachable("getFloatingRank(): not a floating type");
   4104   case BuiltinType::Half:       return HalfRank;
   4105   case BuiltinType::Float:      return FloatRank;
   4106   case BuiltinType::Double:     return DoubleRank;
   4107   case BuiltinType::LongDouble: return LongDoubleRank;
   4108   }
   4109 }
   4110 
   4111 /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
   4112 /// point or a complex type (based on typeDomain/typeSize).
   4113 /// 'typeDomain' is a real floating point or complex type.
   4114 /// 'typeSize' is a real floating point or complex type.
   4115 QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
   4116                                                        QualType Domain) const {
   4117   FloatingRank EltRank = getFloatingRank(Size);
   4118   if (Domain->isComplexType()) {
   4119     switch (EltRank) {
   4120     case HalfRank: llvm_unreachable("Complex half is not supported");
   4121     case FloatRank:      return FloatComplexTy;
   4122     case DoubleRank:     return DoubleComplexTy;
   4123     case LongDoubleRank: return LongDoubleComplexTy;
   4124     }
   4125   }
   4126 
   4127   assert(Domain->isRealFloatingType() && "Unknown domain!");
   4128   switch (EltRank) {
   4129   case HalfRank:       return HalfTy;
   4130   case FloatRank:      return FloatTy;
   4131   case DoubleRank:     return DoubleTy;
   4132   case LongDoubleRank: return LongDoubleTy;
   4133   }
   4134   llvm_unreachable("getFloatingRank(): illegal value for rank");
   4135 }
   4136 
   4137 /// getFloatingTypeOrder - Compare the rank of the two specified floating
   4138 /// point types, ignoring the domain of the type (i.e. 'double' ==
   4139 /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
   4140 /// LHS < RHS, return -1.
   4141 int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
   4142   FloatingRank LHSR = getFloatingRank(LHS);
   4143   FloatingRank RHSR = getFloatingRank(RHS);
   4144 
   4145   if (LHSR == RHSR)
   4146     return 0;
   4147   if (LHSR > RHSR)
   4148     return 1;
   4149   return -1;
   4150 }
   4151 
   4152 /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
   4153 /// routine will assert if passed a built-in type that isn't an integer or enum,
   4154 /// or if it is not canonicalized.
   4155 unsigned ASTContext::getIntegerRank(const Type *T) const {
   4156   assert(T->isCanonicalUnqualified() && "T should be canonicalized");
   4157 
   4158   switch (cast<BuiltinType>(T)->getKind()) {
   4159   default: llvm_unreachable("getIntegerRank(): not a built-in integer");
   4160   case BuiltinType::Bool:
   4161     return 1 + (getIntWidth(BoolTy) << 3);
   4162   case BuiltinType::Char_S:
   4163   case BuiltinType::Char_U:
   4164   case BuiltinType::SChar:
   4165   case BuiltinType::UChar:
   4166     return 2 + (getIntWidth(CharTy) << 3);
   4167   case BuiltinType::Short:
   4168   case BuiltinType::UShort:
   4169     return 3 + (getIntWidth(ShortTy) << 3);
   4170   case BuiltinType::Int:
   4171   case BuiltinType::UInt:
   4172     return 4 + (getIntWidth(IntTy) << 3);
   4173   case BuiltinType::Long:
   4174   case BuiltinType::ULong:
   4175     return 5 + (getIntWidth(LongTy) << 3);
   4176   case BuiltinType::LongLong:
   4177   case BuiltinType::ULongLong:
   4178     return 6 + (getIntWidth(LongLongTy) << 3);
   4179   case BuiltinType::Int128:
   4180   case BuiltinType::UInt128:
   4181     return 7 + (getIntWidth(Int128Ty) << 3);
   4182   }
   4183 }
   4184 
   4185 /// \brief Whether this is a promotable bitfield reference according
   4186 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
   4187 ///
   4188 /// \returns the type this bit-field will promote to, or NULL if no
   4189 /// promotion occurs.
   4190 QualType ASTContext::isPromotableBitField(Expr *E) const {
   4191   if (E->isTypeDependent() || E->isValueDependent())
   4192     return QualType();
   4193 
   4194   FieldDecl *Field = E->getBitField();
   4195   if (!Field)
   4196     return QualType();
   4197 
   4198   QualType FT = Field->getType();
   4199 
   4200   uint64_t BitWidth = Field->getBitWidthValue(*this);
   4201   uint64_t IntSize = getTypeSize(IntTy);
   4202   // GCC extension compatibility: if the bit-field size is less than or equal
   4203   // to the size of int, it gets promoted no matter what its type is.
   4204   // For instance, unsigned long bf : 4 gets promoted to signed int.
   4205   if (BitWidth < IntSize)
   4206     return IntTy;
   4207 
   4208   if (BitWidth == IntSize)
   4209     return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
   4210 
   4211   // Types bigger than int are not subject to promotions, and therefore act
   4212   // like the base type.
   4213   // FIXME: This doesn't quite match what gcc does, but what gcc does here
   4214   // is ridiculous.
   4215   return QualType();
   4216 }
   4217 
   4218 /// getPromotedIntegerType - Returns the type that Promotable will
   4219 /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
   4220 /// integer type.
   4221 QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
   4222   assert(!Promotable.isNull());
   4223   assert(Promotable->isPromotableIntegerType());
   4224   if (const EnumType *ET = Promotable->getAs<EnumType>())
   4225     return ET->getDecl()->getPromotionType();
   4226 
   4227   if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
   4228     // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
   4229     // (3.9.1) can be converted to a prvalue of the first of the following
   4230     // types that can represent all the values of its underlying type:
   4231     // int, unsigned int, long int, unsigned long int, long long int, or
   4232     // unsigned long long int [...]
   4233     // FIXME: Is there some better way to compute this?
   4234     if (BT->getKind() == BuiltinType::WChar_S ||
   4235         BT->getKind() == BuiltinType::WChar_U ||
   4236         BT->getKind() == BuiltinType::Char16 ||
   4237         BT->getKind() == BuiltinType::Char32) {
   4238       bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
   4239       uint64_t FromSize = getTypeSize(BT);
   4240       QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
   4241                                   LongLongTy, UnsignedLongLongTy };
   4242       for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
   4243         uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
   4244         if (FromSize < ToSize ||
   4245             (FromSize == ToSize &&
   4246              FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
   4247           return PromoteTypes[Idx];
   4248       }
   4249       llvm_unreachable("char type should fit into long long");
   4250     }
   4251   }
   4252 
   4253   // At this point, we should have a signed or unsigned integer type.
   4254   if (Promotable->isSignedIntegerType())
   4255     return IntTy;
   4256   uint64_t PromotableSize = getIntWidth(Promotable);
   4257   uint64_t IntSize = getIntWidth(IntTy);
   4258   assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
   4259   return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
   4260 }
   4261 
   4262 /// \brief Recurses in pointer/array types until it finds an objc retainable
   4263 /// type and returns its ownership.
   4264 Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
   4265   while (!T.isNull()) {
   4266     if (T.getObjCLifetime() != Qualifiers::OCL_None)
   4267       return T.getObjCLifetime();
   4268     if (T->isArrayType())
   4269       T = getBaseElementType(T);
   4270     else if (const PointerType *PT = T->getAs<PointerType>())
   4271       T = PT->getPointeeType();
   4272     else if (const ReferenceType *RT = T->getAs<ReferenceType>())
   4273       T = RT->getPointeeType();
   4274     else
   4275       break;
   4276   }
   4277 
   4278   return Qualifiers::OCL_None;
   4279 }
   4280 
   4281 /// getIntegerTypeOrder - Returns the highest ranked integer type:
   4282 /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
   4283 /// LHS < RHS, return -1.
   4284 int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
   4285   const Type *LHSC = getCanonicalType(LHS).getTypePtr();
   4286   const Type *RHSC = getCanonicalType(RHS).getTypePtr();
   4287   if (LHSC == RHSC) return 0;
   4288 
   4289   bool LHSUnsigned = LHSC->isUnsignedIntegerType();
   4290   bool RHSUnsigned = RHSC->isUnsignedIntegerType();
   4291 
   4292   unsigned LHSRank = getIntegerRank(LHSC);
   4293   unsigned RHSRank = getIntegerRank(RHSC);
   4294 
   4295   if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
   4296     if (LHSRank == RHSRank) return 0;
   4297     return LHSRank > RHSRank ? 1 : -1;
   4298   }
   4299 
   4300   // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
   4301   if (LHSUnsigned) {
   4302     // If the unsigned [LHS] type is larger, return it.
   4303     if (LHSRank >= RHSRank)
   4304       return 1;
   4305 
   4306     // If the signed type can represent all values of the unsigned type, it
   4307     // wins.  Because we are dealing with 2's complement and types that are
   4308     // powers of two larger than each other, this is always safe.
   4309     return -1;
   4310   }
   4311 
   4312   // If the unsigned [RHS] type is larger, return it.
   4313   if (RHSRank >= LHSRank)
   4314     return -1;
   4315 
   4316   // If the signed type can represent all values of the unsigned type, it
   4317   // wins.  Because we are dealing with 2's complement and types that are
   4318   // powers of two larger than each other, this is always safe.
   4319   return 1;
   4320 }
   4321 
   4322 static RecordDecl *
   4323 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
   4324                  DeclContext *DC, IdentifierInfo *Id) {
   4325   SourceLocation Loc;
   4326   if (Ctx.getLangOpts().CPlusPlus)
   4327     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
   4328   else
   4329     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
   4330 }
   4331 
   4332 // getCFConstantStringType - Return the type used for constant CFStrings.
   4333 QualType ASTContext::getCFConstantStringType() const {
   4334   if (!CFConstantStringTypeDecl) {
   4335     CFConstantStringTypeDecl =
   4336       CreateRecordDecl(*this, TTK_Struct, TUDecl,
   4337                        &Idents.get("NSConstantString"));
   4338     CFConstantStringTypeDecl->startDefinition();
   4339 
   4340     QualType FieldTypes[4];
   4341 
   4342     // const int *isa;
   4343     FieldTypes[0] = getPointerType(IntTy.withConst());
   4344     // int flags;
   4345     FieldTypes[1] = IntTy;
   4346     // const char *str;
   4347     FieldTypes[2] = getPointerType(CharTy.withConst());
   4348     // long length;
   4349     FieldTypes[3] = LongTy;
   4350 
   4351     // Create fields
   4352     for (unsigned i = 0; i < 4; ++i) {
   4353       FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
   4354                                            SourceLocation(),
   4355                                            SourceLocation(), 0,
   4356                                            FieldTypes[i], /*TInfo=*/0,
   4357                                            /*BitWidth=*/0,
   4358                                            /*Mutable=*/false,
   4359                                            ICIS_NoInit);
   4360       Field->setAccess(AS_public);
   4361       CFConstantStringTypeDecl->addDecl(Field);
   4362     }
   4363 
   4364     CFConstantStringTypeDecl->completeDefinition();
   4365   }
   4366 
   4367   return getTagDeclType(CFConstantStringTypeDecl);
   4368 }
   4369 
   4370 QualType ASTContext::getObjCSuperType() const {
   4371   if (ObjCSuperType.isNull()) {
   4372     RecordDecl *ObjCSuperTypeDecl  =
   4373       CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get("objc_super"));
   4374     TUDecl->addDecl(ObjCSuperTypeDecl);
   4375     ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
   4376   }
   4377   return ObjCSuperType;
   4378 }
   4379 
   4380 void ASTContext::setCFConstantStringType(QualType T) {
   4381   const RecordType *Rec = T->getAs<RecordType>();
   4382   assert(Rec && "Invalid CFConstantStringType");
   4383   CFConstantStringTypeDecl = Rec->getDecl();
   4384 }
   4385 
   4386 QualType ASTContext::getBlockDescriptorType() const {
   4387   if (BlockDescriptorType)
   4388     return getTagDeclType(BlockDescriptorType);
   4389 
   4390   RecordDecl *T;
   4391   // FIXME: Needs the FlagAppleBlock bit.
   4392   T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
   4393                        &Idents.get("__block_descriptor"));
   4394   T->startDefinition();
   4395 
   4396   QualType FieldTypes[] = {
   4397     UnsignedLongTy,
   4398     UnsignedLongTy,
   4399   };
   4400 
   4401   const char *FieldNames[] = {
   4402     "reserved",
   4403     "Size"
   4404   };
   4405 
   4406   for (size_t i = 0; i < 2; ++i) {
   4407     FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
   4408                                          SourceLocation(),
   4409                                          &Idents.get(FieldNames[i]),
   4410                                          FieldTypes[i], /*TInfo=*/0,
   4411                                          /*BitWidth=*/0,
   4412                                          /*Mutable=*/false,
   4413                                          ICIS_NoInit);
   4414     Field->setAccess(AS_public);
   4415     T->addDecl(Field);
   4416   }
   4417 
   4418   T->completeDefinition();
   4419 
   4420   BlockDescriptorType = T;
   4421 
   4422   return getTagDeclType(BlockDescriptorType);
   4423 }
   4424 
   4425 QualType ASTContext::getBlockDescriptorExtendedType() const {
   4426   if (BlockDescriptorExtendedType)
   4427     return getTagDeclType(BlockDescriptorExtendedType);
   4428 
   4429   RecordDecl *T;
   4430   // FIXME: Needs the FlagAppleBlock bit.
   4431   T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
   4432                        &Idents.get("__block_descriptor_withcopydispose"));
   4433   T->startDefinition();
   4434 
   4435   QualType FieldTypes[] = {
   4436     UnsignedLongTy,
   4437     UnsignedLongTy,
   4438     getPointerType(VoidPtrTy),
   4439     getPointerType(VoidPtrTy)
   4440   };
   4441 
   4442   const char *FieldNames[] = {
   4443     "reserved",
   4444     "Size",
   4445     "CopyFuncPtr",
   4446     "DestroyFuncPtr"
   4447   };
   4448 
   4449   for (size_t i = 0; i < 4; ++i) {
   4450     FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
   4451                                          SourceLocation(),
   4452                                          &Idents.get(FieldNames[i]),
   4453                                          FieldTypes[i], /*TInfo=*/0,
   4454                                          /*BitWidth=*/0,
   4455                                          /*Mutable=*/false,
   4456                                          ICIS_NoInit);
   4457     Field->setAccess(AS_public);
   4458     T->addDecl(Field);
   4459   }
   4460 
   4461   T->completeDefinition();
   4462 
   4463   BlockDescriptorExtendedType = T;
   4464 
   4465   return getTagDeclType(BlockDescriptorExtendedType);
   4466 }
   4467 
   4468 /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
   4469 /// requires copy/dispose. Note that this must match the logic
   4470 /// in buildByrefHelpers.
   4471 bool ASTContext::BlockRequiresCopying(QualType Ty,
   4472                                       const VarDecl *D) {
   4473   if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
   4474     const Expr *copyExpr = getBlockVarCopyInits(D);
   4475     if (!copyExpr && record->hasTrivialDestructor()) return false;
   4476 
   4477     return true;
   4478   }
   4479 
   4480   if (!Ty->isObjCRetainableType()) return false;
   4481 
   4482   Qualifiers qs = Ty.getQualifiers();
   4483 
   4484   // If we have lifetime, that dominates.
   4485   if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
   4486     assert(getLangOpts().ObjCAutoRefCount);
   4487 
   4488     switch (lifetime) {
   4489       case Qualifiers::OCL_None: llvm_unreachable("impossible");
   4490 
   4491       // These are just bits as far as the runtime is concerned.
   4492       case Qualifiers::OCL_ExplicitNone:
   4493       case Qualifiers::OCL_Autoreleasing:
   4494         return false;
   4495 
   4496       // Tell the runtime that this is ARC __weak, called by the
   4497       // byref routines.
   4498       case Qualifiers::OCL_Weak:
   4499       // ARC __strong __block variables need to be retained.
   4500       case Qualifiers::OCL_Strong:
   4501         return true;
   4502     }
   4503     llvm_unreachable("fell out of lifetime switch!");
   4504   }
   4505   return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
   4506           Ty->isObjCObjectPointerType());
   4507 }
   4508 
   4509 bool ASTContext::getByrefLifetime(QualType Ty,
   4510                               Qualifiers::ObjCLifetime &LifeTime,
   4511                               bool &HasByrefExtendedLayout) const {
   4512 
   4513   if (!getLangOpts().ObjC1 ||
   4514       getLangOpts().getGC() != LangOptions::NonGC)
   4515     return false;
   4516 
   4517   HasByrefExtendedLayout = false;
   4518   if (Ty->isRecordType()) {
   4519     HasByrefExtendedLayout = true;
   4520     LifeTime = Qualifiers::OCL_None;
   4521   }
   4522   else if (getLangOpts().ObjCAutoRefCount)
   4523     LifeTime = Ty.getObjCLifetime();
   4524   // MRR.
   4525   else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
   4526     LifeTime = Qualifiers::OCL_ExplicitNone;
   4527   else
   4528     LifeTime = Qualifiers::OCL_None;
   4529   return true;
   4530 }
   4531 
   4532 TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
   4533   if (!ObjCInstanceTypeDecl)
   4534     ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
   4535                                                getTranslationUnitDecl(),
   4536                                                SourceLocation(),
   4537                                                SourceLocation(),
   4538                                                &Idents.get("instancetype"),
   4539                                      getTrivialTypeSourceInfo(getObjCIdType()));
   4540   return ObjCInstanceTypeDecl;
   4541 }
   4542 
   4543 // This returns true if a type has been typedefed to BOOL:
   4544 // typedef <type> BOOL;
   4545 static bool isTypeTypedefedAsBOOL(QualType T) {
   4546   if (const TypedefType *TT = dyn_cast<TypedefType>(T))
   4547     if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
   4548       return II->isStr("BOOL");
   4549 
   4550   return false;
   4551 }
   4552 
   4553 /// getObjCEncodingTypeSize returns size of type for objective-c encoding
   4554 /// purpose.
