Home | History | Annotate | Download | only in Core
      1 //== Store.cpp - Interface for maps from Locations to Values ----*- C++ -*--==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defined the types Store and StoreManager.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
     15 #include "clang/AST/CXXInheritance.h"
     16 #include "clang/AST/CharUnits.h"
     17 #include "clang/AST/DeclObjC.h"
     18 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
     19 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
     20 
     21 using namespace clang;
     22 using namespace ento;
     23 
     24 StoreManager::StoreManager(ProgramStateManager &stateMgr)
     25   : svalBuilder(stateMgr.getSValBuilder()), StateMgr(stateMgr),
     26     MRMgr(svalBuilder.getRegionManager()), Ctx(stateMgr.getContext()) {}
     27 
     28 StoreRef StoreManager::enterStackFrame(Store OldStore,
     29                                        const CallEvent &Call,
     30                                        const StackFrameContext *LCtx) {
     31   StoreRef Store = StoreRef(OldStore, *this);
     32 
     33   SmallVector<CallEvent::FrameBindingTy, 16> InitialBindings;
     34   Call.getInitialStackFrameContents(LCtx, InitialBindings);
     35 
     36   for (CallEvent::BindingsTy::iterator I = InitialBindings.begin(),
     37                                        E = InitialBindings.end();
     38        I != E; ++I) {
     39     Store = Bind(Store.getStore(), I->first, I->second);
     40   }
     41 
     42   return Store;
     43 }
     44 
     45 const MemRegion *StoreManager::MakeElementRegion(const MemRegion *Base,
     46                                               QualType EleTy, uint64_t index) {
     47   NonLoc idx = svalBuilder.makeArrayIndex(index);
     48   return MRMgr.getElementRegion(EleTy, idx, Base, svalBuilder.getContext());
     49 }
     50 
     51 // FIXME: Merge with the implementation of the same method in MemRegion.cpp
     52 static bool IsCompleteType(ASTContext &Ctx, QualType Ty) {
     53   if (const RecordType *RT = Ty->getAs<RecordType>()) {
     54     const RecordDecl *D = RT->getDecl();
     55     if (!D->getDefinition())
     56       return false;
     57   }
     58 
     59   return true;
     60 }
     61 
     62 StoreRef StoreManager::BindDefault(Store store, const MemRegion *R, SVal V) {
     63   return StoreRef(store, *this);
     64 }
     65 
     66 const ElementRegion *StoreManager::GetElementZeroRegion(const MemRegion *R,
     67                                                         QualType T) {
     68   NonLoc idx = svalBuilder.makeZeroArrayIndex();
     69   assert(!T.isNull());
     70   return MRMgr.getElementRegion(T, idx, R, Ctx);
     71 }
     72 
     73 const MemRegion *StoreManager::castRegion(const MemRegion *R, QualType CastToTy) {
     74 
     75   ASTContext &Ctx = StateMgr.getContext();
     76 
     77   // Handle casts to Objective-C objects.
     78   if (CastToTy->isObjCObjectPointerType())
     79     return R->StripCasts();
     80 
     81   if (CastToTy->isBlockPointerType()) {
     82     // FIXME: We may need different solutions, depending on the symbol
     83     // involved.  Blocks can be casted to/from 'id', as they can be treated
     84     // as Objective-C objects.  This could possibly be handled by enhancing
     85     // our reasoning of downcasts of symbolic objects.
     86     if (isa<CodeTextRegion>(R) || isa<SymbolicRegion>(R))
     87       return R;
     88 
     89     // We don't know what to make of it.  Return a NULL region, which
     90     // will be interpretted as UnknownVal.
     91     return NULL;
     92   }
     93 
     94   // Now assume we are casting from pointer to pointer. Other cases should
     95   // already be handled.
     96   QualType PointeeTy = CastToTy->getPointeeType();
     97   QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
     98 
     99   // Handle casts to void*.  We just pass the region through.
    100   if (CanonPointeeTy.getLocalUnqualifiedType() == Ctx.VoidTy)
    101     return R;
    102 
    103   // Handle casts from compatible types.
    104   if (R->isBoundable())
    105     if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
    106       QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
    107       if (CanonPointeeTy == ObjTy)
    108         return R;
    109     }
    110 
    111   // Process region cast according to the kind of the region being cast.
