Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineCompares.cpp --------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visitICmp and visitFCmp functions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombine.h"
     15 #include "llvm/Analysis/ConstantFolding.h"
     16 #include "llvm/Analysis/InstructionSimplify.h"
     17 #include "llvm/Analysis/MemoryBuiltins.h"
     18 #include "llvm/IR/DataLayout.h"
     19 #include "llvm/IR/IntrinsicInst.h"
     20 #include "llvm/Support/ConstantRange.h"
     21 #include "llvm/Support/GetElementPtrTypeIterator.h"
     22 #include "llvm/Support/PatternMatch.h"
     23 #include "llvm/Target/TargetLibraryInfo.h"
     24 using namespace llvm;
     25 using namespace PatternMatch;
     26 
     27 static ConstantInt *getOne(Constant *C) {
     28   return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
     29 }
     30 
     31 /// AddOne - Add one to a ConstantInt
     32 static Constant *AddOne(Constant *C) {
     33   return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
     34 }
     35 /// SubOne - Subtract one from a ConstantInt
     36 static Constant *SubOne(Constant *C) {
     37   return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
     38 }
     39 
     40 static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
     41   return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
     42 }
     43 
     44 static bool HasAddOverflow(ConstantInt *Result,
     45                            ConstantInt *In1, ConstantInt *In2,
     46                            bool IsSigned) {
     47   if (!IsSigned)
     48     return Result->getValue().ult(In1->getValue());
     49 
     50   if (In2->isNegative())
     51     return Result->getValue().sgt(In1->getValue());
     52   return Result->getValue().slt(In1->getValue());
     53 }
     54 
     55 /// AddWithOverflow - Compute Result = In1+In2, returning true if the result
     56 /// overflowed for this type.
     57 static bool AddWithOverflow(Constant *&Result, Constant *In1,
     58                             Constant *In2, bool IsSigned = false) {
     59   Result = ConstantExpr::getAdd(In1, In2);
     60 
     61   if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
     62     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
     63       Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
     64       if (HasAddOverflow(ExtractElement(Result, Idx),
     65                          ExtractElement(In1, Idx),
     66                          ExtractElement(In2, Idx),
     67                          IsSigned))
     68         return true;
     69     }
     70     return false;
     71   }
     72 
     73   return HasAddOverflow(cast<ConstantInt>(Result),
     74                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
     75                         IsSigned);
     76 }
     77 
     78 static bool HasSubOverflow(ConstantInt *Result,
     79                            ConstantInt *In1, ConstantInt *In2,
     80                            bool IsSigned) {
     81   if (!IsSigned)
     82     return Result->getValue().ugt(In1->getValue());
     83 
     84   if (In2->isNegative())
     85     return Result->getValue().slt(In1->getValue());
     86 
     87   return Result->getValue().sgt(In1->getValue());
     88 }
     89 
     90 /// SubWithOverflow - Compute Result = In1-In2, returning true if the result
     91 /// overflowed for this type.
     92 static bool SubWithOverflow(Constant *&Result, Constant *In1,
     93                             Constant *In2, bool IsSigned = false) {
     94   Result = ConstantExpr::getSub(In1, In2);
     95 
     96   if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
     97     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
     98       Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
     99       if (HasSubOverflow(ExtractElement(Result, Idx),
    100                          ExtractElement(In1, Idx),
    101                          ExtractElement(In2, Idx),
    102                          IsSigned))
    103         return true;
    104     }
    105     return false;
    106   }
    107 
    108   return HasSubOverflow(cast<ConstantInt>(Result),
    109                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
    110                         IsSigned);
    111 }
    112 
    113 /// isSignBitCheck - Given an exploded icmp instruction, return true if the
    114 /// comparison only checks the sign bit.  If it only checks the sign bit, set
    115 /// TrueIfSigned if the result of the comparison is true when the input value is
    116 /// signed.
    117 static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
    118                            bool &TrueIfSigned) {
    119   switch (pred) {
    120   case ICmpInst::ICMP_SLT:   // True if LHS s< 0
    121     TrueIfSigned = true;
    122     return RHS->isZero();
    123   case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
    124     TrueIfSigned = true;
    125     return RHS->isAllOnesValue();
    126   case ICmpInst::ICMP_SGT:   // True if LHS s> -1
    127     TrueIfSigned = false;
    128     return RHS->isAllOnesValue();
    129   case ICmpInst::ICMP_UGT:
    130     // True if LHS u> RHS and RHS == high-bit-mask - 1
    131     TrueIfSigned = true;
    132     return RHS->isMaxValue(true);
    133   case ICmpInst::ICMP_UGE:
    134     // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
    135     TrueIfSigned = true;
    136     return RHS->getValue().isSignBit();
    137   default:
    138     return false;
    139   }
    140 }
    141 
    142 // isHighOnes - Return true if the constant is of the form 1+0+.
    143 // This is the same as lowones(~X).
    144 static bool isHighOnes(const ConstantInt *CI) {
    145   return (~CI->getValue() + 1).isPowerOf2();
    146 }
    147 
    148 /// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
    149 /// set of known zero and one bits, compute the maximum and minimum values that
    150 /// could have the specified known zero and known one bits, returning them in
    151 /// min/max.
    152 static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
    153                                                    const APInt& KnownOne,
    154                                                    APInt& Min, APInt& Max) {
    155   assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
    156          KnownZero.getBitWidth() == Min.getBitWidth() &&
    157          KnownZero.getBitWidth() == Max.getBitWidth() &&
    158          "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
    159   APInt UnknownBits = ~(KnownZero|KnownOne);
    160 
    161   // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
    162   // bit if it is unknown.
    163   Min = KnownOne;
    164   Max = KnownOne|UnknownBits;
    165 
    166   if (UnknownBits.isNegative()) { // Sign bit is unknown
    167     Min.setBit(Min.getBitWidth()-1);
    168     Max.clearBit(Max.getBitWidth()-1);
    169   }
    170 }
    171 
    172 // ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
    173 // a set of known zero and one bits, compute the maximum and minimum values that
    174 // could have the specified known zero and known one bits, returning them in
    175 // min/max.
    176 static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
    177                                                      const APInt &KnownOne,
    178                                                      APInt &Min, APInt &Max) {
    179   assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
    180          KnownZero.getBitWidth() == Min.getBitWidth() &&
    181          KnownZero.getBitWidth() == Max.getBitWidth() &&
    182          "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
    183   APInt UnknownBits = ~(KnownZero|KnownOne);
    184 
    185   // The minimum value is when the unknown bits are all zeros.
    186   Min = KnownOne;
    187   // The maximum value is when the unknown bits are all ones.
    188   Max = KnownOne|UnknownBits;
    189 }
    190 
    191 
    192 
    193 /// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
    194 ///   cmp pred (load (gep GV, ...)), cmpcst
    195 /// where GV is a global variable with a constant initializer.  Try to simplify
    196 /// this into some simple computation that does not need the load.  For example
    197 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
    198 ///
    199 /// If AndCst is non-null, then the loaded value is masked with that constant
    200 /// before doing the comparison.  This handles cases like "A[i]&4 == 0".
    201 Instruction *InstCombiner::
    202 FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
    203                              CmpInst &ICI, ConstantInt *AndCst) {
    204   // We need TD information to know the pointer size unless this is inbounds.
    205   if (!GEP->isInBounds() && TD == 0) return 0;
    206 
    207   Constant *Init = GV->getInitializer();
    208   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
    209     return 0;
    210 
    211   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
    212   if (ArrayElementCount > 1024) return 0;  // Don't blow up on huge arrays.
    213 
    214   // There are many forms of this optimization we can handle, for now, just do
    215   // the simple index into a single-dimensional array.
    216   //
    217   // Require: GEP GV, 0, i {{, constant indices}}
    218   if (GEP->getNumOperands() < 3 ||
    219       !isa<ConstantInt>(GEP->getOperand(1)) ||
    220       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
    221       isa<Constant>(GEP->getOperand(2)))
    222     return 0;
    223 
    224   // Check that indices after the variable are constants and in-range for the
    225   // type they index.  Collect the indices.  This is typically for arrays of
    226   // structs.
    227   SmallVector<unsigned, 4> LaterIndices;
    228 
    229   Type *EltTy = Init->getType()->getArrayElementType();
    230   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
    231     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
    232     if (Idx == 0) return 0;  // Variable index.
    233 
    234     uint64_t IdxVal = Idx->getZExtValue();
    235     if ((unsigned)IdxVal != IdxVal) return 0; // Too large array index.
    236 
    237     if (StructType *STy = dyn_cast<StructType>(EltTy))
    238       EltTy = STy->getElementType(IdxVal);
    239     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
    240       if (IdxVal >= ATy->getNumElements()) return 0;
    241       EltTy = ATy->getElementType();
    242     } else {
    243       return 0; // Unknown type.
    244     }
    245 
    246     LaterIndices.push_back(IdxVal);
    247   }
    248 
    249   enum { Overdefined = -3, Undefined = -2 };
    250 
    251   // Variables for our state machines.
    252 
    253   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
    254   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
    255   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
    256   // undefined, otherwise set to the first true element.  SecondTrueElement is
    257   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
    258   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
    259 
    260   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
    261   // form "i != 47 & i != 87".  Same state transitions as for true elements.
    262   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
    263 
    264   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
    265   /// define a state machine that triggers for ranges of values that the index
    266   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
    267   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
    268   /// index in the range (inclusive).  We use -2 for undefined here because we
    269   /// use relative comparisons and don't want 0-1 to match -1.
    270   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
    271 
    272   // MagicBitvector - This is a magic bitvector where we set a bit if the
    273   // comparison is true for element 'i'.  If there are 64 elements or less in
    274   // the array, this will fully represent all the comparison results.
    275   uint64_t MagicBitvector = 0;
    276 
    277 
    278   // Scan the array and see if one of our patterns matches.
    279   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
    280   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
    281     Constant *Elt = Init->getAggregateElement(i);
    282     if (Elt == 0) return 0;
    283 
    284     // If this is indexing an array of structures, get the structure element.
    285     if (!LaterIndices.empty())
    286       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
    287 
    288     // If the element is masked, handle it.
    289     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
    290 
    291     // Find out if the comparison would be true or false for the i'th element.
    292     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
    293                                                   CompareRHS, TD, TLI);
    294     // If the result is undef for this element, ignore it.
    295     if (isa<UndefValue>(C)) {
    296       // Extend range state machines to cover this element in case there is an
    297       // undef in the middle of the range.
    298       if (TrueRangeEnd == (int)i-1)
    299         TrueRangeEnd = i;
    300       if (FalseRangeEnd == (int)i-1)
    301         FalseRangeEnd = i;
    302       continue;
    303     }
    304 
    305     // If we can't compute the result for any of the elements, we have to give
    306     // up evaluating the entire conditional.
    307     if (!isa<ConstantInt>(C)) return 0;
    308 
    309     // Otherwise, we know if the comparison is true or false for this element,
    310     // update our state machines.
    311     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
    312 
    313     // State machine for single/double/range index comparison.
    314     if (IsTrueForElt) {
    315       // Update the TrueElement state machine.
    316       if (FirstTrueElement == Undefined)
    317         FirstTrueElement = TrueRangeEnd = i;  // First true element.
    318       else {
    319         // Update double-compare state machine.
    320         if (SecondTrueElement == Undefined)
    321           SecondTrueElement = i;
    322         else
    323           SecondTrueElement = Overdefined;
    324 
    325         // Update range state machine.
    326         if (TrueRangeEnd == (int)i-1)
    327           TrueRangeEnd = i;
    328         else
    329           TrueRangeEnd = Overdefined;
    330       }
    331     } else {
    332       // Update the FalseElement state machine.
    333       if (FirstFalseElement == Undefined)
    334         FirstFalseElement = FalseRangeEnd = i; // First false element.
    335       else {
    336         // Update double-compare state machine.
    337         if (SecondFalseElement == Undefined)
    338           SecondFalseElement = i;
    339         else
    340           SecondFalseElement = Overdefined;
    341 
    342         // Update range state machine.
    343         if (FalseRangeEnd == (int)i-1)
    344           FalseRangeEnd = i;
    345         else
    346           FalseRangeEnd = Overdefined;
    347       }
    348     }
    349 
    350 
    351     // If this element is in range, update our magic bitvector.
    352     if (i < 64 && IsTrueForElt)
    353       MagicBitvector |= 1ULL << i;
    354 
    355     // If all of our states become overdefined, bail out early.  Since the
    356     // predicate is expensive, only check it every 8 elements.  This is only
    357     // really useful for really huge arrays.
    358     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
    359         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
    360         FalseRangeEnd == Overdefined)
    361       return 0;
    362   }
    363 
    364   // Now that we've scanned the entire array, emit our new comparison(s).  We
    365   // order the state machines in complexity of the generated code.
    366   Value *Idx = GEP->getOperand(2);
    367 
    368   // If the index is larger than the pointer size of the target, truncate the
    369   // index down like the GEP would do implicitly.  We don't have to do this for
    370   // an inbounds GEP because the index can't be out of range.
    371   if (!GEP->isInBounds() &&
    372       Idx->getType()->getPrimitiveSizeInBits() > TD->getPointerSizeInBits())
    373     Idx = Builder->CreateTrunc(Idx, TD->getIntPtrType(Idx->getContext()));
    374 
    375   // If the comparison is only true for one or two elements, emit direct
    376   // comparisons.
    377   if (SecondTrueElement != Overdefined) {
    378     // None true -> false.
    379     if (FirstTrueElement == Undefined)
    380       return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(GEP->getContext()));
    381 
    382     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
    383 
    384     // True for one element -> 'i == 47'.
    385     if (SecondTrueElement == Undefined)
    386       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
    387 
    388     // True for two elements -> 'i == 47 | i == 72'.
    389     Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
    390     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
    391     Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
    392     return BinaryOperator::CreateOr(C1, C2);
    393   }
    394 
    395   // If the comparison is only false for one or two elements, emit direct
    396   // comparisons.
    397   if (SecondFalseElement != Overdefined) {
    398     // None false -> true.
    399     if (FirstFalseElement == Undefined)
    400       return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(GEP->getContext()));
    401 
    402     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
    403 
    404     // False for one element -> 'i != 47'.
    405     if (SecondFalseElement == Undefined)
    406       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
    407 
    408     // False for two elements -> 'i != 47 & i != 72'.
    409     Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
    410     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
    411     Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
    412     return BinaryOperator::CreateAnd(C1, C2);
    413   }
    414 
    415   // If the comparison can be replaced with a range comparison for the elements
    416   // where it is true, emit the range check.
