Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code to emit Stmt nodes as LLVM code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenFunction.h"
     15 #include "CGDebugInfo.h"
     16 #include "CodeGenModule.h"
     17 #include "TargetInfo.h"
     18 #include "clang/AST/StmtVisitor.h"
     19 #include "clang/Basic/PrettyStackTrace.h"
     20 #include "clang/Basic/TargetInfo.h"
     21 #include "llvm/ADT/StringExtras.h"
     22 #include "llvm/IR/DataLayout.h"
     23 #include "llvm/IR/InlineAsm.h"
     24 #include "llvm/IR/Intrinsics.h"
     25 using namespace clang;
     26 using namespace CodeGen;
     27 
     28 //===----------------------------------------------------------------------===//
     29 //                              Statement Emission
     30 //===----------------------------------------------------------------------===//
     31 
     32 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
     33   if (CGDebugInfo *DI = getDebugInfo()) {
     34     SourceLocation Loc;
     35     if (isa<DeclStmt>(S))
     36       Loc = S->getLocEnd();
     37     else
     38       Loc = S->getLocStart();
     39     DI->EmitLocation(Builder, Loc);
     40   }
     41 }
     42 
     43 void CodeGenFunction::EmitStmt(const Stmt *S) {
     44   assert(S && "Null statement?");
     45 
     46   // These statements have their own debug info handling.
     47   if (EmitSimpleStmt(S))
     48     return;
     49 
     50   // Check if we are generating unreachable code.
     51   if (!HaveInsertPoint()) {
     52     // If so, and the statement doesn't contain a label, then we do not need to
     53     // generate actual code. This is safe because (1) the current point is
     54     // unreachable, so we don't need to execute the code, and (2) we've already
     55     // handled the statements which update internal data structures (like the
     56     // local variable map) which could be used by subsequent statements.
     57     if (!ContainsLabel(S)) {
     58       // Verify that any decl statements were handled as simple, they may be in
     59       // scope of subsequent reachable statements.
     60       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
     61       return;
     62     }
     63 
     64     // Otherwise, make a new block to hold the code.
     65     EnsureInsertPoint();
     66   }
     67 
     68   // Generate a stoppoint if we are emitting debug info.
     69   EmitStopPoint(S);
     70 
     71   switch (S->getStmtClass()) {
     72   case Stmt::NoStmtClass:
     73   case Stmt::CXXCatchStmtClass:
     74   case Stmt::SEHExceptStmtClass:
     75   case Stmt::SEHFinallyStmtClass:
     76   case Stmt::MSDependentExistsStmtClass:
     77     llvm_unreachable("invalid statement class to emit generically");
     78   case Stmt::NullStmtClass:
     79   case Stmt::CompoundStmtClass:
     80   case Stmt::DeclStmtClass:
     81   case Stmt::LabelStmtClass:
     82   case Stmt::AttributedStmtClass:
     83   case Stmt::GotoStmtClass:
     84   case Stmt::BreakStmtClass:
     85   case Stmt::ContinueStmtClass:
     86   case Stmt::DefaultStmtClass:
     87   case Stmt::CaseStmtClass:
     88     llvm_unreachable("should have emitted these statements as simple");
     89 
     90 #define STMT(Type, Base)
     91 #define ABSTRACT_STMT(Op)
     92 #define EXPR(Type, Base) \
     93   case Stmt::Type##Class:
     94 #include "clang/AST/StmtNodes.inc"
     95   {
     96     // Remember the block we came in on.
     97     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
     98     assert(incoming && "expression emission must have an insertion point");
     99 
    100     EmitIgnoredExpr(cast<Expr>(S));
    101 
    102     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
    103     assert(outgoing && "expression emission cleared block!");
    104 
    105     // The expression emitters assume (reasonably!) that the insertion
    106     // point is always set.  To maintain that, the call-emission code
    107     // for noreturn functions has to enter a new block with no
    108     // predecessors.  We want to kill that block and mark the current
    109     // insertion point unreachable in the common case of a call like
    110     // "exit();".  Since expression emission doesn't otherwise create
    111     // blocks with no predecessors, we can just test for that.
    112     // However, we must be careful not to do this to our incoming
    113     // block, because *statement* emission does sometimes create
    114     // reachable blocks which will have no predecessors until later in
    115     // the function.  This occurs with, e.g., labels that are not
    116     // reachable by fallthrough.
    117     if (incoming != outgoing && outgoing->use_empty()) {
    118       outgoing->eraseFromParent();
    119       Builder.ClearInsertionPoint();
    120     }
    121     break;
    122   }
    123 
    124   case Stmt::IndirectGotoStmtClass:
    125     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
    126 
    127   case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
    128   case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
    129   case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
    130   case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
    131 
    132   case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
    133 
    134   case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
    135   case Stmt::GCCAsmStmtClass:   // Intentional fall-through.
    136   case Stmt::MSAsmStmtClass:    EmitAsmStmt(cast<AsmStmt>(*S));           break;
    137 
    138   case Stmt::ObjCAtTryStmtClass:
    139     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
    140     break;
    141   case Stmt::ObjCAtCatchStmtClass:
    142     llvm_unreachable(
    143                     "@catch statements should be handled by EmitObjCAtTryStmt");
    144   case Stmt::ObjCAtFinallyStmtClass:
    145     llvm_unreachable(
    146                   "@finally statements should be handled by EmitObjCAtTryStmt");
    147   case Stmt::ObjCAtThrowStmtClass:
    148     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
    149     break;
    150   case Stmt::ObjCAtSynchronizedStmtClass:
    151     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
    152     break;
    153   case Stmt::ObjCForCollectionStmtClass:
    154     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
    155     break;
    156   case Stmt::ObjCAutoreleasePoolStmtClass:
    157     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
    158     break;
    159 
    160   case Stmt::CXXTryStmtClass:
    161     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
    162     break;
    163   case Stmt::CXXForRangeStmtClass:
    164     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
    165   case Stmt::SEHTryStmtClass:
    166     // FIXME Not yet implemented
    167     break;
    168   }
    169 }
    170 
    171 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
    172   switch (S->getStmtClass()) {
    173   default: return false;
    174   case Stmt::NullStmtClass: break;
    175   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
    176   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
    177   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
    178   case Stmt::AttributedStmtClass:
    179                             EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
    180   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
    181   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
    182   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
    183   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
    184   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
    185   }
    186 
    187   return true;
    188 }
    189 
    190 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
    191 /// this captures the expression result of the last sub-statement and returns it
    192 /// (for use by the statement expression extension).
    193 RValue CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
    194                                          AggValueSlot AggSlot) {
    195   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
    196                              "LLVM IR generation of compound statement ('{}')");
    197 
    198   // Keep track of the current cleanup stack depth, including debug scopes.
    199   LexicalScope Scope(*this, S.getSourceRange());
    200 
    201   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
    202 }
    203 
    204 RValue CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, bool GetLast,
    205                                          AggValueSlot AggSlot) {
    206 
    207   for (CompoundStmt::const_body_iterator I = S.body_begin(),
    208        E = S.body_end()-GetLast; I != E; ++I)
    209     EmitStmt(*I);
    210 
    211   RValue RV;
    212   if (!GetLast)
    213     RV = RValue::get(0);
    214   else {
    215     // We have to special case labels here.  They are statements, but when put
    216     // at the end of a statement expression, they yield the value of their
    217     // subexpression.  Handle this by walking through all labels we encounter,
    218     // emitting them before we evaluate the subexpr.
