Home | History | Annotate | Download | only in AsmParser
      1 //===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "MCTargetDesc/X86BaseInfo.h"
     11 #include "llvm/ADT/APFloat.h"
     12 #include "llvm/ADT/SmallString.h"
     13 #include "llvm/ADT/SmallVector.h"
     14 #include "llvm/ADT/StringSwitch.h"
     15 #include "llvm/ADT/Twine.h"
     16 #include "llvm/MC/MCExpr.h"
     17 #include "llvm/MC/MCInst.h"
     18 #include "llvm/MC/MCParser/MCAsmLexer.h"
     19 #include "llvm/MC/MCParser/MCAsmParser.h"
     20 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
     21 #include "llvm/MC/MCRegisterInfo.h"
     22 #include "llvm/MC/MCStreamer.h"
     23 #include "llvm/MC/MCSubtargetInfo.h"
     24 #include "llvm/MC/MCSymbol.h"
     25 #include "llvm/MC/MCTargetAsmParser.h"
     26 #include "llvm/Support/SourceMgr.h"
     27 #include "llvm/Support/TargetRegistry.h"
     28 #include "llvm/Support/raw_ostream.h"
     29 
     30 using namespace llvm;
     31 
     32 namespace {
     33 struct X86Operand;
     34 
     35 class X86AsmParser : public MCTargetAsmParser {
     36   MCSubtargetInfo &STI;
     37   MCAsmParser &Parser;
     38   ParseInstructionInfo *InstInfo;
     39 private:
     40   MCAsmParser &getParser() const { return Parser; }
     41 
     42   MCAsmLexer &getLexer() const { return Parser.getLexer(); }
     43 
     44   bool Error(SMLoc L, const Twine &Msg,
     45              ArrayRef<SMRange> Ranges = ArrayRef<SMRange>(),
     46              bool MatchingInlineAsm = false) {
     47     if (MatchingInlineAsm) return true;
     48     return Parser.Error(L, Msg, Ranges);
     49   }
     50 
     51   X86Operand *ErrorOperand(SMLoc Loc, StringRef Msg) {
     52     Error(Loc, Msg);
     53     return 0;
     54   }
     55 
     56   X86Operand *ParseOperand();
     57   X86Operand *ParseATTOperand();
     58   X86Operand *ParseIntelOperand();
     59   X86Operand *ParseIntelOffsetOfOperator(SMLoc StartLoc);
     60   X86Operand *ParseIntelOperator(SMLoc StartLoc, unsigned OpKind);
     61   X86Operand *ParseIntelMemOperand(unsigned SegReg, SMLoc StartLoc);
     62   X86Operand *ParseIntelBracExpression(unsigned SegReg, unsigned Size);
     63   X86Operand *ParseMemOperand(unsigned SegReg, SMLoc StartLoc);
     64 
     65   bool ParseIntelDotOperator(const MCExpr *Disp, const MCExpr **NewDisp,
     66                              SmallString<64> &Err);
     67 
     68   bool ParseDirectiveWord(unsigned Size, SMLoc L);
     69   bool ParseDirectiveCode(StringRef IDVal, SMLoc L);
     70 
     71   bool processInstruction(MCInst &Inst,
     72                           const SmallVectorImpl<MCParsedAsmOperand*> &Ops);
     73 
     74   bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
     75                                SmallVectorImpl<MCParsedAsmOperand*> &Operands,
     76                                MCStreamer &Out, unsigned &ErrorInfo,
     77                                bool MatchingInlineAsm);
     78 
     79   /// isSrcOp - Returns true if operand is either (%rsi) or %ds:%(rsi)
     80   /// in 64bit mode or (%esi) or %es:(%esi) in 32bit mode.
     81   bool isSrcOp(X86Operand &Op);
     82 
     83   /// isDstOp - Returns true if operand is either (%rdi) or %es:(%rdi)
     84   /// in 64bit mode or (%edi) or %es:(%edi) in 32bit mode.
     85   bool isDstOp(X86Operand &Op);
     86 
     87   bool is64BitMode() const {
     88     // FIXME: Can tablegen auto-generate this?
     89     return (STI.getFeatureBits() & X86::Mode64Bit) != 0;
     90   }
     91   void SwitchMode() {
     92     unsigned FB = ComputeAvailableFeatures(STI.ToggleFeature(X86::Mode64Bit));
     93     setAvailableFeatures(FB);
     94   }
     95 
     96   /// @name Auto-generated Matcher Functions
     97   /// {
     98 
     99 #define GET_ASSEMBLER_HEADER
    100 #include "X86GenAsmMatcher.inc"
    101 
    102   /// }
    103 
    104 public:
    105   X86AsmParser(MCSubtargetInfo &sti, MCAsmParser &parser)
    106     : MCTargetAsmParser(), STI(sti), Parser(parser), InstInfo(0) {
    107 
    108     // Initialize the set of available features.
    109     setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
    110   }
    111   virtual bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
    112 
    113   virtual bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
    114                                 SMLoc NameLoc,
    115                                 SmallVectorImpl<MCParsedAsmOperand*> &Operands);
    116 
    117   virtual bool ParseDirective(AsmToken DirectiveID);
    118 
    119   bool isParsingIntelSyntax() {
    120     return getParser().getAssemblerDialect();
    121   }
    122 };
    123 } // end anonymous namespace
    124 
    125 /// @name Auto-generated Match Functions
    126 /// {
    127 
    128 static unsigned MatchRegisterName(StringRef Name);
    129 
    130 /// }
    131 
    132 static bool isImmSExti16i8Value(uint64_t Value) {
    133   return ((                                  Value <= 0x000000000000007FULL)||
    134           (0x000000000000FF80ULL <= Value && Value <= 0x000000000000FFFFULL)||
    135           (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
    136 }
    137 
    138 static bool isImmSExti32i8Value(uint64_t Value) {
    139   return ((                                  Value <= 0x000000000000007FULL)||
    140           (0x00000000FFFFFF80ULL <= Value && Value <= 0x00000000FFFFFFFFULL)||
    141           (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
    142 }
    143 
    144 static bool isImmZExtu32u8Value(uint64_t Value) {
    145     return (Value <= 0x00000000000000FFULL);
    146 }
    147 
    148 static bool isImmSExti64i8Value(uint64_t Value) {
    149   return ((                                  Value <= 0x000000000000007FULL)||
    150           (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
    151 }
    152 
    153 static bool isImmSExti64i32Value(uint64_t Value) {
    154   return ((                                  Value <= 0x000000007FFFFFFFULL)||
    155           (0xFFFFFFFF80000000ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
    156 }
    157 namespace {
    158 
    159 /// X86Operand - Instances of this class represent a parsed X86 machine
    160 /// instruction.
    161 struct X86Operand : public MCParsedAsmOperand {
    162   enum KindTy {
    163     Token,
    164     Register,
    165     Immediate,
    166     Memory
    167   } Kind;
    168 
    169   SMLoc StartLoc, EndLoc;
    170   SMLoc OffsetOfLoc;
    171   bool AddressOf;
    172 
    173   struct TokOp {
    174     const char *Data;
    175     unsigned Length;
    176   };
    177 
    178   struct RegOp {
    179     unsigned RegNo;
    180   };
    181 
    182   struct ImmOp {
    183     const MCExpr *Val;
    184     bool NeedAsmRewrite;
    185   };
    186 
    187   struct MemOp {
    188     unsigned SegReg;
    189     const MCExpr *Disp;
    190     unsigned BaseReg;
    191     unsigned IndexReg;
    192     unsigned Scale;
    193     unsigned Size;
    194     bool NeedSizeDir;
    195   };
    196 
    197   union {
    198     struct TokOp Tok;
    199     struct RegOp Reg;
    200     struct ImmOp Imm;
    201     struct MemOp Mem;
    202   };
    203 
    204   X86Operand(KindTy K, SMLoc Start, SMLoc End)
    205     : Kind(K), StartLoc(Start), EndLoc(End) {}
    206 
    207   /// getStartLoc - Get the location of the first token of this operand.
    208   SMLoc getStartLoc() const { return StartLoc; }
    209   /// getEndLoc - Get the location of the last token of this operand.
    210   SMLoc getEndLoc() const { return EndLoc; }
    211   /// getLocRange - Get the range between the first and last token of this
    212   /// operand.
    213   SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
    214   /// getOffsetOfLoc - Get the location of the offset operator.
    215   SMLoc getOffsetOfLoc() const { return OffsetOfLoc; }
    216 
    217   virtual void print(raw_ostream &OS) const {}
    218 
    219   StringRef getToken() const {
    220     assert(Kind == Token && "Invalid access!");
    221     return StringRef(Tok.Data, Tok.Length);
    222   }
    223   void setTokenValue(StringRef Value) {
    224     assert(Kind == Token && "Invalid access!");
    225     Tok.Data = Value.data();
    226     Tok.Length = Value.size();
    227   }
    228 
    229   unsigned getReg() const {
    230     assert(Kind == Register && "Invalid access!");
    231     return Reg.RegNo;
    232   }
    233 
    234   const MCExpr *getImm() const {
    235     assert(Kind == Immediate && "Invalid access!");
    236     return Imm.Val;
    237   }
    238 
    239   bool needAsmRewrite() const {
    240     assert(Kind == Immediate && "Invalid access!");
    241     return Imm.NeedAsmRewrite;
    242   }
    243 
    244   const MCExpr *getMemDisp() const {
    245     assert(Kind == Memory && "Invalid access!");
    246     return Mem.Disp;
    247   }
    248   unsigned getMemSegReg() const {
    249     assert(Kind == Memory && "Invalid access!");
    250     return Mem.SegReg;
    251   }
    252   unsigned getMemBaseReg() const {
    253     assert(Kind == Memory && "Invalid access!");
    254     return Mem.BaseReg;
    255   }
    256   unsigned getMemIndexReg() const {
    257     assert(Kind == Memory && "Invalid access!");
    258     return Mem.IndexReg;
    259   }
    260   unsigned getMemScale() const {
    261     assert(Kind == Memory && "Invalid access!");
    262     return Mem.Scale;
    263   }
    264 
    265   bool isToken() const {return Kind == Token; }
    266 
    267   bool isImm() const { return Kind == Immediate; }
    268 
    269   bool isImmSExti16i8() const {
    270     if (!isImm())
    271       return false;
    272 
    273     // If this isn't a constant expr, just assume it fits and let relaxation
    274     // handle it.
    275     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    276     if (!CE)
    277       return true;
    278 
    279     // Otherwise, check the value is in a range that makes sense for this
    280     // extension.
    281     return isImmSExti16i8Value(CE->getValue());
    282   }
    283   bool isImmSExti32i8() const {
    284     if (!isImm())
    285       return false;
    286 
    287     // If this isn't a constant expr, just assume it fits and let relaxation
    288     // handle it.
    289     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    290     if (!CE)
    291       return true;
    292 
    293     // Otherwise, check the value is in a range that makes sense for this
    294     // extension.
    295     return isImmSExti32i8Value(CE->getValue());
    296   }
    297   bool isImmZExtu32u8() const {
    298     if (!isImm())
    299       return false;
    300 
    301     // If this isn't a constant expr, just assume it fits and let relaxation
    302     // handle it.
    303     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    304     if (!CE)
    305       return true;
    306 
    307     // Otherwise, check the value is in a range that makes sense for this
    308     // extension.
    309     return isImmZExtu32u8Value(CE->getValue());
    310   }
    311   bool isImmSExti64i8() const {
    312     if (!isImm())
    313       return false;
    314 
    315     // If this isn't a constant expr, just assume it fits and let relaxation
    316     // handle it.
    317     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    318     if (!CE)
    319       return true;
    320 
    321     // Otherwise, check the value is in a range that makes sense for this
    322     // extension.