   4555 CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
   4556   if (!type->isIncompleteArrayType() && type->isIncompleteType())
   4557     return CharUnits::Zero();
   4558 
   4559   CharUnits sz = getTypeSizeInChars(type);
   4560 
   4561   // Make all integer and enum types at least as large as an int
   4562   if (sz.isPositive() && type->isIntegralOrEnumerationType())
   4563     sz = std::max(sz, getTypeSizeInChars(IntTy));
   4564   // Treat arrays as pointers, since that's how they're passed in.
   4565   else if (type->isArrayType())
   4566     sz = getTypeSizeInChars(VoidPtrTy);
   4567   return sz;
   4568 }
   4569 
   4570 static inline
   4571 std::string charUnitsToString(const CharUnits &CU) {
   4572   return llvm::itostr(CU.getQuantity());
   4573 }
   4574 
   4575 /// getObjCEncodingForBlock - Return the encoded type for this block
   4576 /// declaration.
   4577 std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
   4578   std::string S;
   4579 
   4580   const BlockDecl *Decl = Expr->getBlockDecl();
   4581   QualType BlockTy =
   4582       Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
   4583   // Encode result type.
   4584   if (getLangOpts().EncodeExtendedBlockSig)
   4585     getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None,
   4586                             BlockTy->getAs<FunctionType>()->getResultType(),
   4587                             S, true /*Extended*/);
   4588   else
   4589     getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(),
   4590                            S);
   4591   // Compute size of all parameters.
   4592   // Start with computing size of a pointer in number of bytes.
   4593   // FIXME: There might(should) be a better way of doing this computation!
   4594   SourceLocation Loc;
   4595   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
   4596   CharUnits ParmOffset = PtrSize;
   4597   for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
   4598        E = Decl->param_end(); PI != E; ++PI) {
   4599     QualType PType = (*PI)->getType();
   4600     CharUnits sz = getObjCEncodingTypeSize(PType);
   4601     if (sz.isZero())
   4602       continue;
   4603     assert (sz.isPositive() && "BlockExpr - Incomplete param type");
   4604     ParmOffset += sz;
   4605   }
   4606   // Size of the argument frame
   4607   S += charUnitsToString(ParmOffset);
   4608   // Block pointer and offset.
   4609   S += "@?0";
   4610 
   4611   // Argument types.
   4612   ParmOffset = PtrSize;
   4613   for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
   4614        Decl->param_end(); PI != E; ++PI) {
   4615     ParmVarDecl *PVDecl = *PI;
   4616     QualType PType = PVDecl->getOriginalType();
   4617     if (const ArrayType *AT =
   4618           dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
   4619       // Use array's original type only if it has known number of
   4620       // elements.
   4621       if (!isa<ConstantArrayType>(AT))
   4622         PType = PVDecl->getType();
   4623     } else if (PType->isFunctionType())
   4624       PType = PVDecl->getType();
   4625     if (getLangOpts().EncodeExtendedBlockSig)
   4626       getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
   4627                                       S, true /*Extended*/);
   4628     else
   4629       getObjCEncodingForType(PType, S);
   4630     S += charUnitsToString(ParmOffset);
   4631     ParmOffset += getObjCEncodingTypeSize(PType);
   4632   }
   4633 
   4634   return S;
   4635 }
   4636 
   4637 bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
   4638                                                 std::string& S) {
   4639   // Encode result type.
   4640   getObjCEncodingForType(Decl->getResultType(), S);
   4641   CharUnits ParmOffset;
   4642   // Compute size of all parameters.
   4643   for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
   4644        E = Decl->param_end(); PI != E; ++PI) {
   4645     QualType PType = (*PI)->getType();
   4646     CharUnits sz = getObjCEncodingTypeSize(PType);
   4647     if (sz.isZero())
   4648       continue;
   4649 
   4650     assert (sz.isPositive() &&
   4651         "getObjCEncodingForFunctionDecl - Incomplete param type");
   4652     ParmOffset += sz;
   4653   }
   4654   S += charUnitsToString(ParmOffset);
   4655   ParmOffset = CharUnits::Zero();
   4656 
   4657   // Argument types.
   4658   for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
   4659        E = Decl->param_end(); PI != E; ++PI) {
   4660     ParmVarDecl *PVDecl = *PI;
   4661     QualType PType = PVDecl->getOriginalType();
   4662     if (const ArrayType *AT =
   4663           dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
   4664       // Use array's original type only if it has known number of
   4665       // elements.
   4666       if (!isa<ConstantArrayType>(AT))
   4667         PType = PVDecl->getType();
   4668     } else if (PType->isFunctionType())
   4669       PType = PVDecl->getType();
   4670     getObjCEncodingForType(PType, S);
   4671     S += charUnitsToString(ParmOffset);
   4672     ParmOffset += getObjCEncodingTypeSize(PType);
   4673   }
   4674 
   4675   return false;
   4676 }
   4677 
   4678 /// getObjCEncodingForMethodParameter - Return the encoded type for a single
   4679 /// method parameter or return type. If Extended, include class names and
   4680 /// block object types.
   4681 void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
   4682                                                    QualType T, std::string& S,
   4683                                                    bool Extended) const {
   4684   // Encode type qualifer, 'in', 'inout', etc. for the parameter.
   4685   getObjCEncodingForTypeQualifier(QT, S);
   4686   // Encode parameter type.
   4687   getObjCEncodingForTypeImpl(T, S, true, true, 0,
   4688                              true     /*OutermostType*/,
   4689                              false    /*EncodingProperty*/,
   4690                              false    /*StructField*/,
   4691                              Extended /*EncodeBlockParameters*/,
   4692                              Extended /*EncodeClassNames*/);
   4693 }
   4694 
   4695 /// getObjCEncodingForMethodDecl - Return the encoded type for this method
   4696 /// declaration.
   4697 bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
   4698                                               std::string& S,
   4699                                               bool Extended) const {
   4700   // FIXME: This is not very efficient.
   4701   // Encode return type.
   4702   getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
   4703                                     Decl->getResultType(), S, Extended);
   4704   // Compute size of all parameters.
   4705   // Start with computing size of a pointer in number of bytes.
   4706   // FIXME: There might(should) be a better way of doing this computation!
   4707   SourceLocation Loc;
   4708   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
   4709   // The first two arguments (self and _cmd) are pointers; account for
   4710   // their size.
   4711   CharUnits ParmOffset = 2 * PtrSize;
   4712   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
   4713        E = Decl->sel_param_end(); PI != E; ++PI) {
   4714     QualType PType = (*PI)->getType();
   4715     CharUnits sz = getObjCEncodingTypeSize(PType);
   4716     if (sz.isZero())
   4717       continue;
   4718 
   4719     assert (sz.isPositive() &&
   4720         "getObjCEncodingForMethodDecl - Incomplete param type");
   4721     ParmOffset += sz;
   4722   }
   4723   S += charUnitsToString(ParmOffset);
   4724   S += "@0:";
   4725   S += charUnitsToString(PtrSize);
   4726 
   4727   // Argument types.
   4728   ParmOffset = 2 * PtrSize;
   4729   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
   4730        E = Decl->sel_param_end(); PI != E; ++PI) {
   4731     const ParmVarDecl *PVDecl = *PI;
   4732     QualType PType = PVDecl->getOriginalType();
   4733     if (const ArrayType *AT =
   4734           dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
   4735       // Use array's original type only if it has known number of
   4736       // elements.
   4737       if (!isa<ConstantArrayType>(AT))
   4738         PType = PVDecl->getType();
   4739     } else if (PType->isFunctionType())
   4740       PType = PVDecl->getType();
   4741     getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
   4742                                       PType, S, Extended);
   4743     S += charUnitsToString(ParmOffset);
   4744     ParmOffset += getObjCEncodingTypeSize(PType);
   4745   }
   4746 
   4747   return false;
   4748 }
   4749 
   4750 /// getObjCEncodingForPropertyDecl - Return the encoded type for this
   4751 /// property declaration. If non-NULL, Container must be either an
   4752 /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
   4753 /// NULL when getting encodings for protocol properties.
   4754 /// Property attributes are stored as a comma-delimited C string. The simple
   4755 /// attributes readonly and bycopy are encoded as single characters. The
   4756 /// parametrized attributes, getter=name, setter=name, and ivar=name, are
   4757 /// encoded as single characters, followed by an identifier. Property types
   4758 /// are also encoded as a parametrized attribute. The characters used to encode
   4759 /// these attributes are defined by the following enumeration:
   4760 /// @code
   4761 /// enum PropertyAttributes {
   4762 /// kPropertyReadOnly = 'R',   // property is read-only.
   4763 /// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
   4764 /// kPropertyByref = '&',  // property is a reference to the value last assigned
   4765 /// kPropertyDynamic = 'D',    // property is dynamic
   4766 /// kPropertyGetter = 'G',     // followed by getter selector name
   4767 /// kPropertySetter = 'S',     // followed by setter selector name
   4768 /// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
   4769 /// kPropertyType = 'T'              // followed by old-style type encoding.
   4770 /// kPropertyWeak = 'W'              // 'weak' property
   4771 /// kPropertyStrong = 'P'            // property GC'able
   4772 /// kPropertyNonAtomic = 'N'         // property non-atomic
   4773 /// };
   4774 /// @endcode
   4775 void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
   4776                                                 const Decl *Container,
   4777                                                 std::string& S) const {
   4778   // Collect information from the property implementation decl(s).
   4779   bool Dynamic = false;
   4780   ObjCPropertyImplDecl *SynthesizePID = 0;
   4781 
   4782   // FIXME: Duplicated code due to poor abstraction.
   4783   if (Container) {
   4784     if (const ObjCCategoryImplDecl *CID =
   4785         dyn_cast<ObjCCategoryImplDecl>(Container)) {
   4786       for (ObjCCategoryImplDecl::propimpl_iterator
   4787              i = CID->propimpl_begin(), e = CID->propimpl_end();
   4788            i != e; ++i) {
   4789         ObjCPropertyImplDecl *PID = *i;
   4790         if (PID->getPropertyDecl() == PD) {
   4791           if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
   4792             Dynamic = true;
   4793           } else {
   4794             SynthesizePID = PID;
   4795           }
   4796         }
   4797       }
   4798     } else {
   4799       const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
   4800       for (ObjCCategoryImplDecl::propimpl_iterator
   4801              i = OID->propimpl_begin(), e = OID->propimpl_end();
   4802            i != e; ++i) {
   4803         ObjCPropertyImplDecl *PID = *i;
   4804         if (PID->getPropertyDecl() == PD) {
   4805           if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
   4806             Dynamic = true;
   4807           } else {
   4808             SynthesizePID = PID;
   4809           }
   4810         }
   4811       }
   4812     }
   4813   }
   4814 
   4815   // FIXME: This is not very efficient.
   4816   S = "T";
   4817 
   4818   // Encode result type.
   4819   // GCC has some special rules regarding encoding of properties which
   4820   // closely resembles encoding of ivars.
   4821   getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
   4822                              true /* outermost type */,
   4823                              true /* encoding for property */);
   4824 
   4825   if (PD->isReadOnly()) {
   4826     S += ",R";
   4827   } else {
   4828     switch (PD->getSetterKind()) {
   4829     case ObjCPropertyDecl::Assign: break;
   4830     case ObjCPropertyDecl::Copy:   S += ",C"; break;
   4831     case ObjCPropertyDecl::Retain: S += ",&"; break;
   4832     case ObjCPropertyDecl::Weak:   S += ",W"; break;
   4833     }
   4834   }
   4835 
   4836   // It really isn't clear at all what this means, since properties
   4837   // are "dynamic by default".
   4838   if (Dynamic)
   4839     S += ",D";
   4840 
   4841   if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
   4842     S += ",N";
   4843 
   4844   if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
   4845     S += ",G";
   4846     S += PD->getGetterName().getAsString();
   4847   }
   4848 
   4849   if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
   4850     S += ",S";
   4851     S += PD->getSetterName().getAsString();
   4852   }
   4853 
   4854   if (SynthesizePID) {
   4855     const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
   4856     S += ",V";
   4857     S += OID->getNameAsString();
   4858   }
   4859 
   4860   // FIXME: OBJCGC: weak & strong
   4861 }
   4862 
   4863 /// getLegacyIntegralTypeEncoding -
   4864 /// Another legacy compatibility encoding: 32-bit longs are encoded as
   4865 /// 'l' or 'L' , but not always.  For typedefs, we need to use
   4866 /// 'i' or 'I' instead if encoding a struct field, or a pointer!
   4867 ///
   4868 void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
   4869   if (isa<TypedefType>(PointeeTy.getTypePtr())) {
   4870     if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
   4871       if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
   4872         PointeeTy = UnsignedIntTy;
   4873       else
   4874         if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
   4875           PointeeTy = IntTy;
   4876     }
   4877   }
   4878 }
   4879 
   4880 void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
   4881                                         const FieldDecl *Field) const {
   4882   // We follow the behavior of gcc, expanding structures which are
   4883   // directly pointed to, and expanding embedded structures. Note that
   4884   // these rules are sufficient to prevent recursive encoding of the
   4885   // same type.
   4886   getObjCEncodingForTypeImpl(T, S, true, true, Field,
   4887                              true /* outermost type */);
   4888 }
   4889 
   4890 static char getObjCEncodingForPrimitiveKind(const ASTContext *C,
   4891                                             BuiltinType::Kind kind) {
   4892     switch (kind) {
   4893     case BuiltinType::Void:       return 'v';
   4894     case BuiltinType::Bool:       return 'B';
   4895     case BuiltinType::Char_U:
   4896     case BuiltinType::UChar:      return 'C';
   4897     case BuiltinType::Char16:
   4898     case BuiltinType::UShort:     return 'S';
   4899     case BuiltinType::Char32:
   4900     case BuiltinType::UInt:       return 'I';
   4901     case BuiltinType::ULong:
   4902         return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
   4903     case BuiltinType::UInt128:    return 'T';
   4904     case BuiltinType::ULongLong:  return 'Q';
   4905     case BuiltinType::Char_S:
   4906     case BuiltinType::SChar:      return 'c';
   4907     case BuiltinType::Short:      return 's';
   4908     case BuiltinType::WChar_S:
   4909     case BuiltinType::WChar_U:
   4910     case BuiltinType::Int:        return 'i';
   4911     case BuiltinType::Long:
   4912       return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
   4913     case BuiltinType::LongLong:   return 'q';
   4914     case BuiltinType::Int128:     return 't';
   4915     case BuiltinType::Float:      return 'f';
   4916     case BuiltinType::Double:     return 'd';
   4917     case BuiltinType::LongDouble: return 'D';
   4918     case BuiltinType::NullPtr:    return '*'; // like char*
   4919 
   4920     case BuiltinType::Half:
   4921       // FIXME: potentially need @encodes for these!
   4922       return ' ';
   4923 
   4924     case BuiltinType::ObjCId:
   4925     case BuiltinType::ObjCClass:
   4926     case BuiltinType::ObjCSel:
   4927       llvm_unreachable("@encoding ObjC primitive type");
   4928 
   4929     // OpenCL and placeholder types don't need @encodings.
   4930     case BuiltinType::OCLImage1d:
   4931     case BuiltinType::OCLImage1dArray:
   4932     case BuiltinType::OCLImage1dBuffer:
   4933     case BuiltinType::OCLImage2d:
   4934     case BuiltinType::OCLImage2dArray:
   4935     case BuiltinType::OCLImage3d:
   4936     case BuiltinType::OCLEvent:
   4937     case BuiltinType::OCLSampler:
   4938     case BuiltinType::Dependent:
   4939 #define BUILTIN_TYPE(KIND, ID)
   4940 #define PLACEHOLDER_TYPE(KIND, ID) \
   4941     case BuiltinType::KIND:
   4942 #include "clang/AST/BuiltinTypes.def"
   4943       llvm_unreachable("invalid builtin type for @encode");
   4944     }
   4945     llvm_unreachable("invalid BuiltinType::Kind value");
   4946 }
   4947 
   4948 static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
   4949   EnumDecl *Enum = ET->getDecl();
   4950 
   4951   // The encoding of an non-fixed enum type is always 'i', regardless of size.
   4952   if (!Enum->isFixed())
   4953     return 'i';
   4954 
   4955   // The encoding of a fixed enum type matches its fixed underlying type.
   4956   const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>();
   4957   return getObjCEncodingForPrimitiveKind(C, BT->getKind());
   4958 }
   4959 
   4960 static void EncodeBitField(const ASTContext *Ctx, std::string& S,
   4961                            QualType T, const FieldDecl *FD) {
   4962   assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
   4963   S += 'b';
   4964   // The NeXT runtime encodes bit fields as b followed by the number of bits.
   4965   // The GNU runtime requires more information; bitfields are encoded as b,
   4966   // then the offset (in bits) of the first element, then the type of the
   4967   // bitfield, then the size in bits.  For example, in this structure:
   4968   //
   4969   // struct
   4970   // {
   4971   //    int integer;
   4972   //    int flags:2;
   4973   // };
   4974   // On a 32-bit system, the encoding for flags would be b2 for the NeXT
   4975   // runtime, but b32i2 for the GNU runtime.  The reason for this extra
   4976   // information is not especially sensible, but we're stuck with it for
   4977   // compatibility with GCC, although providing it breaks anything that
   4978   // actually uses runtime introspection and wants to work on both runtimes...