    219     const Stmt *LastStmt = S.body_back();
    220     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
    221       EmitLabel(LS->getDecl());
    222       LastStmt = LS->getSubStmt();
    223     }
    224 
    225     EnsureInsertPoint();
    226 
    227     RV = EmitAnyExpr(cast<Expr>(LastStmt), AggSlot);
    228   }
    229 
    230   return RV;
    231 }
    232 
    233 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
    234   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
    235 
    236   // If there is a cleanup stack, then we it isn't worth trying to
    237   // simplify this block (we would need to remove it from the scope map
    238   // and cleanup entry).
    239   if (!EHStack.empty())
    240     return;
    241 
    242   // Can only simplify direct branches.
    243   if (!BI || !BI->isUnconditional())
    244     return;
    245 
    246   // Can only simplify empty blocks.
    247   if (BI != BB->begin())
    248     return;
    249 
    250   BB->replaceAllUsesWith(BI->getSuccessor(0));
    251   BI->eraseFromParent();
    252   BB->eraseFromParent();
    253 }
    254 
    255 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
    256   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
    257 
    258   // Fall out of the current block (if necessary).
    259   EmitBranch(BB);
    260 
    261   if (IsFinished && BB->use_empty()) {
    262     delete BB;
    263     return;
    264   }
    265 
    266   // Place the block after the current block, if possible, or else at
    267   // the end of the function.
    268   if (CurBB && CurBB->getParent())
    269     CurFn->getBasicBlockList().insertAfter(CurBB, BB);
    270   else
    271     CurFn->getBasicBlockList().push_back(BB);
    272   Builder.SetInsertPoint(BB);
    273 }
    274 
    275 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
    276   // Emit a branch from the current block to the target one if this
    277   // was a real block.  If this was just a fall-through block after a
    278   // terminator, don't emit it.
    279   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
    280 
    281   if (!CurBB || CurBB->getTerminator()) {
    282     // If there is no insert point or the previous block is already
    283     // terminated, don't touch it.
    284   } else {
    285     // Otherwise, create a fall-through branch.
    286     Builder.CreateBr(Target);
    287   }
    288 
    289   Builder.ClearInsertionPoint();
    290 }
    291 
    292 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
    293   bool inserted = false;
    294   for (llvm::BasicBlock::use_iterator
    295          i = block->use_begin(), e = block->use_end(); i != e; ++i) {
    296     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(*i)) {
    297       CurFn->getBasicBlockList().insertAfter(insn->getParent(), block);
    298       inserted = true;
    299       break;
    300     }
    301   }
    302 
    303   if (!inserted)
    304     CurFn->getBasicBlockList().push_back(block);
    305 
    306   Builder.SetInsertPoint(block);
    307 }
    308 
    309 CodeGenFunction::JumpDest
    310 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
    311   JumpDest &Dest = LabelMap[D];
    312   if (Dest.isValid()) return Dest;
    313 
    314   // Create, but don't insert, the new block.
    315   Dest = JumpDest(createBasicBlock(D->getName()),
    316                   EHScopeStack::stable_iterator::invalid(),
    317                   NextCleanupDestIndex++);
    318   return Dest;
    319 }
    320 
    321 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
    322   JumpDest &Dest = LabelMap[D];
    323 
    324   // If we didn't need a forward reference to this label, just go
    325   // ahead and create a destination at the current scope.
    326   if (!Dest.isValid()) {
    327     Dest = getJumpDestInCurrentScope(D->getName());
    328 
    329   // Otherwise, we need to give this label a target depth and remove
    330   // it from the branch-fixups list.
    331   } else {
    332     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
    333     Dest = JumpDest(Dest.getBlock(),
    334                     EHStack.stable_begin(),
    335                     Dest.getDestIndex());
    336 
    337     ResolveBranchFixups(Dest.getBlock());
    338   }
    339 
    340   EmitBlock(Dest.getBlock());
    341 }
    342 
    343 
    344 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
    345   EmitLabel(S.getDecl());
    346   EmitStmt(S.getSubStmt());
    347 }
    348 
    349 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
    350   EmitStmt(S.getSubStmt());
    351 }
    352 
    353 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
    354   // If this code is reachable then emit a stop point (if generating
    355   // debug info). We have to do this ourselves because we are on the
    356   // "simple" statement path.
    357   if (HaveInsertPoint())
    358     EmitStopPoint(&S);
    359 
    360   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
    361 }
    362 
    363 
    364 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
    365   if (const LabelDecl *Target = S.getConstantTarget()) {
    366     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
    367     return;
    368   }
    369 
    370   // Ensure that we have an i8* for our PHI node.
    371   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
    372                                          Int8PtrTy, "addr");
    373   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
    374 
    375   // Get the basic block for the indirect goto.
    376   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
    377 
    378   // The first instruction in the block has to be the PHI for the switch dest,
    379   // add an entry for this branch.
    380   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
    381 
    382   EmitBranch(IndGotoBB);
    383 }
    384 
    385 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
    386   // C99 6.8.4.1: The first substatement is executed if the expression compares
    387   // unequal to 0.  The condition must be a scalar type.
    388   RunCleanupsScope ConditionScope(*this);
    389 
    390   if (S.getConditionVariable())
    391     EmitAutoVarDecl(*S.getConditionVariable());
    392 
    393   // If the condition constant folds and can be elided, try to avoid emitting
    394   // the condition and the dead arm of the if/else.
    395   bool CondConstant;
    396   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
    397     // Figure out which block (then or else) is executed.
    398     const Stmt *Executed = S.getThen();
    399     const Stmt *Skipped  = S.getElse();
    400     if (!CondConstant)  // Condition false?
    401       std::swap(Executed, Skipped);
    402 
    403     // If the skipped block has no labels in it, just emit the executed block.
    404     // This avoids emitting dead code and simplifies the CFG substantially.
    405     if (!ContainsLabel(Skipped)) {
    406       if (Executed) {
    407         RunCleanupsScope ExecutedScope(*this);
    408         EmitStmt(Executed);
    409       }
    410       return;
    411     }
    412   }
    413 
    414   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
    415   // the conditional branch.
    416   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
    417   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
    418   llvm::BasicBlock *ElseBlock = ContBlock;
    419   if (S.getElse())
    420     ElseBlock = createBasicBlock("if.else");
    421   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock);
    422 
    423   // Emit the 'then' code.
    424   EmitBlock(ThenBlock);
    425   {
    426     RunCleanupsScope ThenScope(*this);
    427     EmitStmt(S.getThen());
    428   }
    429   EmitBranch(ContBlock);
    430 
    431   // Emit the 'else' code if present.
    432   if (const Stmt *Else = S.getElse()) {
    433     // There is no need to emit line number for unconditional branch.
    434     if (getDebugInfo())
    435       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
    436     EmitBlock(ElseBlock);
    437     {
    438       RunCleanupsScope ElseScope(*this);
    439       EmitStmt(Else);
    440     }
    441     // There is no need to emit line number for unconditional branch.
    442     if (getDebugInfo())
    443       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
    444     EmitBranch(ContBlock);
    445   }
    446 
    447   // Emit the continuation block for code after the if.
    448   EmitBlock(ContBlock, true);
    449 }
    450 
    451 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) {
    452   // Emit the header for the loop, which will also become
    453   // the continue target.
    454   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
    455   EmitBlock(LoopHeader.getBlock());
    456 
    457   // Create an exit block for when the condition fails, which will
    458   // also become the break target.
    459   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
    460 
    461   // Store the blocks to use for break and continue.
    462   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
    463 
    464   // C++ [stmt.while]p2:
    465   //   When the condition of a while statement is a declaration, the
    466   //   scope of the variable that is declared extends from its point
    467   //   of declaration (3.3.2) to the end of the while statement.