    417   if (TrueRangeEnd != Overdefined) {
    418     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
    419 
    420     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
    421     if (FirstTrueElement) {
    422       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
    423       Idx = Builder->CreateAdd(Idx, Offs);
    424     }
    425 
    426     Value *End = ConstantInt::get(Idx->getType(),
    427                                   TrueRangeEnd-FirstTrueElement+1);
    428     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
    429   }
    430 
    431   // False range check.
    432   if (FalseRangeEnd != Overdefined) {
    433     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
    434     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
    435     if (FirstFalseElement) {
    436       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
    437       Idx = Builder->CreateAdd(Idx, Offs);
    438     }
    439 
    440     Value *End = ConstantInt::get(Idx->getType(),
    441                                   FalseRangeEnd-FirstFalseElement);
    442     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
    443   }
    444 
    445 
    446   // If a 32-bit or 64-bit magic bitvector captures the entire comparison state
    447   // of this load, replace it with computation that does:
    448   //   ((magic_cst >> i) & 1) != 0
    449   if (ArrayElementCount <= 32 ||
    450       (TD && ArrayElementCount <= 64 && TD->isLegalInteger(64))) {
    451     Type *Ty;
    452     if (ArrayElementCount <= 32)
    453       Ty = Type::getInt32Ty(Init->getContext());
    454     else
    455       Ty = Type::getInt64Ty(Init->getContext());
    456     Value *V = Builder->CreateIntCast(Idx, Ty, false);
    457     V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
    458     V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
    459     return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
    460   }
    461 
    462   return 0;
    463 }
    464 
    465 
    466 /// EvaluateGEPOffsetExpression - Return a value that can be used to compare
    467 /// the *offset* implied by a GEP to zero.  For example, if we have &A[i], we
    468 /// want to return 'i' for "icmp ne i, 0".  Note that, in general, indices can
    469 /// be complex, and scales are involved.  The above expression would also be
    470 /// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
    471 /// This later form is less amenable to optimization though, and we are allowed
    472 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
    473 ///
    474 /// If we can't emit an optimized form for this expression, this returns null.
    475 ///
    476 static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) {
    477   DataLayout &TD = *IC.getDataLayout();
    478   gep_type_iterator GTI = gep_type_begin(GEP);
    479 
    480   // Check to see if this gep only has a single variable index.  If so, and if
    481   // any constant indices are a multiple of its scale, then we can compute this
    482   // in terms of the scale of the variable index.  For example, if the GEP
    483   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
    484   // because the expression will cross zero at the same point.
    485   unsigned i, e = GEP->getNumOperands();
    486   int64_t Offset = 0;
    487   for (i = 1; i != e; ++i, ++GTI) {
    488     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
    489       // Compute the aggregate offset of constant indices.
    490       if (CI->isZero()) continue;
    491 
    492       // Handle a struct index, which adds its field offset to the pointer.
    493       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    494         Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
    495       } else {
    496         uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
    497         Offset += Size*CI->getSExtValue();
    498       }
    499     } else {
    500       // Found our variable index.
    501       break;
    502     }
    503   }
    504 
    505   // If there are no variable indices, we must have a constant offset, just
    506   // evaluate it the general way.
    507   if (i == e) return 0;
    508 
    509   Value *VariableIdx = GEP->getOperand(i);
    510   // Determine the scale factor of the variable element.  For example, this is
    511   // 4 if the variable index is into an array of i32.
    512   uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType());
    513 
    514   // Verify that there are no other variable indices.  If so, emit the hard way.
    515   for (++i, ++GTI; i != e; ++i, ++GTI) {
    516     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
    517     if (!CI) return 0;
    518 
    519     // Compute the aggregate offset of constant indices.
    520     if (CI->isZero()) continue;
    521 
    522     // Handle a struct index, which adds its field offset to the pointer.
    523     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    524       Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
    525     } else {
    526       uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
    527       Offset += Size*CI->getSExtValue();
    528     }
    529   }
    530 
    531   // Okay, we know we have a single variable index, which must be a
    532   // pointer/array/vector index.  If there is no offset, life is simple, return
    533   // the index.
    534   unsigned IntPtrWidth = TD.getPointerSizeInBits();
    535   if (Offset == 0) {
    536     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
    537     // we don't need to bother extending: the extension won't affect where the
    538     // computation crosses zero.
    539     if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
    540       Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
    541       VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
    542     }
    543     return VariableIdx;
    544   }
    545 
    546   // Otherwise, there is an index.  The computation we will do will be modulo
    547   // the pointer size, so get it.
    548   uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
    549 
    550   Offset &= PtrSizeMask;
    551   VariableScale &= PtrSizeMask;
    552 
    553   // To do this transformation, any constant index must be a multiple of the
    554   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
    555   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
    556   // multiple of the variable scale.
    557   int64_t NewOffs = Offset / (int64_t)VariableScale;
    558   if (Offset != NewOffs*(int64_t)VariableScale)
    559     return 0;
    560 
    561   // Okay, we can do this evaluation.  Start by converting the index to intptr.
    562   Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
    563   if (VariableIdx->getType() != IntPtrTy)
    564     VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
    565                                             true /*Signed*/);
    566   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
    567   return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
    568 }
    569 
    570 /// FoldGEPICmp - Fold comparisons between a GEP instruction and something
    571 /// else.  At this point we know that the GEP is on the LHS of the comparison.
    572 Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
    573                                        ICmpInst::Predicate Cond,
    574                                        Instruction &I) {
    575   // Don't transform signed compares of GEPs into index compares. Even if the
    576   // GEP is inbounds, the final add of the base pointer can have signed overflow
    577   // and would change the result of the icmp.
    578   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
    579   // the maximum signed value for the pointer type.
    580   if (ICmpInst::isSigned(Cond))
    581     return 0;
    582 
    583   // Look through bitcasts.
    584   if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
    585     RHS = BCI->getOperand(0);
    586 
    587   Value *PtrBase = GEPLHS->getOperand(0);
    588   if (TD && PtrBase == RHS && GEPLHS->isInBounds()) {
    589     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
    590     // This transformation (ignoring the base and scales) is valid because we
    591     // know pointers can't overflow since the gep is inbounds.  See if we can
    592     // output an optimized form.
    593     Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this);
    594 
    595     // If not, synthesize the offset the hard way.
    596     if (Offset == 0)
    597       Offset = EmitGEPOffset(GEPLHS);
    598     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
    599                         Constant::getNullValue(Offset->getType()));
    600   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
    601     // If the base pointers are different, but the indices are the same, just
    602     // compare the base pointer.
    603     if (PtrBase != GEPRHS->getOperand(0)) {
    604       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
    605       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
    606                         GEPRHS->getOperand(0)->getType();
    607       if (IndicesTheSame)
    608         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
    609           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
    610             IndicesTheSame = false;
    611             break;
    612           }
    613 
    614       // If all indices are the same, just compare the base pointers.
    615       if (IndicesTheSame)
    616         return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
    617                             GEPLHS->getOperand(0), GEPRHS->getOperand(0));
    618 
    619       // If we're comparing GEPs with two base pointers that only differ in type
    620       // and both GEPs have only constant indices or just one use, then fold
    621       // the compare with the adjusted indices.
    622       if (TD && GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
    623           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
    624           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
    625           PtrBase->stripPointerCasts() ==
    626             GEPRHS->getOperand(0)->stripPointerCasts()) {
    627         Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond),
    628                                          EmitGEPOffset(GEPLHS),
    629                                          EmitGEPOffset(GEPRHS));
    630         return ReplaceInstUsesWith(I, Cmp);
    631       }
    632 
    633       // Otherwise, the base pointers are different and the indices are
    634       // different, bail out.
    635       return 0;
    636     }
    637 
    638     // If one of the GEPs has all zero indices, recurse.
    639     bool AllZeros = true;
    640     for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
    641       if (!isa<Constant>(GEPLHS->getOperand(i)) ||
    642           !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
    643         AllZeros = false;
    644         break;
    645       }
    646     if (AllZeros)
    647       return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
    648                           ICmpInst::getSwappedPredicate(Cond), I);
    649 
    650     // If the other GEP has all zero indices, recurse.
    651     AllZeros = true;
    652     for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
    653       if (!isa<Constant>(GEPRHS->getOperand(i)) ||
    654           !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
    655         AllZeros = false;
    656         break;
    657       }
    658     if (AllZeros)
    659       return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
    660 
    661     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
    662     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
    663       // If the GEPs only differ by one index, compare it.
    664       unsigned NumDifferences = 0;  // Keep track of # differences.
    665       unsigned DiffOperand = 0;     // The operand that differs.
    666       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
    667         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
    668           if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
    669                    GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
    670             // Irreconcilable differences.
    671             NumDifferences = 2;
    672             break;
    673           } else {
    674             if (NumDifferences++) break;
    675             DiffOperand = i;
    676           }
    677         }
    678 
    679       if (NumDifferences == 0)   // SAME GEP?
    680         return ReplaceInstUsesWith(I, // No comparison is needed here.
    681                                ConstantInt::get(Type::getInt1Ty(I.getContext()),
    682                                              ICmpInst::isTrueWhenEqual(Cond)));
    683 
    684       else if (NumDifferences == 1 && GEPsInBounds) {
    685         Value *LHSV = GEPLHS->getOperand(DiffOperand);
    686         Value *RHSV = GEPRHS->getOperand(DiffOperand);
    687         // Make sure we do a signed comparison here.
    688         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
    689       }
    690     }
    691 
    692     // Only lower this if the icmp is the only user of the GEP or if we expect
    693     // the result to fold to a constant!
    694     if (TD &&
    695         GEPsInBounds &&
    696         (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
    697         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
    698       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
    699       Value *L = EmitGEPOffset(GEPLHS);
    700       Value *R = EmitGEPOffset(GEPRHS);
    701       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
    702     }
    703   }
    704   return 0;
    705 }
    706 
    707 /// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
    708 Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI,
    709                                             Value *X, ConstantInt *CI,
    710                                             ICmpInst::Predicate Pred,
    711                                             Value *TheAdd) {
    712   // If we have X+0, exit early (simplifying logic below) and let it get folded
    713   // elsewhere.   icmp X+0, X  -> icmp X, X
    714   if (CI->isZero()) {
    715     bool isTrue = ICmpInst::isTrueWhenEqual(Pred);
    716     return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
    717   }
    718 
    719   // (X+4) == X -> false.
    720   if (Pred == ICmpInst::ICMP_EQ)
    721     return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext()));
    722 
    723   // (X+4) != X -> true.
    724   if (Pred == ICmpInst::ICMP_NE)
    725     return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
    726 
    727   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
    728   // so the values can never be equal.  Similarly for all other "or equals"
    729   // operators.
    730 
    731   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
    732   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
    733   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
    734   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
    735     Value *R =
    736       ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
    737     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
    738   }
    739 
    740   // (X+1) >u X        --> X <u (0-1)        --> X != 255
    741   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
    742   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
    743   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
    744     return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
    745 
    746   unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
    747   ConstantInt *SMax = ConstantInt::get(X->getContext(),
    748                                        APInt::getSignedMaxValue(BitWidth));
    749 
    750   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
    751   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
    752   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
    753   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
    754   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
    755   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
    756   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
    757     return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
    758 
    759   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
    760   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
    761   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
    762   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
    763   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
    764   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
    765 
    766   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
    767   Constant *C = ConstantInt::get(X->getContext(), CI->getValue()-1);
    768   return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
    769 }
    770 
    771 /// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
    772 /// and CmpRHS are both known to be integer constants.
    773 Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
    774                                           ConstantInt *DivRHS) {
    775   ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
    776   const APInt &CmpRHSV = CmpRHS->getValue();
    777 
    778   // FIXME: If the operand types don't match the type of the divide
    779   // then don't attempt this transform. The code below doesn't have the
    780   // logic to deal with a signed divide and an unsigned compare (and
    781   // vice versa). This is because (x /s C1) <s C2  produces different
    782   // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
    783   // (x /u C1) <u C2.  Simply casting the operands and result won't
    784   // work. :(  The if statement below tests that condition and bails
    785   // if it finds it.
    786   bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
    787   if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
    788     return 0;
    789   if (DivRHS->isZero())
    790     return 0; // The ProdOV computation fails on divide by zero.
    791   if (DivIsSigned && DivRHS->isAllOnesValue())
    792     return 0; // The overflow computation also screws up here
    793   if (DivRHS->isOne()) {
    794     // This eliminates some funny cases with INT_MIN.
    795     ICI.setOperand(0, DivI->getOperand(0));   // X/1 == X.
    796     return &ICI;
    797   }
    798 
    799   // Compute Prod = CI * DivRHS. We are essentially solving an equation
    800   // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
    801   // C2 (CI). By solving for X we can turn this into a range check
    802   // instead of computing a divide.
    803   Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
    804 
    805   // Determine if the product overflows by seeing if the product is
    806   // not equal to the divide. Make sure we do the same kind of divide
    807   // as in the LHS instruction that we're folding.
    808   bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
    809                  ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
    810 
    811   // Get the ICmp opcode
    812   ICmpInst::Predicate Pred = ICI.getPredicate();
    813 
    814   /// If the division is known to be exact, then there is no remainder from the
    815   /// divide, so the covered range size is unit, otherwise it is the divisor.
    816   ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
    817 
    818   // Figure out the interval that is being checked.  For example, a comparison
    819   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
    820   // Compute this interval based on the constants involved and the signedness of
    821   // the compare/divide.  This computes a half-open interval, keeping track of
    822   // whether either value in the interval overflows.  After analysis each
    823   // overflow variable is set to 0 if it's corresponding bound variable is valid
    824   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
    825   int LoOverflow = 0, HiOverflow = 0;
    826   Constant *LoBound = 0, *HiBound = 0;
    827 
    828   if (!DivIsSigned) {  // udiv
    829     // e.g. X/5 op 3  --> [15, 20)
    830     LoBound = Prod;
    831     HiOverflow = LoOverflow = ProdOV;
    832     if (!HiOverflow) {
    833       // If this is not an exact divide, then many values in the range collapse
    834       // to the same result value.
    835       HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
    836     }
    837 
    838   } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
    839     if (CmpRHSV == 0) {       // (X / pos) op 0
    840       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
    841       LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
    842       HiBound = RangeSize;
    843     } else if (CmpRHSV.isStrictlyPositive()) {   // (X / pos) op pos
    844       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
    845       HiOverflow = LoOverflow = ProdOV;
    846       if (!HiOverflow)
    847         HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
    848     } else {                       // (X / pos) op neg
    849       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
    850       HiBound = AddOne(Prod);
    851       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
    852       if (!LoOverflow) {
    853         ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
    854         LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
    855       }
    856     }
    857   } else if (DivRHS->isNegative()) { // Divisor is < 0.