   4979   if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
   4980     const RecordDecl *RD = FD->getParent();
   4981     const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
   4982     S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
   4983     if (const EnumType *ET = T->getAs<EnumType>())
   4984       S += ObjCEncodingForEnumType(Ctx, ET);
   4985     else {
   4986       const BuiltinType *BT = T->castAs<BuiltinType>();
   4987       S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind());
   4988     }
   4989   }
   4990   S += llvm::utostr(FD->getBitWidthValue(*Ctx));
   4991 }
   4992 
   4993 // FIXME: Use SmallString for accumulating string.
   4994 void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
   4995                                             bool ExpandPointedToStructures,
   4996                                             bool ExpandStructures,
   4997                                             const FieldDecl *FD,
   4998                                             bool OutermostType,
   4999                                             bool EncodingProperty,
   5000                                             bool StructField,
   5001                                             bool EncodeBlockParameters,
   5002                                             bool EncodeClassNames,
   5003                                             bool EncodePointerToObjCTypedef) const {
   5004   CanQualType CT = getCanonicalType(T);
   5005   switch (CT->getTypeClass()) {
   5006   case Type::Builtin:
   5007   case Type::Enum:
   5008     if (FD && FD->isBitField())
   5009       return EncodeBitField(this, S, T, FD);
   5010     if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT))
   5011       S += getObjCEncodingForPrimitiveKind(this, BT->getKind());
   5012     else
   5013       S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
   5014     return;
   5015 
   5016   case Type::Complex: {
   5017     const ComplexType *CT = T->castAs<ComplexType>();
   5018     S += 'j';
   5019     getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
   5020                                false);
   5021     return;
   5022   }
   5023 
   5024   case Type::Atomic: {
   5025     const AtomicType *AT = T->castAs<AtomicType>();
   5026     S += 'A';
   5027     getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, 0,
   5028                                false, false);
   5029     return;
   5030   }
   5031 
   5032   // encoding for pointer or reference types.
   5033   case Type::Pointer:
   5034   case Type::LValueReference:
   5035   case Type::RValueReference: {
   5036     QualType PointeeTy;
   5037     if (isa<PointerType>(CT)) {
   5038       const PointerType *PT = T->castAs<PointerType>();
   5039       if (PT->isObjCSelType()) {
   5040         S += ':';
   5041         return;
   5042       }
   5043       PointeeTy = PT->getPointeeType();
   5044     } else {
   5045       PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
   5046     }
   5047 
   5048     bool isReadOnly = false;
   5049     // For historical/compatibility reasons, the read-only qualifier of the
   5050     // pointee gets emitted _before_ the '^'.  The read-only qualifier of
   5051     // the pointer itself gets ignored, _unless_ we are looking at a typedef!
   5052     // Also, do not emit the 'r' for anything but the outermost type!
   5053     if (isa<TypedefType>(T.getTypePtr())) {
   5054       if (OutermostType && T.isConstQualified()) {
   5055         isReadOnly = true;
   5056         S += 'r';
   5057       }
   5058     } else if (OutermostType) {
   5059       QualType P = PointeeTy;
   5060       while (P->getAs<PointerType>())
   5061         P = P->getAs<PointerType>()->getPointeeType();
   5062       if (P.isConstQualified()) {
   5063         isReadOnly = true;
   5064         S += 'r';
   5065       }
   5066     }
   5067     if (isReadOnly) {
   5068       // Another legacy compatibility encoding. Some ObjC qualifier and type
   5069       // combinations need to be rearranged.
   5070       // Rewrite "in const" from "nr" to "rn"
   5071       if (StringRef(S).endswith("nr"))
   5072         S.replace(S.end()-2, S.end(), "rn");
   5073     }
   5074 
   5075     if (PointeeTy->isCharType()) {
   5076       // char pointer types should be encoded as '*' unless it is a
   5077       // type that has been typedef'd to 'BOOL'.
   5078       if (!isTypeTypedefedAsBOOL(PointeeTy)) {
   5079         S += '*';
   5080         return;
   5081       }
   5082     } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
   5083       // GCC binary compat: Need to convert "struct objc_class *" to "#".
   5084       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
   5085         S += '#';
   5086         return;
   5087       }
   5088       // GCC binary compat: Need to convert "struct objc_object *" to "@".
   5089       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
   5090         S += '@';
   5091         return;
   5092       }
   5093       // fall through...
   5094     }
   5095     S += '^';
   5096     getLegacyIntegralTypeEncoding(PointeeTy);
   5097 
   5098     getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
   5099                                NULL);
   5100     return;
   5101   }
   5102 
   5103   case Type::ConstantArray:
   5104   case Type::IncompleteArray:
   5105   case Type::VariableArray: {
   5106     const ArrayType *AT = cast<ArrayType>(CT);
   5107 
   5108     if (isa<IncompleteArrayType>(AT) && !StructField) {
   5109       // Incomplete arrays are encoded as a pointer to the array element.
   5110       S += '^';
   5111 
   5112       getObjCEncodingForTypeImpl(AT->getElementType(), S,
   5113                                  false, ExpandStructures, FD);
   5114     } else {
   5115       S += '[';
   5116 
   5117       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
   5118         if (getTypeSize(CAT->getElementType()) == 0)
   5119           S += '0';
   5120         else
   5121           S += llvm::utostr(CAT->getSize().getZExtValue());
   5122       } else {
   5123         //Variable length arrays are encoded as a regular array with 0 elements.
   5124         assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
   5125                "Unknown array type!");
   5126         S += '0';
   5127       }
   5128 
   5129       getObjCEncodingForTypeImpl(AT->getElementType(), S,
   5130                                  false, ExpandStructures, FD);
   5131       S += ']';
   5132     }
   5133     return;
   5134   }
   5135 
   5136   case Type::FunctionNoProto:
   5137   case Type::FunctionProto:
   5138     S += '?';
   5139     return;
   5140 
   5141   case Type::Record: {
   5142     RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
   5143     S += RDecl->isUnion() ? '(' : '{';
   5144     // Anonymous structures print as '?'
   5145     if (const IdentifierInfo *II = RDecl->getIdentifier()) {
   5146       S += II->getName();
   5147       if (ClassTemplateSpecializationDecl *Spec
   5148           = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
   5149         const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
   5150         llvm::raw_string_ostream OS(S);
   5151         TemplateSpecializationType::PrintTemplateArgumentList(OS,
   5152                                             TemplateArgs.data(),
   5153                                             TemplateArgs.size(),
   5154                                             (*this).getPrintingPolicy());
   5155       }
   5156     } else {
   5157       S += '?';
   5158     }
   5159     if (ExpandStructures) {
   5160       S += '=';
   5161       if (!RDecl->isUnion()) {
   5162         getObjCEncodingForStructureImpl(RDecl, S, FD);
   5163       } else {
   5164         for (RecordDecl::field_iterator Field = RDecl->field_begin(),
   5165                                      FieldEnd = RDecl->field_end();
   5166              Field != FieldEnd; ++Field) {
   5167           if (FD) {
   5168             S += '"';
   5169             S += Field->getNameAsString();
   5170             S += '"';
   5171           }
   5172 
   5173           // Special case bit-fields.
   5174           if (Field->isBitField()) {
   5175             getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
   5176                                        *Field);
   5177           } else {
   5178             QualType qt = Field->getType();
   5179             getLegacyIntegralTypeEncoding(qt);
   5180             getObjCEncodingForTypeImpl(qt, S, false, true,
   5181                                        FD, /*OutermostType*/false,
   5182                                        /*EncodingProperty*/false,
   5183                                        /*StructField*/true);
   5184           }
   5185         }
   5186       }
   5187     }
   5188     S += RDecl->isUnion() ? ')' : '}';
   5189     return;
   5190   }
   5191 
   5192   case Type::BlockPointer: {
   5193     const BlockPointerType *BT = T->castAs<BlockPointerType>();
   5194     S += "@?"; // Unlike a pointer-to-function, which is "^?".
   5195     if (EncodeBlockParameters) {
   5196       const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>();
   5197 
   5198       S += '<';
   5199       // Block return type
   5200       getObjCEncodingForTypeImpl(FT->getResultType(), S,
   5201                                  ExpandPointedToStructures, ExpandStructures,
   5202                                  FD,
   5203                                  false /* OutermostType */,
   5204                                  EncodingProperty,
   5205                                  false /* StructField */,
   5206                                  EncodeBlockParameters,
   5207                                  EncodeClassNames);
   5208       // Block self
   5209       S += "@?";
   5210       // Block parameters
   5211       if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
   5212         for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
   5213                E = FPT->arg_type_end(); I && (I != E); ++I) {
   5214           getObjCEncodingForTypeImpl(*I, S,
   5215                                      ExpandPointedToStructures,
   5216                                      ExpandStructures,
   5217                                      FD,
   5218                                      false /* OutermostType */,
   5219                                      EncodingProperty,
   5220                                      false /* StructField */,
   5221                                      EncodeBlockParameters,
   5222                                      EncodeClassNames);
   5223         }
   5224       }
   5225       S += '>';
   5226     }
   5227     return;
   5228   }
   5229 
   5230   case Type::ObjCObject:
   5231   case Type::ObjCInterface: {
   5232     // Ignore protocol qualifiers when mangling at this level.
   5233     T = T->castAs<ObjCObjectType>()->getBaseType();
   5234 
   5235     // The assumption seems to be that this assert will succeed
   5236     // because nested levels will have filtered out 'id' and 'Class'.
   5237     const ObjCInterfaceType *OIT = T->castAs<ObjCInterfaceType>();
   5238     // @encode(class_name)
   5239     ObjCInterfaceDecl *OI = OIT->getDecl();
   5240     S += '{';
   5241     const IdentifierInfo *II = OI->getIdentifier();
   5242     S += II->getName();
   5243     S += '=';
   5244     SmallVector<const ObjCIvarDecl*, 32> Ivars;
   5245     DeepCollectObjCIvars(OI, true, Ivars);
   5246     for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
   5247       const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
   5248       if (Field->isBitField())
   5249         getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
   5250       else
   5251         getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD,
   5252                                    false, false, false, false, false,
   5253                                    EncodePointerToObjCTypedef);
   5254     }
   5255     S += '}';
   5256     return;
   5257   }
   5258 
   5259   case Type::ObjCObjectPointer: {
   5260     const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>();
   5261     if (OPT->isObjCIdType()) {
   5262       S += '@';
   5263       return;
   5264     }
   5265 
   5266     if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
   5267       // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
   5268       // Since this is a binary compatibility issue, need to consult with runtime
   5269       // folks. Fortunately, this is a *very* obsure construct.
   5270       S += '#';
   5271       return;
   5272     }
   5273 
   5274     if (OPT->isObjCQualifiedIdType()) {
   5275       getObjCEncodingForTypeImpl(getObjCIdType(), S,
   5276                                  ExpandPointedToStructures,
   5277                                  ExpandStructures, FD);
   5278       if (FD || EncodingProperty || EncodeClassNames) {
   5279         // Note that we do extended encoding of protocol qualifer list
   5280         // Only when doing ivar or property encoding.
   5281         S += '"';
   5282         for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
   5283              E = OPT->qual_end(); I != E; ++I) {
   5284           S += '<';
   5285           S += (*I)->getNameAsString();
   5286           S += '>';
   5287         }
   5288         S += '"';
   5289       }
   5290       return;
   5291     }
   5292 
   5293     QualType PointeeTy = OPT->getPointeeType();
   5294     if (!EncodingProperty &&
   5295         isa<TypedefType>(PointeeTy.getTypePtr()) &&
   5296         !EncodePointerToObjCTypedef) {
   5297       // Another historical/compatibility reason.
   5298       // We encode the underlying type which comes out as
   5299       // {...};
   5300       S += '^';
   5301       getObjCEncodingForTypeImpl(PointeeTy, S,
   5302                                  false, ExpandPointedToStructures,
   5303                                  NULL,
   5304                                  false, false, false, false, false,
   5305                                  /*EncodePointerToObjCTypedef*/true);
   5306       return;
   5307     }
   5308 
   5309     S += '@';
   5310     if (OPT->getInterfaceDecl() &&
   5311         (FD || EncodingProperty || EncodeClassNames)) {
   5312       S += '"';
   5313       S += OPT->getInterfaceDecl()->getIdentifier()->getName();
   5314       for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
   5315            E = OPT->qual_end(); I != E; ++I) {
   5316         S += '<';
   5317         S += (*I)->getNameAsString();
   5318         S += '>';
   5319       }
   5320       S += '"';
   5321     }
   5322     return;
   5323   }
   5324 
   5325   // gcc just blithely ignores member pointers.
   5326   // FIXME: we shoul do better than that.  'M' is available.
   5327   case Type::MemberPointer:
   5328     return;
   5329 
   5330   case Type::Vector:
   5331   case Type::ExtVector:
   5332     // This matches gcc's encoding, even though technically it is
   5333     // insufficient.
   5334     // FIXME. We should do a better job than gcc.
   5335     return;
   5336 
   5337 #define ABSTRACT_TYPE(KIND, BASE)
   5338 #define TYPE(KIND, BASE)
   5339 #define DEPENDENT_TYPE(KIND, BASE) \
   5340   case Type::KIND:
   5341 #define NON_CANONICAL_TYPE(KIND, BASE) \
   5342   case Type::KIND:
   5343 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
   5344   case Type::KIND:
   5345 #include "clang/AST/TypeNodes.def"
   5346     llvm_unreachable("@encode for dependent type!");
   5347   }
   5348   llvm_unreachable("bad type kind!");
   5349 }
   5350 
   5351 void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
   5352                                                  std::string &S,
   5353                                                  const FieldDecl *FD,
   5354                                                  bool includeVBases) const {
   5355   assert(RDecl && "Expected non-null RecordDecl");
   5356   assert(!RDecl->isUnion() && "Should not be called for unions");
   5357   if (!RDecl->getDefinition())
   5358     return;
   5359 
   5360   CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
   5361   std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
   5362   const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
   5363 
   5364   if (CXXRec) {
   5365     for (CXXRecordDecl::base_class_iterator
   5366            BI = CXXRec->bases_begin(),
   5367            BE = CXXRec->bases_end(); BI != BE; ++BI) {
   5368       if (!BI->isVirtual()) {
   5369         CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
   5370         if (base->isEmpty())
   5371           continue;
   5372         uint64_t offs = toBits(layout.getBaseClassOffset(base));
   5373         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
   5374                                   std::make_pair(offs, base));
   5375       }
   5376     }
   5377   }
   5378 
   5379   unsigned i = 0;
   5380   for (RecordDecl::field_iterator Field = RDecl->field_begin(),
   5381                                FieldEnd = RDecl->field_end();
   5382        Field != FieldEnd; ++Field, ++i) {
   5383     uint64_t offs = layout.getFieldOffset(i);
   5384     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
   5385                               std::make_pair(offs, *Field));
   5386   }
   5387 
   5388   if (CXXRec && includeVBases) {
   5389     for (CXXRecordDecl::base_class_iterator
   5390            BI = CXXRec->vbases_begin(),
   5391            BE = CXXRec->vbases_end(); BI != BE; ++BI) {
   5392       CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
   5393       if (base->isEmpty())
   5394         continue;
   5395       uint64_t offs = toBits(layout.getVBaseClassOffset(base));
   5396       if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
   5397         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
   5398                                   std::make_pair(offs, base));
   5399     }
   5400   }
   5401 
   5402   CharUnits size;
   5403   if (CXXRec) {
   5404     size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
   5405   } else {
   5406     size = layout.getSize();
   5407   }
   5408 
   5409   uint64_t CurOffs = 0;
   5410   std::multimap<uint64_t, NamedDecl *>::iterator
   5411     CurLayObj = FieldOrBaseOffsets.begin();
   5412 
   5413   if (CXXRec && CXXRec->isDynamicClass() &&
   5414       (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
   5415     if (FD) {
   5416       S += "\"_vptr$";
   5417       std::string recname = CXXRec->getNameAsString();
   5418       if (recname.empty()) recname = "?";
   5419       S += recname;
   5420       S += '"';
   5421     }
   5422     S += "^^?";
   5423     CurOffs += getTypeSize(VoidPtrTy);
   5424   }
   5425 
   5426   if (!RDecl->hasFlexibleArrayMember()) {
   5427     // Mark the end of the structure.
   5428     uint64_t offs = toBits(size);
   5429     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
   5430                               std::make_pair(offs, (NamedDecl*)0));
   5431   }
   5432 
   5433   for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
   5434     assert(CurOffs <= CurLayObj->first);
   5435 
   5436     if (CurOffs < CurLayObj->first) {
   5437       uint64_t padding = CurLayObj->first - CurOffs;
   5438       // FIXME: There doesn't seem to be a way to indicate in the encoding that
   5439       // packing/alignment of members is different that normal, in which case
   5440       // the encoding will be out-of-sync with the real layout.
   5441       // If the runtime switches to just consider the size of types without
   5442       // taking into account alignment, we could make padding explicit in the
   5443       // encoding (e.g. using arrays of chars). The encoding strings would be
   5444       // longer then though.
   5445       CurOffs += padding;
   5446     }
   5447 
   5448     NamedDecl *dcl = CurLayObj->second;
   5449     if (dcl == 0)
   5450       break; // reached end of structure.