    468   //   [...]
    469   //   The object created in a condition is destroyed and created
    470   //   with each iteration of the loop.
    471   RunCleanupsScope ConditionScope(*this);
    472 
    473   if (S.getConditionVariable())
    474     EmitAutoVarDecl(*S.getConditionVariable());
    475 
    476   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
    477   // evaluation of the controlling expression takes place before each
    478   // execution of the loop body.
    479   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
    480 
    481   // while(1) is common, avoid extra exit blocks.  Be sure
    482   // to correctly handle break/continue though.
    483   bool EmitBoolCondBranch = true;
    484   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
    485     if (C->isOne())
    486       EmitBoolCondBranch = false;
    487 
    488   // As long as the condition is true, go to the loop body.
    489   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
    490   if (EmitBoolCondBranch) {
    491     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
    492     if (ConditionScope.requiresCleanups())
    493       ExitBlock = createBasicBlock("while.exit");
    494 
    495     Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
    496 
    497     if (ExitBlock != LoopExit.getBlock()) {
    498       EmitBlock(ExitBlock);
    499       EmitBranchThroughCleanup(LoopExit);
    500     }
    501   }
    502 
    503   // Emit the loop body.  We have to emit this in a cleanup scope
    504   // because it might be a singleton DeclStmt.
    505   {
    506     RunCleanupsScope BodyScope(*this);
    507     EmitBlock(LoopBody);
    508     EmitStmt(S.getBody());
    509   }
    510 
    511   BreakContinueStack.pop_back();
    512 
    513   // Immediately force cleanup.
    514   ConditionScope.ForceCleanup();
    515 
    516   // Branch to the loop header again.
    517   EmitBranch(LoopHeader.getBlock());
    518 
    519   // Emit the exit block.
    520   EmitBlock(LoopExit.getBlock(), true);
    521 
    522   // The LoopHeader typically is just a branch if we skipped emitting
    523   // a branch, try to erase it.
    524   if (!EmitBoolCondBranch)
    525     SimplifyForwardingBlocks(LoopHeader.getBlock());
    526 }
    527 
    528 void CodeGenFunction::EmitDoStmt(const DoStmt &S) {
    529   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
    530   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
    531 
    532   // Store the blocks to use for break and continue.
    533   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
    534 
    535   // Emit the body of the loop.
    536   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
    537   EmitBlock(LoopBody);
    538   {
    539     RunCleanupsScope BodyScope(*this);
    540     EmitStmt(S.getBody());
    541   }
    542 
    543   BreakContinueStack.pop_back();
    544 
    545   EmitBlock(LoopCond.getBlock());
    546 
    547   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
    548   // after each execution of the loop body."
    549 
    550   // Evaluate the conditional in the while header.
    551   // C99 6.8.5p2/p4: The first substatement is executed if the expression
    552   // compares unequal to 0.  The condition must be a scalar type.
    553   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
    554 
    555   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
    556   // to correctly handle break/continue though.
    557   bool EmitBoolCondBranch = true;
    558   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
    559     if (C->isZero())
    560       EmitBoolCondBranch = false;
    561 
    562   // As long as the condition is true, iterate the loop.
    563   if (EmitBoolCondBranch)
    564     Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock());
    565 
    566   // Emit the exit block.
    567   EmitBlock(LoopExit.getBlock());
    568 
    569   // The DoCond block typically is just a branch if we skipped
    570   // emitting a branch, try to erase it.
    571   if (!EmitBoolCondBranch)
    572     SimplifyForwardingBlocks(LoopCond.getBlock());
    573 }
    574 
    575 void CodeGenFunction::EmitForStmt(const ForStmt &S) {
    576   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
    577 
    578   RunCleanupsScope ForScope(*this);
    579 
    580   CGDebugInfo *DI = getDebugInfo();
    581   if (DI)
    582     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
    583 
    584   // Evaluate the first part before the loop.
    585   if (S.getInit())
    586     EmitStmt(S.getInit());
    587 
    588   // Start the loop with a block that tests the condition.
    589   // If there's an increment, the continue scope will be overwritten
    590   // later.
    591   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
    592   llvm::BasicBlock *CondBlock = Continue.getBlock();
    593   EmitBlock(CondBlock);
    594 
    595   // Create a cleanup scope for the condition variable cleanups.
    596   RunCleanupsScope ConditionScope(*this);
    597 
    598   llvm::Value *BoolCondVal = 0;
    599   if (S.getCond()) {
    600     // If the for statement has a condition scope, emit the local variable
    601     // declaration.
    602     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
    603     if (S.getConditionVariable()) {
    604       EmitAutoVarDecl(*S.getConditionVariable());
    605     }
    606 
    607     // If there are any cleanups between here and the loop-exit scope,
    608     // create a block to stage a loop exit along.
    609     if (ForScope.requiresCleanups())
    610       ExitBlock = createBasicBlock("for.cond.cleanup");
    611 
    612     // As long as the condition is true, iterate the loop.
    613     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
    614 
    615     // C99 6.8.5p2/p4: The first substatement is executed if the expression
    616     // compares unequal to 0.  The condition must be a scalar type.
    617     BoolCondVal = EvaluateExprAsBool(S.getCond());
    618     Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
    619 
    620     if (ExitBlock != LoopExit.getBlock()) {
    621       EmitBlock(ExitBlock);
    622       EmitBranchThroughCleanup(LoopExit);
    623     }
    624 
    625     EmitBlock(ForBody);
    626   } else {
    627     // Treat it as a non-zero constant.  Don't even create a new block for the
    628     // body, just fall into it.
    629   }
    630 
    631   // If the for loop doesn't have an increment we can just use the
    632   // condition as the continue block.  Otherwise we'll need to create
    633   // a block for it (in the current scope, i.e. in the scope of the
    634   // condition), and that we will become our continue block.
    635   if (S.getInc())
    636     Continue = getJumpDestInCurrentScope("for.inc");
    637 
    638   // Store the blocks to use for break and continue.
    639   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
    640 
    641   {
    642     // Create a separate cleanup scope for the body, in case it is not
    643     // a compound statement.
    644     RunCleanupsScope BodyScope(*this);
    645     EmitStmt(S.getBody());
    646   }
    647 
    648   // If there is an increment, emit it next.
    649   if (S.getInc()) {
    650     EmitBlock(Continue.getBlock());
    651     EmitStmt(S.getInc());
    652   }
    653 
    654   BreakContinueStack.pop_back();
    655 
    656   ConditionScope.ForceCleanup();
    657   EmitBranch(CondBlock);
    658 
    659   ForScope.ForceCleanup();
    660 
    661   if (DI)
    662     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
    663 
    664   // Emit the fall-through block.
    665   EmitBlock(LoopExit.getBlock(), true);
    666 }
    667 
    668 void CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S) {
    669   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
    670 
    671   RunCleanupsScope ForScope(*this);
    672 
    673   CGDebugInfo *DI = getDebugInfo();
    674   if (DI)
    675     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
    676 
    677   // Evaluate the first pieces before the loop.
    678   EmitStmt(S.getRangeStmt());
    679   EmitStmt(S.getBeginEndStmt());
    680 
    681   // Start the loop with a block that tests the condition.
    682   // If there's an increment, the continue scope will be overwritten
    683   // later.
    684   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
    685   EmitBlock(CondBlock);
    686 
    687   // If there are any cleanups between here and the loop-exit scope,
    688   // create a block to stage a loop exit along.
    689   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
    690   if (ForScope.requiresCleanups())
    691     ExitBlock = createBasicBlock("for.cond.cleanup");
    692 
    693   // The loop body, consisting of the specified body and the loop variable.