    858     if (DivI->isExact())
    859       RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
    860     if (CmpRHSV == 0) {       // (X / neg) op 0
    861       // e.g. X/-5 op 0  --> [-4, 5)
    862       LoBound = AddOne(RangeSize);
    863       HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
    864       if (HiBound == DivRHS) {     // -INTMIN = INTMIN
    865         HiOverflow = 1;            // [INTMIN+1, overflow)
    866         HiBound = 0;               // e.g. X/INTMIN = 0 --> X > INTMIN
    867       }
    868     } else if (CmpRHSV.isStrictlyPositive()) {   // (X / neg) op pos
    869       // e.g. X/-5 op 3  --> [-19, -14)
    870       HiBound = AddOne(Prod);
    871       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
    872       if (!LoOverflow)
    873         LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
    874     } else {                       // (X / neg) op neg
    875       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
    876       LoOverflow = HiOverflow = ProdOV;
    877       if (!HiOverflow)
    878         HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
    879     }
    880 
    881     // Dividing by a negative swaps the condition.  LT <-> GT
    882     Pred = ICmpInst::getSwappedPredicate(Pred);
    883   }
    884 
    885   Value *X = DivI->getOperand(0);
    886   switch (Pred) {
    887   default: llvm_unreachable("Unhandled icmp opcode!");
    888   case ICmpInst::ICMP_EQ:
    889     if (LoOverflow && HiOverflow)
    890       return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
    891     if (HiOverflow)
    892       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
    893                           ICmpInst::ICMP_UGE, X, LoBound);
    894     if (LoOverflow)
    895       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
    896                           ICmpInst::ICMP_ULT, X, HiBound);
    897     return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
    898                                                     DivIsSigned, true));
    899   case ICmpInst::ICMP_NE:
    900     if (LoOverflow && HiOverflow)
    901       return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
    902     if (HiOverflow)
    903       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
    904                           ICmpInst::ICMP_ULT, X, LoBound);
    905     if (LoOverflow)
    906       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
    907                           ICmpInst::ICMP_UGE, X, HiBound);
    908     return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
    909                                                     DivIsSigned, false));
    910   case ICmpInst::ICMP_ULT:
    911   case ICmpInst::ICMP_SLT:
    912     if (LoOverflow == +1)   // Low bound is greater than input range.
    913       return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
    914     if (LoOverflow == -1)   // Low bound is less than input range.
    915       return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
    916     return new ICmpInst(Pred, X, LoBound);
    917   case ICmpInst::ICMP_UGT:
    918   case ICmpInst::ICMP_SGT:
    919     if (HiOverflow == +1)       // High bound greater than input range.
    920       return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
    921     if (HiOverflow == -1)       // High bound less than input range.
    922       return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
    923     if (Pred == ICmpInst::ICMP_UGT)
    924       return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
    925     return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
    926   }
    927 }
    928 
    929 /// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
    930 Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
    931                                           ConstantInt *ShAmt) {
    932   const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
    933 
    934   // Check that the shift amount is in range.  If not, don't perform
    935   // undefined shifts.  When the shift is visited it will be
    936   // simplified.
    937   uint32_t TypeBits = CmpRHSV.getBitWidth();
    938   uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
    939   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
    940     return 0;
    941 
    942   if (!ICI.isEquality()) {
    943     // If we have an unsigned comparison and an ashr, we can't simplify this.
    944     // Similarly for signed comparisons with lshr.
    945     if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
    946       return 0;
    947 
    948     // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
    949     // by a power of 2.  Since we already have logic to simplify these,
    950     // transform to div and then simplify the resultant comparison.
    951     if (Shr->getOpcode() == Instruction::AShr &&
    952         (!Shr->isExact() || ShAmtVal == TypeBits - 1))
    953       return 0;
    954 
    955     // Revisit the shift (to delete it).
    956     Worklist.Add(Shr);
    957 
    958     Constant *DivCst =
    959       ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
    960 
    961     Value *Tmp =
    962       Shr->getOpcode() == Instruction::AShr ?
    963       Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
    964       Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
    965 
    966     ICI.setOperand(0, Tmp);
    967 
    968     // If the builder folded the binop, just return it.
    969     BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
    970     if (TheDiv == 0)
    971       return &ICI;
    972 
    973     // Otherwise, fold this div/compare.
    974     assert(TheDiv->getOpcode() == Instruction::SDiv ||
    975            TheDiv->getOpcode() == Instruction::UDiv);
    976 
    977     Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
    978     assert(Res && "This div/cst should have folded!");
    979     return Res;
    980   }
    981 
    982 
    983   // If we are comparing against bits always shifted out, the
    984   // comparison cannot succeed.
    985   APInt Comp = CmpRHSV << ShAmtVal;
    986   ConstantInt *ShiftedCmpRHS = ConstantInt::get(ICI.getContext(), Comp);
    987   if (Shr->getOpcode() == Instruction::LShr)
    988     Comp = Comp.lshr(ShAmtVal);
    989   else
    990     Comp = Comp.ashr(ShAmtVal);
    991 
    992   if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
    993     bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
    994     Constant *Cst = ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
    995                                      IsICMP_NE);
    996     return ReplaceInstUsesWith(ICI, Cst);
    997   }
    998 
    999   // Otherwise, check to see if the bits shifted out are known to be zero.
   1000   // If so, we can compare against the unshifted value:
   1001   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
   1002   if (Shr->hasOneUse() && Shr->isExact())
   1003     return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
   1004 
   1005   if (Shr->hasOneUse()) {
   1006     // Otherwise strength reduce the shift into an and.
   1007     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
   1008     Constant *Mask = ConstantInt::get(ICI.getContext(), Val);
   1009 
   1010     Value *And = Builder->CreateAnd(Shr->getOperand(0),
   1011                                     Mask, Shr->getName()+".mask");
   1012     return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
   1013   }
   1014   return 0;
   1015 }
   1016 
   1017 
   1018 /// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
   1019 ///
   1020 Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
   1021                                                           Instruction *LHSI,
   1022                                                           ConstantInt *RHS) {
   1023   const APInt &RHSV = RHS->getValue();
   1024 
   1025   switch (LHSI->getOpcode()) {
   1026   case Instruction::Trunc:
   1027     if (ICI.isEquality() && LHSI->hasOneUse()) {
   1028       // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
   1029       // of the high bits truncated out of x are known.
   1030       unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
   1031              SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
   1032       APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
   1033       ComputeMaskedBits(LHSI->getOperand(0), KnownZero, KnownOne);
   1034 
   1035       // If all the high bits are known, we can do this xform.
   1036       if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
   1037         // Pull in the high bits from known-ones set.
   1038         APInt NewRHS = RHS->getValue().zext(SrcBits);
   1039         NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits-DstBits);
   1040         return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
   1041                             ConstantInt::get(ICI.getContext(), NewRHS));
   1042       }
   1043     }
   1044     break;
   1045 
   1046   case Instruction::Xor:         // (icmp pred (xor X, XorCST), CI)
   1047     if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
   1048       // If this is a comparison that tests the signbit (X < 0) or (x > -1),
   1049       // fold the xor.
   1050       if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
   1051           (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
   1052         Value *CompareVal = LHSI->getOperand(0);
   1053 
   1054         // If the sign bit of the XorCST is not set, there is no change to
   1055         // the operation, just stop using the Xor.
   1056         if (!XorCST->isNegative()) {
   1057           ICI.setOperand(0, CompareVal);
   1058           Worklist.Add(LHSI);
   1059           return &ICI;
   1060         }
   1061 
   1062         // Was the old condition true if the operand is positive?
   1063         bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
   1064 
   1065         // If so, the new one isn't.
   1066         isTrueIfPositive ^= true;
   1067 
   1068         if (isTrueIfPositive)
   1069           return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
   1070                               SubOne(RHS));
   1071         else
   1072           return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
   1073                               AddOne(RHS));
   1074       }
   1075 
   1076       if (LHSI->hasOneUse()) {
   1077         // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
   1078         if (!ICI.isEquality() && XorCST->getValue().isSignBit()) {
   1079           const APInt &SignBit = XorCST->getValue();
   1080           ICmpInst::Predicate Pred = ICI.isSigned()
   1081                                          ? ICI.getUnsignedPredicate()
   1082                                          : ICI.getSignedPredicate();
   1083           return new ICmpInst(Pred, LHSI->getOperand(0),
   1084                               ConstantInt::get(ICI.getContext(),
   1085                                                RHSV ^ SignBit));
   1086         }
   1087 
   1088         // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
   1089         if (!ICI.isEquality() && XorCST->isMaxValue(true)) {
   1090           const APInt &NotSignBit = XorCST->getValue();
   1091           ICmpInst::Predicate Pred = ICI.isSigned()
   1092                                          ? ICI.getUnsignedPredicate()
   1093                                          : ICI.getSignedPredicate();
   1094           Pred = ICI.getSwappedPredicate(Pred);
   1095           return new ICmpInst(Pred, LHSI->getOperand(0),
   1096                               ConstantInt::get(ICI.getContext(),
   1097                                                RHSV ^ NotSignBit));
   1098         }
   1099       }
   1100     }
   1101     break;
   1102   case Instruction::And:         // (icmp pred (and X, AndCST), RHS)
   1103     if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
   1104         LHSI->getOperand(0)->hasOneUse()) {
   1105       ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
   1106 
   1107       // If the LHS is an AND of a truncating cast, we can widen the
   1108       // and/compare to be the input width without changing the value
   1109       // produced, eliminating a cast.
   1110       if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
   1111         // We can do this transformation if either the AND constant does not
   1112         // have its sign bit set or if it is an equality comparison.
   1113         // Extending a relational comparison when we're checking the sign
   1114         // bit would not work.
   1115         if (ICI.isEquality() ||
   1116             (!AndCST->isNegative() && RHSV.isNonNegative())) {
   1117           Value *NewAnd =
   1118             Builder->CreateAnd(Cast->getOperand(0),
   1119                                ConstantExpr::getZExt(AndCST, Cast->getSrcTy()));
   1120           NewAnd->takeName(LHSI);
   1121           return new ICmpInst(ICI.getPredicate(), NewAnd,
   1122                               ConstantExpr::getZExt(RHS, Cast->getSrcTy()));
   1123         }
   1124       }
   1125 
   1126       // If the LHS is an AND of a zext, and we have an equality compare, we can
   1127       // shrink the and/compare to the smaller type, eliminating the cast.
   1128       if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) {
   1129         IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy());
   1130         // Make sure we don't compare the upper bits, SimplifyDemandedBits
   1131         // should fold the icmp to true/false in that case.
   1132         if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) {
   1133           Value *NewAnd =
   1134             Builder->CreateAnd(Cast->getOperand(0),
   1135                                ConstantExpr::getTrunc(AndCST, Ty));
   1136           NewAnd->takeName(LHSI);
   1137           return new ICmpInst(ICI.getPredicate(), NewAnd,
   1138                               ConstantExpr::getTrunc(RHS, Ty));
   1139         }
   1140       }
   1141 
   1142       // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
   1143       // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This
   1144       // happens a LOT in code produced by the C front-end, for bitfield
   1145       // access.
   1146       BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
   1147       if (Shift && !Shift->isShift())
   1148         Shift = 0;
   1149 
   1150       ConstantInt *ShAmt;
   1151       ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
   1152       Type *Ty = Shift ? Shift->getType() : 0;  // Type of the shift.
   1153       Type *AndTy = AndCST->getType();          // Type of the and.
   1154 
   1155       // We can fold this as long as we can't shift unknown bits
   1156       // into the mask.  This can only happen with signed shift
   1157       // rights, as they sign-extend.
   1158       if (ShAmt) {
   1159         bool CanFold = Shift->isLogicalShift();
   1160         if (!CanFold) {
   1161           // To test for the bad case of the signed shr, see if any
   1162           // of the bits shifted in could be tested after the mask.
   1163           uint32_t TyBits = Ty->getPrimitiveSizeInBits();
   1164           int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
   1165 
   1166           uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
   1167           if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
   1168                AndCST->getValue()) == 0)
   1169             CanFold = true;
   1170         }
   1171 
   1172         if (CanFold) {
   1173           Constant *NewCst;
   1174           if (Shift->getOpcode() == Instruction::Shl)
   1175             NewCst = ConstantExpr::getLShr(RHS, ShAmt);
   1176           else
   1177             NewCst = ConstantExpr::getShl(RHS, ShAmt);
   1178 
   1179           // Check to see if we are shifting out any of the bits being
   1180           // compared.
   1181           if (ConstantExpr::get(Shift->getOpcode(),
   1182                                        NewCst, ShAmt) != RHS) {
   1183             // If we shifted bits out, the fold is not going to work out.
   1184             // As a special case, check to see if this means that the
   1185             // result is always true or false now.
   1186             if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
   1187               return ReplaceInstUsesWith(ICI,
   1188                                        ConstantInt::getFalse(ICI.getContext()));
   1189             if (ICI.getPredicate() == ICmpInst::ICMP_NE)
   1190               return ReplaceInstUsesWith(ICI,
   1191                                        ConstantInt::getTrue(ICI.getContext()));
   1192           } else {
   1193             ICI.setOperand(1, NewCst);
   1194             Constant *NewAndCST;
   1195             if (Shift->getOpcode() == Instruction::Shl)
   1196               NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
   1197             else
   1198               NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
   1199             LHSI->setOperand(1, NewAndCST);
   1200             LHSI->setOperand(0, Shift->getOperand(0));
   1201             Worklist.Add(Shift); // Shift is dead.
   1202             return &ICI;
   1203           }
   1204         }
   1205       }
   1206 
   1207       // Turn ((X >> Y) & C) == 0  into  (X & (C << Y)) == 0.  The later is
   1208       // preferable because it allows the C<<Y expression to be hoisted out
   1209       // of a loop if Y is invariant and X is not.
   1210       if (Shift && Shift->hasOneUse() && RHSV == 0 &&
   1211           ICI.isEquality() && !Shift->isArithmeticShift() &&
   1212           !isa<Constant>(Shift->getOperand(0))) {
   1213         // Compute C << Y.
   1214         Value *NS;
   1215         if (Shift->getOpcode() == Instruction::LShr) {
   1216           NS = Builder->CreateShl(AndCST, Shift->getOperand(1));
   1217         } else {
   1218           // Insert a logical shift.
   1219           NS = Builder->CreateLShr(AndCST, Shift->getOperand(1));
   1220         }
   1221 
   1222         // Compute X & (C << Y).
