Home | History | Annotate | Download | only in X86
      1 //===-- X86MCInstLower.cpp - Convert X86 MachineInstr to an MCInst --------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains code to lower X86 MachineInstrs to their corresponding
     11 // MCInst records.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "X86AsmPrinter.h"
     16 #include "InstPrinter/X86ATTInstPrinter.h"
     17 #include "X86COFFMachineModuleInfo.h"
     18 #include "llvm/ADT/SmallString.h"
     19 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
     20 #include "llvm/IR/Type.h"
     21 #include "llvm/MC/MCAsmInfo.h"
     22 #include "llvm/MC/MCContext.h"
     23 #include "llvm/MC/MCExpr.h"
     24 #include "llvm/MC/MCInst.h"
     25 #include "llvm/MC/MCInstBuilder.h"
     26 #include "llvm/MC/MCStreamer.h"
     27 #include "llvm/MC/MCSymbol.h"
     28 #include "llvm/Support/FormattedStream.h"
     29 #include "llvm/Target/Mangler.h"
     30 using namespace llvm;
     31 
     32 namespace {
     33 
     34 /// X86MCInstLower - This class is used to lower an MachineInstr into an MCInst.
     35 class X86MCInstLower {
     36   MCContext &Ctx;
     37   Mangler *Mang;
     38   const MachineFunction &MF;
     39   const TargetMachine &TM;
     40   const MCAsmInfo &MAI;
     41   X86AsmPrinter &AsmPrinter;
     42 public:
     43   X86MCInstLower(Mangler *mang, const MachineFunction &MF,
     44                  X86AsmPrinter &asmprinter);
     45 
     46   void Lower(const MachineInstr *MI, MCInst &OutMI) const;
     47 
     48   MCSymbol *GetSymbolFromOperand(const MachineOperand &MO) const;
     49   MCOperand LowerSymbolOperand(const MachineOperand &MO, MCSymbol *Sym) const;
     50 
     51 private:
     52   MachineModuleInfoMachO &getMachOMMI() const;
     53 };
     54 
     55 } // end anonymous namespace
     56 
     57 X86MCInstLower::X86MCInstLower(Mangler *mang, const MachineFunction &mf,
     58                                X86AsmPrinter &asmprinter)
     59 : Ctx(mf.getContext()), Mang(mang), MF(mf), TM(mf.getTarget()),
     60   MAI(*TM.getMCAsmInfo()), AsmPrinter(asmprinter) {}
     61 
     62 MachineModuleInfoMachO &X86MCInstLower::getMachOMMI() const {
     63   return MF.getMMI().getObjFileInfo<MachineModuleInfoMachO>();
     64 }
     65 
     66 
     67 /// GetSymbolFromOperand - Lower an MO_GlobalAddress or MO_ExternalSymbol
     68 /// operand to an MCSymbol.
     69 MCSymbol *X86MCInstLower::
     70 GetSymbolFromOperand(const MachineOperand &MO) const {
     71   assert((MO.isGlobal() || MO.isSymbol() || MO.isMBB()) && "Isn't a symbol reference");
     72 
     73   SmallString<128> Name;
     74 
     75   if (MO.isGlobal()) {
     76     const GlobalValue *GV = MO.getGlobal();
     77     bool isImplicitlyPrivate = false;
     78     if (MO.getTargetFlags() == X86II::MO_DARWIN_STUB ||
     79         MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY ||
     80         MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY_PIC_BASE ||
     81         MO.getTargetFlags() == X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE)
     82       isImplicitlyPrivate = true;
     83 
     84     Mang->getNameWithPrefix(Name, GV, isImplicitlyPrivate);
     85   } else if (MO.isSymbol()) {
     86     Name += MAI.getGlobalPrefix();
     87     Name += MO.getSymbolName();
     88   } else if (MO.isMBB()) {
     89     Name += MO.getMBB()->getSymbol()->getName();
     90   }
     91 
     92   // If the target flags on the operand changes the name of the symbol, do that
     93   // before we return the symbol.