    112   switch (R->getKind()) {
    113     case MemRegion::CXXThisRegionKind:
    114     case MemRegion::GenericMemSpaceRegionKind:
    115     case MemRegion::StackLocalsSpaceRegionKind:
    116     case MemRegion::StackArgumentsSpaceRegionKind:
    117     case MemRegion::HeapSpaceRegionKind:
    118     case MemRegion::UnknownSpaceRegionKind:
    119     case MemRegion::StaticGlobalSpaceRegionKind:
    120     case MemRegion::GlobalInternalSpaceRegionKind:
    121     case MemRegion::GlobalSystemSpaceRegionKind:
    122     case MemRegion::GlobalImmutableSpaceRegionKind: {
    123       llvm_unreachable("Invalid region cast");
    124     }
    125 
    126     case MemRegion::FunctionTextRegionKind:
    127     case MemRegion::BlockTextRegionKind:
    128     case MemRegion::BlockDataRegionKind:
    129     case MemRegion::StringRegionKind:
    130       // FIXME: Need to handle arbitrary downcasts.
    131     case MemRegion::SymbolicRegionKind:
    132     case MemRegion::AllocaRegionKind:
    133     case MemRegion::CompoundLiteralRegionKind:
    134     case MemRegion::FieldRegionKind:
    135     case MemRegion::ObjCIvarRegionKind:
    136     case MemRegion::ObjCStringRegionKind:
    137     case MemRegion::VarRegionKind:
    138     case MemRegion::CXXTempObjectRegionKind:
    139     case MemRegion::CXXBaseObjectRegionKind:
    140       return MakeElementRegion(R, PointeeTy);
    141 
    142     case MemRegion::ElementRegionKind: {
    143       // If we are casting from an ElementRegion to another type, the
    144       // algorithm is as follows:
    145       //
    146       // (1) Compute the "raw offset" of the ElementRegion from the
    147       //     base region.  This is done by calling 'getAsRawOffset()'.
    148       //
    149       // (2a) If we get a 'RegionRawOffset' after calling
    150       //      'getAsRawOffset()', determine if the absolute offset
    151       //      can be exactly divided into chunks of the size of the
    152       //      casted-pointee type.  If so, create a new ElementRegion with
    153       //      the pointee-cast type as the new ElementType and the index
    154       //      being the offset divded by the chunk size.  If not, create
    155       //      a new ElementRegion at offset 0 off the raw offset region.
    156       //
    157       // (2b) If we don't a get a 'RegionRawOffset' after calling
    158       //      'getAsRawOffset()', it means that we are at offset 0.
    159       //
    160       // FIXME: Handle symbolic raw offsets.
    161 
    162       const ElementRegion *elementR = cast<ElementRegion>(R);
    163       const RegionRawOffset &rawOff = elementR->getAsArrayOffset();
    164       const MemRegion *baseR = rawOff.getRegion();
    165 
    166       // If we cannot compute a raw offset, throw up our hands and return
    167       // a NULL MemRegion*.
    168       if (!baseR)
    169         return NULL;
    170 
    171       CharUnits off = rawOff.getOffset();
    172 
    173       if (off.isZero()) {
    174         // Edge case: we are at 0 bytes off the beginning of baseR.  We
    175         // check to see if type we are casting to is the same as the base
    176         // region.  If so, just return the base region.
    177         if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(baseR)) {
    178           QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
    179           QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
    180           if (CanonPointeeTy == ObjTy)
    181             return baseR;
    182         }
    183 
    184         // Otherwise, create a new ElementRegion at offset 0.
    185         return MakeElementRegion(baseR, PointeeTy);
    186       }
    187 
    188       // We have a non-zero offset from the base region.  We want to determine
    189       // if the offset can be evenly divided by sizeof(PointeeTy).  If so,
    190       // we create an ElementRegion whose index is that value.  Otherwise, we
    191       // create two ElementRegions, one that reflects a raw offset and the other
    192       // that reflects the cast.
    193 
    194       // Compute the index for the new ElementRegion.
    195       int64_t newIndex = 0;
    196       const MemRegion *newSuperR = 0;
    197 
    198       // We can only compute sizeof(PointeeTy) if it is a complete type.