    323     return isImmSExti64i8Value(CE->getValue());
    324   }
    325   bool isImmSExti64i32() const {
    326     if (!isImm())
    327       return false;
    328 
    329     // If this isn't a constant expr, just assume it fits and let relaxation
    330     // handle it.
    331     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    332     if (!CE)
    333       return true;
    334 
    335     // Otherwise, check the value is in a range that makes sense for this
    336     // extension.
    337     return isImmSExti64i32Value(CE->getValue());
    338   }
    339 
    340   unsigned getMemSize() const {
    341     assert(Kind == Memory && "Invalid access!");
    342     return Mem.Size;
    343   }
    344 
    345   bool isOffsetOf() const {
    346     return OffsetOfLoc.getPointer();
    347   }
    348 
    349   bool needAddressOf() const {
    350     return AddressOf;
    351   }
    352 
    353   bool needSizeDirective() const {
    354     assert(Kind == Memory && "Invalid access!");
    355     return Mem.NeedSizeDir;
    356   }
    357 
    358   bool isMem() const { return Kind == Memory; }
    359   bool isMem8() const {
    360     return Kind == Memory && (!Mem.Size || Mem.Size == 8);
    361   }
    362   bool isMem16() const {
    363     return Kind == Memory && (!Mem.Size || Mem.Size == 16);
    364   }
    365   bool isMem32() const {
    366     return Kind == Memory && (!Mem.Size || Mem.Size == 32);
    367   }
    368   bool isMem64() const {
    369     return Kind == Memory && (!Mem.Size || Mem.Size == 64);
    370   }
    371   bool isMem80() const {
    372     return Kind == Memory && (!Mem.Size || Mem.Size == 80);
    373   }
    374   bool isMem128() const {
    375     return Kind == Memory && (!Mem.Size || Mem.Size == 128);
    376   }
    377   bool isMem256() const {
    378     return Kind == Memory && (!Mem.Size || Mem.Size == 256);
    379   }
    380 
    381   bool isMemVX32() const {
    382     return Kind == Memory && (!Mem.Size || Mem.Size == 32) &&
    383       getMemIndexReg() >= X86::XMM0 && getMemIndexReg() <= X86::XMM15;
    384   }
    385   bool isMemVY32() const {
    386     return Kind == Memory && (!Mem.Size || Mem.Size == 32) &&
    387       getMemIndexReg() >= X86::YMM0 && getMemIndexReg() <= X86::YMM15;
    388   }
    389   bool isMemVX64() const {
    390     return Kind == Memory && (!Mem.Size || Mem.Size == 64) &&
    391       getMemIndexReg() >= X86::XMM0 && getMemIndexReg() <= X86::XMM15;
    392   }
    393   bool isMemVY64() const {
    394     return Kind == Memory && (!Mem.Size || Mem.Size == 64) &&
    395       getMemIndexReg() >= X86::YMM0 && getMemIndexReg() <= X86::YMM15;
    396   }
    397 
    398   bool isAbsMem() const {
    399     return Kind == Memory && !getMemSegReg() && !getMemBaseReg() &&
    400       !getMemIndexReg() && getMemScale() == 1;
    401   }
    402 
    403   bool isReg() const { return Kind == Register; }
    404 
    405   void addExpr(MCInst &Inst, const MCExpr *Expr) const {
    406     // Add as immediates when possible.
    407     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
    408       Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
    409     else
    410       Inst.addOperand(MCOperand::CreateExpr(Expr));
    411   }
    412 
    413   void addRegOperands(MCInst &Inst, unsigned N) const {
    414     assert(N == 1 && "Invalid number of operands!");
    415     Inst.addOperand(MCOperand::CreateReg(getReg()));
    416   }
    417 
    418   void addImmOperands(MCInst &Inst, unsigned N) const {
    419     assert(N == 1 && "Invalid number of operands!");
    420     addExpr(Inst, getImm());
    421   }
    422 
    423   void addMem8Operands(MCInst &Inst, unsigned N) const {
    424     addMemOperands(Inst, N);
    425   }
    426   void addMem16Operands(MCInst &Inst, unsigned N) const {
    427     addMemOperands(Inst, N);
    428   }
    429   void addMem32Operands(MCInst &Inst, unsigned N) const {
    430     addMemOperands(Inst, N);
    431   }
    432   void addMem64Operands(MCInst &Inst, unsigned N) const {
    433     addMemOperands(Inst, N);
    434   }
    435   void addMem80Operands(MCInst &Inst, unsigned N) const {
    436     addMemOperands(Inst, N);
    437   }
    438   void addMem128Operands(MCInst &Inst, unsigned N) const {
    439     addMemOperands(Inst, N);
    440   }
    441   void addMem256Operands(MCInst &Inst, unsigned N) const {
    442     addMemOperands(Inst, N);
    443   }
    444   void addMemVX32Operands(MCInst &Inst, unsigned N) const {
    445     addMemOperands(Inst, N);
    446   }
    447   void addMemVY32Operands(MCInst &Inst, unsigned N) const {
    448     addMemOperands(Inst, N);
    449   }
    450   void addMemVX64Operands(MCInst &Inst, unsigned N) const {
    451     addMemOperands(Inst, N);
    452   }
    453   void addMemVY64Operands(MCInst &Inst, unsigned N) const {
    454     addMemOperands(Inst, N);
    455   }
    456 
    457   void addMemOperands(MCInst &Inst, unsigned N) const {
    458     assert((N == 5) && "Invalid number of operands!");
    459     Inst.addOperand(MCOperand::CreateReg(getMemBaseReg()));
    460     Inst.addOperand(MCOperand::CreateImm(getMemScale()));
    461     Inst.addOperand(MCOperand::CreateReg(getMemIndexReg()));
    462     addExpr(Inst, getMemDisp());
    463     Inst.addOperand(MCOperand::CreateReg(getMemSegReg()));
    464   }
    465 
    466   void addAbsMemOperands(MCInst &Inst, unsigned N) const {
    467     assert((N == 1) && "Invalid number of operands!");
    468     // Add as immediates when possible.
    469     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getMemDisp()))
    470       Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
    471     else
    472       Inst.addOperand(MCOperand::CreateExpr(getMemDisp()));
    473   }
    474 
    475   static X86Operand *CreateToken(StringRef Str, SMLoc Loc) {
    476     SMLoc EndLoc = SMLoc::getFromPointer(Loc.getPointer() + Str.size());
    477     X86Operand *Res = new X86Operand(Token, Loc, EndLoc);
    478     Res->Tok.Data = Str.data();
    479     Res->Tok.Length = Str.size();
    480     return Res;
    481   }
    482 
    483   static X86Operand *CreateReg(unsigned RegNo, SMLoc StartLoc, SMLoc EndLoc,
    484                                bool AddressOf = false,
    485                                SMLoc OffsetOfLoc = SMLoc()) {
    486     X86Operand *Res = new X86Operand(Register, StartLoc, EndLoc);
    487     Res->Reg.RegNo = RegNo;
    488     Res->AddressOf = AddressOf;
    489     Res->OffsetOfLoc = OffsetOfLoc;
    490     return Res;
    491   }
    492 
    493   static X86Operand *CreateImm(const MCExpr *Val, SMLoc StartLoc, SMLoc EndLoc,
    494                                bool NeedRewrite = true){
    495     X86Operand *Res = new X86Operand(Immediate, StartLoc, EndLoc);
    496     Res->Imm.Val = Val;
    497     Res->Imm.NeedAsmRewrite = NeedRewrite;
    498     return Res;
    499   }
    500 
    501   /// Create an absolute memory operand.
    502   static X86Operand *CreateMem(const MCExpr *Disp, SMLoc StartLoc, SMLoc EndLoc,
    503                                unsigned Size = 0, bool NeedSizeDir = false) {
    504     X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc);
    505     Res->Mem.SegReg   = 0;
    506     Res->Mem.Disp     = Disp;
    507     Res->Mem.BaseReg  = 0;
    508     Res->Mem.IndexReg = 0;
    509     Res->Mem.Scale    = 1;
    510     Res->Mem.Size     = Size;
    511     Res->Mem.NeedSizeDir = NeedSizeDir;
    512     Res->AddressOf = false;
    513     return Res;
    514   }
    515 
    516   /// Create a generalized memory operand.
    517   static X86Operand *CreateMem(unsigned SegReg, const MCExpr *Disp,
    518                                unsigned BaseReg, unsigned IndexReg,
    519                                unsigned Scale, SMLoc StartLoc, SMLoc EndLoc,
    520                                unsigned Size = 0, bool NeedSizeDir = false) {
    521     // We should never just have a displacement, that should be parsed as an
    522     // absolute memory operand.
    523     assert((SegReg || BaseReg || IndexReg) && "Invalid memory operand!");
    524 
    525     // The scale should always be one of {1,2,4,8}.
    526     assert(((Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8)) &&
    527            "Invalid scale!");
    528     X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc);
    529     Res->Mem.SegReg   = SegReg;
    530     Res->Mem.Disp     = Disp;
    531     Res->Mem.BaseReg  = BaseReg;
    532     Res->Mem.IndexReg = IndexReg;
    533     Res->Mem.Scale    = Scale;
    534     Res->Mem.Size     = Size;
    535     Res->Mem.NeedSizeDir = NeedSizeDir;
    536     Res->AddressOf = false;
    537     return Res;
    538   }
    539 };
    540 
    541 } // end anonymous namespace.
    542 
    543 bool X86AsmParser::isSrcOp(X86Operand &Op) {
    544   unsigned basereg = is64BitMode() ? X86::RSI : X86::ESI;
    545 
    546   return (Op.isMem() &&
    547     (Op.Mem.SegReg == 0 || Op.Mem.SegReg == X86::DS) &&
    548     isa<MCConstantExpr>(Op.Mem.Disp) &&
    549     cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
    550     Op.Mem.BaseReg == basereg && Op.Mem.IndexReg == 0);
    551 }
    552 
    553 bool X86AsmParser::isDstOp(X86Operand &Op) {
    554   unsigned basereg = is64BitMode() ? X86::RDI : X86::EDI;
    555 
    556   return Op.isMem() &&
    557     (Op.Mem.SegReg == 0 || Op.Mem.SegReg == X86::ES) &&
    558     isa<MCConstantExpr>(Op.Mem.Disp) &&
    559     cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
    560     Op.Mem.BaseReg == basereg && Op.Mem.IndexReg == 0;
    561 }
    562 
    563 bool X86AsmParser::ParseRegister(unsigned &RegNo,
    564                                  SMLoc &StartLoc, SMLoc &EndLoc) {
    565   RegNo = 0;
    566   const AsmToken &PercentTok = Parser.getTok();
    567   StartLoc = PercentTok.getLoc();
    568 
    569   // If we encounter a %, ignore it. This code handles registers with and
    570   // without the prefix, unprefixed registers can occur in cfi directives.
    571   if (!isParsingIntelSyntax() && PercentTok.is(AsmToken::Percent))
    572     Parser.Lex(); // Eat percent token.
    573 
    574   const AsmToken &Tok = Parser.getTok();
    575   EndLoc = Tok.getEndLoc();
    576 
    577   if (Tok.isNot(AsmToken::Identifier)) {
    578     if (isParsingIntelSyntax()) return true;
    579     return Error(StartLoc, "invalid register name",
    580                  SMRange(StartLoc, EndLoc));
    581   }
    582 
    583   RegNo = MatchRegisterName(Tok.getString());
    584 
    585   // If the match failed, try the register name as lowercase.
    586   if (RegNo == 0)
    587     RegNo = MatchRegisterName(Tok.getString().lower());
    588 
    589   if (!is64BitMode()) {
    590     // FIXME: This should be done using Requires<In32BitMode> and
    591     // Requires<In64BitMode> so "eiz" usage in 64-bit instructions can be also
    592     // checked.