     94   switch (MO.getTargetFlags()) {
     95   default: break;
     96   case X86II::MO_DLLIMPORT: {
     97     // Handle dllimport linkage.
     98     const char *Prefix = "__imp_";
     99     Name.insert(Name.begin(), Prefix, Prefix+strlen(Prefix));
    100     break;
    101   }
    102   case X86II::MO_DARWIN_NONLAZY:
    103   case X86II::MO_DARWIN_NONLAZY_PIC_BASE: {
    104     Name += "$non_lazy_ptr";
    105     MCSymbol *Sym = Ctx.GetOrCreateSymbol(Name.str());
    106 
    107     MachineModuleInfoImpl::StubValueTy &StubSym =
    108       getMachOMMI().getGVStubEntry(Sym);
    109     if (StubSym.getPointer() == 0) {
    110       assert(MO.isGlobal() && "Extern symbol not handled yet");
    111       StubSym =
    112         MachineModuleInfoImpl::
    113         StubValueTy(Mang->getSymbol(MO.getGlobal()),
    114                     !MO.getGlobal()->hasInternalLinkage());
    115     }
    116     return Sym;
    117   }
    118   case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: {
    119     Name += "$non_lazy_ptr";
    120     MCSymbol *Sym = Ctx.GetOrCreateSymbol(Name.str());
    121     MachineModuleInfoImpl::StubValueTy &StubSym =
    122       getMachOMMI().getHiddenGVStubEntry(Sym);
    123     if (StubSym.getPointer() == 0) {
    124       assert(MO.isGlobal() && "Extern symbol not handled yet");
    125       StubSym =
    126         MachineModuleInfoImpl::
    127         StubValueTy(Mang->getSymbol(MO.getGlobal()),
    128                     !MO.getGlobal()->hasInternalLinkage());
    129     }
    130     return Sym;
    131   }
    132   case X86II::MO_DARWIN_STUB: {
    133     Name += "$stub";
    134     MCSymbol *Sym = Ctx.GetOrCreateSymbol(Name.str());
    135     MachineModuleInfoImpl::StubValueTy &StubSym =
    136       getMachOMMI().getFnStubEntry(Sym);
    137     if (StubSym.getPointer())
    138       return Sym;
    139 
    140     if (MO.isGlobal()) {
    141       StubSym =
    142         MachineModuleInfoImpl::
    143         StubValueTy(Mang->getSymbol(MO.getGlobal()),
    144                     !MO.getGlobal()->hasInternalLinkage());
    145     } else {
    146       Name.erase(Name.end()-5, Name.end());
    147       StubSym =
    148         MachineModuleInfoImpl::
    149         StubValueTy(Ctx.GetOrCreateSymbol(Name.str()), false);
    150     }
    151     return Sym;
    152   }
    153   }
    154 
    155   return Ctx.GetOrCreateSymbol(Name.str());
    156 }
    157 
    158 MCOperand X86MCInstLower::LowerSymbolOperand(const MachineOperand &MO,
    159                                              MCSymbol *Sym) const {
    160   // FIXME: We would like an efficient form for this, so we don't have to do a
    161   // lot of extra uniquing.
    162   const MCExpr *Expr = 0;
    163   MCSymbolRefExpr::VariantKind RefKind = MCSymbolRefExpr::VK_None;
    164 
    165   switch (MO.getTargetFlags()) {
    166   default: llvm_unreachable("Unknown target flag on GV operand");
    167   case X86II::MO_NO_FLAG:    // No flag.
    168   // These affect the name of the symbol, not any suffix.
    169   case X86II::MO_DARWIN_NONLAZY:
    170   case X86II::MO_DLLIMPORT:
    171   case X86II::MO_DARWIN_STUB:
    172     break;
    173 
    174   case X86II::MO_TLVP:      RefKind = MCSymbolRefExpr::VK_TLVP; break;
    175   case X86II::MO_TLVP_PIC_BASE:
    176     Expr = MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_TLVP, Ctx);
    177     // Subtract the pic base.