   1223         Value *NewAnd =
   1224           Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
   1225 
   1226         ICI.setOperand(0, NewAnd);
   1227         return &ICI;
   1228       }
   1229 
   1230       // Replace ((X & AndCST) > RHSV) with ((X & AndCST) != 0), if any
   1231       // bit set in (X & AndCST) will produce a result greater than RHSV.
   1232       if (ICI.getPredicate() == ICmpInst::ICMP_UGT) {
   1233         unsigned NTZ = AndCST->getValue().countTrailingZeros();
   1234         if ((NTZ < AndCST->getBitWidth()) &&
   1235             APInt::getOneBitSet(AndCST->getBitWidth(), NTZ).ugt(RHSV))
   1236           return new ICmpInst(ICmpInst::ICMP_NE, LHSI,
   1237                               Constant::getNullValue(RHS->getType()));
   1238       }
   1239     }
   1240 
   1241     // Try to optimize things like "A[i]&42 == 0" to index computations.
   1242     if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
   1243       if (GetElementPtrInst *GEP =
   1244           dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
   1245         if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
   1246           if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
   1247               !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
   1248             ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
   1249             if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
   1250               return Res;
   1251           }
   1252     }
   1253     break;
   1254 
   1255   case Instruction::Or: {
   1256     if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
   1257       break;
   1258     Value *P, *Q;
   1259     if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
   1260       // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
   1261       // -> and (icmp eq P, null), (icmp eq Q, null).
   1262       Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
   1263                                         Constant::getNullValue(P->getType()));
   1264       Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
   1265                                         Constant::getNullValue(Q->getType()));
   1266       Instruction *Op;
   1267       if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
   1268         Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
   1269       else
   1270         Op = BinaryOperator::CreateOr(ICIP, ICIQ);
   1271       return Op;
   1272     }
   1273     break;
   1274   }
   1275 
   1276   case Instruction::Shl: {       // (icmp pred (shl X, ShAmt), CI)
   1277     ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
   1278     if (!ShAmt) break;
   1279 
   1280     uint32_t TypeBits = RHSV.getBitWidth();
   1281 
   1282     // Check that the shift amount is in range.  If not, don't perform
   1283     // undefined shifts.  When the shift is visited it will be
   1284     // simplified.
   1285     if (ShAmt->uge(TypeBits))
   1286       break;
   1287 
   1288     if (ICI.isEquality()) {
   1289       // If we are comparing against bits always shifted out, the
   1290       // comparison cannot succeed.
   1291       Constant *Comp =
   1292         ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
   1293                                                                  ShAmt);
   1294       if (Comp != RHS) {// Comparing against a bit that we know is zero.
   1295         bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
   1296         Constant *Cst =
   1297           ConstantInt::get(Type::getInt1Ty(ICI.getContext()), IsICMP_NE);
   1298         return ReplaceInstUsesWith(ICI, Cst);
   1299       }
   1300 
   1301       // If the shift is NUW, then it is just shifting out zeros, no need for an
   1302       // AND.
   1303       if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
   1304         return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
   1305                             ConstantExpr::getLShr(RHS, ShAmt));
   1306 
   1307       if (LHSI->hasOneUse()) {
   1308         // Otherwise strength reduce the shift into an and.
   1309         uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
   1310         Constant *Mask =
   1311           ConstantInt::get(ICI.getContext(), APInt::getLowBitsSet(TypeBits,
   1312                                                        TypeBits-ShAmtVal));
   1313 
   1314         Value *And =
   1315           Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
   1316         return new ICmpInst(ICI.getPredicate(), And,
   1317                             ConstantExpr::getLShr(RHS, ShAmt));
   1318       }
   1319     }
   1320 
   1321     // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
   1322     bool TrueIfSigned = false;
   1323     if (LHSI->hasOneUse() &&
   1324         isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
   1325       // (X << 31) <s 0  --> (X&1) != 0
   1326       Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
   1327                                         APInt::getOneBitSet(TypeBits,
   1328                                             TypeBits-ShAmt->getZExtValue()-1));
   1329       Value *And =
   1330         Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
   1331       return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
   1332                           And, Constant::getNullValue(And->getType()));
   1333     }
   1334 
   1335     // Transform (icmp pred iM (shl iM %v, N), CI)
   1336     // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (CI>>N))
   1337     // Transform the shl to a trunc if (trunc (CI>>N)) has no loss and M-N.
   1338     // This enables to get rid of the shift in favor of a trunc which can be
   1339     // free on the target. It has the additional benefit of comparing to a
   1340     // smaller constant, which will be target friendly.
   1341     unsigned Amt = ShAmt->getLimitedValue(TypeBits-1);
   1342     if (LHSI->hasOneUse() &&
   1343         Amt != 0 && RHSV.countTrailingZeros() >= Amt) {
   1344       Type *NTy = IntegerType::get(ICI.getContext(), TypeBits - Amt);
   1345       Constant *NCI = ConstantExpr::getTrunc(
   1346                         ConstantExpr::getAShr(RHS,
   1347                           ConstantInt::get(RHS->getType(), Amt)),
   1348                         NTy);
   1349       return new ICmpInst(ICI.getPredicate(),
   1350                           Builder->CreateTrunc(LHSI->getOperand(0), NTy),
   1351                           NCI);
   1352     }
   1353 
   1354     break;
   1355   }
   1356 
   1357   case Instruction::LShr:         // (icmp pred (shr X, ShAmt), CI)
   1358   case Instruction::AShr: {
   1359     // Handle equality comparisons of shift-by-constant.
   1360     BinaryOperator *BO = cast<BinaryOperator>(LHSI);
   1361     if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
   1362       if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt))
   1363         return Res;
   1364     }
   1365 
   1366     // Handle exact shr's.
   1367     if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) {
   1368       if (RHSV.isMinValue())
   1369         return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS);
   1370     }
   1371     break;
   1372   }
   1373 
   1374   case Instruction::SDiv:
   1375   case Instruction::UDiv:
   1376     // Fold: icmp pred ([us]div X, C1), C2 -> range test
   1377     // Fold this div into the comparison, producing a range check.
   1378     // Determine, based on the divide type, what the range is being
   1379     // checked.  If there is an overflow on the low or high side, remember
   1380     // it, otherwise compute the range [low, hi) bounding the new value.
   1381     // See: InsertRangeTest above for the kinds of replacements possible.
   1382     if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
   1383       if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
   1384                                           DivRHS))
   1385         return R;
   1386     break;
   1387 
   1388   case Instruction::Add:
   1389     // Fold: icmp pred (add X, C1), C2
   1390     if (!ICI.isEquality()) {
   1391       ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
   1392       if (!LHSC) break;
   1393       const APInt &LHSV = LHSC->getValue();
   1394 
   1395       ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
   1396                             .subtract(LHSV);
   1397 
   1398       if (ICI.isSigned()) {
   1399         if (CR.getLower().isSignBit()) {
   1400           return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
   1401                               ConstantInt::get(ICI.getContext(),CR.getUpper()));
   1402         } else if (CR.getUpper().isSignBit()) {
   1403           return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
   1404                               ConstantInt::get(ICI.getContext(),CR.getLower()));
   1405         }
   1406       } else {
   1407         if (CR.getLower().isMinValue()) {
   1408           return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
   1409                               ConstantInt::get(ICI.getContext(),CR.getUpper()));
   1410         } else if (CR.getUpper().isMinValue()) {
   1411           return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
   1412                               ConstantInt::get(ICI.getContext(),CR.getLower()));
   1413         }
   1414       }
   1415     }
   1416     break;
   1417   }
   1418 
   1419   // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
   1420   if (ICI.isEquality()) {
   1421     bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
   1422 
   1423     // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
   1424     // the second operand is a constant, simplify a bit.
   1425     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
   1426       switch (BO->getOpcode()) {
   1427       case Instruction::SRem:
   1428         // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
   1429         if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
   1430           const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
   1431           if (V.sgt(1) && V.isPowerOf2()) {
   1432             Value *NewRem =
   1433               Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
   1434                                   BO->getName());
   1435             return new ICmpInst(ICI.getPredicate(), NewRem,
   1436                                 Constant::getNullValue(BO->getType()));
   1437           }
   1438         }
   1439         break;
   1440       case Instruction::Add:
   1441         // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
   1442         if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
   1443           if (BO->hasOneUse())
   1444             return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1445                                 ConstantExpr::getSub(RHS, BOp1C));
   1446         } else if (RHSV == 0) {
   1447           // Replace ((add A, B) != 0) with (A != -B) if A or B is
   1448           // efficiently invertible, or if the add has just this one use.
   1449           Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
   1450 
   1451           if (Value *NegVal = dyn_castNegVal(BOp1))
   1452             return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
   1453           if (Value *NegVal = dyn_castNegVal(BOp0))
   1454             return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
   1455           if (BO->hasOneUse()) {
   1456             Value *Neg = Builder->CreateNeg(BOp1);
   1457             Neg->takeName(BO);
   1458             return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
   1459           }
   1460         }
   1461         break;
   1462       case Instruction::Xor:
   1463         // For the xor case, we can xor two constants together, eliminating
   1464         // the explicit xor.
   1465         if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
   1466           return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1467                               ConstantExpr::getXor(RHS, BOC));
   1468         } else if (RHSV == 0) {
   1469           // Replace ((xor A, B) != 0) with (A != B)
   1470           return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1471                               BO->getOperand(1));
   1472         }
   1473         break;
   1474       case Instruction::Sub:
   1475         // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
   1476         if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
   1477           if (BO->hasOneUse())
   1478             return new ICmpInst(ICI.getPredicate(), BO->getOperand(1),
   1479                                 ConstantExpr::getSub(BOp0C, RHS));
   1480         } else if (RHSV == 0) {
   1481           // Replace ((sub A, B) != 0) with (A != B)
   1482           return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1483                               BO->getOperand(1));
   1484         }
   1485         break;
   1486       case Instruction::Or:
   1487         // If bits are being or'd in that are not present in the constant we
   1488         // are comparing against, then the comparison could never succeed!
   1489         if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
   1490           Constant *NotCI = ConstantExpr::getNot(RHS);
   1491           if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
   1492             return ReplaceInstUsesWith(ICI,
   1493                              ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
   1494                                        isICMP_NE));
   1495         }
   1496         break;
   1497 
   1498       case Instruction::And:
   1499         if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
   1500           // If bits are being compared against that are and'd out, then the
   1501           // comparison can never succeed!
   1502           if ((RHSV & ~BOC->getValue()) != 0)
   1503             return ReplaceInstUsesWith(ICI,
   1504                              ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
   1505                                        isICMP_NE));
   1506 
   1507           // If we have ((X & C) == C), turn it into ((X & C) != 0).
   1508           if (RHS == BOC && RHSV.isPowerOf2())
   1509             return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
   1510                                 ICmpInst::ICMP_NE, LHSI,
   1511                                 Constant::getNullValue(RHS->getType()));
   1512 
   1513           // Don't perform the following transforms if the AND has multiple uses
   1514           if (!BO->hasOneUse())
   1515             break;
   1516 
   1517           // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
   1518           if (BOC->getValue().isSignBit()) {
   1519             Value *X = BO->getOperand(0);
   1520             Constant *Zero = Constant::getNullValue(X->getType());
   1521             ICmpInst::Predicate pred = isICMP_NE ?
   1522               ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
   1523             return new ICmpInst(pred, X, Zero);
   1524           }
   1525 
   1526           // ((X & ~7) == 0) --> X < 8
   1527           if (RHSV == 0 && isHighOnes(BOC)) {
   1528             Value *X = BO->getOperand(0);
   1529             Constant *NegX = ConstantExpr::getNeg(BOC);
   1530             ICmpInst::Predicate pred = isICMP_NE ?
   1531               ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
   1532             return new ICmpInst(pred, X, NegX);
   1533           }
   1534         }
   1535       default: break;
   1536       }
   1537     } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
   1538       // Handle icmp {eq|ne} <intrinsic>, intcst.
   1539       switch (II->getIntrinsicID()) {
   1540       case Intrinsic::bswap:
   1541         Worklist.Add(II);
   1542         ICI.setOperand(0, II->getArgOperand(0));
   1543         ICI.setOperand(1, ConstantInt::get(II->getContext(), RHSV.byteSwap()));
   1544         return &ICI;
   1545       case Intrinsic::ctlz:
   1546       case Intrinsic::cttz:
   1547         // ctz(A) == bitwidth(a)  ->  A == 0 and likewise for !=
   1548         if (RHSV == RHS->getType()->getBitWidth()) {
   1549           Worklist.Add(II);
   1550           ICI.setOperand(0, II->getArgOperand(0));
   1551           ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
   1552           return &ICI;
   1553         }
   1554         break;
   1555       case Intrinsic::ctpop:
   1556         // popcount(A) == 0  ->  A == 0 and likewise for !=
   1557         if (RHS->isZero()) {
   1558           Worklist.Add(II);
   1559           ICI.setOperand(0, II->getArgOperand(0));
   1560           ICI.setOperand(1, RHS);
   1561           return &ICI;
   1562         }
   1563         break;
   1564       default:
   1565         break;
   1566       }
   1567     }
   1568   }
   1569   return 0;
   1570 }
   1571 
   1572 /// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
   1573 /// We only handle extending casts so far.
   1574 ///
   1575 Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
   1576   const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
   1577   Value *LHSCIOp        = LHSCI->getOperand(0);
   1578   Type *SrcTy     = LHSCIOp->getType();
   1579   Type *DestTy    = LHSCI->getType();
   1580   Value *RHSCIOp;
   1581 
   1582   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
   1583   // integer type is the same size as the pointer type.
   1584   if (TD && LHSCI->getOpcode() == Instruction::PtrToInt &&
   1585       TD->getPointerSizeInBits() ==
   1586          cast<IntegerType>(DestTy)->getBitWidth()) {
   1587     Value *RHSOp = 0;
   1588     if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
   1589       RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
   1590     } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
   1591       RHSOp = RHSC->getOperand(0);
   1592       // If the pointer types don't match, insert a bitcast.
   1593       if (LHSCIOp->getType() != RHSOp->getType())
   1594         RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
   1595     }
   1596 
   1597     if (RHSOp)
   1598       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
   1599   }
   1600 
   1601   // The code below only handles extension cast instructions, so far.
   1602   // Enforce this.
   1603   if (LHSCI->getOpcode() != Instruction::ZExt &&
   1604       LHSCI->getOpcode() != Instruction::SExt)
   1605     return 0;
   1606 
   1607   bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
   1608   bool isSignedCmp = ICI.isSigned();
   1609 
   1610   if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
   1611     // Not an extension from the same type?