    694   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
    695 
    696   // The body is executed if the expression, contextually converted
    697   // to bool, is true.
    698   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
    699   Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
    700 
    701   if (ExitBlock != LoopExit.getBlock()) {
    702     EmitBlock(ExitBlock);
    703     EmitBranchThroughCleanup(LoopExit);
    704   }
    705 
    706   EmitBlock(ForBody);
    707 
    708   // Create a block for the increment. In case of a 'continue', we jump there.
    709   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
    710 
    711   // Store the blocks to use for break and continue.
    712   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
    713 
    714   {
    715     // Create a separate cleanup scope for the loop variable and body.
    716     RunCleanupsScope BodyScope(*this);
    717     EmitStmt(S.getLoopVarStmt());
    718     EmitStmt(S.getBody());
    719   }
    720 
    721   // If there is an increment, emit it next.
    722   EmitBlock(Continue.getBlock());
    723   EmitStmt(S.getInc());
    724 
    725   BreakContinueStack.pop_back();
    726 
    727   EmitBranch(CondBlock);
    728 
    729   ForScope.ForceCleanup();
    730 
    731   if (DI)
    732     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
    733 
    734   // Emit the fall-through block.
    735   EmitBlock(LoopExit.getBlock(), true);
    736 }
    737 
    738 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
    739   if (RV.isScalar()) {
    740     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
    741   } else if (RV.isAggregate()) {
    742     EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
    743   } else {
    744     EmitStoreOfComplex(RV.getComplexVal(),
    745                        MakeNaturalAlignAddrLValue(ReturnValue, Ty),
    746                        /*init*/ true);
    747   }
    748   EmitBranchThroughCleanup(ReturnBlock);
    749 }
    750 
    751 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
    752 /// if the function returns void, or may be missing one if the function returns
    753 /// non-void.  Fun stuff :).
    754 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
    755   // Emit the result value, even if unused, to evalute the side effects.
    756   const Expr *RV = S.getRetValue();
    757 
    758   // Treat block literals in a return expression as if they appeared
    759   // in their own scope.  This permits a small, easily-implemented
    760   // exception to our over-conservative rules about not jumping to
    761   // statements following block literals with non-trivial cleanups.
    762   RunCleanupsScope cleanupScope(*this);
    763   if (const ExprWithCleanups *cleanups =
    764         dyn_cast_or_null<ExprWithCleanups>(RV)) {
    765     enterFullExpression(cleanups);
    766     RV = cleanups->getSubExpr();
    767   }
    768 
    769   // FIXME: Clean this up by using an LValue for ReturnTemp,
    770   // EmitStoreThroughLValue, and EmitAnyExpr.
    771   if (S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable() &&
    772       !Target.useGlobalsForAutomaticVariables()) {
    773     // Apply the named return value optimization for this return statement,
    774     // which means doing nothing: the appropriate result has already been
    775     // constructed into the NRVO variable.
    776 
    777     // If there is an NRVO flag for this variable, set it to 1 into indicate
    778     // that the cleanup code should not destroy the variable.
    779     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
    780       Builder.CreateStore(Builder.getTrue(), NRVOFlag);
    781   } else if (!ReturnValue) {
    782     // Make sure not to return anything, but evaluate the expression
    783     // for side effects.
    784     if (RV)
    785       EmitAnyExpr(RV);
    786   } else if (RV == 0) {
    787     // Do nothing (return value is left uninitialized)
    788   } else if (FnRetTy->isReferenceType()) {
    789     // If this function returns a reference, take the address of the expression
    790     // rather than the value.
    791     RValue Result = EmitReferenceBindingToExpr(RV, /*InitializedDecl=*/0);
    792     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
    793   } else {
    794     switch (getEvaluationKind(RV->getType())) {
    795     case TEK_Scalar:
    796       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
    797       break;
    798     case TEK_Complex:
    799       EmitComplexExprIntoLValue(RV,
    800                      MakeNaturalAlignAddrLValue(ReturnValue, RV->getType()),
    801                                 /*isInit*/ true);
    802       break;
    803     case TEK_Aggregate: {
    804       CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType());
    805       EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment,
    806                                             Qualifiers(),
    807                                             AggValueSlot::IsDestructed,
    808                                             AggValueSlot::DoesNotNeedGCBarriers,
    809                                             AggValueSlot::IsNotAliased));
    810       break;
    811     }
    812     }
    813   }
    814 
    815   cleanupScope.ForceCleanup();
    816   EmitBranchThroughCleanup(ReturnBlock);
    817 }
    818 
    819 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
    820   // As long as debug info is modeled with instructions, we have to ensure we
    821   // have a place to insert here and write the stop point here.
    822   if (HaveInsertPoint())
    823     EmitStopPoint(&S);
    824 
    825   for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end();
    826        I != E; ++I)
    827     EmitDecl(**I);
    828 }
    829 
    830 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
    831   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
    832 
    833   // If this code is reachable then emit a stop point (if generating
    834   // debug info). We have to do this ourselves because we are on the
    835   // "simple" statement path.
    836   if (HaveInsertPoint())
    837     EmitStopPoint(&S);
    838 
    839   JumpDest Block = BreakContinueStack.back().BreakBlock;
    840   EmitBranchThroughCleanup(Block);
    841 }
    842 
    843 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
    844   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
    845 
    846   // If this code is reachable then emit a stop point (if generating
    847   // debug info). We have to do this ourselves because we are on the
    848   // "simple" statement path.
    849   if (HaveInsertPoint())
    850     EmitStopPoint(&S);
    851 
    852   JumpDest Block = BreakContinueStack.back().ContinueBlock;
    853   EmitBranchThroughCleanup(Block);
    854 }
    855 
    856 /// EmitCaseStmtRange - If case statement range is not too big then
    857 /// add multiple cases to switch instruction, one for each value within
    858 /// the range. If range is too big then emit "if" condition check.
    859 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
    860   assert(S.getRHS() && "Expected RHS value in CaseStmt");
    861 
    862   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
    863   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
    864 
    865   // Emit the code for this case. We do this first to make sure it is
    866   // properly chained from our predecessor before generating the
    867   // switch machinery to enter this block.
    868   EmitBlock(createBasicBlock("sw.bb"));
    869   llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
    870   EmitStmt(S.getSubStmt());
    871 
    872   // If range is empty, do nothing.
    873   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
    874     return;
    875 
    876   llvm::APInt Range = RHS - LHS;
    877   // FIXME: parameters such as this should not be hardcoded.
    878   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
    879     // Range is small enough to add multiple switch instruction cases.
    880     for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) {
    881       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
    882       LHS++;
    883     }
    884     return;
    885   }
    886 
    887   // The range is too big. Emit "if" condition into a new block,
    888   // making sure to save and restore the current insertion point.
    889   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
    890 
    891   // Push this test onto the chain of range checks (which terminates
    892   // in the default basic block). The switch's default will be changed
    893   // to the top of this chain after switch emission is complete.
    894   llvm::BasicBlock *FalseDest = CaseRangeBlock;
    895   CaseRangeBlock = createBasicBlock("sw.caserange");
    896 
    897   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
    898   Builder.SetInsertPoint(CaseRangeBlock);
    899 
    900   // Emit range check.
    901   llvm::Value *Diff =
    902     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
    903   llvm::Value *Cond =
    904     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
    905   Builder.CreateCondBr(Cond, CaseDest, FalseDest);
    906 
    907   // Restore the appropriate insertion point.