   5451 
   5452     if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
   5453       // We expand the bases without their virtual bases since those are going
   5454       // in the initial structure. Note that this differs from gcc which
   5455       // expands virtual bases each time one is encountered in the hierarchy,
   5456       // making the encoding type bigger than it really is.
   5457       getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
   5458       assert(!base->isEmpty());
   5459       CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
   5460     } else {
   5461       FieldDecl *field = cast<FieldDecl>(dcl);
   5462       if (FD) {
   5463         S += '"';
   5464         S += field->getNameAsString();
   5465         S += '"';
   5466       }
   5467 
   5468       if (field->isBitField()) {
   5469         EncodeBitField(this, S, field->getType(), field);
   5470         CurOffs += field->getBitWidthValue(*this);
   5471       } else {
   5472         QualType qt = field->getType();
   5473         getLegacyIntegralTypeEncoding(qt);
   5474         getObjCEncodingForTypeImpl(qt, S, false, true, FD,
   5475                                    /*OutermostType*/false,
   5476                                    /*EncodingProperty*/false,
   5477                                    /*StructField*/true);
   5478         CurOffs += getTypeSize(field->getType());
   5479       }
   5480     }
   5481   }
   5482 }
   5483 
   5484 void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
   5485                                                  std::string& S) const {
   5486   if (QT & Decl::OBJC_TQ_In)
   5487     S += 'n';
   5488   if (QT & Decl::OBJC_TQ_Inout)
   5489     S += 'N';
   5490   if (QT & Decl::OBJC_TQ_Out)
   5491     S += 'o';
   5492   if (QT & Decl::OBJC_TQ_Bycopy)
   5493     S += 'O';
   5494   if (QT & Decl::OBJC_TQ_Byref)
   5495     S += 'R';
   5496   if (QT & Decl::OBJC_TQ_Oneway)
   5497     S += 'V';
   5498 }
   5499 
   5500 TypedefDecl *ASTContext::getObjCIdDecl() const {
   5501   if (!ObjCIdDecl) {
   5502     QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
   5503     T = getObjCObjectPointerType(T);
   5504     TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
   5505     ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
   5506                                      getTranslationUnitDecl(),
   5507                                      SourceLocation(), SourceLocation(),
   5508                                      &Idents.get("id"), IdInfo);
   5509   }
   5510 
   5511   return ObjCIdDecl;
   5512 }
   5513 
   5514 TypedefDecl *ASTContext::getObjCSelDecl() const {
   5515   if (!ObjCSelDecl) {
   5516     QualType SelT = getPointerType(ObjCBuiltinSelTy);
   5517     TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
   5518     ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
   5519                                       getTranslationUnitDecl(),
   5520                                       SourceLocation(), SourceLocation(),
   5521                                       &Idents.get("SEL"), SelInfo);
   5522   }
   5523   return ObjCSelDecl;
   5524 }
   5525 
   5526 TypedefDecl *ASTContext::getObjCClassDecl() const {
   5527   if (!ObjCClassDecl) {
   5528     QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
   5529     T = getObjCObjectPointerType(T);
   5530     TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
   5531     ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
   5532                                         getTranslationUnitDecl(),
   5533                                         SourceLocation(), SourceLocation(),
   5534                                         &Idents.get("Class"), ClassInfo);
   5535   }
   5536 
   5537   return ObjCClassDecl;
   5538 }
   5539 
   5540 ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
   5541   if (!ObjCProtocolClassDecl) {
   5542     ObjCProtocolClassDecl
   5543       = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
   5544                                   SourceLocation(),
   5545                                   &Idents.get("Protocol"),
   5546                                   /*PrevDecl=*/0,
   5547                                   SourceLocation(), true);
   5548   }
   5549 
   5550   return ObjCProtocolClassDecl;
   5551 }
   5552 
   5553 //===----------------------------------------------------------------------===//
   5554 // __builtin_va_list Construction Functions
   5555 //===----------------------------------------------------------------------===//
   5556 
   5557 static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
   5558   // typedef char* __builtin_va_list;
   5559   QualType CharPtrType = Context->getPointerType(Context->CharTy);
   5560   TypeSourceInfo *TInfo
   5561     = Context->getTrivialTypeSourceInfo(CharPtrType);
   5562 
   5563   TypedefDecl *VaListTypeDecl
   5564     = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
   5565                           Context->getTranslationUnitDecl(),
   5566                           SourceLocation(), SourceLocation(),
   5567                           &Context->Idents.get("__builtin_va_list"),
   5568                           TInfo);
   5569   return VaListTypeDecl;
   5570 }
   5571 
   5572 static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
   5573   // typedef void* __builtin_va_list;
   5574   QualType VoidPtrType = Context->getPointerType(Context->VoidTy);
   5575   TypeSourceInfo *TInfo
   5576     = Context->getTrivialTypeSourceInfo(VoidPtrType);
   5577 
   5578   TypedefDecl *VaListTypeDecl
   5579     = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
   5580                           Context->getTranslationUnitDecl(),
   5581                           SourceLocation(), SourceLocation(),
   5582                           &Context->Idents.get("__builtin_va_list"),
   5583                           TInfo);
   5584   return VaListTypeDecl;
   5585 }
   5586 
   5587 static TypedefDecl *
   5588 CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
   5589   RecordDecl *VaListTagDecl;
   5590   if (Context->getLangOpts().CPlusPlus) {
   5591     // namespace std { struct __va_list {
   5592     NamespaceDecl *NS;
   5593     NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
   5594                                Context->getTranslationUnitDecl(),
   5595                                /*Inline*/false, SourceLocation(),
   5596                                SourceLocation(), &Context->Idents.get("std"),
   5597                                /*PrevDecl*/0);
   5598 
   5599     VaListTagDecl = CXXRecordDecl::Create(*Context, TTK_Struct,
   5600                                           Context->getTranslationUnitDecl(),
   5601                                           SourceLocation(), SourceLocation(),
   5602                                           &Context->Idents.get("__va_list"));
   5603     VaListTagDecl->setDeclContext(NS);
   5604   } else {
   5605     // struct __va_list
   5606     VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
   5607                                    Context->getTranslationUnitDecl(),
   5608                                    &Context->Idents.get("__va_list"));
   5609   }
   5610 
   5611   VaListTagDecl->startDefinition();
   5612 
   5613   const size_t NumFields = 5;
   5614   QualType FieldTypes[NumFields];
   5615   const char *FieldNames[NumFields];
   5616 
   5617   // void *__stack;
   5618   FieldTypes[0] = Context->getPointerType(Context->VoidTy);
   5619   FieldNames[0] = "__stack";
   5620 
   5621   // void *__gr_top;
   5622   FieldTypes[1] = Context->getPointerType(Context->VoidTy);
   5623   FieldNames[1] = "__gr_top";
   5624 
   5625   // void *__vr_top;
   5626   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
   5627   FieldNames[2] = "__vr_top";
   5628 
   5629   // int __gr_offs;
   5630   FieldTypes[3] = Context->IntTy;
   5631   FieldNames[3] = "__gr_offs";
   5632 
   5633   // int __vr_offs;
   5634   FieldTypes[4] = Context->IntTy;
   5635   FieldNames[4] = "__vr_offs";
   5636 
   5637   // Create fields
   5638   for (unsigned i = 0; i < NumFields; ++i) {
   5639     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
   5640                                          VaListTagDecl,
   5641                                          SourceLocation(),
   5642                                          SourceLocation(),
   5643                                          &Context->Idents.get(FieldNames[i]),
   5644                                          FieldTypes[i], /*TInfo=*/0,
   5645                                          /*BitWidth=*/0,
   5646                                          /*Mutable=*/false,
   5647                                          ICIS_NoInit);
   5648     Field->setAccess(AS_public);
   5649     VaListTagDecl->addDecl(Field);
   5650   }
   5651   VaListTagDecl->completeDefinition();
   5652   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
   5653   Context->VaListTagTy = VaListTagType;
   5654 
   5655   // } __builtin_va_list;
   5656   TypedefDecl *VaListTypedefDecl
   5657     = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
   5658                           Context->getTranslationUnitDecl(),
   5659                           SourceLocation(), SourceLocation(),
   5660                           &Context->Idents.get("__builtin_va_list"),
   5661                           Context->getTrivialTypeSourceInfo(VaListTagType));
   5662 
   5663   return VaListTypedefDecl;
   5664 }
   5665 
   5666 static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
   5667   // typedef struct __va_list_tag {
   5668   RecordDecl *VaListTagDecl;
   5669 
   5670   VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
   5671                                    Context->getTranslationUnitDecl(),
   5672                                    &Context->Idents.get("__va_list_tag"));
   5673   VaListTagDecl->startDefinition();
   5674 
   5675   const size_t NumFields = 5;
   5676   QualType FieldTypes[NumFields];
   5677   const char *FieldNames[NumFields];
   5678 
   5679   //   unsigned char gpr;
   5680   FieldTypes[0] = Context->UnsignedCharTy;
   5681   FieldNames[0] = "gpr";
   5682 
   5683   //   unsigned char fpr;
   5684   FieldTypes[1] = Context->UnsignedCharTy;
   5685   FieldNames[1] = "fpr";
   5686 
   5687   //   unsigned short reserved;
   5688   FieldTypes[2] = Context->UnsignedShortTy;
   5689   FieldNames[2] = "reserved";
   5690 
   5691   //   void* overflow_arg_area;
   5692   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
   5693   FieldNames[3] = "overflow_arg_area";
   5694 
   5695   //   void* reg_save_area;
   5696   FieldTypes[4] = Context->getPointerType(Context->VoidTy);
   5697   FieldNames[4] = "reg_save_area";
   5698 
   5699   // Create fields
   5700   for (unsigned i = 0; i < NumFields; ++i) {
   5701     FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
   5702                                          SourceLocation(),
   5703                                          SourceLocation(),
   5704                                          &Context->Idents.get(FieldNames[i]),
   5705                                          FieldTypes[i], /*TInfo=*/0,
   5706                                          /*BitWidth=*/0,
   5707                                          /*Mutable=*/false,
   5708                                          ICIS_NoInit);
   5709     Field->setAccess(AS_public);
   5710     VaListTagDecl->addDecl(Field);
   5711   }
   5712   VaListTagDecl->completeDefinition();
   5713   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
   5714   Context->VaListTagTy = VaListTagType;
   5715 
   5716   // } __va_list_tag;
   5717   TypedefDecl *VaListTagTypedefDecl
   5718     = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
   5719                           Context->getTranslationUnitDecl(),
   5720                           SourceLocation(), SourceLocation(),
   5721                           &Context->Idents.get("__va_list_tag"),
   5722                           Context->getTrivialTypeSourceInfo(VaListTagType));
   5723   QualType VaListTagTypedefType =
   5724     Context->getTypedefType(VaListTagTypedefDecl);
   5725 
   5726   // typedef __va_list_tag __builtin_va_list[1];
   5727   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
   5728   QualType VaListTagArrayType
   5729     = Context->getConstantArrayType(VaListTagTypedefType,
   5730                                     Size, ArrayType::Normal, 0);
   5731   TypeSourceInfo *TInfo
   5732     = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
   5733   TypedefDecl *VaListTypedefDecl
   5734     = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
   5735                           Context->getTranslationUnitDecl(),
   5736                           SourceLocation(), SourceLocation(),
   5737                           &Context->Idents.get("__builtin_va_list"),
   5738                           TInfo);
   5739 
   5740   return VaListTypedefDecl;
   5741 }
   5742 
   5743 static TypedefDecl *
   5744 CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
   5745   // typedef struct __va_list_tag {
   5746   RecordDecl *VaListTagDecl;
   5747   VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
   5748                                    Context->getTranslationUnitDecl(),
   5749                                    &Context->Idents.get("__va_list_tag"));
   5750   VaListTagDecl->startDefinition();
   5751 
   5752   const size_t NumFields = 4;
   5753   QualType FieldTypes[NumFields];
   5754   const char *FieldNames[NumFields];
   5755 
   5756   //   unsigned gp_offset;
   5757   FieldTypes[0] = Context->UnsignedIntTy;
   5758   FieldNames[0] = "gp_offset";
   5759 
   5760   //   unsigned fp_offset;
   5761   FieldTypes[1] = Context->UnsignedIntTy;
   5762   FieldNames[1] = "fp_offset";
   5763 
   5764   //   void* overflow_arg_area;
   5765   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
   5766   FieldNames[2] = "overflow_arg_area";
   5767 
   5768   //   void* reg_save_area;
   5769   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
   5770   FieldNames[3] = "reg_save_area";
   5771 
   5772   // Create fields
   5773   for (unsigned i = 0; i < NumFields; ++i) {
   5774     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
   5775                                          VaListTagDecl,
   5776                                          SourceLocation(),
   5777                                          SourceLocation(),
   5778                                          &Context->Idents.get(FieldNames[i]),
   5779                                          FieldTypes[i], /*TInfo=*/0,
   5780                                          /*BitWidth=*/0,
   5781                                          /*Mutable=*/false,
   5782                                          ICIS_NoInit);
   5783     Field->setAccess(AS_public);
   5784     VaListTagDecl->addDecl(Field);
   5785   }
   5786   VaListTagDecl->completeDefinition();
   5787   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
   5788   Context->VaListTagTy = VaListTagType;
   5789 
   5790   // } __va_list_tag;
   5791   TypedefDecl *VaListTagTypedefDecl
   5792     = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
   5793                           Context->getTranslationUnitDecl(),
   5794                           SourceLocation(), SourceLocation(),
   5795                           &Context->Idents.get("__va_list_tag"),
   5796                           Context->getTrivialTypeSourceInfo(VaListTagType));
   5797   QualType VaListTagTypedefType =
   5798     Context->getTypedefType(VaListTagTypedefDecl);
   5799 
   5800   // typedef __va_list_tag __builtin_va_list[1];
   5801   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
   5802   QualType VaListTagArrayType
   5803     = Context->getConstantArrayType(VaListTagTypedefType,
   5804                                       Size, ArrayType::Normal,0);
   5805   TypeSourceInfo *TInfo
   5806     = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
   5807   TypedefDecl *VaListTypedefDecl
   5808     = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
   5809                           Context->getTranslationUnitDecl(),
   5810                           SourceLocation(), SourceLocation(),
   5811                           &Context->Idents.get("__builtin_va_list"),
   5812                           TInfo);
   5813 
   5814   return VaListTypedefDecl;
   5815 }
   5816 
   5817 static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
   5818   // typedef int __builtin_va_list[4];
   5819   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
   5820   QualType IntArrayType
   5821     = Context->getConstantArrayType(Context->IntTy,
   5822 				    Size, ArrayType::Normal, 0);
   5823   TypedefDecl *VaListTypedefDecl
   5824     = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
   5825                           Context->getTranslationUnitDecl(),
   5826                           SourceLocation(), SourceLocation(),
   5827                           &Context->Idents.get("__builtin_va_list"),
   5828                           Context->getTrivialTypeSourceInfo(IntArrayType));
   5829 
   5830   return VaListTypedefDecl;
   5831 }
   5832 
   5833 static TypedefDecl *
   5834 CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
   5835   RecordDecl *VaListDecl;
   5836   if (Context->getLangOpts().CPlusPlus) {
   5837     // namespace std { struct __va_list {
   5838     NamespaceDecl *NS;
   5839     NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
   5840                                Context->getTranslationUnitDecl(),
   5841                                /*Inline*/false, SourceLocation(),
   5842                                SourceLocation(), &Context->Idents.get("std"),
   5843                                /*PrevDecl*/0);
   5844 
   5845     VaListDecl = CXXRecordDecl::Create(*Context, TTK_Struct,
   5846                                        Context->getTranslationUnitDecl(),
   5847                                        SourceLocation(), SourceLocation(),
   5848                                        &Context->Idents.get("__va_list"));
   5849 
   5850     VaListDecl->setDeclContext(NS);
   5851 
   5852   } else {
   5853     // struct __va_list {
   5854     VaListDecl = CreateRecordDecl(*Context, TTK_Struct,
   5855                                   Context->getTranslationUnitDecl(),
   5856                                   &Context->Idents.get("__va_list"));
   5857   }
   5858 
   5859   VaListDecl->startDefinition();
   5860 
   5861   // void * __ap;
   5862   FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
   5863                                        VaListDecl,
   5864                                        SourceLocation(),
   5865                                        SourceLocation(),
   5866                                        &Context->Idents.get("__ap"),
   5867                                        Context->getPointerType(Context->VoidTy),
   5868                                        /*TInfo=*/0,
   5869                                        /*BitWidth=*/0,
   5870                                        /*Mutable=*/false,
   5871                                        ICIS_NoInit);
   5872   Field->setAccess(AS_public);
   5873   VaListDecl->addDecl(Field);
   5874 
   5875   // };
   5876   VaListDecl->completeDefinition();
   5877 
   5878   // typedef struct __va_list __builtin_va_list;
   5879   TypeSourceInfo *TInfo
   5880     = Context->getTrivialTypeSourceInfo(Context->getRecordType(VaListDecl));
   5881 
   5882   TypedefDecl *VaListTypeDecl
   5883     = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
   5884                           Context->getTranslationUnitDecl(),
   5885                           SourceLocation(), SourceLocation(),
   5886                           &Context->Idents.get("__builtin_va_list"),
   5887                           TInfo);
   5888 
   5889   return VaListTypeDecl;
   5890 }
   5891 
   5892 static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
   5893                                      TargetInfo::BuiltinVaListKind Kind) {
   5894   switch (Kind) {
   5895   case TargetInfo::CharPtrBuiltinVaList:
   5896     return CreateCharPtrBuiltinVaListDecl(Context);
   5897   case TargetInfo::VoidPtrBuiltinVaList:
   5898     return CreateVoidPtrBuiltinVaListDecl(Context);
   5899   case TargetInfo::AArch64ABIBuiltinVaList:
   5900     return CreateAArch64ABIBuiltinVaListDecl(Context);
   5901   case TargetInfo::PowerABIBuiltinVaList:
   5902     return CreatePowerABIBuiltinVaListDecl(Context);
   5903   case TargetInfo::X86_64ABIBuiltinVaList:
   5904     return CreateX86_64ABIBuiltinVaListDecl(Context);
   5905   case TargetInfo::PNaClABIBuiltinVaList:
   5906     return CreatePNaClABIBuiltinVaListDecl(Context);
   5907   case TargetInfo::AAPCSABIBuiltinVaList:
   5908     return CreateAAPCSABIBuiltinVaListDecl(Context);
   5909   }
   5910 
   5911   llvm_unreachable("Unhandled __builtin_va_list type kind");
   5912 }
   5913 
   5914 TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
   5915   if (!BuiltinVaListDecl)
   5916     BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
   5917 
   5918   return BuiltinVaListDecl;
   5919 }
   5920 
   5921 QualType ASTContext::getVaListTagType() const {
   5922   // Force the creation of VaListTagTy by building the __builtin_va_list
   5923   // declaration.