    593     // FIXME: Check AH, CH, DH, BH cannot be used in an instruction requiring a
    594     // REX prefix.
    595     if (RegNo == X86::RIZ ||
    596         X86MCRegisterClasses[X86::GR64RegClassID].contains(RegNo) ||
    597         X86II::isX86_64NonExtLowByteReg(RegNo) ||
    598         X86II::isX86_64ExtendedReg(RegNo))
    599       return Error(StartLoc, "register %"
    600                    + Tok.getString() + " is only available in 64-bit mode",
    601                    SMRange(StartLoc, EndLoc));
    602   }
    603 
    604   // Parse "%st" as "%st(0)" and "%st(1)", which is multiple tokens.
    605   if (RegNo == 0 && (Tok.getString() == "st" || Tok.getString() == "ST")) {
    606     RegNo = X86::ST0;
    607     Parser.Lex(); // Eat 'st'
    608 
    609     // Check to see if we have '(4)' after %st.
    610     if (getLexer().isNot(AsmToken::LParen))
    611       return false;
    612     // Lex the paren.
    613     getParser().Lex();
    614 
    615     const AsmToken &IntTok = Parser.getTok();
    616     if (IntTok.isNot(AsmToken::Integer))
    617       return Error(IntTok.getLoc(), "expected stack index");
    618     switch (IntTok.getIntVal()) {
    619     case 0: RegNo = X86::ST0; break;
    620     case 1: RegNo = X86::ST1; break;
    621     case 2: RegNo = X86::ST2; break;
    622     case 3: RegNo = X86::ST3; break;
    623     case 4: RegNo = X86::ST4; break;
    624     case 5: RegNo = X86::ST5; break;
    625     case 6: RegNo = X86::ST6; break;
    626     case 7: RegNo = X86::ST7; break;
    627     default: return Error(IntTok.getLoc(), "invalid stack index");
    628     }
    629 
    630     if (getParser().Lex().isNot(AsmToken::RParen))
    631       return Error(Parser.getTok().getLoc(), "expected ')'");
    632 
    633     EndLoc = Parser.getTok().getEndLoc();
    634     Parser.Lex(); // Eat ')'
    635     return false;
    636   }
    637 
    638   EndLoc = Parser.getTok().getEndLoc();
    639 
    640   // If this is "db[0-7]", match it as an alias
    641   // for dr[0-7].
    642   if (RegNo == 0 && Tok.getString().size() == 3 &&
    643       Tok.getString().startswith("db")) {
    644     switch (Tok.getString()[2]) {
    645     case '0': RegNo = X86::DR0; break;
    646     case '1': RegNo = X86::DR1; break;
    647     case '2': RegNo = X86::DR2; break;
    648     case '3': RegNo = X86::DR3; break;
    649     case '4': RegNo = X86::DR4; break;
    650     case '5': RegNo = X86::DR5; break;
    651     case '6': RegNo = X86::DR6; break;
    652     case '7': RegNo = X86::DR7; break;
    653     }
    654 
    655     if (RegNo != 0) {
    656       EndLoc = Parser.getTok().getEndLoc();
    657       Parser.Lex(); // Eat it.
    658       return false;
    659     }
    660   }
    661 
    662   if (RegNo == 0) {
    663     if (isParsingIntelSyntax()) return true;
    664     return Error(StartLoc, "invalid register name",
    665                  SMRange(StartLoc, EndLoc));
    666   }
    667 
    668   Parser.Lex(); // Eat identifier token.
    669   return false;
    670 }
    671 
    672 X86Operand *X86AsmParser::ParseOperand() {
    673   if (isParsingIntelSyntax())
    674     return ParseIntelOperand();
    675   return ParseATTOperand();
    676 }
    677 
    678 /// getIntelMemOperandSize - Return intel memory operand size.
    679 static unsigned getIntelMemOperandSize(StringRef OpStr) {
    680   unsigned Size = StringSwitch<unsigned>(OpStr)
    681     .Cases("BYTE", "byte", 8)
    682     .Cases("WORD", "word", 16)
    683     .Cases("DWORD", "dword", 32)
    684     .Cases("QWORD", "qword", 64)
    685     .Cases("XWORD", "xword", 80)
    686     .Cases("XMMWORD", "xmmword", 128)
    687     .Cases("YMMWORD", "ymmword", 256)
    688     .Default(0);
    689   return Size;
    690 }
    691 
    692 enum IntelBracExprState {
    693   IBES_START,
    694   IBES_LBRAC,
    695   IBES_RBRAC,
    696   IBES_REGISTER,
    697   IBES_REGISTER_STAR,
    698   IBES_REGISTER_STAR_INTEGER,
    699   IBES_INTEGER,
    700   IBES_INTEGER_STAR,
    701   IBES_INDEX_REGISTER,
    702   IBES_IDENTIFIER,
    703   IBES_DISP_EXPR,
    704   IBES_MINUS,
    705   IBES_ERROR
    706 };
    707 
    708 class IntelBracExprStateMachine {
    709   IntelBracExprState State;
    710   unsigned BaseReg, IndexReg, Scale;
    711   int64_t Disp;
    712 
    713   unsigned TmpReg;
    714   int64_t TmpInteger;
    715 
    716   bool isPlus;
    717 
    718 public:
    719   IntelBracExprStateMachine(MCAsmParser &parser) :
    720     State(IBES_START), BaseReg(0), IndexReg(0), Scale(1), Disp(0),
    721     TmpReg(0), TmpInteger(0), isPlus(true) {}
    722 
    723   unsigned getBaseReg() { return BaseReg; }
    724   unsigned getIndexReg() { return IndexReg; }
    725   unsigned getScale() { return Scale; }
    726   int64_t getDisp() { return Disp; }
    727   bool isValidEndState() { return State == IBES_RBRAC; }
    728 
    729   void onPlus() {
    730     switch (State) {
    731     default:
    732       State = IBES_ERROR;
    733       break;
    734     case IBES_INTEGER:
    735       State = IBES_START;
    736       if (isPlus)
    737         Disp += TmpInteger;
    738       else
    739         Disp -= TmpInteger;
    740       break;
    741     case IBES_REGISTER:
    742       State = IBES_START;
    743       // If we already have a BaseReg, then assume this is the IndexReg with a
    744       // scale of 1.
    745       if (!BaseReg) {
    746         BaseReg = TmpReg;
    747       } else {
    748         assert (!IndexReg && "BaseReg/IndexReg already set!");
    749         IndexReg = TmpReg;
    750         Scale = 1;
    751       }
    752       break;
    753     case IBES_INDEX_REGISTER:
    754       State = IBES_START;
    755       break;
    756     }
    757     isPlus = true;
    758   }
    759   void onMinus() {
    760     switch (State) {
    761     default:
    762       State = IBES_ERROR;
    763       break;
    764     case IBES_START:
    765       State = IBES_MINUS;
    766       break;
    767     case IBES_INTEGER:
    768       State = IBES_START;
    769       if (isPlus)
    770         Disp += TmpInteger;
    771       else
    772         Disp -= TmpInteger;
    773       break;
    774     case IBES_REGISTER:
    775       State = IBES_START;
    776       // If we already have a BaseReg, then assume this is the IndexReg with a
    777       // scale of 1.
    778       if (!BaseReg) {
    779         BaseReg = TmpReg;
    780       } else {
    781         assert (!IndexReg && "BaseReg/IndexReg already set!");
    782         IndexReg = TmpReg;
    783         Scale = 1;
    784       }
    785       break;
    786     case IBES_INDEX_REGISTER:
    787       State = IBES_START;
    788       break;
    789     }
    790     isPlus = false;
    791   }
    792   void onRegister(unsigned Reg) {
    793     switch (State) {
    794     default:
    795       State = IBES_ERROR;
    796       break;
    797     case IBES_START:
    798       State = IBES_REGISTER;
    799       TmpReg = Reg;
    800       break;
    801     case IBES_INTEGER_STAR:
    802       assert (!IndexReg && "IndexReg already set!");
    803       State = IBES_INDEX_REGISTER;
    804       IndexReg = Reg;
    805       Scale = TmpInteger;
    806       break;
    807     }
    808   }
    809   void onDispExpr() {
    810     switch (State) {
    811     default:
    812       State = IBES_ERROR;
    813       break;
    814     case IBES_START:
    815       State = IBES_DISP_EXPR;
    816       break;
    817     }
    818   }
    819   void onInteger(int64_t TmpInt) {
    820     switch (State) {
    821     default:
    822       State = IBES_ERROR;
    823       break;
    824     case IBES_START:
    825       State = IBES_INTEGER;
    826       TmpInteger = TmpInt;
    827       break;
    828     case IBES_MINUS:
    829       State = IBES_INTEGER;
    830       TmpInteger = TmpInt;
    831       break;
    832     case IBES_REGISTER_STAR:
    833       assert (!IndexReg && "IndexReg already set!");
    834       State = IBES_INDEX_REGISTER;
    835       IndexReg = TmpReg;
    836       Scale = TmpInt;
    837       break;
    838     }
    839   }
    840   void onStar() {
    841     switch (State) {
    842     default:
    843       State = IBES_ERROR;
    844       break;
    845     case IBES_INTEGER:
    846       State = IBES_INTEGER_STAR;
    847       break;
    848     case IBES_REGISTER:
    849       State = IBES_REGISTER_STAR;
    850       break;
    851     }
    852   }
    853   void onLBrac() {
    854     switch (State) {
    855     default:
    856       State = IBES_ERROR;
    857       break;
    858     case IBES_RBRAC:
    859       State = IBES_START;
    860       isPlus = true;
    861       break;
    862     }
    863   }
    864   void onRBrac() {
    865     switch (State) {
    866     default:
    867       State = IBES_ERROR;
    868       break;
    869     case IBES_DISP_EXPR:
    870       State = IBES_RBRAC;
    871       break;
    872     case IBES_INTEGER:
    873       State = IBES_RBRAC;
    874       if (isPlus)
    875         Disp += TmpInteger;
    876       else
    877         Disp -= TmpInteger;
    878       break;
    879     case IBES_REGISTER:
    880       State = IBES_RBRAC;
    881       // If we already have a BaseReg, then assume this is the IndexReg with a
    882       // scale of 1.
    883       if (!BaseReg) {
    884         BaseReg = TmpReg;
    885       } else {
    886         assert (!IndexReg && "BaseReg/IndexReg already set!");
    887         IndexReg = TmpReg;
    888         Scale = 1;
    889       }
    890       break;
    891     case IBES_INDEX_REGISTER:
    892       State = IBES_RBRAC;
    893       break;
    894     }
    895   }
    896 };
    897 
    898 X86Operand *X86AsmParser::ParseIntelBracExpression(unsigned SegReg,
    899                                                    unsigned Size) {
    900   const AsmToken &Tok = Parser.getTok();
    901   SMLoc Start = Tok.getLoc(), End = Tok.getEndLoc();
    902 
    903   // Eat '['
    904   if (getLexer().isNot(AsmToken::LBrac))
    905     return ErrorOperand(Start, "Expected '[' token!");
    906   Parser.Lex();
    907 
    908   unsigned TmpReg = 0;
    909 
    910   // Try to handle '[' 'symbol' ']'
    911   if (getLexer().is(AsmToken::Identifier)) {
    912     if (ParseRegister(TmpReg, Start, End)) {
    913       const MCExpr *Disp;
    914       if (getParser().parseExpression(Disp, End))
    915         return 0;
    916 
    917       if (getLexer().isNot(AsmToken::RBrac))
    918         return ErrorOperand(Parser.getTok().getLoc(), "Expected ']' token!");
    919       // Adjust the EndLoc due to the ']'.