    178     Expr = MCBinaryExpr::CreateSub(Expr,
    179                                   MCSymbolRefExpr::Create(MF.getPICBaseSymbol(),
    180                                                            Ctx),
    181                                    Ctx);
    182     break;
    183   case X86II::MO_SECREL:    RefKind = MCSymbolRefExpr::VK_SECREL; break;
    184   case X86II::MO_TLSGD:     RefKind = MCSymbolRefExpr::VK_TLSGD; break;
    185   case X86II::MO_TLSLD:     RefKind = MCSymbolRefExpr::VK_TLSLD; break;
    186   case X86II::MO_TLSLDM:    RefKind = MCSymbolRefExpr::VK_TLSLDM; break;
    187   case X86II::MO_GOTTPOFF:  RefKind = MCSymbolRefExpr::VK_GOTTPOFF; break;
    188   case X86II::MO_INDNTPOFF: RefKind = MCSymbolRefExpr::VK_INDNTPOFF; break;
    189   case X86II::MO_TPOFF:     RefKind = MCSymbolRefExpr::VK_TPOFF; break;
    190   case X86II::MO_DTPOFF:    RefKind = MCSymbolRefExpr::VK_DTPOFF; break;
    191   case X86II::MO_NTPOFF:    RefKind = MCSymbolRefExpr::VK_NTPOFF; break;
    192   case X86II::MO_GOTNTPOFF: RefKind = MCSymbolRefExpr::VK_GOTNTPOFF; break;
    193   case X86II::MO_GOTPCREL:  RefKind = MCSymbolRefExpr::VK_GOTPCREL; break;
    194   case X86II::MO_GOT:       RefKind = MCSymbolRefExpr::VK_GOT; break;
    195   case X86II::MO_GOTOFF:    RefKind = MCSymbolRefExpr::VK_GOTOFF; break;
    196   case X86II::MO_PLT:       RefKind = MCSymbolRefExpr::VK_PLT; break;
    197   case X86II::MO_PIC_BASE_OFFSET:
    198   case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
    199   case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE:
    200     Expr = MCSymbolRefExpr::Create(Sym, Ctx);
    201     // Subtract the pic base.
    202     Expr = MCBinaryExpr::CreateSub(Expr,
    203                             MCSymbolRefExpr::Create(MF.getPICBaseSymbol(), Ctx),
    204                                    Ctx);
    205     if (MO.isJTI() && MAI.hasSetDirective()) {
    206       // If .set directive is supported, use it to reduce the number of
    207       // relocations the assembler will generate for differences between
    208       // local labels. This is only safe when the symbols are in the same
    209       // section so we are restricting it to jumptable references.
    210       MCSymbol *Label = Ctx.CreateTempSymbol();
    211       AsmPrinter.OutStreamer.EmitAssignment(Label, Expr);
    212       Expr = MCSymbolRefExpr::Create(Label, Ctx);
    213     }
    214     break;
    215   }
    216 
    217   if (Expr == 0)
    218     Expr = MCSymbolRefExpr::Create(Sym, RefKind, Ctx);
    219 
    220   if (!MO.isJTI() && !MO.isMBB() && MO.getOffset())
    221     Expr = MCBinaryExpr::CreateAdd(Expr,
    222                                    MCConstantExpr::Create(MO.getOffset(), Ctx),
    223                                    Ctx);
    224   return MCOperand::CreateExpr(Expr);
    225 }
    226 
    227 
    228 
    229 static void lower_subreg32(MCInst *MI, unsigned OpNo) {
    230   // Convert registers in the addr mode according to subreg32.
    231   unsigned Reg = MI->getOperand(OpNo).getReg();
    232   if (Reg != 0)
    233     MI->getOperand(OpNo).setReg(getX86SubSuperRegister(Reg, MVT::i32));
    234 }
    235 
    236 static void lower_lea64_32mem(MCInst *MI, unsigned OpNo) {
    237   // Convert registers in the addr mode according to subreg64.
    238   for (unsigned i = 0; i != 4; ++i) {
    239     if (!MI->getOperand(OpNo+i).isReg()) continue;
    240 
    241     unsigned Reg = MI->getOperand(OpNo+i).getReg();
    242     // LEAs can use RIP-relative addressing, and RIP has no sub/super register.