    908   if (RestoreBB)
    909     Builder.SetInsertPoint(RestoreBB);
    910   else
    911     Builder.ClearInsertionPoint();
    912 }
    913 
    914 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
    915   // If there is no enclosing switch instance that we're aware of, then this
    916   // case statement and its block can be elided.  This situation only happens
    917   // when we've constant-folded the switch, are emitting the constant case,
    918   // and part of the constant case includes another case statement.  For
    919   // instance: switch (4) { case 4: do { case 5: } while (1); }
    920   if (!SwitchInsn) {
    921     EmitStmt(S.getSubStmt());
    922     return;
    923   }
    924 
    925   // Handle case ranges.
    926   if (S.getRHS()) {
    927     EmitCaseStmtRange(S);
    928     return;
    929   }
    930 
    931   llvm::ConstantInt *CaseVal =
    932     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
    933 
    934   // If the body of the case is just a 'break', and if there was no fallthrough,
    935   // try to not emit an empty block.
    936   if ((CGM.getCodeGenOpts().OptimizationLevel > 0) &&
    937       isa<BreakStmt>(S.getSubStmt())) {
    938     JumpDest Block = BreakContinueStack.back().BreakBlock;
    939 
    940     // Only do this optimization if there are no cleanups that need emitting.
    941     if (isObviouslyBranchWithoutCleanups(Block)) {
    942       SwitchInsn->addCase(CaseVal, Block.getBlock());
    943 
    944       // If there was a fallthrough into this case, make sure to redirect it to
    945       // the end of the switch as well.
    946       if (Builder.GetInsertBlock()) {
    947         Builder.CreateBr(Block.getBlock());
    948         Builder.ClearInsertionPoint();
    949       }
    950       return;
    951     }
    952   }
    953 
    954   EmitBlock(createBasicBlock("sw.bb"));
    955   llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
    956   SwitchInsn->addCase(CaseVal, CaseDest);
    957 
    958   // Recursively emitting the statement is acceptable, but is not wonderful for
    959   // code where we have many case statements nested together, i.e.:
    960   //  case 1:
    961   //    case 2:
    962   //      case 3: etc.
    963   // Handling this recursively will create a new block for each case statement
    964   // that falls through to the next case which is IR intensive.  It also causes
    965   // deep recursion which can run into stack depth limitations.  Handle
    966   // sequential non-range case statements specially.
    967   const CaseStmt *CurCase = &S;
    968   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
    969 
    970   // Otherwise, iteratively add consecutive cases to this switch stmt.
    971   while (NextCase && NextCase->getRHS() == 0) {
    972     CurCase = NextCase;
    973     llvm::ConstantInt *CaseVal =
    974       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
    975     SwitchInsn->addCase(CaseVal, CaseDest);
    976     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
    977   }
    978 
    979   // Normal default recursion for non-cases.
    980   EmitStmt(CurCase->getSubStmt());
    981 }
    982 
    983 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
    984   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
    985   assert(DefaultBlock->empty() &&
    986          "EmitDefaultStmt: Default block already defined?");
    987   EmitBlock(DefaultBlock);
    988   EmitStmt(S.getSubStmt());
    989 }
    990 
    991 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
    992 /// constant value that is being switched on, see if we can dead code eliminate
    993 /// the body of the switch to a simple series of statements to emit.  Basically,
    994 /// on a switch (5) we want to find these statements:
    995 ///    case 5:
    996 ///      printf(...);    <--
    997 ///      ++i;            <--
    998 ///      break;
    999 ///
   1000 /// and add them to the ResultStmts vector.  If it is unsafe to do this
   1001 /// transformation (for example, one of the elided statements contains a label
   1002 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
   1003 /// should include statements after it (e.g. the printf() line is a substmt of
   1004 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
   1005 /// statement, then return CSFC_Success.
   1006 ///
   1007 /// If Case is non-null, then we are looking for the specified case, checking
   1008 /// that nothing we jump over contains labels.  If Case is null, then we found
   1009 /// the case and are looking for the break.
   1010 ///
   1011 /// If the recursive walk actually finds our Case, then we set FoundCase to
   1012 /// true.
   1013 ///
   1014 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
   1015 static CSFC_Result CollectStatementsForCase(const Stmt *S,
   1016                                             const SwitchCase *Case,
   1017                                             bool &FoundCase,
   1018                               SmallVectorImpl<const Stmt*> &ResultStmts) {
   1019   // If this is a null statement, just succeed.
   1020   if (S == 0)
   1021     return Case ? CSFC_Success : CSFC_FallThrough;
   1022 
   1023   // If this is the switchcase (case 4: or default) that we're looking for, then
   1024   // we're in business.  Just add the substatement.
   1025   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
   1026     if (S == Case) {
   1027       FoundCase = true;
   1028       return CollectStatementsForCase(SC->getSubStmt(), 0, FoundCase,
   1029                                       ResultStmts);
   1030     }
   1031 
   1032     // Otherwise, this is some other case or default statement, just ignore it.
   1033     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
   1034                                     ResultStmts);
   1035   }
   1036 
   1037   // If we are in the live part of the code and we found our break statement,
   1038   // return a success!
   1039   if (Case == 0 && isa<BreakStmt>(S))
   1040     return CSFC_Success;
   1041 
   1042   // If this is a switch statement, then it might contain the SwitchCase, the
   1043   // break, or neither.
   1044   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
   1045     // Handle this as two cases: we might be looking for the SwitchCase (if so
   1046     // the skipped statements must be skippable) or we might already have it.
   1047     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
   1048     if (Case) {
   1049       // Keep track of whether we see a skipped declaration.  The code could be
   1050       // using the declaration even if it is skipped, so we can't optimize out
   1051       // the decl if the kept statements might refer to it.
   1052       bool HadSkippedDecl = false;
   1053 
   1054       // If we're looking for the case, just see if we can skip each of the
   1055       // substatements.
   1056       for (; Case && I != E; ++I) {
   1057         HadSkippedDecl |= isa<DeclStmt>(*I);
   1058 
   1059         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
   1060         case CSFC_Failure: return CSFC_Failure;
   1061         case CSFC_Success:
   1062           // A successful result means that either 1) that the statement doesn't
   1063           // have the case and is skippable, or 2) does contain the case value
   1064           // and also contains the break to exit the switch.  In the later case,
   1065           // we just verify the rest of the statements are elidable.
   1066           if (FoundCase) {
   1067             // If we found the case and skipped declarations, we can't do the
   1068             // optimization.
   1069             if (HadSkippedDecl)
   1070               return CSFC_Failure;
   1071 
   1072             for (++I; I != E; ++I)
   1073               if (CodeGenFunction::ContainsLabel(*I, true))
   1074                 return CSFC_Failure;
   1075             return CSFC_Success;
   1076           }
   1077           break;
   1078         case CSFC_FallThrough:
   1079           // If we have a fallthrough condition, then we must have found the
   1080           // case started to include statements.  Consider the rest of the
   1081           // statements in the compound statement as candidates for inclusion.
   1082           assert(FoundCase && "Didn't find case but returned fallthrough?");
   1083           // We recursively found Case, so we're not looking for it anymore.
   1084           Case = 0;
   1085 
   1086           // If we found the case and skipped declarations, we can't do the
   1087           // optimization.
   1088           if (HadSkippedDecl)
   1089             return CSFC_Failure;
   1090           break;
   1091         }
   1092       }
   1093     }
   1094 
   1095     // If we have statements in our range, then we know that the statements are
   1096     // live and need to be added to the set of statements we're tracking.