    920       End = SMLoc::getFromPointer(Parser.getTok().getEndLoc().getPointer()-1);
    921       Parser.Lex();
    922       return X86Operand::CreateMem(Disp, Start, End, Size);
    923     }
    924   }
    925 
    926   // Parse [ BaseReg + Scale*IndexReg + Disp ].
    927   bool Done = false;
    928   IntelBracExprStateMachine SM(Parser);
    929 
    930   // If we parsed a register, then the end loc has already been set and
    931   // the identifier has already been lexed.  We also need to update the
    932   // state.
    933   if (TmpReg)
    934     SM.onRegister(TmpReg);
    935 
    936   const MCExpr *Disp = 0;
    937   while (!Done) {
    938     bool UpdateLocLex = true;
    939 
    940     // The period in the dot operator (e.g., [ebx].foo.bar) is parsed as an
    941     // identifier.  Don't try an parse it as a register.
    942     if (Tok.getString().startswith("."))
    943       break;
    944 
    945     switch (getLexer().getKind()) {
    946     default: {
    947       if (SM.isValidEndState()) {
    948         Done = true;
    949         break;
    950       }
    951       return ErrorOperand(Tok.getLoc(), "Unexpected token!");
    952     }
    953     case AsmToken::Identifier: {
    954       // This could be a register or a displacement expression.
    955       if(!ParseRegister(TmpReg, Start, End)) {
    956         SM.onRegister(TmpReg);
    957         UpdateLocLex = false;
    958         break;
    959       } else if (!getParser().parseExpression(Disp, End)) {
    960         SM.onDispExpr();
    961         UpdateLocLex = false;
    962         break;
    963       }
    964       return ErrorOperand(Tok.getLoc(), "Unexpected identifier!");
    965     }
    966     case AsmToken::Integer: {
    967       int64_t Val = Tok.getIntVal();
    968       SM.onInteger(Val);
    969       break;
    970     }
    971     case AsmToken::Plus:    SM.onPlus(); break;
    972     case AsmToken::Minus:   SM.onMinus(); break;
    973     case AsmToken::Star:    SM.onStar(); break;
    974     case AsmToken::LBrac:   SM.onLBrac(); break;
    975     case AsmToken::RBrac:   SM.onRBrac(); break;
    976     }
    977     if (!Done && UpdateLocLex) {
    978       End = Tok.getLoc();
    979       Parser.Lex(); // Consume the token.
    980     }
    981   }
    982 
    983   if (!Disp)
    984     Disp = MCConstantExpr::Create(SM.getDisp(), getContext());
    985 
    986   // Parse the dot operator (e.g., [ebx].foo.bar).
    987   if (Tok.getString().startswith(".")) {
    988     SmallString<64> Err;
    989     const MCExpr *NewDisp;
    990     if (ParseIntelDotOperator(Disp, &NewDisp, Err))
    991       return ErrorOperand(Tok.getLoc(), Err);
    992 
    993     End = Parser.getTok().getEndLoc();
    994     Parser.Lex();  // Eat the field.
    995     Disp = NewDisp;
    996   }
    997 
    998   int BaseReg = SM.getBaseReg();
    999   int IndexReg = SM.getIndexReg();
   1000 
   1001   // handle [-42]
   1002   if (!BaseReg && !IndexReg) {
   1003     if (!SegReg)
   1004       return X86Operand::CreateMem(Disp, Start, End);
   1005     else
   1006       return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, Start, End, Size);
   1007   }
   1008 
   1009   int Scale = SM.getScale();
   1010   return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale,
   1011                                Start, End, Size);
   1012 }
   1013 
   1014 /// ParseIntelMemOperand - Parse intel style memory operand.
   1015 X86Operand *X86AsmParser::ParseIntelMemOperand(unsigned SegReg, SMLoc Start) {
   1016   const AsmToken &Tok = Parser.getTok();
   1017   SMLoc End;
   1018 
   1019   unsigned Size = getIntelMemOperandSize(Tok.getString());
   1020   if (Size) {
   1021     Parser.Lex();
   1022     assert ((Tok.getString() == "PTR" || Tok.getString() == "ptr") &&
   1023             "Unexpected token!");
   1024     Parser.Lex();
   1025   }
   1026 
   1027   if (getLexer().is(AsmToken::LBrac))
   1028     return ParseIntelBracExpression(SegReg, Size);
   1029 
   1030   if (!ParseRegister(SegReg, Start, End)) {
   1031     // Handel SegReg : [ ... ]
   1032     if (getLexer().isNot(AsmToken::Colon))
   1033       return ErrorOperand(Start, "Expected ':' token!");
   1034     Parser.Lex(); // Eat :
   1035     if (getLexer().isNot(AsmToken::LBrac))
   1036       return ErrorOperand(Start, "Expected '[' token!");
   1037     return ParseIntelBracExpression(SegReg, Size);
   1038   }
   1039 
   1040   const MCExpr *Disp = MCConstantExpr::Create(0, getParser().getContext());
   1041   if (getParser().parseExpression(Disp, End))
   1042     return 0;
   1043 
   1044   bool NeedSizeDir = false;
   1045   bool IsVarDecl = false;
   1046   if (isParsingInlineAsm()) {
   1047     if (const MCSymbolRefExpr *SymRef = dyn_cast<MCSymbolRefExpr>(Disp)) {
   1048       const MCSymbol &Sym = SymRef->getSymbol();
   1049       // FIXME: The SemaLookup will fail if the name is anything other then an
   1050       // identifier.
   1051       // FIXME: Pass a valid SMLoc.
   1052       unsigned tLength, tSize, tType;
   1053       SemaCallback->LookupInlineAsmIdentifier(Sym.getName(), NULL, tLength,
   1054                                               tSize, tType, IsVarDecl);
   1055       if (!Size)
   1056         Size = tType * 8; // Size is in terms of bits in this context.
   1057       NeedSizeDir = Size > 0;
   1058     }
   1059   }
   1060   if (!isParsingInlineAsm())
   1061     return X86Operand::CreateMem(Disp, Start, End, Size);
   1062   else {
   1063     // If this is not a VarDecl then assume it is a FuncDecl or some other label
   1064     // reference.  We need an 'r' constraint here, so we need to create register
   1065     // operand to ensure proper matching.  Just pick a GPR based on the size of
   1066     // a pointer.
   1067     if (!IsVarDecl) {
   1068       unsigned RegNo = is64BitMode() ? X86::RBX : X86::EBX;
   1069       return X86Operand::CreateReg(RegNo, Start, End, /*AddressOf=*/true);
   1070     }
   1071 
   1072     // When parsing inline assembly we set the base register to a non-zero value
   1073     // as we don't know the actual value at this time.  This is necessary to
   1074     // get the matching correct in some cases.
   1075     return X86Operand::CreateMem(/*SegReg*/0, Disp, /*BaseReg*/1, /*IndexReg*/0,
   1076                                  /*Scale*/1, Start, End, Size, NeedSizeDir);
   1077   }
   1078 }
   1079 
   1080 /// Parse the '.' operator.
   1081 bool X86AsmParser::ParseIntelDotOperator(const MCExpr *Disp,
   1082                                          const MCExpr **NewDisp,
   1083                                          SmallString<64> &Err) {
   1084   AsmToken Tok = *&Parser.getTok();
   1085   uint64_t OrigDispVal, DotDispVal;
   1086 
   1087   // FIXME: Handle non-constant expressions.
   1088   if (const MCConstantExpr *OrigDisp = dyn_cast<MCConstantExpr>(Disp)) {
   1089     OrigDispVal = OrigDisp->getValue();
   1090   } else {
   1091     Err = "Non-constant offsets are not supported!";
   1092     return true;
   1093   }
   1094 
   1095   // Drop the '.'.
   1096   StringRef DotDispStr = Tok.getString().drop_front(1);
   1097 
   1098   // .Imm gets lexed as a real.
   1099   if (Tok.is(AsmToken::Real)) {
   1100     APInt DotDisp;
   1101     DotDispStr.getAsInteger(10, DotDisp);
   1102     DotDispVal = DotDisp.getZExtValue();
   1103   } else if (Tok.is(AsmToken::Identifier)) {
   1104     // We should only see an identifier when parsing the original inline asm.
   1105     // The front-end should rewrite this in terms of immediates.
   1106     assert (isParsingInlineAsm() && "Unexpected field name!");
   1107 
   1108     unsigned DotDisp;
   1109     std::pair<StringRef, StringRef> BaseMember = DotDispStr.split('.');
   1110     if (SemaCallback->LookupInlineAsmField(BaseMember.first, BaseMember.second,
   1111                                            DotDisp)) {
   1112       Err = "Unable to lookup field reference!";
   1113       return true;
   1114     }
   1115     DotDispVal = DotDisp;
   1116   } else {
   1117     Err = "Unexpected token type!";
   1118     return true;
   1119   }
   1120 
   1121   if (isParsingInlineAsm() && Tok.is(AsmToken::Identifier)) {
   1122     SMLoc Loc = SMLoc::getFromPointer(DotDispStr.data());
   1123     unsigned Len = DotDispStr.size();
   1124     unsigned Val = OrigDispVal + DotDispVal;
   1125     InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_DotOperator, Loc, Len,
   1126                                                 Val));
   1127   }
   1128 
   1129   *NewDisp = MCConstantExpr::Create(OrigDispVal + DotDispVal, getContext());
   1130   return false;
   1131 }
   1132 
   1133 /// Parse the 'offset' operator.  This operator is used to specify the
   1134 /// location rather then the content of a variable.
   1135 X86Operand *X86AsmParser::ParseIntelOffsetOfOperator(SMLoc Start) {
   1136   SMLoc OffsetOfLoc = Start;
   1137   Parser.Lex(); // Eat offset.
   1138   Start = Parser.getTok().getLoc();
   1139   assert (Parser.getTok().is(AsmToken::Identifier) && "Expected an identifier");
   1140 
   1141   SMLoc End;
   1142   const MCExpr *Val;
   1143   if (getParser().parseExpression(Val, End))
   1144     return ErrorOperand(Start, "Unable to parse expression!");
   1145 
   1146   // Don't emit the offset operator.
   1147   InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_Skip, OffsetOfLoc, 7));
   1148 
   1149   // The offset operator will have an 'r' constraint, thus we need to create
   1150   // register operand to ensure proper matching.  Just pick a GPR based on
   1151   // the size of a pointer.
   1152   unsigned RegNo = is64BitMode() ? X86::RBX : X86::EBX;
   1153   return X86Operand::CreateReg(RegNo, Start, End, /*GetAddress=*/true,
   1154                                OffsetOfLoc);
   1155 }
   1156 
   1157 enum IntelOperatorKind {
   1158   IOK_LENGTH,
   1159   IOK_SIZE,
   1160   IOK_TYPE
   1161 };
   1162 
   1163 /// Parse the 'LENGTH', 'TYPE' and 'SIZE' operators.  The LENGTH operator
   1164 /// returns the number of elements in an array.  It returns the value 1 for
   1165 /// non-array variables.  The SIZE operator returns the size of a C or C++
   1166 /// variable.  A variable's size is the product of its LENGTH and TYPE.  The
   1167 /// TYPE operator returns the size of a C or C++ type or variable. If the
   1168 /// variable is an array, TYPE returns the size of a single element.