   5924   if (VaListTagTy.isNull())
   5925     (void) getBuiltinVaListDecl();
   5926 
   5927   return VaListTagTy;
   5928 }
   5929 
   5930 void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
   5931   assert(ObjCConstantStringType.isNull() &&
   5932          "'NSConstantString' type already set!");
   5933 
   5934   ObjCConstantStringType = getObjCInterfaceType(Decl);
   5935 }
   5936 
   5937 /// \brief Retrieve the template name that corresponds to a non-empty
   5938 /// lookup.
   5939 TemplateName
   5940 ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
   5941                                       UnresolvedSetIterator End) const {
   5942   unsigned size = End - Begin;
   5943   assert(size > 1 && "set is not overloaded!");
   5944 
   5945   void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
   5946                           size * sizeof(FunctionTemplateDecl*));
   5947   OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
   5948 
   5949   NamedDecl **Storage = OT->getStorage();
   5950   for (UnresolvedSetIterator I = Begin; I != End; ++I) {
   5951     NamedDecl *D = *I;
   5952     assert(isa<FunctionTemplateDecl>(D) ||
   5953            (isa<UsingShadowDecl>(D) &&
   5954             isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
   5955     *Storage++ = D;
   5956   }
   5957 
   5958   return TemplateName(OT);
   5959 }
   5960 
   5961 /// \brief Retrieve the template name that represents a qualified
   5962 /// template name such as \c std::vector.
   5963 TemplateName
   5964 ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
   5965                                      bool TemplateKeyword,
   5966                                      TemplateDecl *Template) const {
   5967   assert(NNS && "Missing nested-name-specifier in qualified template name");
   5968 
   5969   // FIXME: Canonicalization?
   5970   llvm::FoldingSetNodeID ID;
   5971   QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
   5972 
   5973   void *InsertPos = 0;
   5974   QualifiedTemplateName *QTN =
   5975     QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
   5976   if (!QTN) {
   5977     QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
   5978         QualifiedTemplateName(NNS, TemplateKeyword, Template);
   5979     QualifiedTemplateNames.InsertNode(QTN, InsertPos);
   5980   }
   5981 
   5982   return TemplateName(QTN);
   5983 }
   5984 
   5985 /// \brief Retrieve the template name that represents a dependent
   5986 /// template name such as \c MetaFun::template apply.
   5987 TemplateName
   5988 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
   5989                                      const IdentifierInfo *Name) const {
   5990   assert((!NNS || NNS->isDependent()) &&
   5991          "Nested name specifier must be dependent");
   5992 
   5993   llvm::FoldingSetNodeID ID;
   5994   DependentTemplateName::Profile(ID, NNS, Name);
   5995 
   5996   void *InsertPos = 0;
   5997   DependentTemplateName *QTN =
   5998     DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
   5999 
   6000   if (QTN)
   6001     return TemplateName(QTN);
   6002 
   6003   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
   6004   if (CanonNNS == NNS) {
   6005     QTN = new (*this, llvm::alignOf<DependentTemplateName>())
   6006         DependentTemplateName(NNS, Name);
   6007   } else {
   6008     TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
   6009     QTN = new (*this, llvm::alignOf<DependentTemplateName>())
   6010         DependentTemplateName(NNS, Name, Canon);
   6011     DependentTemplateName *CheckQTN =
   6012       DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
   6013     assert(!CheckQTN && "Dependent type name canonicalization broken");
   6014     (void)CheckQTN;
   6015   }
   6016 
   6017   DependentTemplateNames.InsertNode(QTN, InsertPos);
   6018   return TemplateName(QTN);
   6019 }
   6020 
   6021 /// \brief Retrieve the template name that represents a dependent
   6022 /// template name such as \c MetaFun::template operator+.
   6023 TemplateName
   6024 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
   6025                                      OverloadedOperatorKind Operator) const {
   6026   assert((!NNS || NNS->isDependent()) &&
   6027          "Nested name specifier must be dependent");
   6028 
   6029   llvm::FoldingSetNodeID ID;
   6030   DependentTemplateName::Profile(ID, NNS, Operator);
   6031 
   6032   void *InsertPos = 0;
   6033   DependentTemplateName *QTN
   6034     = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
   6035 
   6036   if (QTN)
   6037     return TemplateName(QTN);
   6038 
   6039   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
   6040   if (CanonNNS == NNS) {
   6041     QTN = new (*this, llvm::alignOf<DependentTemplateName>())
   6042         DependentTemplateName(NNS, Operator);
   6043   } else {
   6044     TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
   6045     QTN = new (*this, llvm::alignOf<DependentTemplateName>())
   6046         DependentTemplateName(NNS, Operator, Canon);
   6047 
   6048     DependentTemplateName *CheckQTN
   6049       = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
   6050     assert(!CheckQTN && "Dependent template name canonicalization broken");
   6051     (void)CheckQTN;
   6052   }
   6053 
   6054   DependentTemplateNames.InsertNode(QTN, InsertPos);
   6055   return TemplateName(QTN);
   6056 }
   6057 
   6058 TemplateName
   6059 ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
   6060                                          TemplateName replacement) const {
   6061   llvm::FoldingSetNodeID ID;
   6062   SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
   6063 
   6064   void *insertPos = 0;
   6065   SubstTemplateTemplateParmStorage *subst
   6066     = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
   6067 
   6068   if (!subst) {
   6069     subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
   6070     SubstTemplateTemplateParms.InsertNode(subst, insertPos);
   6071   }
   6072 
   6073   return TemplateName(subst);
   6074 }
   6075 
   6076 TemplateName
   6077 ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
   6078                                        const TemplateArgument &ArgPack) const {
   6079   ASTContext &Self = const_cast<ASTContext &>(*this);
   6080   llvm::FoldingSetNodeID ID;
   6081   SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
   6082 
   6083   void *InsertPos = 0;
   6084   SubstTemplateTemplateParmPackStorage *Subst
   6085     = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
   6086 
   6087   if (!Subst) {
   6088     Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
   6089                                                            ArgPack.pack_size(),
   6090                                                          ArgPack.pack_begin());
   6091     SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
   6092   }
   6093 
   6094   return TemplateName(Subst);
   6095 }
   6096 
   6097 /// getFromTargetType - Given one of the integer types provided by
   6098 /// TargetInfo, produce the corresponding type. The unsigned @p Type
   6099 /// is actually a value of type @c TargetInfo::IntType.
   6100 CanQualType ASTContext::getFromTargetType(unsigned Type) const {
   6101   switch (Type) {
   6102   case TargetInfo::NoInt: return CanQualType();
   6103   case TargetInfo::SignedShort: return ShortTy;
   6104   case TargetInfo::UnsignedShort: return UnsignedShortTy;
   6105   case TargetInfo::SignedInt: return IntTy;
   6106   case TargetInfo::UnsignedInt: return UnsignedIntTy;
   6107   case TargetInfo::SignedLong: return LongTy;
   6108   case TargetInfo::UnsignedLong: return UnsignedLongTy;
   6109   case TargetInfo::SignedLongLong: return LongLongTy;
   6110   case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
   6111   }
   6112 
   6113   llvm_unreachable("Unhandled TargetInfo::IntType value");
   6114 }
   6115 
   6116 //===----------------------------------------------------------------------===//
   6117 //                        Type Predicates.
   6118 //===----------------------------------------------------------------------===//
   6119 
   6120 /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
   6121 /// garbage collection attribute.
   6122 ///
   6123 Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
   6124   if (getLangOpts().getGC() == LangOptions::NonGC)
   6125     return Qualifiers::GCNone;
   6126 
   6127   assert(getLangOpts().ObjC1);
   6128   Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
   6129 
   6130   // Default behaviour under objective-C's gc is for ObjC pointers
   6131   // (or pointers to them) be treated as though they were declared
   6132   // as __strong.
   6133   if (GCAttrs == Qualifiers::GCNone) {
   6134     if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
   6135       return Qualifiers::Strong;
   6136     else if (Ty->isPointerType())
   6137       return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
   6138   } else {
   6139     // It's not valid to set GC attributes on anything that isn't a
   6140     // pointer.
   6141 #ifndef NDEBUG
   6142     QualType CT = Ty->getCanonicalTypeInternal();
   6143     while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
   6144       CT = AT->getElementType();
   6145     assert(CT->isAnyPointerType() || CT->isBlockPointerType());
   6146 #endif
   6147   }
   6148   return GCAttrs;
   6149 }
   6150 
   6151 //===----------------------------------------------------------------------===//
   6152 //                        Type Compatibility Testing
   6153 //===----------------------------------------------------------------------===//
   6154 
   6155 /// areCompatVectorTypes - Return true if the two specified vector types are
   6156 /// compatible.
   6157 static bool areCompatVectorTypes(const VectorType *LHS,
   6158                                  const VectorType *RHS) {
   6159   assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
   6160   return LHS->getElementType() == RHS->getElementType() &&
   6161          LHS->getNumElements() == RHS->getNumElements();
   6162 }
   6163 
   6164 bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
   6165                                           QualType SecondVec) {
   6166   assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
   6167   assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
   6168 
   6169   if (hasSameUnqualifiedType(FirstVec, SecondVec))
   6170     return true;
   6171 
   6172   // Treat Neon vector types and most AltiVec vector types as if they are the
   6173   // equivalent GCC vector types.
   6174   const VectorType *First = FirstVec->getAs<VectorType>();
   6175   const VectorType *Second = SecondVec->getAs<VectorType>();
   6176   if (First->getNumElements() == Second->getNumElements() &&
   6177       hasSameType(First->getElementType(), Second->getElementType()) &&
   6178       First->getVectorKind() != VectorType::AltiVecPixel &&
   6179       First->getVectorKind() != VectorType::AltiVecBool &&
   6180       Second->getVectorKind() != VectorType::AltiVecPixel &&
   6181       Second->getVectorKind() != VectorType::AltiVecBool)
   6182     return true;
   6183 
   6184   return false;
   6185 }
   6186 
   6187 //===----------------------------------------------------------------------===//
   6188 // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
   6189 //===----------------------------------------------------------------------===//
   6190 
   6191 /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
   6192 /// inheritance hierarchy of 'rProto'.
   6193 bool
   6194 ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
   6195                                            ObjCProtocolDecl *rProto) const {
   6196   if (declaresSameEntity(lProto, rProto))
   6197     return true;
   6198   for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
   6199        E = rProto->protocol_end(); PI != E; ++PI)
   6200     if (ProtocolCompatibleWithProtocol(lProto, *PI))
   6201       return true;
   6202   return false;
   6203 }
   6204 
   6205 /// QualifiedIdConformsQualifiedId - compare id<pr,...> with id<pr1,...>
   6206 /// return true if lhs's protocols conform to rhs's protocol; false
   6207 /// otherwise.
   6208 bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
   6209   if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
   6210     return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
   6211   return false;
   6212 }
   6213 
   6214 /// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
   6215 /// Class<pr1, ...>.
   6216 bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
   6217                                                       QualType rhs) {
   6218   const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
   6219   const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
   6220   assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
   6221 
   6222   for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
   6223        E = lhsQID->qual_end(); I != E; ++I) {
   6224     bool match = false;
   6225     ObjCProtocolDecl *lhsProto = *I;
   6226     for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
   6227          E = rhsOPT->qual_end(); J != E; ++J) {
   6228       ObjCProtocolDecl *rhsProto = *J;
   6229       if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
   6230         match = true;
   6231         break;
   6232       }
   6233     }
   6234     if (!match)
   6235       return false;
   6236   }
   6237   return true;
   6238 }
   6239 
   6240 /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
   6241 /// ObjCQualifiedIDType.
   6242 bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
   6243                                                    bool compare) {
   6244   // Allow id<P..> and an 'id' or void* type in all cases.
   6245   if (lhs->isVoidPointerType() ||
   6246       lhs->isObjCIdType() || lhs->isObjCClassType())
   6247     return true;
   6248   else if (rhs->isVoidPointerType() ||
   6249            rhs->isObjCIdType() || rhs->isObjCClassType())
   6250     return true;
   6251 
   6252   if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
   6253     const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
   6254 
   6255     if (!rhsOPT) return false;
   6256 
   6257     if (rhsOPT->qual_empty()) {
   6258       // If the RHS is a unqualified interface pointer "NSString*",
   6259       // make sure we check the class hierarchy.
   6260       if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
   6261         for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
   6262              E = lhsQID->qual_end(); I != E; ++I) {
   6263           // when comparing an id<P> on lhs with a static type on rhs,
   6264           // see if static class implements all of id's protocols, directly or
   6265           // through its super class and categories.
   6266           if (!rhsID->ClassImplementsProtocol(*I, true))
   6267             return false;
   6268         }
   6269       }
   6270       // If there are no qualifiers and no interface, we have an 'id'.
   6271       return true;
   6272     }
   6273     // Both the right and left sides have qualifiers.
   6274     for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
   6275          E = lhsQID->qual_end(); I != E; ++I) {
   6276       ObjCProtocolDecl *lhsProto = *I;
   6277       bool match = false;
   6278 
   6279       // when comparing an id<P> on lhs with a static type on rhs,
   6280       // see if static class implements all of id's protocols, directly or
   6281       // through its super class and categories.
   6282       for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
   6283            E = rhsOPT->qual_end(); J != E; ++J) {
   6284         ObjCProtocolDecl *rhsProto = *J;
   6285         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
   6286             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
   6287           match = true;
   6288           break;
   6289         }
   6290       }
   6291       // If the RHS is a qualified interface pointer "NSString<P>*",
   6292       // make sure we check the class hierarchy.
   6293       if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
   6294         for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
   6295              E = lhsQID->qual_end(); I != E; ++I) {
   6296           // when comparing an id<P> on lhs with a static type on rhs,
   6297           // see if static class implements all of id's protocols, directly or
   6298           // through its super class and categories.
   6299           if (rhsID->ClassImplementsProtocol(*I, true)) {
   6300             match = true;
   6301             break;
   6302           }
   6303         }
   6304       }
   6305       if (!match)
   6306         return false;
   6307     }
   6308 
   6309     return true;
   6310   }
   6311 
   6312   const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
   6313   assert(rhsQID && "One of the LHS/RHS should be id<x>");
   6314 
   6315   if (const ObjCObjectPointerType *lhsOPT =
   6316         lhs->getAsObjCInterfacePointerType()) {
   6317     // If both the right and left sides have qualifiers.
   6318     for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
   6319          E = lhsOPT->qual_end(); I != E; ++I) {
   6320       ObjCProtocolDecl *lhsProto = *I;
   6321       bool match = false;
   6322 
   6323       // when comparing an id<P> on rhs with a static type on lhs,
   6324       // see if static class implements all of id's protocols, directly or
   6325       // through its super class and categories.
   6326       // First, lhs protocols in the qualifier list must be found, direct
   6327       // or indirect in rhs's qualifier list or it is a mismatch.
   6328       for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
   6329            E = rhsQID->qual_end(); J != E; ++J) {
   6330         ObjCProtocolDecl *rhsProto = *J;
   6331         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
   6332             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
   6333           match = true;
   6334           break;
   6335         }
   6336       }
   6337       if (!match)
   6338         return false;
   6339     }
   6340 
   6341     // Static class's protocols, or its super class or category protocols
   6342     // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
   6343     if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
   6344       llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
   6345       CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
   6346       // This is rather dubious but matches gcc's behavior. If lhs has
   6347       // no type qualifier and its class has no static protocol(s)
   6348       // assume that it is mismatch.
   6349       if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
   6350         return false;
   6351       for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
   6352            LHSInheritedProtocols.begin(),
   6353            E = LHSInheritedProtocols.end(); I != E; ++I) {
   6354         bool match = false;
   6355         ObjCProtocolDecl *lhsProto = (*I);
   6356         for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
   6357              E = rhsQID->qual_end(); J != E; ++J) {
   6358           ObjCProtocolDecl *rhsProto = *J;
   6359           if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
   6360               (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
   6361             match = true;
   6362             break;
   6363           }
   6364         }
   6365         if (!match)
   6366           return false;
   6367       }
   6368     }
   6369     return true;
   6370   }
   6371   return false;
   6372 }
   6373 
   6374 /// canAssignObjCInterfaces - Return true if the two interface types are
   6375 /// compatible for assignment from RHS to LHS.  This handles validation of any
   6376 /// protocol qualifiers on the LHS or RHS.