    199       if (IsCompleteType(Ctx, PointeeTy)) {
    200         // Compute the size in **bytes**.
    201         CharUnits pointeeTySize = Ctx.getTypeSizeInChars(PointeeTy);
    202         if (!pointeeTySize.isZero()) {
    203           // Is the offset a multiple of the size?  If so, we can layer the
    204           // ElementRegion (with elementType == PointeeTy) directly on top of
    205           // the base region.
    206           if (off % pointeeTySize == 0) {
    207             newIndex = off / pointeeTySize;
    208             newSuperR = baseR;
    209           }
    210         }
    211       }
    212 
    213       if (!newSuperR) {
    214         // Create an intermediate ElementRegion to represent the raw byte.
    215         // This will be the super region of the final ElementRegion.
    216         newSuperR = MakeElementRegion(baseR, Ctx.CharTy, off.getQuantity());
    217       }
    218 
    219       return MakeElementRegion(newSuperR, PointeeTy, newIndex);
    220     }
    221   }
    222 
    223   llvm_unreachable("unreachable");
    224 }
    225 
    226 static bool regionMatchesCXXRecordType(SVal V, QualType Ty) {
    227   const MemRegion *MR = V.getAsRegion();
    228   if (!MR)
    229     return true;
    230 
    231   const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR);
    232   if (!TVR)
    233     return true;
    234 
    235   const CXXRecordDecl *RD = TVR->getValueType()->getAsCXXRecordDecl();
    236   if (!RD)
    237     return true;
    238 
    239   const CXXRecordDecl *Expected = Ty->getPointeeCXXRecordDecl();
    240   if (!Expected)
    241     Expected = Ty->getAsCXXRecordDecl();
    242 
    243   return Expected->getCanonicalDecl() == RD->getCanonicalDecl();
    244 }
    245 
    246 SVal StoreManager::evalDerivedToBase(SVal Derived, const CastExpr *Cast) {
    247   // Sanity check to avoid doing the wrong thing in the face of
    248   // reinterpret_cast.
    249   if (!regionMatchesCXXRecordType(Derived, Cast->getSubExpr()->getType()))
    250     return UnknownVal();
    251 
    252   // Walk through the cast path to create nested CXXBaseRegions.
    253   SVal Result = Derived;
    254   for (CastExpr::path_const_iterator I = Cast->path_begin(),
    255                                      E = Cast->path_end();
    256        I != E; ++I) {
    257     Result = evalDerivedToBase(Result, (*I)->getType(), (*I)->isVirtual());
    258   }
    259   return Result;
    260 }
    261 
    262 SVal StoreManager::evalDerivedToBase(SVal Derived, const CXXBasePath &Path) {
    263   // Walk through the path to create nested CXXBaseRegions.
    264   SVal Result = Derived;
    265   for (CXXBasePath::const_iterator I = Path.begin(), E = Path.end();
    266        I != E; ++I) {
    267     Result = evalDerivedToBase(Result, I->Base->getType(),
    268                                I->Base->isVirtual());
    269   }
    270   return Result;
    271 }
    272 
    273 SVal StoreManager::evalDerivedToBase(SVal Derived, QualType BaseType,
    274                                      bool IsVirtual) {
    275   Optional<loc::MemRegionVal> DerivedRegVal =
    276       Derived.getAs<loc::MemRegionVal>();
    277   if (!DerivedRegVal)
    278     return Derived;
    279 
    280   const CXXRecordDecl *BaseDecl = BaseType->getPointeeCXXRecordDecl();
    281   if (!BaseDecl)
    282     BaseDecl = BaseType->getAsCXXRecordDecl();
    283   assert(BaseDecl && "not a C++ object?");
    284 
    285   const MemRegion *BaseReg =
    286     MRMgr.getCXXBaseObjectRegion(BaseDecl, DerivedRegVal->getRegion(),
    287                                  IsVirtual);
    288 
    289   return loc::MemRegionVal(BaseReg);
    290 }
    291 
    292 SVal StoreManager::evalDynamicCast(SVal Base, QualType DerivedType,
    293                                    bool &Failed) {
    294   Failed = false;
    295 
    296   Optional<loc::MemRegionVal> BaseRegVal = Base.getAs<loc::MemRegionVal>();
    297   if (!BaseRegVal)
    298     return UnknownVal();
    299   const MemRegion *BaseRegion = BaseRegVal->stripCasts(/*StripBases=*/false);
    300 
    301   // Assume the derived class is a pointer or a reference to a CXX record.