   1169 X86Operand *X86AsmParser::ParseIntelOperator(SMLoc Start, unsigned OpKind) {
   1170   SMLoc TypeLoc = Start;
   1171   Parser.Lex(); // Eat offset.
   1172   Start = Parser.getTok().getLoc();
   1173   assert (Parser.getTok().is(AsmToken::Identifier) && "Expected an identifier");
   1174 
   1175   SMLoc End;
   1176   const MCExpr *Val;
   1177   if (getParser().parseExpression(Val, End))
   1178     return 0;
   1179 
   1180   unsigned Length = 0, Size = 0, Type = 0;
   1181   if (const MCSymbolRefExpr *SymRef = dyn_cast<MCSymbolRefExpr>(Val)) {
   1182     const MCSymbol &Sym = SymRef->getSymbol();
   1183     // FIXME: The SemaLookup will fail if the name is anything other then an
   1184     // identifier.
   1185     // FIXME: Pass a valid SMLoc.
   1186     bool IsVarDecl;
   1187     if (!SemaCallback->LookupInlineAsmIdentifier(Sym.getName(), NULL, Length,
   1188                                                  Size, Type, IsVarDecl))
   1189       return ErrorOperand(Start, "Unable to lookup expr!");
   1190   }
   1191   unsigned CVal;
   1192   switch(OpKind) {
   1193   default: llvm_unreachable("Unexpected operand kind!");
   1194   case IOK_LENGTH: CVal = Length; break;
   1195   case IOK_SIZE: CVal = Size; break;
   1196   case IOK_TYPE: CVal = Type; break;
   1197   }
   1198 
   1199   // Rewrite the type operator and the C or C++ type or variable in terms of an
   1200   // immediate.  E.g. TYPE foo -> $$4
   1201   unsigned Len = End.getPointer() - TypeLoc.getPointer();
   1202   InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_Imm, TypeLoc, Len, CVal));
   1203 
   1204   const MCExpr *Imm = MCConstantExpr::Create(CVal, getContext());
   1205   return X86Operand::CreateImm(Imm, Start, End, /*NeedAsmRewrite*/false);
   1206 }
   1207 
   1208 X86Operand *X86AsmParser::ParseIntelOperand() {
   1209   SMLoc Start = Parser.getTok().getLoc(), End;
   1210   StringRef AsmTokStr = Parser.getTok().getString();
   1211 
   1212   // Offset, length, type and size operators.
   1213   if (isParsingInlineAsm()) {
   1214     if (AsmTokStr == "offset" || AsmTokStr == "OFFSET")
   1215       return ParseIntelOffsetOfOperator(Start);
   1216     if (AsmTokStr == "length" || AsmTokStr == "LENGTH")
   1217       return ParseIntelOperator(Start, IOK_LENGTH);
   1218     if (AsmTokStr == "size" || AsmTokStr == "SIZE")
   1219       return ParseIntelOperator(Start, IOK_SIZE);
   1220     if (AsmTokStr == "type" || AsmTokStr == "TYPE")
   1221       return ParseIntelOperator(Start, IOK_TYPE);
   1222   }
   1223 
   1224   // Immediate.
   1225   if (getLexer().is(AsmToken::Integer) || getLexer().is(AsmToken::Real) ||
   1226       getLexer().is(AsmToken::Minus)) {
   1227     const MCExpr *Val;
   1228     if (!getParser().parseExpression(Val, End)) {
   1229       return X86Operand::CreateImm(Val, Start, End);
   1230     }
   1231   }
   1232 
   1233   // Register.
   1234   unsigned RegNo = 0;
   1235   if (!ParseRegister(RegNo, Start, End)) {
   1236     // If this is a segment register followed by a ':', then this is the start
   1237     // of a memory reference, otherwise this is a normal register reference.
   1238     if (getLexer().isNot(AsmToken::Colon))
   1239       return X86Operand::CreateReg(RegNo, Start, End);
   1240 
   1241     getParser().Lex(); // Eat the colon.
   1242     return ParseIntelMemOperand(RegNo, Start);
   1243   }
   1244 
   1245   // Memory operand.
   1246   return ParseIntelMemOperand(0, Start);
   1247 }
   1248 
   1249 X86Operand *X86AsmParser::ParseATTOperand() {
   1250   switch (getLexer().getKind()) {
   1251   default:
   1252     // Parse a memory operand with no segment register.
   1253     return ParseMemOperand(0, Parser.getTok().getLoc());
   1254   case AsmToken::Percent: {
   1255     // Read the register.
   1256     unsigned RegNo;
   1257     SMLoc Start, End;
   1258     if (ParseRegister(RegNo, Start, End)) return 0;
   1259     if (RegNo == X86::EIZ || RegNo == X86::RIZ) {
   1260       Error(Start, "%eiz and %riz can only be used as index registers",
   1261             SMRange(Start, End));
   1262       return 0;
   1263     }
   1264 
   1265     // If this is a segment register followed by a ':', then this is the start
   1266     // of a memory reference, otherwise this is a normal register reference.
   1267     if (getLexer().isNot(AsmToken::Colon))
   1268       return X86Operand::CreateReg(RegNo, Start, End);
   1269 
   1270 
   1271     getParser().Lex(); // Eat the colon.
   1272     return ParseMemOperand(RegNo, Start);
   1273   }
   1274   case AsmToken::Dollar: {
   1275     // $42 -> immediate.
   1276     SMLoc Start = Parser.getTok().getLoc(), End;
   1277     Parser.Lex();
   1278     const MCExpr *Val;
   1279     if (getParser().parseExpression(Val, End))
   1280       return 0;
   1281     return X86Operand::CreateImm(Val, Start, End);
   1282   }
   1283   }
   1284 }
   1285 
   1286 /// ParseMemOperand: segment: disp(basereg, indexreg, scale).  The '%ds:' prefix
   1287 /// has already been parsed if present.
   1288 X86Operand *X86AsmParser::ParseMemOperand(unsigned SegReg, SMLoc MemStart) {
   1289 
   1290   // We have to disambiguate a parenthesized expression "(4+5)" from the start
   1291   // of a memory operand with a missing displacement "(%ebx)" or "(,%eax)".  The
   1292   // only way to do this without lookahead is to eat the '(' and see what is
   1293   // after it.
   1294   const MCExpr *Disp = MCConstantExpr::Create(0, getParser().getContext());
   1295   if (getLexer().isNot(AsmToken::LParen)) {
   1296     SMLoc ExprEnd;
   1297     if (getParser().parseExpression(Disp, ExprEnd)) return 0;
   1298 
   1299     // After parsing the base expression we could either have a parenthesized
   1300     // memory address or not.  If not, return now.  If so, eat the (.
   1301     if (getLexer().isNot(AsmToken::LParen)) {
   1302       // Unless we have a segment register, treat this as an immediate.
   1303       if (SegReg == 0)
   1304         return X86Operand::CreateMem(Disp, MemStart, ExprEnd);
   1305       return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd);
   1306     }
   1307 
   1308     // Eat the '('.
   1309     Parser.Lex();
   1310   } else {
   1311     // Okay, we have a '('.  We don't know if this is an expression or not, but
   1312     // so we have to eat the ( to see beyond it.
   1313     SMLoc LParenLoc = Parser.getTok().getLoc();
   1314     Parser.Lex(); // Eat the '('.
   1315 
   1316     if (getLexer().is(AsmToken::Percent) || getLexer().is(AsmToken::Comma)) {
   1317       // Nothing to do here, fall into the code below with the '(' part of the
   1318       // memory operand consumed.
   1319     } else {
   1320       SMLoc ExprEnd;
   1321 
   1322       // It must be an parenthesized expression, parse it now.
   1323       if (getParser().parseParenExpression(Disp, ExprEnd))
   1324         return 0;
   1325 
   1326       // After parsing the base expression we could either have a parenthesized
   1327       // memory address or not.  If not, return now.  If so, eat the (.
   1328       if (getLexer().isNot(AsmToken::LParen)) {
   1329         // Unless we have a segment register, treat this as an immediate.
   1330         if (SegReg == 0)
   1331           return X86Operand::CreateMem(Disp, LParenLoc, ExprEnd);
   1332         return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd);
   1333       }
   1334 
   1335       // Eat the '('.
   1336       Parser.Lex();
   1337     }
   1338   }
   1339 
   1340   // If we reached here, then we just ate the ( of the memory operand.  Process
   1341   // the rest of the memory operand.
   1342   unsigned BaseReg = 0, IndexReg = 0, Scale = 1;
   1343   SMLoc IndexLoc;
   1344 
   1345   if (getLexer().is(AsmToken::Percent)) {
   1346     SMLoc StartLoc, EndLoc;
   1347     if (ParseRegister(BaseReg, StartLoc, EndLoc)) return 0;
   1348     if (BaseReg == X86::EIZ || BaseReg == X86::RIZ) {
   1349       Error(StartLoc, "eiz and riz can only be used as index registers",
   1350             SMRange(StartLoc, EndLoc));
   1351       return 0;
   1352     }
   1353   }
   1354 
   1355   if (getLexer().is(AsmToken::Comma)) {
   1356     Parser.Lex(); // Eat the comma.
   1357     IndexLoc = Parser.getTok().getLoc();
   1358 
   1359     // Following the comma we should have either an index register, or a scale
   1360     // value. We don't support the later form, but we want to parse it
   1361     // correctly.
   1362     //
   1363     // Not that even though it would be completely consistent to support syntax
   1364     // like "1(%eax,,1)", the assembler doesn't. Use "eiz" or "riz" for this.
   1365     if (getLexer().is(AsmToken::Percent)) {
   1366       SMLoc L;
   1367       if (ParseRegister(IndexReg, L, L)) return 0;
   1368 
   1369       if (getLexer().isNot(AsmToken::RParen)) {
   1370         // Parse the scale amount:
   1371         //  ::= ',' [scale-expression]
   1372         if (getLexer().isNot(AsmToken::Comma)) {
   1373           Error(Parser.getTok().getLoc(),
   1374                 "expected comma in scale expression");
   1375           return 0;
   1376         }
   1377         Parser.Lex(); // Eat the comma.
   1378 
   1379         if (getLexer().isNot(AsmToken::RParen)) {
   1380           SMLoc Loc = Parser.getTok().getLoc();
   1381 
   1382           int64_t ScaleVal;
   1383           if (getParser().parseAbsoluteExpression(ScaleVal)){
   1384             Error(Loc, "expected scale expression");
   1385             return 0;
   1386           }
   1387 
   1388           // Validate the scale amount.
   1389           if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 && ScaleVal != 8){
   1390             Error(Loc, "scale factor in address must be 1, 2, 4 or 8");
   1391             return 0;
   1392           }
   1393           Scale = (unsigned)ScaleVal;
   1394         }
   1395       }
   1396     } else if (getLexer().isNot(AsmToken::RParen)) {
   1397       // A scale amount without an index is ignored.
   1398       // index.
   1399       SMLoc Loc = Parser.getTok().getLoc();
   1400 
   1401       int64_t Value;
   1402       if (getParser().parseAbsoluteExpression(Value))
   1403         return 0;
   1404 
   1405       if (Value != 1)
   1406         Warning(Loc, "scale factor without index register is ignored");
   1407       Scale = 1;
   1408     }
   1409   }
   1410 
   1411   // Ok, we've eaten the memory operand, verify we have a ')' and eat it too.
   1412   if (getLexer().isNot(AsmToken::RParen)) {
   1413     Error(Parser.getTok().getLoc(), "unexpected token in memory operand");
   1414     return 0;
   1415   }
   1416   SMLoc MemEnd = Parser.getTok().getEndLoc();
   1417   Parser.Lex(); // Eat the ')'.
   1418 
   1419   // If we have both a base register and an index register make sure they are
   1420   // both 64-bit or 32-bit registers.
   1421   // To support VSIB, IndexReg can be 128-bit or 256-bit registers.