   1612     RHSCIOp = CI->getOperand(0);
   1613     if (RHSCIOp->getType() != LHSCIOp->getType())
   1614       return 0;
   1615 
   1616     // If the signedness of the two casts doesn't agree (i.e. one is a sext
   1617     // and the other is a zext), then we can't handle this.
   1618     if (CI->getOpcode() != LHSCI->getOpcode())
   1619       return 0;
   1620 
   1621     // Deal with equality cases early.
   1622     if (ICI.isEquality())
   1623       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
   1624 
   1625     // A signed comparison of sign extended values simplifies into a
   1626     // signed comparison.
   1627     if (isSignedCmp && isSignedExt)
   1628       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
   1629 
   1630     // The other three cases all fold into an unsigned comparison.
   1631     return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
   1632   }
   1633 
   1634   // If we aren't dealing with a constant on the RHS, exit early
   1635   ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
   1636   if (!CI)
   1637     return 0;
   1638 
   1639   // Compute the constant that would happen if we truncated to SrcTy then
   1640   // reextended to DestTy.
   1641   Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
   1642   Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
   1643                                                 Res1, DestTy);
   1644 
   1645   // If the re-extended constant didn't change...
   1646   if (Res2 == CI) {
   1647     // Deal with equality cases early.
   1648     if (ICI.isEquality())
   1649       return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
   1650 
   1651     // A signed comparison of sign extended values simplifies into a
   1652     // signed comparison.
   1653     if (isSignedExt && isSignedCmp)
   1654       return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
   1655 
   1656     // The other three cases all fold into an unsigned comparison.
   1657     return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
   1658   }
   1659 
   1660   // The re-extended constant changed so the constant cannot be represented
   1661   // in the shorter type. Consequently, we cannot emit a simple comparison.
   1662   // All the cases that fold to true or false will have already been handled
   1663   // by SimplifyICmpInst, so only deal with the tricky case.
   1664 
   1665   if (isSignedCmp || !isSignedExt)
   1666     return 0;
   1667 
   1668   // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
   1669   // should have been folded away previously and not enter in here.
   1670 
   1671   // We're performing an unsigned comp with a sign extended value.
   1672   // This is true if the input is >= 0. [aka >s -1]
   1673   Constant *NegOne = Constant::getAllOnesValue(SrcTy);
   1674   Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
   1675 
   1676   // Finally, return the value computed.
   1677   if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
   1678     return ReplaceInstUsesWith(ICI, Result);
   1679 
   1680   assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
   1681   return BinaryOperator::CreateNot(Result);
   1682 }
   1683 
   1684 /// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
   1685 ///   I = icmp ugt (add (add A, B), CI2), CI1
   1686 /// If this is of the form:
   1687 ///   sum = a + b
   1688 ///   if (sum+128 >u 255)
   1689 /// Then replace it with llvm.sadd.with.overflow.i8.
   1690 ///
   1691 static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
   1692                                           ConstantInt *CI2, ConstantInt *CI1,
   1693                                           InstCombiner &IC) {
   1694   // The transformation we're trying to do here is to transform this into an
   1695   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
   1696   // with a narrower add, and discard the add-with-constant that is part of the
   1697   // range check (if we can't eliminate it, this isn't profitable).
   1698 
   1699   // In order to eliminate the add-with-constant, the compare can be its only
   1700   // use.
   1701   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
   1702   if (!AddWithCst->hasOneUse()) return 0;
   1703 
   1704   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
   1705   if (!CI2->getValue().isPowerOf2()) return 0;
   1706   unsigned NewWidth = CI2->getValue().countTrailingZeros();
   1707   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return 0;
   1708 
   1709   // The width of the new add formed is 1 more than the bias.
   1710   ++NewWidth;
   1711 
   1712   // Check to see that CI1 is an all-ones value with NewWidth bits.
   1713   if (CI1->getBitWidth() == NewWidth ||
   1714       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
   1715     return 0;
   1716 
   1717   // This is only really a signed overflow check if the inputs have been
   1718   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
   1719   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
   1720   unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
   1721   if (IC.ComputeNumSignBits(A) < NeededSignBits ||
   1722       IC.ComputeNumSignBits(B) < NeededSignBits)
   1723     return 0;
   1724 
   1725   // In order to replace the original add with a narrower
   1726   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
   1727   // and truncates that discard the high bits of the add.  Verify that this is
   1728   // the case.
   1729   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
   1730   for (Value::use_iterator UI = OrigAdd->use_begin(), E = OrigAdd->use_end();
   1731        UI != E; ++UI) {
   1732     if (*UI == AddWithCst) continue;
   1733 
   1734     // Only accept truncates for now.  We would really like a nice recursive
   1735     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
   1736     // chain to see which bits of a value are actually demanded.  If the
   1737     // original add had another add which was then immediately truncated, we
   1738     // could still do the transformation.
   1739     TruncInst *TI = dyn_cast<TruncInst>(*UI);
   1740     if (TI == 0 ||
   1741         TI->getType()->getPrimitiveSizeInBits() > NewWidth) return 0;
   1742   }
   1743 
   1744   // If the pattern matches, truncate the inputs to the narrower type and
   1745   // use the sadd_with_overflow intrinsic to efficiently compute both the
   1746   // result and the overflow bit.
   1747   Module *M = I.getParent()->getParent()->getParent();
   1748 
   1749   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
   1750   Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
   1751                                        NewType);
   1752 
   1753   InstCombiner::BuilderTy *Builder = IC.Builder;
   1754 
   1755   // Put the new code above the original add, in case there are any uses of the
   1756   // add between the add and the compare.
   1757   Builder->SetInsertPoint(OrigAdd);
   1758 
   1759   Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
   1760   Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
   1761   CallInst *Call = Builder->CreateCall2(F, TruncA, TruncB, "sadd");
   1762   Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
   1763   Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
   1764 
   1765   // The inner add was the result of the narrow add, zero extended to the
   1766   // wider type.  Replace it with the result computed by the intrinsic.
   1767   IC.ReplaceInstUsesWith(*OrigAdd, ZExt);
   1768 
   1769   // The original icmp gets replaced with the overflow value.
   1770   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
   1771 }
   1772 
   1773 static Instruction *ProcessUAddIdiom(Instruction &I, Value *OrigAddV,
   1774                                      InstCombiner &IC) {
   1775   // Don't bother doing this transformation for pointers, don't do it for
   1776   // vectors.
   1777   if (!isa<IntegerType>(OrigAddV->getType())) return 0;
   1778 
   1779   // If the add is a constant expr, then we don't bother transforming it.
   1780   Instruction *OrigAdd = dyn_cast<Instruction>(OrigAddV);
   1781   if (OrigAdd == 0) return 0;
   1782 
   1783   Value *LHS = OrigAdd->getOperand(0), *RHS = OrigAdd->getOperand(1);
   1784 
   1785   // Put the new code above the original add, in case there are any uses of the
   1786   // add between the add and the compare.
   1787   InstCombiner::BuilderTy *Builder = IC.Builder;
   1788   Builder->SetInsertPoint(OrigAdd);
   1789 
   1790   Module *M = I.getParent()->getParent()->getParent();
   1791   Type *Ty = LHS->getType();
   1792   Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
   1793   CallInst *Call = Builder->CreateCall2(F, LHS, RHS, "uadd");
   1794   Value *Add = Builder->CreateExtractValue(Call, 0);
   1795 
   1796   IC.ReplaceInstUsesWith(*OrigAdd, Add);
   1797 
   1798   // The original icmp gets replaced with the overflow value.
   1799   return ExtractValueInst::Create(Call, 1, "uadd.overflow");
   1800 }
   1801 
   1802 // DemandedBitsLHSMask - When performing a comparison against a constant,
   1803 // it is possible that not all the bits in the LHS are demanded.  This helper
   1804 // method computes the mask that IS demanded.
   1805 static APInt DemandedBitsLHSMask(ICmpInst &I,
   1806                                  unsigned BitWidth, bool isSignCheck) {
   1807   if (isSignCheck)
   1808     return APInt::getSignBit(BitWidth);
   1809 
   1810   ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
   1811   if (!CI) return APInt::getAllOnesValue(BitWidth);
   1812   const APInt &RHS = CI->getValue();
   1813 
   1814   switch (I.getPredicate()) {
   1815   // For a UGT comparison, we don't care about any bits that
   1816   // correspond to the trailing ones of the comparand.  The value of these
   1817   // bits doesn't impact the outcome of the comparison, because any value
   1818   // greater than the RHS must differ in a bit higher than these due to carry.
   1819   case ICmpInst::ICMP_UGT: {
   1820     unsigned trailingOnes = RHS.countTrailingOnes();
   1821     APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
   1822     return ~lowBitsSet;
   1823   }
   1824 
   1825   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
   1826   // Any value less than the RHS must differ in a higher bit because of carries.
   1827   case ICmpInst::ICMP_ULT: {
   1828     unsigned trailingZeros = RHS.countTrailingZeros();
   1829     APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
   1830     return ~lowBitsSet;
   1831   }
   1832 
   1833   default:
   1834     return APInt::getAllOnesValue(BitWidth);
   1835   }
   1836 
   1837 }
   1838 
   1839 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
   1840   bool Changed = false;
   1841   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1842 
   1843   /// Orders the operands of the compare so that they are listed from most
   1844   /// complex to least complex.  This puts constants before unary operators,
   1845   /// before binary operators.
   1846   if (getComplexity(Op0) < getComplexity(Op1)) {
   1847     I.swapOperands();
   1848     std::swap(Op0, Op1);
   1849     Changed = true;
   1850   }
   1851 
   1852   if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, TD))
   1853     return ReplaceInstUsesWith(I, V);
   1854 
   1855   // comparing -val or val with non-zero is the same as just comparing val
   1856   // ie, abs(val) != 0 -> val != 0
   1857   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero()))
   1858   {
   1859     Value *Cond, *SelectTrue, *SelectFalse;
   1860     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
   1861                             m_Value(SelectFalse)))) {
   1862       if (Value *V = dyn_castNegVal(SelectTrue)) {
   1863         if (V == SelectFalse)
   1864           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
   1865       }
   1866       else if (Value *V = dyn_castNegVal(SelectFalse)) {
   1867         if (V == SelectTrue)
   1868           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
   1869       }
   1870     }
   1871   }
   1872 
   1873   Type *Ty = Op0->getType();
   1874 
   1875   // icmp's with boolean values can always be turned into bitwise operations
   1876   if (Ty->isIntegerTy(1)) {
   1877     switch (I.getPredicate()) {
   1878     default: llvm_unreachable("Invalid icmp instruction!");
   1879     case ICmpInst::ICMP_EQ: {               // icmp eq i1 A, B -> ~(A^B)
   1880       Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
   1881       return BinaryOperator::CreateNot(Xor);
   1882     }
   1883     case ICmpInst::ICMP_NE:                  // icmp eq i1 A, B -> A^B
   1884       return BinaryOperator::CreateXor(Op0, Op1);
   1885 
   1886     case ICmpInst::ICMP_UGT:
   1887       std::swap(Op0, Op1);                   // Change icmp ugt -> icmp ult
   1888       // FALL THROUGH
   1889     case ICmpInst::ICMP_ULT:{               // icmp ult i1 A, B -> ~A & B
   1890       Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
   1891       return BinaryOperator::CreateAnd(Not, Op1);
   1892     }
   1893     case ICmpInst::ICMP_SGT:
   1894       std::swap(Op0, Op1);                   // Change icmp sgt -> icmp slt
   1895       // FALL THROUGH
   1896     case ICmpInst::ICMP_SLT: {               // icmp slt i1 A, B -> A & ~B
   1897       Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
   1898       return BinaryOperator::CreateAnd(Not, Op0);
   1899     }
   1900     case ICmpInst::ICMP_UGE:
   1901       std::swap(Op0, Op1);                   // Change icmp uge -> icmp ule
   1902       // FALL THROUGH
   1903     case ICmpInst::ICMP_ULE: {               //  icmp ule i1 A, B -> ~A | B
   1904       Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
   1905       return BinaryOperator::CreateOr(Not, Op1);
   1906     }
   1907     case ICmpInst::ICMP_SGE:
   1908       std::swap(Op0, Op1);                   // Change icmp sge -> icmp sle
   1909       // FALL THROUGH
   1910     case ICmpInst::ICMP_SLE: {               //  icmp sle i1 A, B -> A | ~B
   1911       Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
   1912       return BinaryOperator::CreateOr(Not, Op0);
   1913     }
   1914     }
   1915   }
   1916 
   1917   unsigned BitWidth = 0;
   1918   if (Ty->isIntOrIntVectorTy())
   1919     BitWidth = Ty->getScalarSizeInBits();
   1920   else if (TD)  // Pointers require TD info to get their size.
   1921     BitWidth = TD->getTypeSizeInBits(Ty->getScalarType());
   1922 
   1923   bool isSignBit = false;
   1924 
   1925   // See if we are doing a comparison with a constant.
   1926   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   1927     Value *A = 0, *B = 0;
   1928 
   1929     // Match the following pattern, which is a common idiom when writing
   1930     // overflow-safe integer arithmetic function.  The source performs an
   1931     // addition in wider type, and explicitly checks for overflow using
   1932     // comparisons against INT_MIN and INT_MAX.  Simplify this by using the
   1933     // sadd_with_overflow intrinsic.
   1934     //
   1935     // TODO: This could probably be generalized to handle other overflow-safe
   1936     // operations if we worked out the formulas to compute the appropriate
   1937     // magic constants.
   1938     //
   1939     // sum = a + b
   1940     // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
   1941     {
   1942     ConstantInt *CI2;    // I = icmp ugt (add (add A, B), CI2), CI
   1943     if (I.getPredicate() == ICmpInst::ICMP_UGT &&
   1944         match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
   1945       if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
   1946         return Res;
   1947     }
   1948 
   1949     // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
   1950     if (I.isEquality() && CI->isZero() &&
   1951         match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
   1952       // (icmp cond A B) if cond is equality
   1953       return new ICmpInst(I.getPredicate(), A, B);
   1954     }
   1955 
   1956     // If we have an icmp le or icmp ge instruction, turn it into the
   1957     // appropriate icmp lt or icmp gt instruction.  This allows us to rely on
   1958     // them being folded in the code below.  The SimplifyICmpInst code has
   1959     // already handled the edge cases for us, so we just assert on them.