    302   DerivedType = DerivedType->getPointeeType();
    303   assert(!DerivedType.isNull());
    304   const CXXRecordDecl *DerivedDecl = DerivedType->getAsCXXRecordDecl();
    305   if (!DerivedDecl && !DerivedType->isVoidType())
    306     return UnknownVal();
    307 
    308   // Drill down the CXXBaseObject chains, which represent upcasts (casts from
    309   // derived to base).
    310   const MemRegion *SR = BaseRegion;
    311   while (const TypedRegion *TSR = dyn_cast_or_null<TypedRegion>(SR)) {
    312     QualType BaseType = TSR->getLocationType()->getPointeeType();
    313     assert(!BaseType.isNull());
    314     const CXXRecordDecl *SRDecl = BaseType->getAsCXXRecordDecl();
    315     if (!SRDecl)
    316       return UnknownVal();
    317 
    318     // If found the derived class, the cast succeeds.
    319     if (SRDecl == DerivedDecl)
    320       return loc::MemRegionVal(TSR);
    321 
    322     if (!DerivedType->isVoidType()) {
    323       // Static upcasts are marked as DerivedToBase casts by Sema, so this will
    324       // only happen when multiple or virtual inheritance is involved.
    325       CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/true,
    326                          /*DetectVirtual=*/false);
    327       if (SRDecl->isDerivedFrom(DerivedDecl, Paths))
    328         return evalDerivedToBase(loc::MemRegionVal(TSR), Paths.front());
    329     }
    330 
    331     if (const CXXBaseObjectRegion *R = dyn_cast<CXXBaseObjectRegion>(TSR))
    332       // Drill down the chain to get the derived classes.
    333       SR = R->getSuperRegion();
    334     else {
    335       // We reached the bottom of the hierarchy.
    336 
    337       // If this is a cast to void*, return the region.
    338       if (DerivedType->isVoidType())
    339         return loc::MemRegionVal(TSR);
    340 
    341       // We did not find the derived class. We we must be casting the base to
    342       // derived, so the cast should fail.
    343       Failed = true;
    344       return UnknownVal();
    345     }
    346   }
    347 
    348   return UnknownVal();
    349 }
    350 
    351 
    352 /// CastRetrievedVal - Used by subclasses of StoreManager to implement
    353 ///  implicit casts that arise from loads from regions that are reinterpreted
    354 ///  as another region.
    355 SVal StoreManager::CastRetrievedVal(SVal V, const TypedValueRegion *R,
    356                                     QualType castTy, bool performTestOnly) {
    357 
    358   if (castTy.isNull() || V.isUnknownOrUndef())
    359     return V;
    360 
    361   ASTContext &Ctx = svalBuilder.getContext();
    362 
    363   if (performTestOnly) {
    364     // Automatically translate references to pointers.
    365     QualType T = R->getValueType();
    366     if (const ReferenceType *RT = T->getAs<ReferenceType>())
    367       T = Ctx.getPointerType(RT->getPointeeType());
    368 
    369     assert(svalBuilder.getContext().hasSameUnqualifiedType(castTy, T));
    370     return V;
    371   }
    372 
    373   return svalBuilder.dispatchCast(V, castTy);
    374 }
    375 
    376 SVal StoreManager::getLValueFieldOrIvar(const Decl *D, SVal Base) {
    377   if (Base.isUnknownOrUndef())
    378     return Base;
    379 
    380   Loc BaseL = Base.castAs<Loc>();
    381   const MemRegion* BaseR = 0;
    382 
    383   switch (BaseL.getSubKind()) {
    384   case loc::MemRegionKind:
    385     BaseR = BaseL.castAs<loc::MemRegionVal>().getRegion();
    386     break;
    387 
    388   case loc::GotoLabelKind:
    389     // These are anormal cases. Flag an undefined value.