   1097     for (; I != E; ++I) {
   1098       switch (CollectStatementsForCase(*I, 0, FoundCase, ResultStmts)) {
   1099       case CSFC_Failure: return CSFC_Failure;
   1100       case CSFC_FallThrough:
   1101         // A fallthrough result means that the statement was simple and just
   1102         // included in ResultStmt, keep adding them afterwards.
   1103         break;
   1104       case CSFC_Success:
   1105         // A successful result means that we found the break statement and
   1106         // stopped statement inclusion.  We just ensure that any leftover stmts
   1107         // are skippable and return success ourselves.
   1108         for (++I; I != E; ++I)
   1109           if (CodeGenFunction::ContainsLabel(*I, true))
   1110             return CSFC_Failure;
   1111         return CSFC_Success;
   1112       }
   1113     }
   1114 
   1115     return Case ? CSFC_Success : CSFC_FallThrough;
   1116   }
   1117 
   1118   // Okay, this is some other statement that we don't handle explicitly, like a
   1119   // for statement or increment etc.  If we are skipping over this statement,
   1120   // just verify it doesn't have labels, which would make it invalid to elide.
   1121   if (Case) {
   1122     if (CodeGenFunction::ContainsLabel(S, true))
   1123       return CSFC_Failure;
   1124     return CSFC_Success;
   1125   }
   1126 
   1127   // Otherwise, we want to include this statement.  Everything is cool with that
   1128   // so long as it doesn't contain a break out of the switch we're in.
   1129   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
   1130 
   1131   // Otherwise, everything is great.  Include the statement and tell the caller
   1132   // that we fall through and include the next statement as well.
   1133   ResultStmts.push_back(S);
   1134   return CSFC_FallThrough;
   1135 }
   1136 
   1137 /// FindCaseStatementsForValue - Find the case statement being jumped to and
   1138 /// then invoke CollectStatementsForCase to find the list of statements to emit
   1139 /// for a switch on constant.  See the comment above CollectStatementsForCase
   1140 /// for more details.
   1141 static bool FindCaseStatementsForValue(const SwitchStmt &S,
   1142                                        const llvm::APSInt &ConstantCondValue,
   1143                                 SmallVectorImpl<const Stmt*> &ResultStmts,
   1144                                        ASTContext &C) {
   1145   // First step, find the switch case that is being branched to.  We can do this
   1146   // efficiently by scanning the SwitchCase list.
   1147   const SwitchCase *Case = S.getSwitchCaseList();
   1148   const DefaultStmt *DefaultCase = 0;
   1149 
   1150   for (; Case; Case = Case->getNextSwitchCase()) {
   1151     // It's either a default or case.  Just remember the default statement in
   1152     // case we're not jumping to any numbered cases.
   1153     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
   1154       DefaultCase = DS;
   1155       continue;
   1156     }
   1157 
   1158     // Check to see if this case is the one we're looking for.
   1159     const CaseStmt *CS = cast<CaseStmt>(Case);
   1160     // Don't handle case ranges yet.
   1161     if (CS->getRHS()) return false;
   1162 
   1163     // If we found our case, remember it as 'case'.
   1164     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
   1165       break;
   1166   }
   1167 
   1168   // If we didn't find a matching case, we use a default if it exists, or we
   1169   // elide the whole switch body!
   1170   if (Case == 0) {
   1171     // It is safe to elide the body of the switch if it doesn't contain labels
   1172     // etc.  If it is safe, return successfully with an empty ResultStmts list.
   1173     if (DefaultCase == 0)
   1174       return !CodeGenFunction::ContainsLabel(&S);
   1175     Case = DefaultCase;
   1176   }
   1177 
   1178   // Ok, we know which case is being jumped to, try to collect all the
   1179   // statements that follow it.  This can fail for a variety of reasons.  Also,
   1180   // check to see that the recursive walk actually found our case statement.
   1181   // Insane cases like this can fail to find it in the recursive walk since we
   1182   // don't handle every stmt kind:
   1183   // switch (4) {
   1184   //   while (1) {
   1185   //     case 4: ...
   1186   bool FoundCase = false;
   1187   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
   1188                                   ResultStmts) != CSFC_Failure &&
   1189          FoundCase;
   1190 }
   1191 
   1192 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
   1193   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
   1194 
   1195   RunCleanupsScope ConditionScope(*this);
   1196 
   1197   if (S.getConditionVariable())
   1198     EmitAutoVarDecl(*S.getConditionVariable());
   1199 
   1200   // Handle nested switch statements.
   1201   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
   1202   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
   1203 
   1204   // See if we can constant fold the condition of the switch and therefore only
   1205   // emit the live case statement (if any) of the switch.
   1206   llvm::APSInt ConstantCondValue;
   1207   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
   1208     SmallVector<const Stmt*, 4> CaseStmts;
   1209     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
   1210                                    getContext())) {
   1211       RunCleanupsScope ExecutedScope(*this);
   1212 
   1213       // At this point, we are no longer "within" a switch instance, so
   1214       // we can temporarily enforce this to ensure that any embedded case
   1215       // statements are not emitted.
   1216       SwitchInsn = 0;
   1217 
   1218       // Okay, we can dead code eliminate everything except this case.  Emit the
   1219       // specified series of statements and we're good.
   1220       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
   1221         EmitStmt(CaseStmts[i]);
   1222 
   1223       // Now we want to restore the saved switch instance so that nested
   1224       // switches continue to function properly
   1225       SwitchInsn = SavedSwitchInsn;
   1226 
   1227       return;
   1228     }
   1229   }
   1230 
   1231   llvm::Value *CondV = EmitScalarExpr(S.getCond());
   1232 
   1233   // Create basic block to hold stuff that comes after switch
   1234   // statement. We also need to create a default block now so that
   1235   // explicit case ranges tests can have a place to jump to on
   1236   // failure.
   1237   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
   1238   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
   1239   CaseRangeBlock = DefaultBlock;
   1240 
   1241   // Clear the insertion point to indicate we are in unreachable code.
   1242   Builder.ClearInsertionPoint();
   1243 
   1244   // All break statements jump to NextBlock. If BreakContinueStack is non empty
   1245   // then reuse last ContinueBlock.
   1246   JumpDest OuterContinue;
   1247   if (!BreakContinueStack.empty())
   1248     OuterContinue = BreakContinueStack.back().ContinueBlock;
   1249 
   1250   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
   1251 
   1252   // Emit switch body.
   1253   EmitStmt(S.getBody());
   1254 
   1255   BreakContinueStack.pop_back();
   1256 
   1257   // Update the default block in case explicit case range tests have
   1258   // been chained on top.
   1259   SwitchInsn->setDefaultDest(CaseRangeBlock);
   1260 
   1261   // If a default was never emitted:
   1262   if (!DefaultBlock->getParent()) {
   1263     // If we have cleanups, emit the default block so that there's a
   1264     // place to jump through the cleanups from.
   1265     if (ConditionScope.requiresCleanups()) {
   1266       EmitBlock(DefaultBlock);
   1267 
   1268     // Otherwise, just forward the default block to the switch end.
   1269     } else {
   1270       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
   1271       delete DefaultBlock;
   1272     }
   1273   }
   1274 
   1275   ConditionScope.ForceCleanup();
   1276 
   1277   // Emit continuation.
   1278   EmitBlock(SwitchExit.getBlock(), true);
   1279 
   1280   SwitchInsn = SavedSwitchInsn;
   1281   CaseRangeBlock = SavedCRBlock;
   1282 }
   1283 
   1284 static std::string
   1285 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
   1286                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) {
   1287   std::string Result;
   1288 
   1289   while (*Constraint) {
   1290     switch (*Constraint) {
   1291     default:
   1292       Result += Target.convertConstraint(Constraint);
   1293       break;
   1294     // Ignore these
   1295     case '*':
   1296     case '?':
   1297     case '!':
   1298     case '=': // Will see this and the following in mult-alt constraints.