   1960     switch (I.getPredicate()) {
   1961     default: break;
   1962     case ICmpInst::ICMP_ULE:
   1963       assert(!CI->isMaxValue(false));                 // A <=u MAX -> TRUE
   1964       return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
   1965                           ConstantInt::get(CI->getContext(), CI->getValue()+1));
   1966     case ICmpInst::ICMP_SLE:
   1967       assert(!CI->isMaxValue(true));                  // A <=s MAX -> TRUE
   1968       return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
   1969                           ConstantInt::get(CI->getContext(), CI->getValue()+1));
   1970     case ICmpInst::ICMP_UGE:
   1971       assert(!CI->isMinValue(false));                 // A >=u MIN -> TRUE
   1972       return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
   1973                           ConstantInt::get(CI->getContext(), CI->getValue()-1));
   1974     case ICmpInst::ICMP_SGE:
   1975       assert(!CI->isMinValue(true));                  // A >=s MIN -> TRUE
   1976       return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
   1977                           ConstantInt::get(CI->getContext(), CI->getValue()-1));
   1978     }
   1979 
   1980     // If this comparison is a normal comparison, it demands all
   1981     // bits, if it is a sign bit comparison, it only demands the sign bit.
   1982     bool UnusedBit;
   1983     isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
   1984   }
   1985 
   1986   // See if we can fold the comparison based on range information we can get
   1987   // by checking whether bits are known to be zero or one in the input.
   1988   if (BitWidth != 0) {
   1989     APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
   1990     APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
   1991 
   1992     if (SimplifyDemandedBits(I.getOperandUse(0),
   1993                              DemandedBitsLHSMask(I, BitWidth, isSignBit),
   1994                              Op0KnownZero, Op0KnownOne, 0))
   1995       return &I;
   1996     if (SimplifyDemandedBits(I.getOperandUse(1),
   1997                              APInt::getAllOnesValue(BitWidth),
   1998                              Op1KnownZero, Op1KnownOne, 0))
   1999       return &I;
   2000 
   2001     // Given the known and unknown bits, compute a range that the LHS could be
   2002     // in.  Compute the Min, Max and RHS values based on the known bits. For the
   2003     // EQ and NE we use unsigned values.
   2004     APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
   2005     APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
   2006     if (I.isSigned()) {
   2007       ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
   2008                                              Op0Min, Op0Max);
   2009       ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
   2010                                              Op1Min, Op1Max);
   2011     } else {
   2012       ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
   2013                                                Op0Min, Op0Max);
   2014       ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
   2015                                                Op1Min, Op1Max);
   2016     }
   2017 
   2018     // If Min and Max are known to be the same, then SimplifyDemandedBits
   2019     // figured out that the LHS is a constant.  Just constant fold this now so
   2020     // that code below can assume that Min != Max.
   2021     if (!isa<Constant>(Op0) && Op0Min == Op0Max)
   2022       return new ICmpInst(I.getPredicate(),
   2023                           ConstantInt::get(Op0->getType(), Op0Min), Op1);
   2024     if (!isa<Constant>(Op1) && Op1Min == Op1Max)
   2025       return new ICmpInst(I.getPredicate(), Op0,
   2026                           ConstantInt::get(Op1->getType(), Op1Min));
   2027 
   2028     // Based on the range information we know about the LHS, see if we can
   2029     // simplify this comparison.  For example, (x&4) < 8 is always true.
   2030     switch (I.getPredicate()) {
   2031     default: llvm_unreachable("Unknown icmp opcode!");
   2032     case ICmpInst::ICMP_EQ: {
   2033       if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
   2034         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2035 
   2036       // If all bits are known zero except for one, then we know at most one
   2037       // bit is set.   If the comparison is against zero, then this is a check
   2038       // to see if *that* bit is set.
   2039       APInt Op0KnownZeroInverted = ~Op0KnownZero;
   2040       if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
   2041         // If the LHS is an AND with the same constant, look through it.
   2042         Value *LHS = 0;
   2043         ConstantInt *LHSC = 0;
   2044         if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
   2045             LHSC->getValue() != Op0KnownZeroInverted)
   2046           LHS = Op0;
   2047 
   2048         // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
   2049         // then turn "((1 << x)&8) == 0" into "x != 3".
   2050         Value *X = 0;
   2051         if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
   2052           unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
   2053           return new ICmpInst(ICmpInst::ICMP_NE, X,
   2054                               ConstantInt::get(X->getType(), CmpVal));
   2055         }
   2056 
   2057         // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
   2058         // then turn "((8 >>u x)&1) == 0" into "x != 3".
   2059         const APInt *CI;
   2060         if (Op0KnownZeroInverted == 1 &&
   2061             match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
   2062           return new ICmpInst(ICmpInst::ICMP_NE, X,
   2063                               ConstantInt::get(X->getType(),
   2064                                                CI->countTrailingZeros()));
   2065       }
   2066 
   2067       break;
   2068     }
   2069     case ICmpInst::ICMP_NE: {
   2070       if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
   2071         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2072 
   2073       // If all bits are known zero except for one, then we know at most one
   2074       // bit is set.   If the comparison is against zero, then this is a check
   2075       // to see if *that* bit is set.
   2076       APInt Op0KnownZeroInverted = ~Op0KnownZero;
   2077       if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
   2078         // If the LHS is an AND with the same constant, look through it.
   2079         Value *LHS = 0;
   2080         ConstantInt *LHSC = 0;
   2081         if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
   2082             LHSC->getValue() != Op0KnownZeroInverted)
   2083           LHS = Op0;
   2084 
   2085         // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
   2086         // then turn "((1 << x)&8) != 0" into "x == 3".
   2087         Value *X = 0;
   2088         if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
   2089           unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
   2090           return new ICmpInst(ICmpInst::ICMP_EQ, X,
   2091                               ConstantInt::get(X->getType(), CmpVal));
   2092         }
   2093 
   2094         // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
   2095         // then turn "((8 >>u x)&1) != 0" into "x == 3".
   2096         const APInt *CI;
   2097         if (Op0KnownZeroInverted == 1 &&
   2098             match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
   2099           return new ICmpInst(ICmpInst::ICMP_EQ, X,
   2100                               ConstantInt::get(X->getType(),
   2101                                                CI->countTrailingZeros()));
   2102       }
   2103 
   2104       break;
   2105     }
   2106     case ICmpInst::ICMP_ULT:
   2107       if (Op0Max.ult(Op1Min))          // A <u B -> true if max(A) < min(B)
   2108         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2109       if (Op0Min.uge(Op1Max))          // A <u B -> false if min(A) >= max(B)
   2110         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2111       if (Op1Min == Op0Max)            // A <u B -> A != B if max(A) == min(B)
   2112         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   2113       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2114         if (Op1Max == Op0Min+1)        // A <u C -> A == C-1 if min(A)+1 == C
   2115           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   2116                           ConstantInt::get(CI->getContext(), CI->getValue()-1));
   2117 
   2118         // (x <u 2147483648) -> (x >s -1)  -> true if sign bit clear
   2119         if (CI->isMinValue(true))
   2120           return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
   2121                            Constant::getAllOnesValue(Op0->getType()));
   2122       }
   2123       break;
   2124     case ICmpInst::ICMP_UGT:
   2125       if (Op0Min.ugt(Op1Max))          // A >u B -> true if min(A) > max(B)
   2126         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2127       if (Op0Max.ule(Op1Min))          // A >u B -> false if max(A) <= max(B)
   2128         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2129 
   2130       if (Op1Max == Op0Min)            // A >u B -> A != B if min(A) == max(B)
   2131         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   2132       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2133         if (Op1Min == Op0Max-1)        // A >u C -> A == C+1 if max(a)-1 == C
   2134           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   2135                           ConstantInt::get(CI->getContext(), CI->getValue()+1));
   2136 
   2137         // (x >u 2147483647) -> (x <s 0)  -> true if sign bit set
   2138         if (CI->isMaxValue(true))
   2139           return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
   2140                               Constant::getNullValue(Op0->getType()));
   2141       }
   2142       break;
   2143     case ICmpInst::ICMP_SLT:
   2144       if (Op0Max.slt(Op1Min))          // A <s B -> true if max(A) < min(C)
   2145         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2146       if (Op0Min.sge(Op1Max))          // A <s B -> false if min(A) >= max(C)
   2147         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2148       if (Op1Min == Op0Max)            // A <s B -> A != B if max(A) == min(B)
   2149         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   2150       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2151         if (Op1Max == Op0Min+1)        // A <s C -> A == C-1 if min(A)+1 == C
   2152           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   2153                           ConstantInt::get(CI->getContext(), CI->getValue()-1));
   2154       }
   2155       break;
   2156     case ICmpInst::ICMP_SGT:
   2157       if (Op0Min.sgt(Op1Max))          // A >s B -> true if min(A) > max(B)
   2158         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2159       if (Op0Max.sle(Op1Min))          // A >s B -> false if max(A) <= min(B)
   2160         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2161 
   2162       if (Op1Max == Op0Min)            // A >s B -> A != B if min(A) == max(B)
   2163         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   2164       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2165         if (Op1Min == Op0Max-1)        // A >s C -> A == C+1 if max(A)-1 == C
   2166           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   2167                           ConstantInt::get(CI->getContext(), CI->getValue()+1));
   2168       }
   2169       break;
   2170     case ICmpInst::ICMP_SGE:
   2171       assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
   2172       if (Op0Min.sge(Op1Max))          // A >=s B -> true if min(A) >= max(B)
   2173         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2174       if (Op0Max.slt(Op1Min))          // A >=s B -> false if max(A) < min(B)
   2175         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2176       break;
   2177     case ICmpInst::ICMP_SLE:
   2178       assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
   2179       if (Op0Max.sle(Op1Min))          // A <=s B -> true if max(A) <= min(B)
   2180         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2181       if (Op0Min.sgt(Op1Max))          // A <=s B -> false if min(A) > max(B)
   2182         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2183       break;
   2184     case ICmpInst::ICMP_UGE:
   2185       assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
   2186       if (Op0Min.uge(Op1Max))          // A >=u B -> true if min(A) >= max(B)
   2187         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2188       if (Op0Max.ult(Op1Min))          // A >=u B -> false if max(A) < min(B)
   2189         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2190       break;
   2191     case ICmpInst::ICMP_ULE:
   2192       assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
   2193       if (Op0Max.ule(Op1Min))          // A <=u B -> true if max(A) <= min(B)
   2194         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2195       if (Op0Min.ugt(Op1Max))          // A <=u B -> false if min(A) > max(B)
   2196         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2197       break;
   2198     }
   2199 
   2200     // Turn a signed comparison into an unsigned one if both operands
   2201     // are known to have the same sign.
   2202     if (I.isSigned() &&
   2203         ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
   2204          (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
   2205       return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
   2206   }
   2207 
   2208   // Test if the ICmpInst instruction is used exclusively by a select as
   2209   // part of a minimum or maximum operation. If so, refrain from doing
   2210   // any other folding. This helps out other analyses which understand
   2211   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
   2212   // and CodeGen. And in this case, at least one of the comparison
   2213   // operands has at least one user besides the compare (the select),
   2214   // which would often largely negate the benefit of folding anyway.
   2215   if (I.hasOneUse())
   2216     if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
   2217       if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
   2218           (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
   2219         return 0;
   2220 
   2221   // See if we are doing a comparison between a constant and an instruction that
   2222   // can be folded into the comparison.
   2223   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2224     // Since the RHS is a ConstantInt (CI), if the left hand side is an
   2225     // instruction, see if that instruction also has constants so that the
   2226     // instruction can be folded into the icmp
   2227     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
   2228       if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
   2229         return Res;
   2230   }
   2231 
   2232   // Handle icmp with constant (but not simple integer constant) RHS
   2233   if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
   2234     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
   2235       switch (LHSI->getOpcode()) {
   2236       case Instruction::GetElementPtr:
   2237           // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
   2238         if (RHSC->isNullValue() &&
   2239             cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
   2240           return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
   2241                   Constant::getNullValue(LHSI->getOperand(0)->getType()));
   2242         break;
   2243       case Instruction::PHI:
   2244         // Only fold icmp into the PHI if the phi and icmp are in the same
   2245         // block.  If in the same block, we're encouraging jump threading.  If
   2246         // not, we are just pessimizing the code by making an i1 phi.
   2247         if (LHSI->getParent() == I.getParent())
   2248           if (Instruction *NV = FoldOpIntoPhi(I))
   2249             return NV;
   2250         break;
   2251       case Instruction::Select: {
   2252         // If either operand of the select is a constant, we can fold the
   2253         // comparison into the select arms, which will cause one to be
   2254         // constant folded and the select turned into a bitwise or.
   2255         Value *Op1 = 0, *Op2 = 0;
   2256         if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1)))
   2257           Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
   2258         if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2)))
   2259           Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
   2260 
   2261         // We only want to perform this transformation if it will not lead to
   2262         // additional code. This is true if either both sides of the select
   2263         // fold to a constant (in which case the icmp is replaced with a select
   2264         // which will usually simplify) or this is the only user of the
   2265         // select (in which case we are trading a select+icmp for a simpler
   2266         // select+icmp).
   2267         if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) {
   2268           if (!Op1)
   2269             Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
   2270                                       RHSC, I.getName());
   2271           if (!Op2)
   2272             Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
   2273                                       RHSC, I.getName());
   2274           return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
   2275         }
   2276         break;
   2277       }
   2278       case Instruction::IntToPtr:
   2279         // icmp pred inttoptr(X), null -> icmp pred X, 0
   2280         if (RHSC->isNullValue() && TD &&
   2281             TD->getIntPtrType(RHSC->getContext()) ==
   2282                LHSI->getOperand(0)->getType())
   2283           return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
   2284                         Constant::getNullValue(LHSI->getOperand(0)->getType()));
   2285         break;
   2286 
   2287       case Instruction::Load:
   2288         // Try to optimize things like "A[i] > 4" to index computations.
   2289         if (GetElementPtrInst *GEP =
   2290               dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
   2291           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
   2292             if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
   2293                 !cast<LoadInst>(LHSI)->isVolatile())
   2294               if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
   2295                 return Res;
   2296         }
   2297         break;
   2298       }
   2299   }
   2300 
   2301   // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
   2302   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
   2303     if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
   2304       return NI;
   2305   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
   2306     if (Instruction *NI = FoldGEPICmp(GEP, Op0,
   2307                            ICmpInst::getSwappedPredicate(I.getPredicate()), I))
   2308       return NI;
   2309 
   2310   // Test to see if the operands of the icmp are casted versions of other
   2311   // values.  If the ptr->ptr cast can be stripped off both arguments, we do so
   2312   // now.
   2313   if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
   2314     if (Op0->getType()->isPointerTy() &&
   2315         (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
   2316       // We keep moving the cast from the left operand over to the right
   2317       // operand, where it can often be eliminated completely.
   2318       Op0 = CI->getOperand(0);
   2319 
   2320       // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
   2321       // so eliminate it as well.