   6377 ///
   6378 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
   6379                                          const ObjCObjectPointerType *RHSOPT) {
   6380   const ObjCObjectType* LHS = LHSOPT->getObjectType();
   6381   const ObjCObjectType* RHS = RHSOPT->getObjectType();
   6382 
   6383   // If either type represents the built-in 'id' or 'Class' types, return true.
   6384   if (LHS->isObjCUnqualifiedIdOrClass() ||
   6385       RHS->isObjCUnqualifiedIdOrClass())
   6386     return true;
   6387 
   6388   if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
   6389     return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
   6390                                              QualType(RHSOPT,0),
   6391                                              false);
   6392 
   6393   if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
   6394     return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
   6395                                                 QualType(RHSOPT,0));
   6396 
   6397   // If we have 2 user-defined types, fall into that path.
   6398   if (LHS->getInterface() && RHS->getInterface())
   6399     return canAssignObjCInterfaces(LHS, RHS);
   6400 
   6401   return false;
   6402 }
   6403 
   6404 /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
   6405 /// for providing type-safety for objective-c pointers used to pass/return
   6406 /// arguments in block literals. When passed as arguments, passing 'A*' where
   6407 /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
   6408 /// not OK. For the return type, the opposite is not OK.
   6409 bool ASTContext::canAssignObjCInterfacesInBlockPointer(
   6410                                          const ObjCObjectPointerType *LHSOPT,
   6411                                          const ObjCObjectPointerType *RHSOPT,
   6412                                          bool BlockReturnType) {
   6413   if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
   6414     return true;
   6415 
   6416   if (LHSOPT->isObjCBuiltinType()) {
   6417     return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
   6418   }
   6419 
   6420   if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
   6421     return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
   6422                                              QualType(RHSOPT,0),
   6423                                              false);
   6424 
   6425   const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
   6426   const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
   6427   if (LHS && RHS)  { // We have 2 user-defined types.
   6428     if (LHS != RHS) {
   6429       if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
   6430         return BlockReturnType;
   6431       if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
   6432         return !BlockReturnType;
   6433     }
   6434     else
   6435       return true;
   6436   }
   6437   return false;
   6438 }
   6439 
   6440 /// getIntersectionOfProtocols - This routine finds the intersection of set
   6441 /// of protocols inherited from two distinct objective-c pointer objects.
   6442 /// It is used to build composite qualifier list of the composite type of
   6443 /// the conditional expression involving two objective-c pointer objects.
   6444 static
   6445 void getIntersectionOfProtocols(ASTContext &Context,
   6446                                 const ObjCObjectPointerType *LHSOPT,
   6447                                 const ObjCObjectPointerType *RHSOPT,
   6448       SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
   6449 
   6450   const ObjCObjectType* LHS = LHSOPT->getObjectType();
   6451   const ObjCObjectType* RHS = RHSOPT->getObjectType();
   6452   assert(LHS->getInterface() && "LHS must have an interface base");
   6453   assert(RHS->getInterface() && "RHS must have an interface base");
   6454 
   6455   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
   6456   unsigned LHSNumProtocols = LHS->getNumProtocols();
   6457   if (LHSNumProtocols > 0)
   6458     InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
   6459   else {
   6460     llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
   6461     Context.CollectInheritedProtocols(LHS->getInterface(),
   6462                                       LHSInheritedProtocols);
   6463     InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
   6464                                 LHSInheritedProtocols.end());
   6465   }
   6466 
   6467   unsigned RHSNumProtocols = RHS->getNumProtocols();
   6468   if (RHSNumProtocols > 0) {
   6469     ObjCProtocolDecl **RHSProtocols =
   6470       const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
   6471     for (unsigned i = 0; i < RHSNumProtocols; ++i)
   6472       if (InheritedProtocolSet.count(RHSProtocols[i]))
   6473         IntersectionOfProtocols.push_back(RHSProtocols[i]);
   6474   } else {
   6475     llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
   6476     Context.CollectInheritedProtocols(RHS->getInterface(),
   6477                                       RHSInheritedProtocols);
   6478     for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
   6479          RHSInheritedProtocols.begin(),
   6480          E = RHSInheritedProtocols.end(); I != E; ++I)
   6481       if (InheritedProtocolSet.count((*I)))
   6482         IntersectionOfProtocols.push_back((*I));
   6483   }
   6484 }
   6485 
   6486 /// areCommonBaseCompatible - Returns common base class of the two classes if
   6487 /// one found. Note that this is O'2 algorithm. But it will be called as the
   6488 /// last type comparison in a ?-exp of ObjC pointer types before a
   6489 /// warning is issued. So, its invokation is extremely rare.
   6490 QualType ASTContext::areCommonBaseCompatible(
   6491                                           const ObjCObjectPointerType *Lptr,
   6492                                           const ObjCObjectPointerType *Rptr) {
   6493   const ObjCObjectType *LHS = Lptr->getObjectType();
   6494   const ObjCObjectType *RHS = Rptr->getObjectType();
   6495   const ObjCInterfaceDecl* LDecl = LHS->getInterface();
   6496   const ObjCInterfaceDecl* RDecl = RHS->getInterface();
   6497   if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
   6498     return QualType();
   6499 
   6500   do {
   6501     LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
   6502     if (canAssignObjCInterfaces(LHS, RHS)) {
   6503       SmallVector<ObjCProtocolDecl *, 8> Protocols;
   6504       getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
   6505 
   6506       QualType Result = QualType(LHS, 0);
   6507       if (!Protocols.empty())
   6508         Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
   6509       Result = getObjCObjectPointerType(Result);
   6510       return Result;
   6511     }
   6512   } while ((LDecl = LDecl->getSuperClass()));
   6513 
   6514   return QualType();
   6515 }
   6516 
   6517 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
   6518                                          const ObjCObjectType *RHS) {
   6519   assert(LHS->getInterface() && "LHS is not an interface type");
   6520   assert(RHS->getInterface() && "RHS is not an interface type");
   6521 
   6522   // Verify that the base decls are compatible: the RHS must be a subclass of
   6523   // the LHS.
   6524   if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
   6525     return false;
   6526 
   6527   // RHS must have a superset of the protocols in the LHS.  If the LHS is not
   6528   // protocol qualified at all, then we are good.
   6529   if (LHS->getNumProtocols() == 0)
   6530     return true;
   6531 
   6532   // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
   6533   // more detailed analysis is required.
   6534   if (RHS->getNumProtocols() == 0) {
   6535     // OK, if LHS is a superclass of RHS *and*
   6536     // this superclass is assignment compatible with LHS.
   6537     // false otherwise.
   6538     bool IsSuperClass =
   6539       LHS->getInterface()->isSuperClassOf(RHS->getInterface());
   6540     if (IsSuperClass) {
   6541       // OK if conversion of LHS to SuperClass results in narrowing of types
   6542       // ; i.e., SuperClass may implement at least one of the protocols
   6543       // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
   6544       // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
   6545       llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
   6546       CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
   6547       // If super class has no protocols, it is not a match.
   6548       if (SuperClassInheritedProtocols.empty())
   6549         return false;
   6550 
   6551       for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
   6552            LHSPE = LHS->qual_end();
   6553            LHSPI != LHSPE; LHSPI++) {
   6554         bool SuperImplementsProtocol = false;
   6555         ObjCProtocolDecl *LHSProto = (*LHSPI);
   6556 
   6557         for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
   6558              SuperClassInheritedProtocols.begin(),
   6559              E = SuperClassInheritedProtocols.end(); I != E; ++I) {
   6560           ObjCProtocolDecl *SuperClassProto = (*I);
   6561           if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
   6562             SuperImplementsProtocol = true;
   6563             break;
   6564           }
   6565         }
   6566         if (!SuperImplementsProtocol)
   6567           return false;
   6568       }
   6569       return true;
   6570     }
   6571     return false;
   6572   }
   6573 
   6574   for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
   6575                                      LHSPE = LHS->qual_end();
   6576        LHSPI != LHSPE; LHSPI++) {
   6577     bool RHSImplementsProtocol = false;
   6578 
   6579     // If the RHS doesn't implement the protocol on the left, the types
   6580     // are incompatible.
   6581     for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
   6582                                        RHSPE = RHS->qual_end();
   6583          RHSPI != RHSPE; RHSPI++) {
   6584       if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
   6585         RHSImplementsProtocol = true;
   6586         break;
   6587       }
   6588     }
   6589     // FIXME: For better diagnostics, consider passing back the protocol name.
   6590     if (!RHSImplementsProtocol)
   6591       return false;
   6592   }
   6593   // The RHS implements all protocols listed on the LHS.
   6594   return true;
   6595 }
   6596 
   6597 bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
   6598   // get the "pointed to" types
   6599   const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
   6600   const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
   6601 
   6602   if (!LHSOPT || !RHSOPT)
   6603     return false;
   6604 
   6605   return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
   6606          canAssignObjCInterfaces(RHSOPT, LHSOPT);
   6607 }
   6608 
   6609 bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
   6610   return canAssignObjCInterfaces(
   6611                 getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
   6612                 getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
   6613 }
   6614 
   6615 /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
   6616 /// both shall have the identically qualified version of a compatible type.
   6617 /// C99 6.2.7p1: Two types have compatible types if their types are the
   6618 /// same. See 6.7.[2,3,5] for additional rules.
   6619 bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
   6620                                     bool CompareUnqualified) {
   6621   if (getLangOpts().CPlusPlus)
   6622     return hasSameType(LHS, RHS);
   6623 
   6624   return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
   6625 }
   6626 
   6627 bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
   6628   return typesAreCompatible(LHS, RHS);
   6629 }
   6630 
   6631 bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
   6632   return !mergeTypes(LHS, RHS, true).isNull();
   6633 }
   6634 
   6635 /// mergeTransparentUnionType - if T is a transparent union type and a member
   6636 /// of T is compatible with SubType, return the merged type, else return
   6637 /// QualType()
   6638 QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
   6639                                                bool OfBlockPointer,
   6640                                                bool Unqualified) {
   6641   if (const RecordType *UT = T->getAsUnionType()) {
   6642     RecordDecl *UD = UT->getDecl();
   6643     if (UD->hasAttr<TransparentUnionAttr>()) {
   6644       for (RecordDecl::field_iterator it = UD->field_begin(),
   6645            itend = UD->field_end(); it != itend; ++it) {
   6646         QualType ET = it->getType().getUnqualifiedType();
   6647         QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
   6648         if (!MT.isNull())
   6649           return MT;
   6650       }
   6651     }
   6652   }
   6653 
   6654   return QualType();
   6655 }
   6656 
   6657 /// mergeFunctionArgumentTypes - merge two types which appear as function
   6658 /// argument types
   6659 QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
   6660                                                 bool OfBlockPointer,
   6661                                                 bool Unqualified) {
   6662   // GNU extension: two types are compatible if they appear as a function
   6663   // argument, one of the types is a transparent union type and the other
   6664   // type is compatible with a union member
   6665   QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
   6666                                               Unqualified);
   6667   if (!lmerge.isNull())
   6668     return lmerge;
   6669 
   6670   QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
   6671                                               Unqualified);
   6672   if (!rmerge.isNull())
   6673     return rmerge;
   6674 
   6675   return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
   6676 }
   6677 
   6678 QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
   6679                                         bool OfBlockPointer,
   6680                                         bool Unqualified) {
   6681   const FunctionType *lbase = lhs->getAs<FunctionType>();
   6682   const FunctionType *rbase = rhs->getAs<FunctionType>();
   6683   const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
   6684   const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
   6685   bool allLTypes = true;
   6686   bool allRTypes = true;
   6687 
   6688   // Check return type
   6689   QualType retType;
   6690   if (OfBlockPointer) {
   6691     QualType RHS = rbase->getResultType();
   6692     QualType LHS = lbase->getResultType();
   6693     bool UnqualifiedResult = Unqualified;
   6694     if (!UnqualifiedResult)
   6695       UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
   6696     retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
   6697   }
   6698   else
   6699     retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
   6700                          Unqualified);
   6701   if (retType.isNull()) return QualType();
   6702 
   6703   if (Unqualified)
   6704     retType = retType.getUnqualifiedType();
   6705 
   6706   CanQualType LRetType = getCanonicalType(lbase->getResultType());
   6707   CanQualType RRetType = getCanonicalType(rbase->getResultType());
   6708   if (Unqualified) {
   6709     LRetType = LRetType.getUnqualifiedType();
   6710     RRetType = RRetType.getUnqualifiedType();
   6711   }
   6712 
   6713   if (getCanonicalType(retType) != LRetType)
   6714     allLTypes = false;
   6715   if (getCanonicalType(retType) != RRetType)
   6716     allRTypes = false;
   6717 
   6718   // FIXME: double check this
   6719   // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
   6720   //                           rbase->getRegParmAttr() != 0 &&
   6721   //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
   6722   FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
   6723   FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
   6724 
   6725   // Compatible functions must have compatible calling conventions
   6726   if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
   6727     return QualType();
   6728 
   6729   // Regparm is part of the calling convention.
   6730   if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
   6731     return QualType();
   6732   if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
   6733     return QualType();
   6734 
   6735   if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
   6736     return QualType();
   6737 
   6738   // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
   6739   bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
   6740 
   6741   if (lbaseInfo.getNoReturn() != NoReturn)
   6742     allLTypes = false;
   6743   if (rbaseInfo.getNoReturn() != NoReturn)
   6744     allRTypes = false;
   6745 
   6746   FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
   6747 
   6748   if (lproto && rproto) { // two C99 style function prototypes
   6749     assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
   6750            "C++ shouldn't be here");
   6751     unsigned lproto_nargs = lproto->getNumArgs();
   6752     unsigned rproto_nargs = rproto->getNumArgs();
   6753 
   6754     // Compatible functions must have the same number of arguments
   6755     if (lproto_nargs != rproto_nargs)
   6756       return QualType();
   6757 
   6758     // Variadic and non-variadic functions aren't compatible
   6759     if (lproto->isVariadic() != rproto->isVariadic())
   6760       return QualType();
   6761 
   6762     if (lproto->getTypeQuals() != rproto->getTypeQuals())
   6763       return QualType();
   6764 
   6765     if (LangOpts.ObjCAutoRefCount &&
   6766         !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
   6767       return QualType();
   6768 
   6769     // Check argument compatibility
   6770     SmallVector<QualType, 10> types;
   6771     for (unsigned i = 0; i < lproto_nargs; i++) {
   6772       QualType largtype = lproto->getArgType(i).getUnqualifiedType();
   6773       QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
   6774       QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
   6775                                                     OfBlockPointer,
   6776                                                     Unqualified);
   6777       if (argtype.isNull()) return QualType();
   6778 
   6779       if (Unqualified)
   6780         argtype = argtype.getUnqualifiedType();
   6781 
   6782       types.push_back(argtype);
   6783       if (Unqualified) {
   6784         largtype = largtype.getUnqualifiedType();
   6785         rargtype = rargtype.getUnqualifiedType();
   6786       }
   6787 
   6788       if (getCanonicalType(argtype) != getCanonicalType(largtype))
   6789         allLTypes = false;
   6790       if (getCanonicalType(argtype) != getCanonicalType(rargtype))
   6791         allRTypes = false;
   6792     }
   6793 
   6794     if (allLTypes) return lhs;
   6795     if (allRTypes) return rhs;
   6796 
   6797     FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
   6798     EPI.ExtInfo = einfo;
   6799     return getFunctionType(retType, types, EPI);
   6800   }
   6801 
   6802   if (lproto) allRTypes = false;
   6803   if (rproto) allLTypes = false;
   6804 
   6805   const FunctionProtoType *proto = lproto ? lproto : rproto;
   6806   if (proto) {
   6807     assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
   6808     if (proto->isVariadic()) return QualType();
   6809     // Check that the types are compatible with the types that
   6810     // would result from default argument promotions (C99 6.7.5.3p15).
   6811     // The only types actually affected are promotable integer
   6812     // types and floats, which would be passed as a different
   6813     // type depending on whether the prototype is visible.
   6814     unsigned proto_nargs = proto->getNumArgs();
   6815     for (unsigned i = 0; i < proto_nargs; ++i) {
   6816       QualType argTy = proto->getArgType(i);
   6817 
   6818       // Look at the converted type of enum types, since that is the type used
   6819       // to pass enum values.
   6820       if (const EnumType *Enum = argTy->getAs<EnumType>()) {
   6821         argTy = Enum->getDecl()->getIntegerType();
   6822         if (argTy.isNull())
   6823           return QualType();
   6824       }
   6825 
   6826       if (argTy->isPromotableIntegerType() ||
   6827           getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
   6828         return QualType();
   6829     }
   6830 
   6831     if (allLTypes) return lhs;
   6832     if (allRTypes) return rhs;
   6833 
   6834     FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
   6835     EPI.ExtInfo = einfo;
   6836     return getFunctionType(retType,
   6837                            ArrayRef<QualType>(proto->arg_type_begin(),
   6838                                               proto->getNumArgs()),
   6839                            EPI);
   6840   }
   6841 
   6842   if (allLTypes) return lhs;
   6843   if (allRTypes) return rhs;
   6844   return getFunctionNoProtoType(retType, einfo);
   6845 }
   6846 
   6847 QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
   6848                                 bool OfBlockPointer,
   6849                                 bool Unqualified, bool BlockReturnType) {
   6850   // C++ [expr]: If an expression initially has the type "reference to T", the
   6851   // type is adjusted to "T" prior to any further analysis, the expression
   6852   // designates the object or function denoted by the reference, and the
   6853   // expression is an lvalue unless the reference is an rvalue reference and
   6854   // the expression is a function call (possibly inside parentheses).