    390     return UndefinedVal();
    391 
    392   case loc::ConcreteIntKind:
    393     // While these seem funny, this can happen through casts.
    394     // FIXME: What we should return is the field offset.  For example,
    395     //  add the field offset to the integer value.  That way funny things
    396     //  like this work properly:  &(((struct foo *) 0xa)->f)
    397     return Base;
    398 
    399   default:
    400     llvm_unreachable("Unhandled Base.");
    401   }
    402 
    403   // NOTE: We must have this check first because ObjCIvarDecl is a subclass
    404   // of FieldDecl.
    405   if (const ObjCIvarDecl *ID = dyn_cast<ObjCIvarDecl>(D))
    406     return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR));
    407 
    408   return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR));
    409 }
    410 
    411 SVal StoreManager::getLValueIvar(const ObjCIvarDecl *decl, SVal base) {
    412   return getLValueFieldOrIvar(decl, base);
    413 }
    414 
    415 SVal StoreManager::getLValueElement(QualType elementType, NonLoc Offset,
    416                                     SVal Base) {
    417 
    418   // If the base is an unknown or undefined value, just return it back.
    419   // FIXME: For absolute pointer addresses, we just return that value back as
    420   //  well, although in reality we should return the offset added to that
    421   //  value.
    422   if (Base.isUnknownOrUndef() || Base.getAs<loc::ConcreteInt>())
    423     return Base;
    424 
    425   const MemRegion* BaseRegion = Base.castAs<loc::MemRegionVal>().getRegion();
    426 
    427   // Pointer of any type can be cast and used as array base.
    428   const ElementRegion *ElemR = dyn_cast<ElementRegion>(BaseRegion);
    429 
    430   // Convert the offset to the appropriate size and signedness.
    431   Offset = svalBuilder.convertToArrayIndex(Offset).castAs<NonLoc>();
    432 
    433   if (!ElemR) {
    434     //
    435     // If the base region is not an ElementRegion, create one.
    436     // This can happen in the following example:
    437     //
    438     //   char *p = __builtin_alloc(10);
    439     //   p[1] = 8;
    440     //
    441     //  Observe that 'p' binds to an AllocaRegion.
    442     //
    443     return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
    444                                                     BaseRegion, Ctx));
    445   }
    446 
    447   SVal BaseIdx = ElemR->getIndex();
    448 
    449   if (!BaseIdx.getAs<nonloc::ConcreteInt>())
    450     return UnknownVal();
    451 
    452   const llvm::APSInt &BaseIdxI =
    453       BaseIdx.castAs<nonloc::ConcreteInt>().getValue();
    454 
    455   // Only allow non-integer offsets if the base region has no offset itself.
    456   // FIXME: This is a somewhat arbitrary restriction. We should be using
    457   // SValBuilder here to add the two offsets without checking their types.
    458   if (!Offset.getAs<nonloc::ConcreteInt>()) {
    459     if (isa<ElementRegion>(BaseRegion->StripCasts()))
    460       return UnknownVal();
    461 
    462     return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
    463                                                     ElemR->getSuperRegion(),
    464                                                     Ctx));
    465   }
    466 
    467   const llvm::APSInt& OffI = Offset.castAs<nonloc::ConcreteInt>().getValue();
    468   assert(BaseIdxI.isSigned());
    469 
    470   // Compute the new index.
    471   nonloc::ConcreteInt NewIdx(svalBuilder.getBasicValueFactory().getValue(BaseIdxI +
    472                                                                     OffI));
    473 
    474   // Construct the new ElementRegion.
    475   const MemRegion *ArrayR = ElemR->getSuperRegion();
    476   return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR,
    477                                                   Ctx));
    478 }
    479 
    480 StoreManager::BindingsHandler::~BindingsHandler() {}
    481 
    482 bool StoreManager::FindUniqueBinding::HandleBinding(StoreManager& SMgr,
    483                                                     Store store,
    484                                                     const MemRegion* R,
    485                                                     SVal val) {
    486   SymbolRef SymV = val.getAsLocSymbol();
    487   if (!SymV || SymV != Sym)
    488     return true;
    489 
    490   if (Binding) {
    491     First = false;
    492     return false;
    493   }
    494   else
    495     Binding = R;
    496 
    497   return true;
    498 }
    499