   2322       if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
   2323         Op1 = CI2->getOperand(0);
   2324 
   2325       // If Op1 is a constant, we can fold the cast into the constant.
   2326       if (Op0->getType() != Op1->getType()) {
   2327         if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
   2328           Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
   2329         } else {
   2330           // Otherwise, cast the RHS right before the icmp
   2331           Op1 = Builder->CreateBitCast(Op1, Op0->getType());
   2332         }
   2333       }
   2334       return new ICmpInst(I.getPredicate(), Op0, Op1);
   2335     }
   2336   }
   2337 
   2338   if (isa<CastInst>(Op0)) {
   2339     // Handle the special case of: icmp (cast bool to X), <cst>
   2340     // This comes up when you have code like
   2341     //   int X = A < B;
   2342     //   if (X) ...
   2343     // For generality, we handle any zero-extension of any operand comparison
   2344     // with a constant or another cast from the same type.
   2345     if (isa<Constant>(Op1) || isa<CastInst>(Op1))
   2346       if (Instruction *R = visitICmpInstWithCastAndCast(I))
   2347         return R;
   2348   }
   2349 
   2350   // Special logic for binary operators.
   2351   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
   2352   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
   2353   if (BO0 || BO1) {
   2354     CmpInst::Predicate Pred = I.getPredicate();
   2355     bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
   2356     if (BO0 && isa<OverflowingBinaryOperator>(BO0))
   2357       NoOp0WrapProblem = ICmpInst::isEquality(Pred) ||
   2358         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
   2359         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
   2360     if (BO1 && isa<OverflowingBinaryOperator>(BO1))
   2361       NoOp1WrapProblem = ICmpInst::isEquality(Pred) ||
   2362         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
   2363         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
   2364 
   2365     // Analyze the case when either Op0 or Op1 is an add instruction.
   2366     // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
   2367     Value *A = 0, *B = 0, *C = 0, *D = 0;
   2368     if (BO0 && BO0->getOpcode() == Instruction::Add)
   2369       A = BO0->getOperand(0), B = BO0->getOperand(1);
   2370     if (BO1 && BO1->getOpcode() == Instruction::Add)
   2371       C = BO1->getOperand(0), D = BO1->getOperand(1);
   2372 
   2373     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
   2374     if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
   2375       return new ICmpInst(Pred, A == Op1 ? B : A,
   2376                           Constant::getNullValue(Op1->getType()));
   2377 
   2378     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
   2379     if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
   2380       return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
   2381                           C == Op0 ? D : C);
   2382 
   2383     // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
   2384     if (A && C && (A == C || A == D || B == C || B == D) &&
   2385         NoOp0WrapProblem && NoOp1WrapProblem &&
   2386         // Try not to increase register pressure.
   2387         BO0->hasOneUse() && BO1->hasOneUse()) {
   2388       // Determine Y and Z in the form icmp (X+Y), (X+Z).
   2389       Value *Y, *Z;
   2390       if (A == C) {
   2391         // C + B == C + D  ->  B == D
   2392         Y = B;
   2393         Z = D;
   2394       } else if (A == D) {
   2395         // D + B == C + D  ->  B == C
   2396         Y = B;
   2397         Z = C;
   2398       } else if (B == C) {
   2399         // A + C == C + D  ->  A == D
   2400         Y = A;
   2401         Z = D;
   2402       } else {
   2403         assert(B == D);
   2404         // A + D == C + D  ->  A == C
   2405         Y = A;
   2406         Z = C;
   2407       }
   2408       return new ICmpInst(Pred, Y, Z);
   2409     }
   2410 
   2411     // Analyze the case when either Op0 or Op1 is a sub instruction.
   2412     // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
   2413     A = 0; B = 0; C = 0; D = 0;
   2414     if (BO0 && BO0->getOpcode() == Instruction::Sub)
   2415       A = BO0->getOperand(0), B = BO0->getOperand(1);
   2416     if (BO1 && BO1->getOpcode() == Instruction::Sub)
   2417       C = BO1->getOperand(0), D = BO1->getOperand(1);
   2418 
   2419     // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
   2420     if (A == Op1 && NoOp0WrapProblem)
   2421       return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
   2422 
   2423     // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
   2424     if (C == Op0 && NoOp1WrapProblem)
   2425       return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
   2426 
   2427     // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
   2428     if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
   2429         // Try not to increase register pressure.
   2430         BO0->hasOneUse() && BO1->hasOneUse())
   2431       return new ICmpInst(Pred, A, C);
   2432 
   2433     // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
   2434     if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
   2435         // Try not to increase register pressure.
   2436         BO0->hasOneUse() && BO1->hasOneUse())
   2437       return new ICmpInst(Pred, D, B);
   2438 
   2439     BinaryOperator *SRem = NULL;
   2440     // icmp (srem X, Y), Y
   2441     if (BO0 && BO0->getOpcode() == Instruction::SRem &&
   2442         Op1 == BO0->getOperand(1))
   2443       SRem = BO0;
   2444     // icmp Y, (srem X, Y)
   2445     else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
   2446              Op0 == BO1->getOperand(1))
   2447       SRem = BO1;
   2448     if (SRem) {
   2449       // We don't check hasOneUse to avoid increasing register pressure because
   2450       // the value we use is the same value this instruction was already using.
   2451       switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
   2452         default: break;
   2453         case ICmpInst::ICMP_EQ:
   2454           return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2455         case ICmpInst::ICMP_NE:
   2456           return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2457         case ICmpInst::ICMP_SGT:
   2458         case ICmpInst::ICMP_SGE:
   2459           return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
   2460                               Constant::getAllOnesValue(SRem->getType()));
   2461         case ICmpInst::ICMP_SLT:
   2462         case ICmpInst::ICMP_SLE:
   2463           return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
   2464                               Constant::getNullValue(SRem->getType()));
   2465       }
   2466     }
   2467 
   2468     if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
   2469         BO0->hasOneUse() && BO1->hasOneUse() &&
   2470         BO0->getOperand(1) == BO1->getOperand(1)) {
   2471       switch (BO0->getOpcode()) {
   2472       default: break;
   2473       case Instruction::Add:
   2474       case Instruction::Sub:
   2475       case Instruction::Xor:
   2476         if (I.isEquality())    // a+x icmp eq/ne b+x --> a icmp b
   2477           return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
   2478                               BO1->getOperand(0));
   2479         // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
   2480         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
   2481           if (CI->getValue().isSignBit()) {
   2482             ICmpInst::Predicate Pred = I.isSigned()
   2483                                            ? I.getUnsignedPredicate()
   2484                                            : I.getSignedPredicate();
   2485             return new ICmpInst(Pred, BO0->getOperand(0),
   2486                                 BO1->getOperand(0));
   2487           }
   2488 
   2489           if (CI->isMaxValue(true)) {
   2490             ICmpInst::Predicate Pred = I.isSigned()
   2491                                            ? I.getUnsignedPredicate()
   2492                                            : I.getSignedPredicate();
   2493             Pred = I.getSwappedPredicate(Pred);
   2494             return new ICmpInst(Pred, BO0->getOperand(0),
   2495                                 BO1->getOperand(0));
   2496           }
   2497         }
   2498         break;
   2499       case Instruction::Mul:
   2500         if (!I.isEquality())
   2501           break;
   2502 
   2503         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
   2504           // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
   2505           // Mask = -1 >> count-trailing-zeros(Cst).
   2506           if (!CI->isZero() && !CI->isOne()) {
   2507             const APInt &AP = CI->getValue();
   2508             ConstantInt *Mask = ConstantInt::get(I.getContext(),
   2509                                     APInt::getLowBitsSet(AP.getBitWidth(),
   2510                                                          AP.getBitWidth() -
   2511                                                     AP.countTrailingZeros()));
   2512             Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
   2513             Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
   2514             return new ICmpInst(I.getPredicate(), And1, And2);
   2515           }
   2516         }
   2517         break;
   2518       case Instruction::UDiv:
   2519       case Instruction::LShr:
   2520         if (I.isSigned())
   2521           break;
   2522         // fall-through
   2523       case Instruction::SDiv:
   2524       case Instruction::AShr:
   2525         if (!BO0->isExact() || !BO1->isExact())
   2526           break;
   2527         return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
   2528                             BO1->getOperand(0));
   2529       case Instruction::Shl: {
   2530         bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
   2531         bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
   2532         if (!NUW && !NSW)
   2533           break;
   2534         if (!NSW && I.isSigned())
   2535           break;
   2536         return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
   2537                             BO1->getOperand(0));
   2538       }
   2539       }
   2540     }
   2541   }
   2542 
   2543   { Value *A, *B;
   2544     // ~x < ~y --> y < x
   2545     // ~x < cst --> ~cst < x
   2546     if (match(Op0, m_Not(m_Value(A)))) {
   2547       if (match(Op1, m_Not(m_Value(B))))
   2548         return new ICmpInst(I.getPredicate(), B, A);
   2549       if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
   2550         return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
   2551     }
   2552 
   2553     // (a+b) <u a  --> llvm.uadd.with.overflow.
   2554     // (a+b) <u b  --> llvm.uadd.with.overflow.
   2555     if (I.getPredicate() == ICmpInst::ICMP_ULT &&
   2556         match(Op0, m_Add(m_Value(A), m_Value(B))) &&
   2557         (Op1 == A || Op1 == B))
   2558       if (Instruction *R = ProcessUAddIdiom(I, Op0, *this))
   2559         return R;
   2560 
   2561     // a >u (a+b)  --> llvm.uadd.with.overflow.
   2562     // b >u (a+b)  --> llvm.uadd.with.overflow.
   2563     if (I.getPredicate() == ICmpInst::ICMP_UGT &&
   2564         match(Op1, m_Add(m_Value(A), m_Value(B))) &&
   2565         (Op0 == A || Op0 == B))
   2566       if (Instruction *R = ProcessUAddIdiom(I, Op1, *this))
   2567         return R;
   2568   }
   2569 
   2570   if (I.isEquality()) {
   2571     Value *A, *B, *C, *D;
   2572 
   2573     if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
   2574       if (A == Op1 || B == Op1) {    // (A^B) == A  ->  B == 0
   2575         Value *OtherVal = A == Op1 ? B : A;
   2576         return new ICmpInst(I.getPredicate(), OtherVal,
   2577                             Constant::getNullValue(A->getType()));
   2578       }
   2579 
   2580       if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
   2581         // A^c1 == C^c2 --> A == C^(c1^c2)
   2582         ConstantInt *C1, *C2;
   2583         if (match(B, m_ConstantInt(C1)) &&
   2584             match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
   2585           Constant *NC = ConstantInt::get(I.getContext(),
   2586                                           C1->getValue() ^ C2->getValue());
   2587           Value *Xor = Builder->CreateXor(C, NC);
   2588           return new ICmpInst(I.getPredicate(), A, Xor);
   2589         }
   2590 
   2591         // A^B == A^D -> B == D
   2592         if (A == C) return new ICmpInst(I.getPredicate(), B, D);
   2593         if (A == D) return new ICmpInst(I.getPredicate(), B, C);
   2594         if (B == C) return new ICmpInst(I.getPredicate(), A, D);
   2595         if (B == D) return new ICmpInst(I.getPredicate(), A, C);
   2596       }
   2597     }
   2598 
   2599     if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
   2600         (A == Op0 || B == Op0)) {
   2601       // A == (A^B)  ->  B == 0
   2602       Value *OtherVal = A == Op0 ? B : A;
   2603       return new ICmpInst(I.getPredicate(), OtherVal,
   2604                           Constant::getNullValue(A->getType()));
   2605     }
   2606 
   2607     // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
   2608     if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
   2609         match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
   2610       Value *X = 0, *Y = 0, *Z = 0;
   2611 
   2612       if (A == C) {
   2613         X = B; Y = D; Z = A;
   2614       } else if (A == D) {
   2615         X = B; Y = C; Z = A;
   2616       } else if (B == C) {
   2617         X = A; Y = D; Z = B;
   2618       } else if (B == D) {
   2619         X = A; Y = C; Z = B;
   2620       }
   2621 
   2622       if (X) {   // Build (X^Y) & Z
   2623         Op1 = Builder->CreateXor(X, Y);
   2624         Op1 = Builder->CreateAnd(Op1, Z);
   2625         I.setOperand(0, Op1);
   2626         I.setOperand(1, Constant::getNullValue(Op1->getType()));
   2627         return &I;
   2628       }
   2629     }
   2630 
   2631     // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
   2632     // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
   2633     ConstantInt *Cst1;
   2634     if ((Op0->hasOneUse() &&
   2635          match(Op0, m_ZExt(m_Value(A))) &&
   2636          match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
   2637         (Op1->hasOneUse() &&
   2638          match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
   2639          match(Op1, m_ZExt(m_Value(A))))) {
   2640       APInt Pow2 = Cst1->getValue() + 1;
   2641       if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
   2642           Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
   2643         return new ICmpInst(I.getPredicate(), A,
   2644                             Builder->CreateTrunc(B, A->getType()));
   2645     }
   2646 
   2647     // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
   2648     // "icmp (and X, mask), cst"
   2649     uint64_t ShAmt = 0;
   2650     if (Op0->hasOneUse() &&
   2651         match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A),
   2652                                            m_ConstantInt(ShAmt))))) &&
   2653         match(Op1, m_ConstantInt(Cst1)) &&
   2654         // Only do this when A has multiple uses.  This is most important to do
   2655         // when it exposes other optimizations.
   2656         !A->hasOneUse()) {
   2657       unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
   2658 
   2659       if (ShAmt < ASize) {
   2660         APInt MaskV =
   2661           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
   2662         MaskV <<= ShAmt;
   2663 
   2664         APInt CmpV = Cst1->getValue().zext(ASize);
   2665         CmpV <<= ShAmt;
   2666 
   2667         Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
   2668         return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
   2669       }
   2670     }
   2671   }
   2672 
   2673   {
   2674     Value *X; ConstantInt *Cst;
   2675     // icmp X+Cst, X
   2676     if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
   2677       return FoldICmpAddOpCst(I, X, Cst, I.getPredicate(), Op0);
   2678 
   2679     // icmp X, X+Cst
   2680     if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
   2681       return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate(), Op1);
   2682   }
   2683   return Changed ? &I : 0;
   2684 }
   2685 
   2686 
   2687 
   2688 
   2689 
   2690 
   2691 /// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
   2692 ///
   2693 Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
   2694                                                 Instruction *LHSI,
   2695                                                 Constant *RHSC) {
   2696   if (!isa<ConstantFP>(RHSC)) return 0;
   2697   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
   2698 
   2699   // Get the width of the mantissa.  We don't want to hack on conversions that
   2700   // might lose information from the integer, e.g. "i64 -> float"
   2701   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
   2702   if (MantissaWidth == -1) return 0;  // Unknown.