   1299     case '+':
   1300       break;
   1301     case '#': // Ignore the rest of the constraint alternative.
   1302       while (Constraint[1] && Constraint[1] != ',')
   1303 	Constraint++;
   1304       break;
   1305     case ',':
   1306       Result += "|";
   1307       break;
   1308     case 'g':
   1309       Result += "imr";
   1310       break;
   1311     case '[': {
   1312       assert(OutCons &&
   1313              "Must pass output names to constraints with a symbolic name");
   1314       unsigned Index;
   1315       bool result = Target.resolveSymbolicName(Constraint,
   1316                                                &(*OutCons)[0],
   1317                                                OutCons->size(), Index);
   1318       assert(result && "Could not resolve symbolic name"); (void)result;
   1319       Result += llvm::utostr(Index);
   1320       break;
   1321     }
   1322     }
   1323 
   1324     Constraint++;
   1325   }
   1326 
   1327   return Result;
   1328 }
   1329 
   1330 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
   1331 /// as using a particular register add that as a constraint that will be used
   1332 /// in this asm stmt.
   1333 static std::string
   1334 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
   1335                        const TargetInfo &Target, CodeGenModule &CGM,
   1336                        const AsmStmt &Stmt) {
   1337   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
   1338   if (!AsmDeclRef)
   1339     return Constraint;
   1340   const ValueDecl &Value = *AsmDeclRef->getDecl();
   1341   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
   1342   if (!Variable)
   1343     return Constraint;
   1344   if (Variable->getStorageClass() != SC_Register)
   1345     return Constraint;
   1346   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
   1347   if (!Attr)
   1348     return Constraint;
   1349   StringRef Register = Attr->getLabel();
   1350   assert(Target.isValidGCCRegisterName(Register));
   1351   // We're using validateOutputConstraint here because we only care if
   1352   // this is a register constraint.
   1353   TargetInfo::ConstraintInfo Info(Constraint, "");
   1354   if (Target.validateOutputConstraint(Info) &&
   1355       !Info.allowsRegister()) {
   1356     CGM.ErrorUnsupported(&Stmt, "__asm__");
   1357     return Constraint;
   1358   }
   1359   // Canonicalize the register here before returning it.
   1360   Register = Target.getNormalizedGCCRegisterName(Register);
   1361   return "{" + Register.str() + "}";
   1362 }
   1363 
   1364 llvm::Value*
   1365 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
   1366                                     LValue InputValue, QualType InputType,
   1367                                     std::string &ConstraintStr) {
   1368   llvm::Value *Arg;
   1369   if (Info.allowsRegister() || !Info.allowsMemory()) {
   1370     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
   1371       Arg = EmitLoadOfLValue(InputValue).getScalarVal();
   1372     } else {
   1373       llvm::Type *Ty = ConvertType(InputType);
   1374       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
   1375       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
   1376         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
   1377         Ty = llvm::PointerType::getUnqual(Ty);
   1378 
   1379         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
   1380                                                        Ty));
   1381       } else {
   1382         Arg = InputValue.getAddress();
   1383         ConstraintStr += '*';
   1384       }
   1385     }
   1386   } else {
   1387     Arg = InputValue.getAddress();
   1388     ConstraintStr += '*';
   1389   }
   1390 
   1391   return Arg;
   1392 }
   1393 
   1394 llvm::Value* CodeGenFunction::EmitAsmInput(
   1395                                          const TargetInfo::ConstraintInfo &Info,
   1396                                            const Expr *InputExpr,
   1397                                            std::string &ConstraintStr) {
   1398   if (Info.allowsRegister() || !Info.allowsMemory())
   1399     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
   1400       return EmitScalarExpr(InputExpr);
   1401 
   1402   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
   1403   LValue Dest = EmitLValue(InputExpr);
   1404   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr);
   1405 }
   1406 
   1407 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
   1408 /// asm call instruction.  The !srcloc MDNode contains a list of constant
   1409 /// integers which are the source locations of the start of each line in the
   1410 /// asm.
   1411 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
   1412                                       CodeGenFunction &CGF) {
   1413   SmallVector<llvm::Value *, 8> Locs;
   1414   // Add the location of the first line to the MDNode.
   1415   Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
   1416                                         Str->getLocStart().getRawEncoding()));
   1417   StringRef StrVal = Str->getString();
   1418   if (!StrVal.empty()) {
   1419     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
   1420     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
   1421 
   1422     // Add the location of the start of each subsequent line of the asm to the
   1423     // MDNode.
   1424     for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) {
   1425       if (StrVal[i] != '\n') continue;
   1426       SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts,
   1427                                                       CGF.Target);
   1428       Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
   1429                                             LineLoc.getRawEncoding()));
   1430     }
   1431   }
   1432 
   1433   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
   1434 }
   1435 
   1436 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
   1437   // Assemble the final asm string.
   1438   std::string AsmString = S.generateAsmString(getContext());
   1439 
   1440   // Get all the output and input constraints together.
   1441   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
   1442   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
   1443 
   1444   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
   1445     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i),
   1446                                     S.getOutputName(i));
   1447     bool IsValid = Target.validateOutputConstraint(Info); (void)IsValid;
   1448     assert(IsValid && "Failed to parse output constraint");
   1449     OutputConstraintInfos.push_back(Info);
   1450   }
   1451 
   1452   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
   1453     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i),
   1454                                     S.getInputName(i));
   1455     bool IsValid = Target.validateInputConstraint(OutputConstraintInfos.data(),
   1456                                                   S.getNumOutputs(), Info);
   1457     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
   1458     InputConstraintInfos.push_back(Info);
   1459   }
   1460 
   1461   std::string Constraints;
   1462 
   1463   std::vector<LValue> ResultRegDests;
   1464   std::vector<QualType> ResultRegQualTys;
   1465   std::vector<llvm::Type *> ResultRegTypes;
   1466   std::vector<llvm::Type *> ResultTruncRegTypes;
   1467   std::vector<llvm::Type *> ArgTypes;
   1468   std::vector<llvm::Value*> Args;
   1469 
   1470   // Keep track of inout constraints.
   1471   std::string InOutConstraints;
   1472   std::vector<llvm::Value*> InOutArgs;
   1473   std::vector<llvm::Type*> InOutArgTypes;
   1474 
   1475   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
   1476     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
   1477 
   1478     // Simplify the output constraint.
   1479     std::string OutputConstraint(S.getOutputConstraint(i));
   1480     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, Target);
   1481 
   1482     const Expr *OutExpr = S.getOutputExpr(i);
   1483     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
   1484 
   1485     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
   1486                                               Target, CGM, S);
   1487 
   1488     LValue Dest = EmitLValue(OutExpr);
   1489     if (!Constraints.empty())
   1490       Constraints += ',';
   1491 
   1492     // If this is a register output, then make the inline asm return it
   1493     // by-value.  If this is a memory result, return the value by-reference.
   1494     if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) {
   1495       Constraints += "=" + OutputConstraint;
   1496       ResultRegQualTys.push_back(OutExpr->getType());
   1497       ResultRegDests.push_back(Dest);
   1498       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
   1499       ResultTruncRegTypes.push_back(ResultRegTypes.back());
   1500 
   1501       // If this output is tied to an input, and if the input is larger, then
   1502       // we need to set the actual result type of the inline asm node to be the
   1503       // same as the input type.