   1422   if (BaseReg != 0 && IndexReg != 0) {
   1423     if (X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg) &&
   1424         (X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
   1425          X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg)) &&
   1426         IndexReg != X86::RIZ) {
   1427       Error(IndexLoc, "index register is 32-bit, but base register is 64-bit");
   1428       return 0;
   1429     }
   1430     if (X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg) &&
   1431         (X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
   1432          X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg)) &&
   1433         IndexReg != X86::EIZ){
   1434       Error(IndexLoc, "index register is 64-bit, but base register is 32-bit");
   1435       return 0;
   1436     }
   1437   }
   1438 
   1439   return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale,
   1440                                MemStart, MemEnd);
   1441 }
   1442 
   1443 bool X86AsmParser::
   1444 ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc,
   1445                  SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
   1446   InstInfo = &Info;
   1447   StringRef PatchedName = Name;
   1448 
   1449   // FIXME: Hack to recognize setneb as setne.
   1450   if (PatchedName.startswith("set") && PatchedName.endswith("b") &&
   1451       PatchedName != "setb" && PatchedName != "setnb")
   1452     PatchedName = PatchedName.substr(0, Name.size()-1);
   1453 
   1454   // FIXME: Hack to recognize cmp<comparison code>{ss,sd,ps,pd}.
   1455   const MCExpr *ExtraImmOp = 0;
   1456   if ((PatchedName.startswith("cmp") || PatchedName.startswith("vcmp")) &&
   1457       (PatchedName.endswith("ss") || PatchedName.endswith("sd") ||
   1458        PatchedName.endswith("ps") || PatchedName.endswith("pd"))) {
   1459     bool IsVCMP = PatchedName[0] == 'v';
   1460     unsigned SSECCIdx = IsVCMP ? 4 : 3;
   1461     unsigned SSEComparisonCode = StringSwitch<unsigned>(
   1462       PatchedName.slice(SSECCIdx, PatchedName.size() - 2))
   1463       .Case("eq",       0x00)
   1464       .Case("lt",       0x01)
   1465       .Case("le",       0x02)
   1466       .Case("unord",    0x03)
   1467       .Case("neq",      0x04)
   1468       .Case("nlt",      0x05)
   1469       .Case("nle",      0x06)
   1470       .Case("ord",      0x07)
   1471       /* AVX only from here */
   1472       .Case("eq_uq",    0x08)
   1473       .Case("nge",      0x09)
   1474       .Case("ngt",      0x0A)
   1475       .Case("false",    0x0B)
   1476       .Case("neq_oq",   0x0C)
   1477       .Case("ge",       0x0D)
   1478       .Case("gt",       0x0E)
   1479       .Case("true",     0x0F)
   1480       .Case("eq_os",    0x10)
   1481       .Case("lt_oq",    0x11)
   1482       .Case("le_oq",    0x12)
   1483       .Case("unord_s",  0x13)
   1484       .Case("neq_us",   0x14)
   1485       .Case("nlt_uq",   0x15)
   1486       .Case("nle_uq",   0x16)
   1487       .Case("ord_s",    0x17)
   1488       .Case("eq_us",    0x18)
   1489       .Case("nge_uq",   0x19)
   1490       .Case("ngt_uq",   0x1A)
   1491       .Case("false_os", 0x1B)
   1492       .Case("neq_os",   0x1C)
   1493       .Case("ge_oq",    0x1D)
   1494       .Case("gt_oq",    0x1E)
   1495       .Case("true_us",  0x1F)
   1496       .Default(~0U);
   1497     if (SSEComparisonCode != ~0U && (IsVCMP || SSEComparisonCode < 8)) {
   1498       ExtraImmOp = MCConstantExpr::Create(SSEComparisonCode,
   1499                                           getParser().getContext());
   1500       if (PatchedName.endswith("ss")) {
   1501         PatchedName = IsVCMP ? "vcmpss" : "cmpss";
   1502       } else if (PatchedName.endswith("sd")) {
   1503         PatchedName = IsVCMP ? "vcmpsd" : "cmpsd";
   1504       } else if (PatchedName.endswith("ps")) {
   1505         PatchedName = IsVCMP ? "vcmpps" : "cmpps";
   1506       } else {
   1507         assert(PatchedName.endswith("pd") && "Unexpected mnemonic!");
   1508         PatchedName = IsVCMP ? "vcmppd" : "cmppd";
   1509       }
   1510     }
   1511   }
   1512 
   1513   Operands.push_back(X86Operand::CreateToken(PatchedName, NameLoc));
   1514 
   1515   if (ExtraImmOp && !isParsingIntelSyntax())
   1516     Operands.push_back(X86Operand::CreateImm(ExtraImmOp, NameLoc, NameLoc));
   1517 
   1518   // Determine whether this is an instruction prefix.
   1519   bool isPrefix =
   1520     Name == "lock" || Name == "rep" ||
   1521     Name == "repe" || Name == "repz" ||
   1522     Name == "repne" || Name == "repnz" ||
   1523     Name == "rex64" || Name == "data16";
   1524 
   1525 
   1526   // This does the actual operand parsing.  Don't parse any more if we have a
   1527   // prefix juxtaposed with an operation like "lock incl 4(%rax)", because we
   1528   // just want to parse the "lock" as the first instruction and the "incl" as
   1529   // the next one.
   1530   if (getLexer().isNot(AsmToken::EndOfStatement) && !isPrefix) {
   1531 
   1532     // Parse '*' modifier.
   1533     if (getLexer().is(AsmToken::Star)) {
   1534       SMLoc Loc = Parser.getTok().getLoc();
   1535       Operands.push_back(X86Operand::CreateToken("*", Loc));
   1536       Parser.Lex(); // Eat the star.
   1537     }
   1538 
   1539     // Read the first operand.
   1540     if (X86Operand *Op = ParseOperand())
   1541       Operands.push_back(Op);
   1542     else {
   1543       Parser.eatToEndOfStatement();
   1544       return true;
   1545     }
   1546 
   1547     while (getLexer().is(AsmToken::Comma)) {
   1548       Parser.Lex();  // Eat the comma.
   1549 
   1550       // Parse and remember the operand.
   1551       if (X86Operand *Op = ParseOperand())
   1552         Operands.push_back(Op);
   1553       else {
   1554         Parser.eatToEndOfStatement();
   1555         return true;
   1556       }
   1557     }
   1558 
   1559     if (getLexer().isNot(AsmToken::EndOfStatement)) {
   1560       SMLoc Loc = getLexer().getLoc();
   1561       Parser.eatToEndOfStatement();
   1562       return Error(Loc, "unexpected token in argument list");
   1563     }
   1564   }
   1565 
   1566   if (getLexer().is(AsmToken::EndOfStatement))
   1567     Parser.Lex(); // Consume the EndOfStatement
   1568   else if (isPrefix && getLexer().is(AsmToken::Slash))
   1569     Parser.Lex(); // Consume the prefix separator Slash
   1570 
   1571   if (ExtraImmOp && isParsingIntelSyntax())
   1572     Operands.push_back(X86Operand::CreateImm(ExtraImmOp, NameLoc, NameLoc));
   1573 
   1574   // This is a terrible hack to handle "out[bwl]? %al, (%dx)" ->
   1575   // "outb %al, %dx".  Out doesn't take a memory form, but this is a widely
   1576   // documented form in various unofficial manuals, so a lot of code uses it.
   1577   if ((Name == "outb" || Name == "outw" || Name == "outl" || Name == "out") &&
   1578       Operands.size() == 3) {
   1579     X86Operand &Op = *(X86Operand*)Operands.back();
   1580     if (Op.isMem() && Op.Mem.SegReg == 0 &&
   1581         isa<MCConstantExpr>(Op.Mem.Disp) &&
   1582         cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
   1583         Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) {
   1584       SMLoc Loc = Op.getEndLoc();
   1585       Operands.back() = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc);
   1586       delete &Op;
   1587     }
   1588   }
   1589   // Same hack for "in[bwl]? (%dx), %al" -> "inb %dx, %al".
   1590   if ((Name == "inb" || Name == "inw" || Name == "inl" || Name == "in") &&
   1591       Operands.size() == 3) {
   1592     X86Operand &Op = *(X86Operand*)Operands.begin()[1];
   1593     if (Op.isMem() && Op.Mem.SegReg == 0 &&
   1594         isa<MCConstantExpr>(Op.Mem.Disp) &&
   1595         cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
   1596         Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) {
   1597       SMLoc Loc = Op.getEndLoc();
   1598       Operands.begin()[1] = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc);
   1599       delete &Op;
   1600     }
   1601   }
   1602   // Transform "ins[bwl] %dx, %es:(%edi)" into "ins[bwl]"
   1603   if (Name.startswith("ins") && Operands.size() == 3 &&
   1604       (Name == "insb" || Name == "insw" || Name == "insl")) {
   1605     X86Operand &Op = *(X86Operand*)Operands.begin()[1];
   1606     X86Operand &Op2 = *(X86Operand*)Operands.begin()[2];
   1607     if (Op.isReg() && Op.getReg() == X86::DX && isDstOp(Op2)) {
   1608       Operands.pop_back();
   1609       Operands.pop_back();
   1610       delete &Op;
   1611       delete &Op2;
   1612     }
   1613   }
   1614 
   1615   // Transform "outs[bwl] %ds:(%esi), %dx" into "out[bwl]"
   1616   if (Name.startswith("outs") && Operands.size() == 3 &&
   1617       (Name == "outsb" || Name == "outsw" || Name == "outsl")) {
   1618     X86Operand &Op = *(X86Operand*)Operands.begin()[1];
   1619     X86Operand &Op2 = *(X86Operand*)Operands.begin()[2];
   1620     if (isSrcOp(Op) && Op2.isReg() && Op2.getReg() == X86::DX) {
   1621       Operands.pop_back();
   1622       Operands.pop_back();
   1623       delete &Op;
   1624       delete &Op2;
   1625     }
   1626   }
   1627 
   1628   // Transform "movs[bwl] %ds:(%esi), %es:(%edi)" into "movs[bwl]"
   1629   if (Name.startswith("movs") && Operands.size() == 3 &&
   1630       (Name == "movsb" || Name == "movsw" || Name == "movsl" ||
   1631        (is64BitMode() && Name == "movsq"))) {
   1632     X86Operand &Op = *(X86Operand*)Operands.begin()[1];
   1633     X86Operand &Op2 = *(X86Operand*)Operands.begin()[2];
   1634     if (isSrcOp(Op) && isDstOp(Op2)) {
   1635       Operands.pop_back();
   1636       Operands.pop_back();
   1637       delete &Op;
   1638       delete &Op2;
   1639     }
   1640   }
   1641   // Transform "lods[bwl] %ds:(%esi),{%al,%ax,%eax,%rax}" into "lods[bwl]"
   1642   if (Name.startswith("lods") && Operands.size() == 3 &&
   1643       (Name == "lods" || Name == "lodsb" || Name == "lodsw" ||
   1644        Name == "lodsl" || (is64BitMode() && Name == "lodsq"))) {
   1645     X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]);
   1646     X86Operand *Op2 = static_cast<X86Operand*>(Operands[2]);
   1647     if (isSrcOp(*Op1) && Op2->isReg()) {
   1648       const char *ins;
   1649       unsigned reg = Op2->getReg();
   1650       bool isLods = Name == "lods";
   1651       if (reg == X86::AL && (isLods || Name == "lodsb"))
   1652         ins = "lodsb";
   1653       else if (reg == X86::AX && (isLods || Name == "lodsw"))
   1654         ins = "lodsw";
   1655       else if (reg == X86::EAX && (isLods || Name == "lodsl"))
   1656         ins = "lodsl";
   1657       else if (reg == X86::RAX && (isLods || Name == "lodsq"))
   1658         ins = "lodsq";
   1659       else
   1660         ins = NULL;
   1661       if (ins != NULL) {
   1662         Operands.pop_back();
   1663         Operands.pop_back();
   1664         delete Op1;
   1665         delete Op2;
   1666         if (Name != ins)
   1667           static_cast<X86Operand*>(Operands[0])->setTokenValue(ins);
   1668       }
   1669     }
   1670   }
   1671   // Transform "stos[bwl] {%al,%ax,%eax,%rax},%es:(%edi)" into "stos[bwl]"
   1672   if (Name.startswith("stos") && Operands.size() == 3 &&
   1673       (Name == "stos" || Name == "stosb" || Name == "stosw" ||
   1674        Name == "stosl" || (is64BitMode() && Name == "stosq"))) {
   1675     X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]);
   1676     X86Operand *Op2 = static_cast<X86Operand*>(Operands[2]);
   1677     if (isDstOp(*Op2) && Op1->isReg()) {
   1678       const char *ins;
   1679       unsigned reg = Op1->getReg();
   1680       bool isStos = Name == "stos";
   1681       if (reg == X86::AL && (isStos || Name == "stosb"))
   1682         ins = "stosb";
   1683       else if (reg == X86::AX && (isStos || Name == "stosw"))
   1684         ins = "stosw";
   1685       else if (reg == X86::EAX && (isStos || Name == "stosl"))
   1686         ins = "stosl";
   1687       else if (reg == X86::RAX && (isStos || Name == "stosq"))
   1688         ins = "stosq";
   1689       else
   1690         ins = NULL;
   1691       if (ins != NULL) {
   1692         Operands.pop_back();
   1693         Operands.pop_back();
   1694         delete Op1;
   1695         delete Op2;
   1696         if (Name != ins)
   1697           static_cast<X86Operand*>(Operands[0])->setTokenValue(ins);
   1698       }
   1699     }
   1700   }
   1701 
   1702   // FIXME: Hack to handle recognize s{hr,ar,hl} $1, <op>.  Canonicalize to
   1703   // "shift <op>".