   2703 
   2704   // Check to see that the input is converted from an integer type that is small
   2705   // enough that preserves all bits.  TODO: check here for "known" sign bits.
   2706   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
   2707   unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits();
   2708 
   2709   // If this is a uitofp instruction, we need an extra bit to hold the sign.
   2710   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
   2711   if (LHSUnsigned)
   2712     ++InputSize;
   2713 
   2714   // If the conversion would lose info, don't hack on this.
   2715   if ((int)InputSize > MantissaWidth)
   2716     return 0;
   2717 
   2718   // Otherwise, we can potentially simplify the comparison.  We know that it
   2719   // will always come through as an integer value and we know the constant is
   2720   // not a NAN (it would have been previously simplified).
   2721   assert(!RHS.isNaN() && "NaN comparison not already folded!");
   2722 
   2723   ICmpInst::Predicate Pred;
   2724   switch (I.getPredicate()) {
   2725   default: llvm_unreachable("Unexpected predicate!");
   2726   case FCmpInst::FCMP_UEQ:
   2727   case FCmpInst::FCMP_OEQ:
   2728     Pred = ICmpInst::ICMP_EQ;
   2729     break;
   2730   case FCmpInst::FCMP_UGT:
   2731   case FCmpInst::FCMP_OGT:
   2732     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
   2733     break;
   2734   case FCmpInst::FCMP_UGE:
   2735   case FCmpInst::FCMP_OGE:
   2736     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
   2737     break;
   2738   case FCmpInst::FCMP_ULT:
   2739   case FCmpInst::FCMP_OLT:
   2740     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
   2741     break;
   2742   case FCmpInst::FCMP_ULE:
   2743   case FCmpInst::FCMP_OLE:
   2744     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
   2745     break;
   2746   case FCmpInst::FCMP_UNE:
   2747   case FCmpInst::FCMP_ONE:
   2748     Pred = ICmpInst::ICMP_NE;
   2749     break;
   2750   case FCmpInst::FCMP_ORD:
   2751     return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
   2752   case FCmpInst::FCMP_UNO:
   2753     return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
   2754   }
   2755 
   2756   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
   2757 
   2758   // Now we know that the APFloat is a normal number, zero or inf.
   2759 
   2760   // See if the FP constant is too large for the integer.  For example,
   2761   // comparing an i8 to 300.0.
   2762   unsigned IntWidth = IntTy->getScalarSizeInBits();
   2763 
   2764   if (!LHSUnsigned) {
   2765     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
   2766     // and large values.
   2767     APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
   2768     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
   2769                           APFloat::rmNearestTiesToEven);
   2770     if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
   2771       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
   2772           Pred == ICmpInst::ICMP_SLE)
   2773         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
   2774       return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
   2775     }
   2776   } else {
   2777     // If the RHS value is > UnsignedMax, fold the comparison. This handles
   2778     // +INF and large values.
   2779     APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false);
   2780     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
   2781                           APFloat::rmNearestTiesToEven);
   2782     if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
   2783       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
   2784           Pred == ICmpInst::ICMP_ULE)
   2785         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
   2786       return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
   2787     }
   2788   }
   2789 
   2790   if (!LHSUnsigned) {
   2791     // See if the RHS value is < SignedMin.
   2792     APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
   2793     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
   2794                           APFloat::rmNearestTiesToEven);
   2795     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
   2796       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
   2797           Pred == ICmpInst::ICMP_SGE)
   2798         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
   2799       return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
   2800     }
   2801   } else {
   2802     // See if the RHS value is < UnsignedMin.
   2803     APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
   2804     SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
   2805                           APFloat::rmNearestTiesToEven);
   2806     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
   2807       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
   2808           Pred == ICmpInst::ICMP_UGE)
   2809         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
   2810       return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
   2811     }
   2812   }
   2813 
   2814   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
   2815   // [0, UMAX], but it may still be fractional.  See if it is fractional by
   2816   // casting the FP value to the integer value and back, checking for equality.
   2817   // Don't do this for zero, because -0.0 is not fractional.
   2818   Constant *RHSInt = LHSUnsigned
   2819     ? ConstantExpr::getFPToUI(RHSC, IntTy)
   2820     : ConstantExpr::getFPToSI(RHSC, IntTy);
   2821   if (!RHS.isZero()) {
   2822     bool Equal = LHSUnsigned
   2823       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
   2824       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
   2825     if (!Equal) {
   2826       // If we had a comparison against a fractional value, we have to adjust
   2827       // the compare predicate and sometimes the value.  RHSC is rounded towards
   2828       // zero at this point.
   2829       switch (Pred) {
   2830       default: llvm_unreachable("Unexpected integer comparison!");
   2831       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
   2832         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
   2833       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
   2834         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
   2835       case ICmpInst::ICMP_ULE:
   2836         // (float)int <= 4.4   --> int <= 4
   2837         // (float)int <= -4.4  --> false
   2838         if (RHS.isNegative())
   2839           return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
   2840         break;
   2841       case ICmpInst::ICMP_SLE:
   2842         // (float)int <= 4.4   --> int <= 4
   2843         // (float)int <= -4.4  --> int < -4
   2844         if (RHS.isNegative())
   2845           Pred = ICmpInst::ICMP_SLT;
   2846         break;
   2847       case ICmpInst::ICMP_ULT:
   2848         // (float)int < -4.4   --> false
   2849         // (float)int < 4.4    --> int <= 4
   2850         if (RHS.isNegative())
   2851           return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
   2852         Pred = ICmpInst::ICMP_ULE;
   2853         break;
   2854       case ICmpInst::ICMP_SLT:
   2855         // (float)int < -4.4   --> int < -4
   2856         // (float)int < 4.4    --> int <= 4
   2857         if (!RHS.isNegative())
   2858           Pred = ICmpInst::ICMP_SLE;
   2859         break;
   2860       case ICmpInst::ICMP_UGT:
   2861         // (float)int > 4.4    --> int > 4
   2862         // (float)int > -4.4   --> true
   2863         if (RHS.isNegative())
   2864           return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
   2865         break;
   2866       case ICmpInst::ICMP_SGT:
   2867         // (float)int > 4.4    --> int > 4
   2868         // (float)int > -4.4   --> int >= -4
   2869         if (RHS.isNegative())
   2870           Pred = ICmpInst::ICMP_SGE;
   2871         break;
   2872       case ICmpInst::ICMP_UGE:
   2873         // (float)int >= -4.4   --> true
   2874         // (float)int >= 4.4    --> int > 4
   2875         if (RHS.isNegative())
   2876           return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
   2877         Pred = ICmpInst::ICMP_UGT;
   2878         break;
   2879       case ICmpInst::ICMP_SGE:
   2880         // (float)int >= -4.4   --> int >= -4
   2881         // (float)int >= 4.4    --> int > 4
   2882         if (!RHS.isNegative())
   2883           Pred = ICmpInst::ICMP_SGT;
   2884         break;
   2885       }
   2886     }
   2887   }
   2888 
   2889   // Lower this FP comparison into an appropriate integer version of the
   2890   // comparison.
   2891   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
   2892 }
   2893 
   2894 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
   2895   bool Changed = false;
   2896 
   2897   /// Orders the operands of the compare so that they are listed from most
   2898   /// complex to least complex.  This puts constants before unary operators,
   2899   /// before binary operators.
   2900   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
   2901     I.swapOperands();
   2902     Changed = true;
   2903   }
   2904 
   2905   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   2906 
   2907   if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, TD))
   2908     return ReplaceInstUsesWith(I, V);
   2909 
   2910   // Simplify 'fcmp pred X, X'
   2911   if (Op0 == Op1) {
   2912     switch (I.getPredicate()) {
   2913     default: llvm_unreachable("Unknown predicate!");
   2914     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
   2915     case FCmpInst::FCMP_ULT:    // True if unordered or less than
   2916     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
   2917     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
   2918       // Canonicalize these to be 'fcmp uno %X, 0.0'.
   2919       I.setPredicate(FCmpInst::FCMP_UNO);
   2920       I.setOperand(1, Constant::getNullValue(Op0->getType()));
   2921       return &I;
   2922 
   2923     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
   2924     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
   2925     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
   2926     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
   2927       // Canonicalize these to be 'fcmp ord %X, 0.0'.
   2928       I.setPredicate(FCmpInst::FCMP_ORD);
   2929       I.setOperand(1, Constant::getNullValue(Op0->getType()));
   2930       return &I;
   2931     }
   2932   }
   2933 
   2934   // Handle fcmp with constant RHS
   2935   if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
   2936     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
   2937       switch (LHSI->getOpcode()) {
   2938       case Instruction::FPExt: {
   2939         // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
   2940         FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
   2941         ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
   2942         if (!RHSF)
   2943           break;
   2944 
   2945         const fltSemantics *Sem;
   2946         // FIXME: This shouldn't be here.
   2947         if (LHSExt->getSrcTy()->isHalfTy())
   2948           Sem = &APFloat::IEEEhalf;
   2949         else if (LHSExt->getSrcTy()->isFloatTy())
   2950           Sem = &APFloat::IEEEsingle;
   2951         else if (LHSExt->getSrcTy()->isDoubleTy())
   2952           Sem = &APFloat::IEEEdouble;
   2953         else if (LHSExt->getSrcTy()->isFP128Ty())
   2954           Sem = &APFloat::IEEEquad;
   2955         else if (LHSExt->getSrcTy()->isX86_FP80Ty())
   2956           Sem = &APFloat::x87DoubleExtended;
   2957         else if (LHSExt->getSrcTy()->isPPC_FP128Ty())
   2958           Sem = &APFloat::PPCDoubleDouble;
   2959         else
   2960           break;
   2961 
   2962         bool Lossy;
   2963         APFloat F = RHSF->getValueAPF();
   2964         F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
   2965 
   2966         // Avoid lossy conversions and denormals. Zero is a special case
   2967         // that's OK to convert.
   2968         APFloat Fabs = F;
   2969         Fabs.clearSign();
   2970         if (!Lossy &&
   2971             ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
   2972                  APFloat::cmpLessThan) || Fabs.isZero()))
   2973 
   2974           return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
   2975                               ConstantFP::get(RHSC->getContext(), F));
   2976         break;
   2977       }
   2978       case Instruction::PHI:
   2979         // Only fold fcmp into the PHI if the phi and fcmp are in the same
   2980         // block.  If in the same block, we're encouraging jump threading.  If
   2981         // not, we are just pessimizing the code by making an i1 phi.
   2982         if (LHSI->getParent() == I.getParent())
   2983           if (Instruction *NV = FoldOpIntoPhi(I))
   2984             return NV;
   2985         break;
   2986       case Instruction::SIToFP:
   2987       case Instruction::UIToFP:
   2988         if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
   2989           return NV;
   2990         break;
   2991       case Instruction::Select: {
   2992         // If either operand of the select is a constant, we can fold the
   2993         // comparison into the select arms, which will cause one to be
   2994         // constant folded and the select turned into a bitwise or.
   2995         Value *Op1 = 0, *Op2 = 0;
   2996         if (LHSI->hasOneUse()) {
   2997           if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
   2998             // Fold the known value into the constant operand.
   2999             Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
   3000             // Insert a new FCmp of the other select operand.
   3001             Op2 = Builder->CreateFCmp(I.getPredicate(),
   3002                                       LHSI->getOperand(2), RHSC, I.getName());
   3003           } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
   3004             // Fold the known value into the constant operand.
   3005             Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
   3006             // Insert a new FCmp of the other select operand.
   3007             Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1),
   3008                                       RHSC, I.getName());
   3009           }
   3010         }
   3011 
   3012         if (Op1)
   3013           return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
   3014         break;
   3015       }
   3016       case Instruction::FSub: {
   3017         // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
   3018         Value *Op;
   3019         if (match(LHSI, m_FNeg(m_Value(Op))))
   3020           return new FCmpInst(I.getSwappedPredicate(), Op,
   3021                               ConstantExpr::getFNeg(RHSC));
   3022         break;
   3023       }
   3024       case Instruction::Load:
   3025         if (GetElementPtrInst *GEP =
   3026             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
   3027           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
   3028             if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
   3029                 !cast<LoadInst>(LHSI)->isVolatile())
   3030               if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
   3031                 return Res;
   3032         }
   3033         break;
   3034       case Instruction::Call: {
   3035         CallInst *CI = cast<CallInst>(LHSI);
   3036         LibFunc::Func Func;
   3037         // Various optimization for fabs compared with zero.
   3038         if (RHSC->isNullValue() && CI->getCalledFunction() &&
   3039             TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
   3040             TLI->has(Func)) {
   3041           if (Func == LibFunc::fabs || Func == LibFunc::fabsf ||
   3042               Func == LibFunc::fabsl) {
   3043             switch (I.getPredicate()) {
   3044             default: break;
   3045             // fabs(x) < 0 --> false
   3046             case FCmpInst::FCMP_OLT:
   3047               return ReplaceInstUsesWith(I, Builder->getFalse());
   3048             // fabs(x) > 0 --> x != 0
   3049             case FCmpInst::FCMP_OGT:
   3050               return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0),
   3051                                   RHSC);
   3052             // fabs(x) <= 0 --> x == 0
   3053             case FCmpInst::FCMP_OLE:
   3054               return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0),
   3055                                   RHSC);
   3056             // fabs(x) >= 0 --> !isnan(x)
   3057             case FCmpInst::FCMP_OGE:
   3058               return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0),
   3059                                   RHSC);
   3060             // fabs(x) == 0 --> x == 0
   3061             // fabs(x) != 0 --> x != 0
   3062             case FCmpInst::FCMP_OEQ:
   3063             case FCmpInst::FCMP_UEQ:
   3064             case FCmpInst::FCMP_ONE:
   3065             case FCmpInst::FCMP_UNE:
   3066               return new FCmpInst(I.getPredicate(), CI->getArgOperand(0),
   3067                                   RHSC);
   3068             }
   3069           }
   3070         }
   3071       }
   3072       }
   3073   }
   3074 
   3075   // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
   3076   Value *X, *Y;
   3077   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
   3078     return new FCmpInst(I.getSwappedPredicate(), X, Y);
   3079 
   3080   // fcmp (fpext x), (fpext y) -> fcmp x, y
   3081   if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
   3082     if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
   3083       if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
   3084         return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
   3085                             RHSExt->getOperand(0));
   3086 
   3087   return Changed ? &I : 0;
   3088 }
   3089