   6855   assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
   6856   assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
   6857 
   6858   if (Unqualified) {
   6859     LHS = LHS.getUnqualifiedType();
   6860     RHS = RHS.getUnqualifiedType();
   6861   }
   6862 
   6863   QualType LHSCan = getCanonicalType(LHS),
   6864            RHSCan = getCanonicalType(RHS);
   6865 
   6866   // If two types are identical, they are compatible.
   6867   if (LHSCan == RHSCan)
   6868     return LHS;
   6869 
   6870   // If the qualifiers are different, the types aren't compatible... mostly.
   6871   Qualifiers LQuals = LHSCan.getLocalQualifiers();
   6872   Qualifiers RQuals = RHSCan.getLocalQualifiers();
   6873   if (LQuals != RQuals) {
   6874     // If any of these qualifiers are different, we have a type
   6875     // mismatch.
   6876     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
   6877         LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
   6878         LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
   6879       return QualType();
   6880 
   6881     // Exactly one GC qualifier difference is allowed: __strong is
   6882     // okay if the other type has no GC qualifier but is an Objective
   6883     // C object pointer (i.e. implicitly strong by default).  We fix
   6884     // this by pretending that the unqualified type was actually
   6885     // qualified __strong.
   6886     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
   6887     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
   6888     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
   6889 
   6890     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
   6891       return QualType();
   6892 
   6893     if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
   6894       return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
   6895     }
   6896     if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
   6897       return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
   6898     }
   6899     return QualType();
   6900   }
   6901 
   6902   // Okay, qualifiers are equal.
   6903 
   6904   Type::TypeClass LHSClass = LHSCan->getTypeClass();
   6905   Type::TypeClass RHSClass = RHSCan->getTypeClass();
   6906 
   6907   // We want to consider the two function types to be the same for these
   6908   // comparisons, just force one to the other.
   6909   if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
   6910   if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
   6911 
   6912   // Same as above for arrays
   6913   if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
   6914     LHSClass = Type::ConstantArray;
   6915   if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
   6916     RHSClass = Type::ConstantArray;
   6917 
   6918   // ObjCInterfaces are just specialized ObjCObjects.
   6919   if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
   6920   if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
   6921 
   6922   // Canonicalize ExtVector -> Vector.
   6923   if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
   6924   if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
   6925 
   6926   // If the canonical type classes don't match.
   6927   if (LHSClass != RHSClass) {
   6928     // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
   6929     // a signed integer type, or an unsigned integer type.
   6930     // Compatibility is based on the underlying type, not the promotion
   6931     // type.
   6932     if (const EnumType* ETy = LHS->getAs<EnumType>()) {
   6933       QualType TINT = ETy->getDecl()->getIntegerType();
   6934       if (!TINT.isNull() && hasSameType(TINT, RHSCan.getUnqualifiedType()))
   6935         return RHS;
   6936     }
   6937     if (const EnumType* ETy = RHS->getAs<EnumType>()) {
   6938       QualType TINT = ETy->getDecl()->getIntegerType();
   6939       if (!TINT.isNull() && hasSameType(TINT, LHSCan.getUnqualifiedType()))
   6940         return LHS;
   6941     }
   6942     // allow block pointer type to match an 'id' type.
   6943     if (OfBlockPointer && !BlockReturnType) {
   6944        if (LHS->isObjCIdType() && RHS->isBlockPointerType())
   6945          return LHS;
   6946       if (RHS->isObjCIdType() && LHS->isBlockPointerType())
   6947         return RHS;
   6948     }
   6949 
   6950     return QualType();
   6951   }
   6952 
   6953   // The canonical type classes match.
   6954   switch (LHSClass) {
   6955 #define TYPE(Class, Base)
   6956 #define ABSTRACT_TYPE(Class, Base)
   6957 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
   6958 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
   6959 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
   6960 #include "clang/AST/TypeNodes.def"
   6961     llvm_unreachable("Non-canonical and dependent types shouldn't get here");
   6962 
   6963   case Type::LValueReference:
   6964   case Type::RValueReference:
   6965   case Type::MemberPointer:
   6966     llvm_unreachable("C++ should never be in mergeTypes");
   6967 
   6968   case Type::ObjCInterface:
   6969   case Type::IncompleteArray:
   6970   case Type::VariableArray:
   6971   case Type::FunctionProto:
   6972   case Type::ExtVector:
   6973     llvm_unreachable("Types are eliminated above");
   6974 
   6975   case Type::Pointer:
   6976   {
   6977     // Merge two pointer types, while trying to preserve typedef info
   6978     QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
   6979     QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
   6980     if (Unqualified) {
   6981       LHSPointee = LHSPointee.getUnqualifiedType();
   6982       RHSPointee = RHSPointee.getUnqualifiedType();
   6983     }
   6984     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
   6985                                      Unqualified);
   6986     if (ResultType.isNull()) return QualType();
   6987     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
   6988       return LHS;
   6989     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
   6990       return RHS;
   6991     return getPointerType(ResultType);
   6992   }
   6993   case Type::BlockPointer:
   6994   {
   6995     // Merge two block pointer types, while trying to preserve typedef info
   6996     QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
   6997     QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
   6998     if (Unqualified) {
   6999       LHSPointee = LHSPointee.getUnqualifiedType();
   7000       RHSPointee = RHSPointee.getUnqualifiedType();
   7001     }
   7002     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
   7003                                      Unqualified);
   7004     if (ResultType.isNull()) return QualType();
   7005     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
   7006       return LHS;
   7007     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
   7008       return RHS;
   7009     return getBlockPointerType(ResultType);
   7010   }
   7011   case Type::Atomic:
   7012   {
   7013     // Merge two pointer types, while trying to preserve typedef info
   7014     QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
   7015     QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
   7016     if (Unqualified) {
   7017       LHSValue = LHSValue.getUnqualifiedType();
   7018       RHSValue = RHSValue.getUnqualifiedType();
   7019     }
   7020     QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
   7021                                      Unqualified);
   7022     if (ResultType.isNull()) return QualType();
   7023     if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
   7024       return LHS;
   7025     if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
   7026       return RHS;
   7027     return getAtomicType(ResultType);
   7028   }
   7029   case Type::ConstantArray:
   7030   {
   7031     const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
   7032     const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
   7033     if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
   7034       return QualType();
   7035 
   7036     QualType LHSElem = getAsArrayType(LHS)->getElementType();
   7037     QualType RHSElem = getAsArrayType(RHS)->getElementType();
   7038     if (Unqualified) {
   7039       LHSElem = LHSElem.getUnqualifiedType();
   7040       RHSElem = RHSElem.getUnqualifiedType();
   7041     }
   7042 
   7043     QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
   7044     if (ResultType.isNull()) return QualType();
   7045     if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
   7046       return LHS;
   7047     if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
   7048       return RHS;
   7049     if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
   7050                                           ArrayType::ArraySizeModifier(), 0);
   7051     if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
   7052                                           ArrayType::ArraySizeModifier(), 0);
   7053     const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
   7054     const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
   7055     if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
   7056       return LHS;
   7057     if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
   7058       return RHS;
   7059     if (LVAT) {
   7060       // FIXME: This isn't correct! But tricky to implement because
   7061       // the array's size has to be the size of LHS, but the type
   7062       // has to be different.
   7063       return LHS;
   7064     }
   7065     if (RVAT) {
   7066       // FIXME: This isn't correct! But tricky to implement because
   7067       // the array's size has to be the size of RHS, but the type
   7068       // has to be different.
   7069       return RHS;
   7070     }
   7071     if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
   7072     if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
   7073     return getIncompleteArrayType(ResultType,
   7074                                   ArrayType::ArraySizeModifier(), 0);
   7075   }
   7076   case Type::FunctionNoProto:
   7077     return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
   7078   case Type::Record:
   7079   case Type::Enum:
   7080     return QualType();
   7081   case Type::Builtin:
   7082     // Only exactly equal builtin types are compatible, which is tested above.
   7083     return QualType();
   7084   case Type::Complex:
   7085     // Distinct complex types are incompatible.
   7086     return QualType();
   7087   case Type::Vector:
   7088     // FIXME: The merged type should be an ExtVector!
   7089     if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
   7090                              RHSCan->getAs<VectorType>()))
   7091       return LHS;
   7092     return QualType();
   7093   case Type::ObjCObject: {
   7094     // Check if the types are assignment compatible.
   7095     // FIXME: This should be type compatibility, e.g. whether
   7096     // "LHS x; RHS x;" at global scope is legal.
   7097     const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
   7098     const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
   7099     if (canAssignObjCInterfaces(LHSIface, RHSIface))
   7100       return LHS;
   7101 
   7102     return QualType();
   7103   }
   7104   case Type::ObjCObjectPointer: {
   7105     if (OfBlockPointer) {
   7106       if (canAssignObjCInterfacesInBlockPointer(
   7107                                           LHS->getAs<ObjCObjectPointerType>(),
   7108                                           RHS->getAs<ObjCObjectPointerType>(),
   7109                                           BlockReturnType))
   7110         return LHS;
   7111       return QualType();
   7112     }
   7113     if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
   7114                                 RHS->getAs<ObjCObjectPointerType>()))
   7115       return LHS;
   7116 
   7117     return QualType();
   7118   }
   7119   }
   7120 
   7121   llvm_unreachable("Invalid Type::Class!");
   7122 }
   7123 
   7124 bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
   7125                    const FunctionProtoType *FromFunctionType,
   7126                    const FunctionProtoType *ToFunctionType) {
   7127   if (FromFunctionType->hasAnyConsumedArgs() !=
   7128       ToFunctionType->hasAnyConsumedArgs())
   7129     return false;
   7130   FunctionProtoType::ExtProtoInfo FromEPI =
   7131     FromFunctionType->getExtProtoInfo();
   7132   FunctionProtoType::ExtProtoInfo ToEPI =
   7133     ToFunctionType->getExtProtoInfo();
   7134   if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
   7135     for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
   7136          ArgIdx != NumArgs; ++ArgIdx)  {
   7137       if (FromEPI.ConsumedArguments[ArgIdx] !=
   7138           ToEPI.ConsumedArguments[ArgIdx])
   7139         return false;
   7140     }
   7141   return true;
   7142 }
   7143 
   7144 /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
   7145 /// 'RHS' attributes and returns the merged version; including for function
   7146 /// return types.
   7147 QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
   7148   QualType LHSCan = getCanonicalType(LHS),
   7149   RHSCan = getCanonicalType(RHS);
   7150   // If two types are identical, they are compatible.
   7151   if (LHSCan == RHSCan)
   7152     return LHS;
   7153   if (RHSCan->isFunctionType()) {
   7154     if (!LHSCan->isFunctionType())
   7155       return QualType();
   7156     QualType OldReturnType =
   7157       cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
   7158     QualType NewReturnType =
   7159       cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
   7160     QualType ResReturnType =
   7161       mergeObjCGCQualifiers(NewReturnType, OldReturnType);
   7162     if (ResReturnType.isNull())
   7163       return QualType();
   7164     if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
   7165       // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
   7166       // In either case, use OldReturnType to build the new function type.
   7167       const FunctionType *F = LHS->getAs<FunctionType>();
   7168       if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
   7169         FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
   7170         EPI.ExtInfo = getFunctionExtInfo(LHS);
   7171         QualType ResultType
   7172           = getFunctionType(OldReturnType,
   7173                             ArrayRef<QualType>(FPT->arg_type_begin(),
   7174                                                FPT->getNumArgs()),
   7175                             EPI);
   7176         return ResultType;
   7177       }
   7178     }
   7179     return QualType();
   7180   }
   7181 
   7182   // If the qualifiers are different, the types can still be merged.
   7183   Qualifiers LQuals = LHSCan.getLocalQualifiers();
   7184   Qualifiers RQuals = RHSCan.getLocalQualifiers();
   7185   if (LQuals != RQuals) {
   7186     // If any of these qualifiers are different, we have a type mismatch.
   7187     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
   7188         LQuals.getAddressSpace() != RQuals.getAddressSpace())
   7189       return QualType();
   7190 
   7191     // Exactly one GC qualifier difference is allowed: __strong is
   7192     // okay if the other type has no GC qualifier but is an Objective
   7193     // C object pointer (i.e. implicitly strong by default).  We fix
   7194     // this by pretending that the unqualified type was actually
   7195     // qualified __strong.
   7196     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
   7197     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
   7198     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
   7199 
   7200     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
   7201       return QualType();
   7202 
   7203     if (GC_L == Qualifiers::Strong)
   7204       return LHS;
   7205     if (GC_R == Qualifiers::Strong)
   7206       return RHS;
   7207     return QualType();
   7208   }
   7209 
   7210   if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
   7211     QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
   7212     QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
   7213     QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
   7214     if (ResQT == LHSBaseQT)
   7215       return LHS;
   7216     if (ResQT == RHSBaseQT)
   7217       return RHS;
   7218   }
   7219   return QualType();
   7220 }
   7221 
   7222 //===----------------------------------------------------------------------===//
   7223 //                         Integer Predicates
   7224 //===----------------------------------------------------------------------===//
   7225 
   7226 unsigned ASTContext::getIntWidth(QualType T) const {
   7227   if (const EnumType *ET = dyn_cast<EnumType>(T))
   7228     T = ET->getDecl()->getIntegerType();
   7229   if (T->isBooleanType())
   7230     return 1;
   7231   // For builtin types, just use the standard type sizing method
   7232   return (unsigned)getTypeSize(T);
   7233 }
   7234 
   7235 QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
   7236   assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
   7237 
   7238   // Turn <4 x signed int> -> <4 x unsigned int>
   7239   if (const VectorType *VTy = T->getAs<VectorType>())
   7240     return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
   7241                          VTy->getNumElements(), VTy->getVectorKind());
   7242 
   7243   // For enums, we return the unsigned version of the base type.
   7244   if (const EnumType *ETy = T->getAs<EnumType>())
   7245     T = ETy->getDecl()->getIntegerType();
   7246 
   7247   const BuiltinType *BTy = T->getAs<BuiltinType>();
   7248   assert(BTy && "Unexpected signed integer type");
   7249   switch (BTy->getKind()) {
   7250   case BuiltinType::Char_S:
   7251   case BuiltinType::SChar:
   7252     return UnsignedCharTy;
   7253   case BuiltinType::Short:
   7254     return UnsignedShortTy;
   7255   case BuiltinType::Int:
   7256     return UnsignedIntTy;
   7257   case BuiltinType::Long:
   7258     return UnsignedLongTy;
   7259   case BuiltinType::LongLong:
   7260     return UnsignedLongLongTy;
   7261   case BuiltinType::Int128:
   7262     return UnsignedInt128Ty;
   7263   default:
   7264     llvm_unreachable("Unexpected signed integer type");
   7265   }
   7266 }
   7267 
   7268 ASTMutationListener::~ASTMutationListener() { }
   7269 
   7270 
   7271 //===----------------------------------------------------------------------===//
   7272 //                          Builtin Type Computation
   7273 //===----------------------------------------------------------------------===//
   7274 
   7275 /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
   7276 /// pointer over the consumed characters.  This returns the resultant type.  If
   7277 /// AllowTypeModifiers is false then modifier like * are not parsed, just basic
   7278 /// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
   7279 /// a vector of "i*".
   7280 ///
   7281 /// RequiresICE is filled in on return to indicate whether the value is required
   7282 /// to be an Integer Constant Expression.
   7283 static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
   7284                                   ASTContext::GetBuiltinTypeError &Error,
   7285                                   bool &RequiresICE,
   7286                                   bool AllowTypeModifiers) {
   7287   // Modifiers.
   7288   int HowLong = 0;
   7289   bool Signed = false, Unsigned = false;
   7290   RequiresICE = false;
   7291 
   7292   // Read the prefixed modifiers first.
   7293   bool Done = false;
   7294   while (!Done) {
   7295     switch (*Str++) {
   7296     default: Done = true; --Str; break;
   7297     case 'I':
   7298       RequiresICE = true;
   7299       break;
   7300     case 'S':
   7301       assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
   7302       assert(!Signed && "Can't use 'S' modifier multiple times!");
   7303       Signed = true;
   7304       break;
   7305     case 'U':
   7306       assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
   7307       assert(!Unsigned && "Can't use 'S' modifier multiple times!");
   7308       Unsigned = true;
   7309       break;
   7310     case 'L':
   7311       assert(HowLong <= 2 && "Can't have LLLL modifier");
   7312       ++HowLong;
   7313       break;
   7314     }
   7315   }
   7316 
   7317   QualType Type;
   7318 
   7319   // Read the base type.