   1704   if ((Name.startswith("shr") || Name.startswith("sar") ||
   1705        Name.startswith("shl") || Name.startswith("sal") ||
   1706        Name.startswith("rcl") || Name.startswith("rcr") ||
   1707        Name.startswith("rol") || Name.startswith("ror")) &&
   1708       Operands.size() == 3) {
   1709     if (isParsingIntelSyntax()) {
   1710       // Intel syntax
   1711       X86Operand *Op1 = static_cast<X86Operand*>(Operands[2]);
   1712       if (Op1->isImm() && isa<MCConstantExpr>(Op1->getImm()) &&
   1713           cast<MCConstantExpr>(Op1->getImm())->getValue() == 1) {
   1714         delete Operands[2];
   1715         Operands.pop_back();
   1716       }
   1717     } else {
   1718       X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]);
   1719       if (Op1->isImm() && isa<MCConstantExpr>(Op1->getImm()) &&
   1720           cast<MCConstantExpr>(Op1->getImm())->getValue() == 1) {
   1721         delete Operands[1];
   1722         Operands.erase(Operands.begin() + 1);
   1723       }
   1724     }
   1725   }
   1726 
   1727   // Transforms "int $3" into "int3" as a size optimization.  We can't write an
   1728   // instalias with an immediate operand yet.
   1729   if (Name == "int" && Operands.size() == 2) {
   1730     X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]);
   1731     if (Op1->isImm() && isa<MCConstantExpr>(Op1->getImm()) &&
   1732         cast<MCConstantExpr>(Op1->getImm())->getValue() == 3) {
   1733       delete Operands[1];
   1734       Operands.erase(Operands.begin() + 1);
   1735       static_cast<X86Operand*>(Operands[0])->setTokenValue("int3");
   1736     }
   1737   }
   1738 
   1739   return false;
   1740 }
   1741 
   1742 static bool convertToSExti8(MCInst &Inst, unsigned Opcode, unsigned Reg,
   1743                             bool isCmp) {
   1744   MCInst TmpInst;
   1745   TmpInst.setOpcode(Opcode);
   1746   if (!isCmp)
   1747     TmpInst.addOperand(MCOperand::CreateReg(Reg));
   1748   TmpInst.addOperand(MCOperand::CreateReg(Reg));
   1749   TmpInst.addOperand(Inst.getOperand(0));
   1750   Inst = TmpInst;
   1751   return true;
   1752 }
   1753 
   1754 static bool convert16i16to16ri8(MCInst &Inst, unsigned Opcode,
   1755                                 bool isCmp = false) {
   1756   if (!Inst.getOperand(0).isImm() ||
   1757       !isImmSExti16i8Value(Inst.getOperand(0).getImm()))
   1758     return false;
   1759 
   1760   return convertToSExti8(Inst, Opcode, X86::AX, isCmp);
   1761 }
   1762 
   1763 static bool convert32i32to32ri8(MCInst &Inst, unsigned Opcode,
   1764                                 bool isCmp = false) {
   1765   if (!Inst.getOperand(0).isImm() ||
   1766       !isImmSExti32i8Value(Inst.getOperand(0).getImm()))
   1767     return false;
   1768 
   1769   return convertToSExti8(Inst, Opcode, X86::EAX, isCmp);
   1770 }
   1771 
   1772 static bool convert64i32to64ri8(MCInst &Inst, unsigned Opcode,
   1773                                 bool isCmp = false) {
   1774   if (!Inst.getOperand(0).isImm() ||
   1775       !isImmSExti64i8Value(Inst.getOperand(0).getImm()))
   1776     return false;
   1777 
   1778   return convertToSExti8(Inst, Opcode, X86::RAX, isCmp);
   1779 }
   1780 
   1781 bool X86AsmParser::
   1782 processInstruction(MCInst &Inst,
   1783                    const SmallVectorImpl<MCParsedAsmOperand*> &Ops) {
   1784   switch (Inst.getOpcode()) {
   1785   default: return false;
   1786   case X86::AND16i16: return convert16i16to16ri8(Inst, X86::AND16ri8);
   1787   case X86::AND32i32: return convert32i32to32ri8(Inst, X86::AND32ri8);
   1788   case X86::AND64i32: return convert64i32to64ri8(Inst, X86::AND64ri8);
   1789   case X86::XOR16i16: return convert16i16to16ri8(Inst, X86::XOR16ri8);
   1790   case X86::XOR32i32: return convert32i32to32ri8(Inst, X86::XOR32ri8);
   1791   case X86::XOR64i32: return convert64i32to64ri8(Inst, X86::XOR64ri8);
   1792   case X86::OR16i16:  return convert16i16to16ri8(Inst, X86::OR16ri8);
   1793   case X86::OR32i32:  return convert32i32to32ri8(Inst, X86::OR32ri8);
   1794   case X86::OR64i32:  return convert64i32to64ri8(Inst, X86::OR64ri8);
   1795   case X86::CMP16i16: return convert16i16to16ri8(Inst, X86::CMP16ri8, true);
   1796   case X86::CMP32i32: return convert32i32to32ri8(Inst, X86::CMP32ri8, true);
   1797   case X86::CMP64i32: return convert64i32to64ri8(Inst, X86::CMP64ri8, true);
   1798   case X86::ADD16i16: return convert16i16to16ri8(Inst, X86::ADD16ri8);
   1799   case X86::ADD32i32: return convert32i32to32ri8(Inst, X86::ADD32ri8);
   1800   case X86::ADD64i32: return convert64i32to64ri8(Inst, X86::ADD64ri8);
   1801   case X86::SUB16i16: return convert16i16to16ri8(Inst, X86::SUB16ri8);
   1802   case X86::SUB32i32: return convert32i32to32ri8(Inst, X86::SUB32ri8);
   1803   case X86::SUB64i32: return convert64i32to64ri8(Inst, X86::SUB64ri8);
   1804   case X86::ADC16i16: return convert16i16to16ri8(Inst, X86::ADC16ri8);
   1805   case X86::ADC32i32: return convert32i32to32ri8(Inst, X86::ADC32ri8);
   1806   case X86::ADC64i32: return convert64i32to64ri8(Inst, X86::ADC64ri8);
   1807   case X86::SBB16i16: return convert16i16to16ri8(Inst, X86::SBB16ri8);
   1808   case X86::SBB32i32: return convert32i32to32ri8(Inst, X86::SBB32ri8);
   1809   case X86::SBB64i32: return convert64i32to64ri8(Inst, X86::SBB64ri8);
   1810   }
   1811 }
   1812 
   1813 static const char *getSubtargetFeatureName(unsigned Val);
   1814 bool X86AsmParser::
   1815 MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
   1816                         SmallVectorImpl<MCParsedAsmOperand*> &Operands,
   1817                         MCStreamer &Out, unsigned &ErrorInfo,
   1818                         bool MatchingInlineAsm) {
   1819   assert(!Operands.empty() && "Unexpect empty operand list!");
   1820   X86Operand *Op = static_cast<X86Operand*>(Operands[0]);
   1821   assert(Op->isToken() && "Leading operand should always be a mnemonic!");
   1822   ArrayRef<SMRange> EmptyRanges = ArrayRef<SMRange>();
   1823 
   1824   // First, handle aliases that expand to multiple instructions.
   1825   // FIXME: This should be replaced with a real .td file alias mechanism.
   1826   // Also, MatchInstructionImpl should actually *do* the EmitInstruction
   1827   // call.
   1828   if (Op->getToken() == "fstsw" || Op->getToken() == "fstcw" ||
   1829       Op->getToken() == "fstsww" || Op->getToken() == "fstcww" ||
   1830       Op->getToken() == "finit" || Op->getToken() == "fsave" ||
   1831       Op->getToken() == "fstenv" || Op->getToken() == "fclex") {
   1832     MCInst Inst;
   1833     Inst.setOpcode(X86::WAIT);
   1834     Inst.setLoc(IDLoc);
   1835     if (!MatchingInlineAsm)
   1836       Out.EmitInstruction(Inst);
   1837 
   1838     const char *Repl =
   1839       StringSwitch<const char*>(Op->getToken())
   1840         .Case("finit",  "fninit")
   1841         .Case("fsave",  "fnsave")
   1842         .Case("fstcw",  "fnstcw")
   1843         .Case("fstcww",  "fnstcw")
   1844         .Case("fstenv", "fnstenv")
   1845         .Case("fstsw",  "fnstsw")
   1846         .Case("fstsww", "fnstsw")
   1847         .Case("fclex",  "fnclex")
   1848         .Default(0);
   1849     assert(Repl && "Unknown wait-prefixed instruction");
   1850     delete Operands[0];
   1851     Operands[0] = X86Operand::CreateToken(Repl, IDLoc);
   1852   }
   1853 
   1854   bool WasOriginallyInvalidOperand = false;
   1855   MCInst Inst;
   1856 
   1857   // First, try a direct match.
   1858   switch (MatchInstructionImpl(Operands, Inst,
   1859                                ErrorInfo, MatchingInlineAsm,
   1860                                isParsingIntelSyntax())) {
   1861   default: break;
   1862   case Match_Success:
   1863     // Some instructions need post-processing to, for example, tweak which
   1864     // encoding is selected. Loop on it while changes happen so the
   1865     // individual transformations can chain off each other.
   1866     if (!MatchingInlineAsm)
   1867       while (processInstruction(Inst, Operands))
   1868         ;
   1869 
   1870     Inst.setLoc(IDLoc);
   1871     if (!MatchingInlineAsm)
   1872       Out.EmitInstruction(Inst);
   1873     Opcode = Inst.getOpcode();
   1874     return false;
   1875   case Match_MissingFeature: {
   1876     assert(ErrorInfo && "Unknown missing feature!");
   1877     // Special case the error message for the very common case where only
   1878     // a single subtarget feature is missing.