   1504       if (Info.hasMatchingInput()) {
   1505         unsigned InputNo;
   1506         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
   1507           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
   1508           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
   1509             break;
   1510         }
   1511         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
   1512 
   1513         QualType InputTy = S.getInputExpr(InputNo)->getType();
   1514         QualType OutputType = OutExpr->getType();
   1515 
   1516         uint64_t InputSize = getContext().getTypeSize(InputTy);
   1517         if (getContext().getTypeSize(OutputType) < InputSize) {
   1518           // Form the asm to return the value as a larger integer or fp type.
   1519           ResultRegTypes.back() = ConvertType(InputTy);
   1520         }
   1521       }
   1522       if (llvm::Type* AdjTy =
   1523             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
   1524                                                  ResultRegTypes.back()))
   1525         ResultRegTypes.back() = AdjTy;
   1526     } else {
   1527       ArgTypes.push_back(Dest.getAddress()->getType());
   1528       Args.push_back(Dest.getAddress());
   1529       Constraints += "=*";
   1530       Constraints += OutputConstraint;
   1531     }
   1532 
   1533     if (Info.isReadWrite()) {
   1534       InOutConstraints += ',';
   1535 
   1536       const Expr *InputExpr = S.getOutputExpr(i);
   1537       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
   1538                                             InOutConstraints);
   1539 
   1540       if (llvm::Type* AdjTy =
   1541             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
   1542                                                  Arg->getType()))
   1543         Arg = Builder.CreateBitCast(Arg, AdjTy);
   1544 
   1545       if (Info.allowsRegister())
   1546         InOutConstraints += llvm::utostr(i);
   1547       else
   1548         InOutConstraints += OutputConstraint;
   1549 
   1550       InOutArgTypes.push_back(Arg->getType());
   1551       InOutArgs.push_back(Arg);
   1552     }
   1553   }
   1554 
   1555   unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs();
   1556 
   1557   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
   1558     const Expr *InputExpr = S.getInputExpr(i);
   1559 
   1560     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
   1561 
   1562     if (!Constraints.empty())
   1563       Constraints += ',';
   1564 
   1565     // Simplify the input constraint.
   1566     std::string InputConstraint(S.getInputConstraint(i));
   1567     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), Target,
   1568                                          &OutputConstraintInfos);
   1569 
   1570     InputConstraint =
   1571       AddVariableConstraints(InputConstraint,
   1572                             *InputExpr->IgnoreParenNoopCasts(getContext()),
   1573                             Target, CGM, S);
   1574 
   1575     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
   1576 
   1577     // If this input argument is tied to a larger output result, extend the
   1578     // input to be the same size as the output.  The LLVM backend wants to see
   1579     // the input and output of a matching constraint be the same size.  Note
   1580     // that GCC does not define what the top bits are here.  We use zext because
   1581     // that is usually cheaper, but LLVM IR should really get an anyext someday.
   1582     if (Info.hasTiedOperand()) {
   1583       unsigned Output = Info.getTiedOperand();
   1584       QualType OutputType = S.getOutputExpr(Output)->getType();
   1585       QualType InputTy = InputExpr->getType();
   1586 
   1587       if (getContext().getTypeSize(OutputType) >
   1588           getContext().getTypeSize(InputTy)) {
   1589         // Use ptrtoint as appropriate so that we can do our extension.
   1590         if (isa<llvm::PointerType>(Arg->getType()))
   1591           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
   1592         llvm::Type *OutputTy = ConvertType(OutputType);
   1593         if (isa<llvm::IntegerType>(OutputTy))
   1594           Arg = Builder.CreateZExt(Arg, OutputTy);
   1595         else if (isa<llvm::PointerType>(OutputTy))
   1596           Arg = Builder.CreateZExt(Arg, IntPtrTy);
   1597         else {
   1598           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
   1599           Arg = Builder.CreateFPExt(Arg, OutputTy);
   1600         }
   1601       }
   1602     }
   1603     if (llvm::Type* AdjTy =
   1604               getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
   1605                                                    Arg->getType()))
   1606       Arg = Builder.CreateBitCast(Arg, AdjTy);
   1607 
   1608     ArgTypes.push_back(Arg->getType());
   1609     Args.push_back(Arg);
   1610     Constraints += InputConstraint;
   1611   }
   1612 
   1613   // Append the "input" part of inout constraints last.
   1614   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
   1615     ArgTypes.push_back(InOutArgTypes[i]);
   1616     Args.push_back(InOutArgs[i]);
   1617   }
   1618   Constraints += InOutConstraints;
   1619 
   1620   // Clobbers
   1621   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
   1622     StringRef Clobber = S.getClobber(i);
   1623 
   1624     if (Clobber != "memory" && Clobber != "cc")
   1625     Clobber = Target.getNormalizedGCCRegisterName(Clobber);
   1626 
   1627     if (i != 0 || NumConstraints != 0)
   1628       Constraints += ',';
   1629 
   1630     Constraints += "~{";
   1631     Constraints += Clobber;
   1632     Constraints += '}';
   1633   }
   1634 
   1635   // Add machine specific clobbers
   1636   std::string MachineClobbers = Target.getClobbers();
   1637   if (!MachineClobbers.empty()) {
   1638     if (!Constraints.empty())
   1639       Constraints += ',';
   1640     Constraints += MachineClobbers;
   1641   }
   1642 
   1643   llvm::Type *ResultType;
   1644   if (ResultRegTypes.empty())
   1645     ResultType = VoidTy;
   1646   else if (ResultRegTypes.size() == 1)
   1647     ResultType = ResultRegTypes[0];
   1648   else
   1649     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
   1650 
   1651   llvm::FunctionType *FTy =
   1652     llvm::FunctionType::get(ResultType, ArgTypes, false);
   1653 
   1654   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
   1655   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
   1656     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
   1657   llvm::InlineAsm *IA =
   1658     llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
   1659                          /* IsAlignStack */ false, AsmDialect);
   1660   llvm::CallInst *Result = Builder.CreateCall(IA, Args);
   1661   Result->addAttribute(llvm::AttributeSet::FunctionIndex,
   1662                        llvm::Attribute::NoUnwind);
   1663 
   1664   // Slap the source location of the inline asm into a !srcloc metadata on the
   1665   // call.  FIXME: Handle metadata for MS-style inline asms.
   1666   if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
   1667     Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(),
   1668                                                    *this));
   1669 
   1670   // Extract all of the register value results from the asm.
   1671   std::vector<llvm::Value*> RegResults;
   1672   if (ResultRegTypes.size() == 1) {
   1673     RegResults.push_back(Result);
   1674   } else {
   1675     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
   1676       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
   1677       RegResults.push_back(Tmp);
   1678     }
   1679   }
   1680 
   1681   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
   1682     llvm::Value *Tmp = RegResults[i];
   1683 
   1684     // If the result type of the LLVM IR asm doesn't match the result type of
   1685     // the expression, do the conversion.
   1686     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
   1687       llvm::Type *TruncTy = ResultTruncRegTypes[i];
   1688 
   1689       // Truncate the integer result to the right size, note that TruncTy can be
   1690       // a pointer.
   1691       if (TruncTy->isFloatingPointTy())
   1692         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
   1693       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
   1694         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
   1695         Tmp = Builder.CreateTrunc(Tmp,
   1696                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
   1697         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
   1698       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
   1699         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
   1700         Tmp = Builder.CreatePtrToInt(Tmp,
   1701                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
   1702         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
   1703       } else if (TruncTy->isIntegerTy()) {
   1704         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
   1705       } else if (TruncTy->isVectorTy()) {
   1706         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
   1707       }
   1708     }
   1709 
   1710     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
   1711   }
   1712 }
   1713