   7320   switch (*Str++) {
   7321   default: llvm_unreachable("Unknown builtin type letter!");
   7322   case 'v':
   7323     assert(HowLong == 0 && !Signed && !Unsigned &&
   7324            "Bad modifiers used with 'v'!");
   7325     Type = Context.VoidTy;
   7326     break;
   7327   case 'f':
   7328     assert(HowLong == 0 && !Signed && !Unsigned &&
   7329            "Bad modifiers used with 'f'!");
   7330     Type = Context.FloatTy;
   7331     break;
   7332   case 'd':
   7333     assert(HowLong < 2 && !Signed && !Unsigned &&
   7334            "Bad modifiers used with 'd'!");
   7335     if (HowLong)
   7336       Type = Context.LongDoubleTy;
   7337     else
   7338       Type = Context.DoubleTy;
   7339     break;
   7340   case 's':
   7341     assert(HowLong == 0 && "Bad modifiers used with 's'!");
   7342     if (Unsigned)
   7343       Type = Context.UnsignedShortTy;
   7344     else
   7345       Type = Context.ShortTy;
   7346     break;
   7347   case 'i':
   7348     if (HowLong == 3)
   7349       Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
   7350     else if (HowLong == 2)
   7351       Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
   7352     else if (HowLong == 1)
   7353       Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
   7354     else
   7355       Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
   7356     break;
   7357   case 'c':
   7358     assert(HowLong == 0 && "Bad modifiers used with 'c'!");
   7359     if (Signed)
   7360       Type = Context.SignedCharTy;
   7361     else if (Unsigned)
   7362       Type = Context.UnsignedCharTy;
   7363     else
   7364       Type = Context.CharTy;
   7365     break;
   7366   case 'b': // boolean
   7367     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
   7368     Type = Context.BoolTy;
   7369     break;
   7370   case 'z':  // size_t.
   7371     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
   7372     Type = Context.getSizeType();
   7373     break;
   7374   case 'F':
   7375     Type = Context.getCFConstantStringType();
   7376     break;
   7377   case 'G':
   7378     Type = Context.getObjCIdType();
   7379     break;
   7380   case 'H':
   7381     Type = Context.getObjCSelType();
   7382     break;
   7383   case 'M':
   7384     Type = Context.getObjCSuperType();
   7385     break;
   7386   case 'a':
   7387     Type = Context.getBuiltinVaListType();
   7388     assert(!Type.isNull() && "builtin va list type not initialized!");
   7389     break;
   7390   case 'A':
   7391     // This is a "reference" to a va_list; however, what exactly
   7392     // this means depends on how va_list is defined. There are two
   7393     // different kinds of va_list: ones passed by value, and ones
   7394     // passed by reference.  An example of a by-value va_list is
   7395     // x86, where va_list is a char*. An example of by-ref va_list
   7396     // is x86-64, where va_list is a __va_list_tag[1]. For x86,
   7397     // we want this argument to be a char*&; for x86-64, we want
   7398     // it to be a __va_list_tag*.
   7399     Type = Context.getBuiltinVaListType();
   7400     assert(!Type.isNull() && "builtin va list type not initialized!");
   7401     if (Type->isArrayType())
   7402       Type = Context.getArrayDecayedType(Type);
   7403     else
   7404       Type = Context.getLValueReferenceType(Type);
   7405     break;
   7406   case 'V': {
   7407     char *End;
   7408     unsigned NumElements = strtoul(Str, &End, 10);
   7409     assert(End != Str && "Missing vector size");
   7410     Str = End;
   7411 
   7412     QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
   7413                                              RequiresICE, false);
   7414     assert(!RequiresICE && "Can't require vector ICE");
   7415 
   7416     // TODO: No way to make AltiVec vectors in builtins yet.
   7417     Type = Context.getVectorType(ElementType, NumElements,
   7418                                  VectorType::GenericVector);
   7419     break;
   7420   }
   7421   case 'E': {
   7422     char *End;
   7423 
   7424     unsigned NumElements = strtoul(Str, &End, 10);
   7425     assert(End != Str && "Missing vector size");
   7426 
   7427     Str = End;
   7428 
   7429     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
   7430                                              false);
   7431     Type = Context.getExtVectorType(ElementType, NumElements);
   7432     break;
   7433   }
   7434   case 'X': {
   7435     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
   7436                                              false);
   7437     assert(!RequiresICE && "Can't require complex ICE");
   7438     Type = Context.getComplexType(ElementType);
   7439     break;
   7440   }
   7441   case 'Y' : {
   7442     Type = Context.getPointerDiffType();
   7443     break;
   7444   }
   7445   case 'P':
   7446     Type = Context.getFILEType();
   7447     if (Type.isNull()) {
   7448       Error = ASTContext::GE_Missing_stdio;
   7449       return QualType();
   7450     }
   7451     break;
   7452   case 'J':
   7453     if (Signed)
   7454       Type = Context.getsigjmp_bufType();
   7455     else
   7456       Type = Context.getjmp_bufType();
   7457 
   7458     if (Type.isNull()) {
   7459       Error = ASTContext::GE_Missing_setjmp;
   7460       return QualType();
   7461     }
   7462     break;
   7463   case 'K':
   7464     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
   7465     Type = Context.getucontext_tType();
   7466 
   7467     if (Type.isNull()) {
   7468       Error = ASTContext::GE_Missing_ucontext;
   7469       return QualType();
   7470     }
   7471     break;
   7472   case 'p':
   7473     Type = Context.getProcessIDType();
   7474     break;
   7475   }
   7476 
   7477   // If there are modifiers and if we're allowed to parse them, go for it.
   7478   Done = !AllowTypeModifiers;
   7479   while (!Done) {
   7480     switch (char c = *Str++) {
   7481     default: Done = true; --Str; break;
   7482     case '*':
   7483     case '&': {
   7484       // Both pointers and references can have their pointee types
   7485       // qualified with an address space.
   7486       char *End;
   7487       unsigned AddrSpace = strtoul(Str, &End, 10);
   7488       if (End != Str && AddrSpace != 0) {
   7489         Type = Context.getAddrSpaceQualType(Type, AddrSpace);
   7490         Str = End;
   7491       }
   7492       if (c == '*')
   7493         Type = Context.getPointerType(Type);
   7494       else
   7495         Type = Context.getLValueReferenceType(Type);
   7496       break;
   7497     }
   7498     // FIXME: There's no way to have a built-in with an rvalue ref arg.
   7499     case 'C':
   7500       Type = Type.withConst();
   7501       break;
   7502     case 'D':
   7503       Type = Context.getVolatileType(Type);
   7504       break;
   7505     case 'R':
   7506       Type = Type.withRestrict();
   7507       break;
   7508     }
   7509   }
   7510 
   7511   assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
   7512          "Integer constant 'I' type must be an integer");
   7513 
   7514   return Type;
   7515 }
   7516 
   7517 /// GetBuiltinType - Return the type for the specified builtin.
   7518 QualType ASTContext::GetBuiltinType(unsigned Id,
   7519                                     GetBuiltinTypeError &Error,
   7520                                     unsigned *IntegerConstantArgs) const {
   7521   const char *TypeStr = BuiltinInfo.GetTypeString(Id);
   7522 
   7523   SmallVector<QualType, 8> ArgTypes;
   7524 
   7525   bool RequiresICE = false;
   7526   Error = GE_None;
   7527   QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
   7528                                        RequiresICE, true);
   7529   if (Error != GE_None)
   7530     return QualType();
   7531 
   7532   assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
   7533 
   7534   while (TypeStr[0] && TypeStr[0] != '.') {
   7535     QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
   7536     if (Error != GE_None)
   7537       return QualType();
   7538 
   7539     // If this argument is required to be an IntegerConstantExpression and the
   7540     // caller cares, fill in the bitmask we return.
   7541     if (RequiresICE && IntegerConstantArgs)
   7542       *IntegerConstantArgs |= 1 << ArgTypes.size();
   7543 
   7544     // Do array -> pointer decay.  The builtin should use the decayed type.
   7545     if (Ty->isArrayType())
   7546       Ty = getArrayDecayedType(Ty);
   7547 
   7548     ArgTypes.push_back(Ty);
   7549   }
   7550 
   7551   assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
   7552          "'.' should only occur at end of builtin type list!");
   7553 
   7554   FunctionType::ExtInfo EI;
   7555   if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
   7556 
   7557   bool Variadic = (TypeStr[0] == '.');
   7558 
   7559   // We really shouldn't be making a no-proto type here, especially in C++.
   7560   if (ArgTypes.empty() && Variadic)
   7561     return getFunctionNoProtoType(ResType, EI);
   7562 
   7563   FunctionProtoType::ExtProtoInfo EPI;
   7564   EPI.ExtInfo = EI;
   7565   EPI.Variadic = Variadic;
   7566 
   7567   return getFunctionType(ResType, ArgTypes, EPI);
   7568 }
   7569 
   7570 GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
   7571   GVALinkage External = GVA_StrongExternal;
   7572 
   7573   Linkage L = FD->getLinkage();
   7574   switch (L) {
   7575   case NoLinkage:
   7576   case InternalLinkage:
   7577   case UniqueExternalLinkage:
   7578     return GVA_Internal;
   7579 
   7580   case ExternalLinkage:
   7581     switch (FD->getTemplateSpecializationKind()) {
   7582     case TSK_Undeclared:
   7583     case TSK_ExplicitSpecialization:
   7584       External = GVA_StrongExternal;
   7585       break;
   7586 
   7587     case TSK_ExplicitInstantiationDefinition:
   7588       return GVA_ExplicitTemplateInstantiation;
   7589 
   7590     case TSK_ExplicitInstantiationDeclaration:
   7591     case TSK_ImplicitInstantiation:
   7592       External = GVA_TemplateInstantiation;
   7593       break;
   7594     }
   7595   }
   7596 
   7597   if (!FD->isInlined())
   7598     return External;
   7599 
   7600   if (!getLangOpts().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
   7601     // GNU or C99 inline semantics. Determine whether this symbol should be
   7602     // externally visible.
   7603     if (FD->isInlineDefinitionExternallyVisible())
   7604       return External;
   7605 
   7606     // C99 inline semantics, where the symbol is not externally visible.
   7607     return GVA_C99Inline;
   7608   }
   7609 
   7610   // C++0x [temp.explicit]p9:
   7611   //   [ Note: The intent is that an inline function that is the subject of
   7612   //   an explicit instantiation declaration will still be implicitly
   7613   //   instantiated when used so that the body can be considered for
   7614   //   inlining, but that no out-of-line copy of the inline function would be
   7615   //   generated in the translation unit. -- end note ]
   7616   if (FD->getTemplateSpecializationKind()
   7617                                        == TSK_ExplicitInstantiationDeclaration)
   7618     return GVA_C99Inline;
   7619 
   7620   return GVA_CXXInline;
   7621 }
   7622 
   7623 GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
   7624   // If this is a static data member, compute the kind of template
   7625   // specialization. Otherwise, this variable is not part of a
   7626   // template.
   7627   TemplateSpecializationKind TSK = TSK_Undeclared;
   7628   if (VD->isStaticDataMember())
   7629     TSK = VD->getTemplateSpecializationKind();
   7630 
   7631   Linkage L = VD->getLinkage();
   7632 
   7633   switch (L) {
   7634   case NoLinkage:
   7635   case InternalLinkage:
   7636   case UniqueExternalLinkage:
   7637     return GVA_Internal;
   7638 
   7639   case ExternalLinkage:
   7640     switch (TSK) {
   7641     case TSK_Undeclared:
   7642     case TSK_ExplicitSpecialization:
   7643       return GVA_StrongExternal;
   7644 
   7645     case TSK_ExplicitInstantiationDeclaration:
   7646       llvm_unreachable("Variable should not be instantiated");
   7647       // Fall through to treat this like any other instantiation.
   7648 
   7649     case TSK_ExplicitInstantiationDefinition:
   7650       return GVA_ExplicitTemplateInstantiation;
   7651 
   7652     case TSK_ImplicitInstantiation:
   7653       return GVA_TemplateInstantiation;
   7654     }
   7655   }
   7656 
   7657   llvm_unreachable("Invalid Linkage!");
   7658 }
   7659 
   7660 bool ASTContext::DeclMustBeEmitted(const Decl *D) {
   7661   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   7662     if (!VD->isFileVarDecl())
   7663       return false;
   7664   } else if (!isa<FunctionDecl>(D))
   7665     return false;
   7666 
   7667   // Weak references don't produce any output by themselves.
   7668   if (D->hasAttr<WeakRefAttr>())
   7669     return false;
   7670 
   7671   // Aliases and used decls are required.
   7672   if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
   7673     return true;
   7674 
   7675   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   7676     // Forward declarations aren't required.
   7677     if (!FD->doesThisDeclarationHaveABody())
   7678       return FD->doesDeclarationForceExternallyVisibleDefinition();
   7679 
   7680     // Constructors and destructors are required.
   7681     if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
   7682       return true;
   7683 
   7684     // The key function for a class is required.  This rule only comes
   7685     // into play when inline functions can be key functions, though.
   7686     if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
   7687       if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
   7688         const CXXRecordDecl *RD = MD->getParent();
   7689         if (MD->isOutOfLine() && RD->isDynamicClass()) {
   7690           const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
   7691           if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
   7692             return true;
   7693         }
   7694       }
   7695     }
   7696 
   7697     GVALinkage Linkage = GetGVALinkageForFunction(FD);
   7698 
   7699     // static, static inline, always_inline, and extern inline functions can
   7700     // always be deferred.  Normal inline functions can be deferred in C99/C++.
   7701     // Implicit template instantiations can also be deferred in C++.
   7702     if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
   7703         Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
   7704       return false;
   7705     return true;
   7706   }
   7707 
   7708   const VarDecl *VD = cast<VarDecl>(D);
   7709   assert(VD->isFileVarDecl() && "Expected file scoped var");
   7710 
   7711   if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
   7712     return false;
   7713 
   7714   // Variables that can be needed in other TUs are required.
   7715   GVALinkage L = GetGVALinkageForVariable(VD);
   7716   if (L != GVA_Internal && L != GVA_TemplateInstantiation)
   7717     return true;
   7718 
   7719   // Variables that have destruction with side-effects are required.
   7720   if (VD->getType().isDestructedType())
   7721     return true;
   7722 
   7723   // Variables that have initialization with side-effects are required.
   7724   if (VD->getInit() && VD->getInit()->HasSideEffects(*this))
   7725     return true;
   7726 
   7727   return false;
   7728 }
   7729 
   7730 CallingConv ASTContext::getDefaultCXXMethodCallConv(bool isVariadic) {
   7731   // Pass through to the C++ ABI object
   7732   return ABI->getDefaultMethodCallConv(isVariadic);
   7733 }
   7734 
   7735 CallingConv ASTContext::getCanonicalCallConv(CallingConv CC) const {
   7736   if (CC == CC_C && !LangOpts.MRTD &&
   7737       getTargetInfo().getCXXABI().isMemberFunctionCCDefault())
   7738     return CC_Default;
   7739   return CC;
   7740 }
   7741 
   7742 bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
   7743   // Pass through to the C++ ABI object
   7744   return ABI->isNearlyEmpty(RD);
   7745 }
   7746 
   7747 MangleContext *ASTContext::createMangleContext() {
   7748   switch (Target->getCXXABI().getKind()) {
   7749   case TargetCXXABI::GenericAArch64:
   7750   case TargetCXXABI::GenericItanium:
   7751   case TargetCXXABI::GenericARM:
   7752   case TargetCXXABI::iOS:
   7753     return createItaniumMangleContext(*this, getDiagnostics());
   7754   case TargetCXXABI::Microsoft:
   7755     return createMicrosoftMangleContext(*this, getDiagnostics());
   7756   }
   7757   llvm_unreachable("Unsupported ABI");
   7758 }
   7759 
   7760 CXXABI::~CXXABI() {}
   7761 
   7762 size_t ASTContext::getSideTableAllocatedMemory() const {
   7763   return ASTRecordLayouts.getMemorySize()
   7764     + llvm::capacity_in_bytes(ObjCLayouts)
   7765     + llvm::capacity_in_bytes(KeyFunctions)
   7766     + llvm::capacity_in_bytes(ObjCImpls)
   7767     + llvm::capacity_in_bytes(BlockVarCopyInits)
   7768     + llvm::capacity_in_bytes(DeclAttrs)
   7769     + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
   7770     + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
   7771     + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
   7772     + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
   7773     + llvm::capacity_in_bytes(OverriddenMethods)
   7774     + llvm::capacity_in_bytes(Types)
   7775     + llvm::capacity_in_bytes(VariableArrayTypes)
   7776     + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
   7777 }
   7778 
   7779 void ASTContext::addUnnamedTag(const TagDecl *Tag) {
   7780   // FIXME: This mangling should be applied to function local classes too
   7781   if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl() ||
   7782       !isa<CXXRecordDecl>(Tag->getParent()) || Tag->getLinkage() != ExternalLinkage)
   7783     return;
   7784 
   7785   std::pair<llvm::DenseMap<const DeclContext *, unsigned>::iterator, bool> P =
   7786     UnnamedMangleContexts.insert(std::make_pair(Tag->getParent(), 0));
   7787   UnnamedMangleNumbers.insert(std::make_pair(Tag, P.first->second++));
   7788 }
   7789 
   7790 int ASTContext::getUnnamedTagManglingNumber(const TagDecl *Tag) const {
   7791   llvm::DenseMap<const TagDecl *, unsigned>::const_iterator I =
   7792     UnnamedMangleNumbers.find(Tag);
   7793   return I != UnnamedMangleNumbers.end() ? I->second : -1;
   7794 }
   7795 
   7796 unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) {
   7797   CXXRecordDecl *Lambda = CallOperator->getParent();
   7798   return LambdaMangleContexts[Lambda->getDeclContext()]
   7799            .getManglingNumber(CallOperator);
   7800 }
   7801 
   7802 
   7803 void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
   7804   ParamIndices[D] = index;
   7805 }
   7806 
   7807 unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
   7808   ParameterIndexTable::const_iterator I = ParamIndices.find(D);
   7809   assert(I != ParamIndices.end() &&
   7810          "ParmIndices lacks entry set by ParmVarDecl");
   7811   return I->second;
   7812 }
   7813