   1879     std::string Msg = "instruction requires:";
   1880     unsigned Mask = 1;
   1881     for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) {
   1882       if (ErrorInfo & Mask) {
   1883         Msg += " ";
   1884         Msg += getSubtargetFeatureName(ErrorInfo & Mask);
   1885       }
   1886       Mask <<= 1;
   1887     }
   1888     return Error(IDLoc, Msg, EmptyRanges, MatchingInlineAsm);
   1889   }
   1890   case Match_InvalidOperand:
   1891     WasOriginallyInvalidOperand = true;
   1892     break;
   1893   case Match_MnemonicFail:
   1894     break;
   1895   }
   1896 
   1897   // FIXME: Ideally, we would only attempt suffix matches for things which are
   1898   // valid prefixes, and we could just infer the right unambiguous
   1899   // type. However, that requires substantially more matcher support than the
   1900   // following hack.
   1901 
   1902   // Change the operand to point to a temporary token.
   1903   StringRef Base = Op->getToken();
   1904   SmallString<16> Tmp;
   1905   Tmp += Base;
   1906   Tmp += ' ';
   1907   Op->setTokenValue(Tmp.str());
   1908 
   1909   // If this instruction starts with an 'f', then it is a floating point stack
   1910   // instruction.  These come in up to three forms for 32-bit, 64-bit, and
   1911   // 80-bit floating point, which use the suffixes s,l,t respectively.
   1912   //
   1913   // Otherwise, we assume that this may be an integer instruction, which comes
   1914   // in 8/16/32/64-bit forms using the b,w,l,q suffixes respectively.
   1915   const char *Suffixes = Base[0] != 'f' ? "bwlq" : "slt\0";
   1916 
   1917   // Check for the various suffix matches.
   1918   Tmp[Base.size()] = Suffixes[0];
   1919   unsigned ErrorInfoIgnore;
   1920   unsigned ErrorInfoMissingFeature = 0; // Init suppresses compiler warnings.
   1921   unsigned Match1, Match2, Match3, Match4;
   1922 
   1923   Match1 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
   1924                                 isParsingIntelSyntax());
   1925   // If this returned as a missing feature failure, remember that.
   1926   if (Match1 == Match_MissingFeature)
   1927     ErrorInfoMissingFeature = ErrorInfoIgnore;
   1928   Tmp[Base.size()] = Suffixes[1];
   1929   Match2 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
   1930                                 isParsingIntelSyntax());
   1931   // If this returned as a missing feature failure, remember that.
   1932   if (Match2 == Match_MissingFeature)
   1933     ErrorInfoMissingFeature = ErrorInfoIgnore;
   1934   Tmp[Base.size()] = Suffixes[2];
   1935   Match3 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
   1936                                 isParsingIntelSyntax());
   1937   // If this returned as a missing feature failure, remember that.
   1938   if (Match3 == Match_MissingFeature)
   1939     ErrorInfoMissingFeature = ErrorInfoIgnore;
   1940   Tmp[Base.size()] = Suffixes[3];
   1941   Match4 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
   1942                                 isParsingIntelSyntax());
   1943   // If this returned as a missing feature failure, remember that.
   1944   if (Match4 == Match_MissingFeature)
   1945     ErrorInfoMissingFeature = ErrorInfoIgnore;
   1946 
   1947   // Restore the old token.
   1948   Op->setTokenValue(Base);
   1949 
   1950   // If exactly one matched, then we treat that as a successful match (and the
   1951   // instruction will already have been filled in correctly, since the failing
   1952   // matches won't have modified it).
   1953   unsigned NumSuccessfulMatches =
   1954     (Match1 == Match_Success) + (Match2 == Match_Success) +
   1955     (Match3 == Match_Success) + (Match4 == Match_Success);
   1956   if (NumSuccessfulMatches == 1) {
   1957     Inst.setLoc(IDLoc);
   1958     if (!MatchingInlineAsm)
   1959       Out.EmitInstruction(Inst);
   1960     Opcode = Inst.getOpcode();
   1961     return false;
   1962   }
   1963 
   1964   // Otherwise, the match failed, try to produce a decent error message.
   1965 
   1966   // If we had multiple suffix matches, then identify this as an ambiguous
   1967   // match.
   1968   if (NumSuccessfulMatches > 1) {
   1969     char MatchChars[4];
   1970     unsigned NumMatches = 0;
   1971     if (Match1 == Match_Success) MatchChars[NumMatches++] = Suffixes[0];
   1972     if (Match2 == Match_Success) MatchChars[NumMatches++] = Suffixes[1];
   1973     if (Match3 == Match_Success) MatchChars[NumMatches++] = Suffixes[2];
   1974     if (Match4 == Match_Success) MatchChars[NumMatches++] = Suffixes[3];
   1975 
   1976     SmallString<126> Msg;
   1977     raw_svector_ostream OS(Msg);
   1978     OS << "ambiguous instructions require an explicit suffix (could be ";
   1979     for (unsigned i = 0; i != NumMatches; ++i) {
   1980       if (i != 0)
   1981         OS << ", ";
   1982       if (i + 1 == NumMatches)
   1983         OS << "or ";
   1984       OS << "'" << Base << MatchChars[i] << "'";
   1985     }
   1986     OS << ")";
   1987     Error(IDLoc, OS.str(), EmptyRanges, MatchingInlineAsm);
   1988     return true;
   1989   }
   1990 
   1991   // Okay, we know that none of the variants matched successfully.
   1992 
   1993   // If all of the instructions reported an invalid mnemonic, then the original
   1994   // mnemonic was invalid.
   1995   if ((Match1 == Match_MnemonicFail) && (Match2 == Match_MnemonicFail) &&
   1996       (Match3 == Match_MnemonicFail) && (Match4 == Match_MnemonicFail)) {
   1997     if (!WasOriginallyInvalidOperand) {
   1998       ArrayRef<SMRange> Ranges = MatchingInlineAsm ? EmptyRanges :
   1999         Op->getLocRange();
   2000       return Error(IDLoc, "invalid instruction mnemonic '" + Base + "'",
   2001                    Ranges, MatchingInlineAsm);
   2002     }
   2003 
   2004     // Recover location info for the operand if we know which was the problem.
   2005     if (ErrorInfo != ~0U) {
   2006       if (ErrorInfo >= Operands.size())
   2007         return Error(IDLoc, "too few operands for instruction",
   2008                      EmptyRanges, MatchingInlineAsm);
   2009 
   2010       X86Operand *Operand = (X86Operand*)Operands[ErrorInfo];
   2011       if (Operand->getStartLoc().isValid()) {
   2012         SMRange OperandRange = Operand->getLocRange();
   2013         return Error(Operand->getStartLoc(), "invalid operand for instruction",
   2014                      OperandRange, MatchingInlineAsm);
   2015       }
   2016     }
   2017 
   2018     return Error(IDLoc, "invalid operand for instruction", EmptyRanges,
   2019                  MatchingInlineAsm);
   2020   }
   2021 
   2022   // If one instruction matched with a missing feature, report this as a
   2023   // missing feature.
   2024   if ((Match1 == Match_MissingFeature) + (Match2 == Match_MissingFeature) +
   2025       (Match3 == Match_MissingFeature) + (Match4 == Match_MissingFeature) == 1){
   2026     std::string Msg = "instruction requires:";
   2027     unsigned Mask = 1;
   2028     for (unsigned i = 0; i < (sizeof(ErrorInfoMissingFeature)*8-1); ++i) {
   2029       if (ErrorInfoMissingFeature & Mask) {
   2030         Msg += " ";
   2031         Msg += getSubtargetFeatureName(ErrorInfoMissingFeature & Mask);
   2032       }
   2033       Mask <<= 1;
   2034     }
   2035     return Error(IDLoc, Msg, EmptyRanges, MatchingInlineAsm);
   2036   }
   2037 
   2038   // If one instruction matched with an invalid operand, report this as an
   2039   // operand failure.
   2040   if ((Match1 == Match_InvalidOperand) + (Match2 == Match_InvalidOperand) +
   2041       (Match3 == Match_InvalidOperand) + (Match4 == Match_InvalidOperand) == 1){
   2042     Error(IDLoc, "invalid operand for instruction", EmptyRanges,
   2043           MatchingInlineAsm);
   2044     return true;
   2045   }
   2046 
   2047   // If all of these were an outright failure, report it in a useless way.
   2048   Error(IDLoc, "unknown use of instruction mnemonic without a size suffix",
   2049         EmptyRanges, MatchingInlineAsm);
   2050   return true;
   2051 }
   2052 
   2053 
   2054 bool X86AsmParser::ParseDirective(AsmToken DirectiveID) {
   2055   StringRef IDVal = DirectiveID.getIdentifier();
   2056   if (IDVal == ".word")
   2057     return ParseDirectiveWord(2, DirectiveID.getLoc());
   2058   else if (IDVal.startswith(".code"))
   2059     return ParseDirectiveCode(IDVal, DirectiveID.getLoc());
   2060   else if (IDVal.startswith(".att_syntax")) {
   2061     getParser().setAssemblerDialect(0);
   2062     return false;
   2063   } else if (IDVal.startswith(".intel_syntax")) {
   2064     getParser().setAssemblerDialect(1);
   2065     if (getLexer().isNot(AsmToken::EndOfStatement)) {
   2066       if(Parser.getTok().getString() == "noprefix") {
   2067         // FIXME : Handle noprefix
   2068         Parser.Lex();
   2069       } else
   2070         return true;
   2071     }
   2072     return false;
   2073   }
   2074   return true;
   2075 }
   2076 
   2077 /// ParseDirectiveWord
   2078 ///  ::= .word [ expression (, expression)* ]
   2079 bool X86AsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
   2080   if (getLexer().isNot(AsmToken::EndOfStatement)) {
   2081     for (;;) {
   2082       const MCExpr *Value;
   2083       if (getParser().parseExpression(Value))
   2084         return true;
   2085 
   2086       getParser().getStreamer().EmitValue(Value, Size);
   2087 
   2088       if (getLexer().is(AsmToken::EndOfStatement))
   2089         break;
   2090 
   2091       // FIXME: Improve diagnostic.
   2092       if (getLexer().isNot(AsmToken::Comma))
   2093         return Error(L, "unexpected token in directive");
   2094       Parser.Lex();
   2095     }
   2096   }
   2097 
   2098   Parser.Lex();
   2099   return false;
   2100 }
   2101 
   2102 /// ParseDirectiveCode
   2103 ///  ::= .code32 | .code64
   2104 bool X86AsmParser::ParseDirectiveCode(StringRef IDVal, SMLoc L) {
   2105   if (IDVal == ".code32") {
   2106     Parser.Lex();
   2107     if (is64BitMode()) {
   2108       SwitchMode();
   2109       getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
   2110     }
   2111   } else if (IDVal == ".code64") {
   2112     Parser.Lex();
   2113     if (!is64BitMode()) {
   2114       SwitchMode();
   2115       getParser().getStreamer().EmitAssemblerFlag(MCAF_Code64);
   2116     }
   2117   } else {
   2118     return Error(L, "unexpected directive " + IDVal);
   2119   }
   2120 
   2121   return false;
   2122 }
   2123 
   2124 // Force static initialization.
   2125 extern "C" void LLVMInitializeX86AsmParser() {
   2126   RegisterMCAsmParser<X86AsmParser> X(TheX86_32Target);
   2127   RegisterMCAsmParser<X86AsmParser> Y(TheX86_64Target);
   2128 }
   2129 
   2130 #define GET_REGISTER_MATCHER
   2131 #define GET_MATCHER_IMPLEMENTATION
   2132 #define GET_SUBTARGET_FEATURE_NAME
   2133 #include "X86GenAsmMatcher.inc"
   2134