    243     if (Reg == 0 || Reg == X86::RIP) continue;
    244 
    245     MI->getOperand(OpNo+i).setReg(getX86SubSuperRegister(Reg, MVT::i64));
    246   }
    247 }
    248 
    249 /// LowerSubReg32_Op0 - Things like MOVZX16rr8 -> MOVZX32rr8.
    250 static void LowerSubReg32_Op0(MCInst &OutMI, unsigned NewOpc) {
    251   OutMI.setOpcode(NewOpc);
    252   lower_subreg32(&OutMI, 0);
    253 }
    254 /// LowerUnaryToTwoAddr - R = setb   -> R = sbb R, R
    255 static void LowerUnaryToTwoAddr(MCInst &OutMI, unsigned NewOpc) {
    256   OutMI.setOpcode(NewOpc);
    257   OutMI.addOperand(OutMI.getOperand(0));
    258   OutMI.addOperand(OutMI.getOperand(0));
    259 }
    260 
    261 /// \brief Simplify FOO $imm, %{al,ax,eax,rax} to FOO $imm, for instruction with
    262 /// a short fixed-register form.
    263 static void SimplifyShortImmForm(MCInst &Inst, unsigned Opcode) {
    264   unsigned ImmOp = Inst.getNumOperands() - 1;
    265   assert(Inst.getOperand(0).isReg() &&
    266          (Inst.getOperand(ImmOp).isImm() || Inst.getOperand(ImmOp).isExpr()) &&
    267          ((Inst.getNumOperands() == 3 && Inst.getOperand(1).isReg() &&
    268            Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) ||
    269           Inst.getNumOperands() == 2) && "Unexpected instruction!");
    270 
    271   // Check whether the destination register can be fixed.
    272   unsigned Reg = Inst.getOperand(0).getReg();
    273   if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
    274     return;
    275 
    276   // If so, rewrite the instruction.
    277   MCOperand Saved = Inst.getOperand(ImmOp);
    278   Inst = MCInst();
    279   Inst.setOpcode(Opcode);
    280   Inst.addOperand(Saved);
    281 }
    282 
    283 /// \brief Simplify things like MOV32rm to MOV32o32a.
    284 static void SimplifyShortMoveForm(X86AsmPrinter &Printer, MCInst &Inst,
    285                                   unsigned Opcode) {
    286   // Don't make these simplifications in 64-bit mode; other assemblers don't
    287   // perform them because they make the code larger.
    288   if (Printer.getSubtarget().is64Bit())
    289     return;
    290 
    291   bool IsStore = Inst.getOperand(0).isReg() && Inst.getOperand(1).isReg();
    292   unsigned AddrBase = IsStore;
    293   unsigned RegOp = IsStore ? 0 : 5;
    294   unsigned AddrOp = AddrBase + 3;
    295   assert(Inst.getNumOperands() == 6 && Inst.getOperand(RegOp).isReg() &&
    296          Inst.getOperand(AddrBase + 0).isReg() && // base
    297          Inst.getOperand(AddrBase + 1).isImm() && // scale
    298          Inst.getOperand(AddrBase + 2).isReg() && // index register
    299          (Inst.getOperand(AddrOp).isExpr() ||     // address
    300           Inst.getOperand(AddrOp).isImm())&&
    301          Inst.getOperand(AddrBase + 4).isReg() && // segment
    302          "Unexpected instruction!");
    303 
    304   // Check whether the destination register can be fixed.
    305   unsigned Reg = Inst.getOperand(RegOp).getReg();
    306   if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
    307     return;
    308 
    309   // Check whether this is an absolute address.
    310   // FIXME: We know TLVP symbol refs aren't, but there should be a better way
    311   // to do this here.
    312   bool Absolute = true;
    313   if (Inst.getOperand(AddrOp).isExpr()) {
    314     const MCExpr *MCE = Inst.getOperand(AddrOp).getExpr();
    315     if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(MCE))
    316       if (SRE->getKind() == MCSymbolRefExpr::VK_TLVP)
    317         Absolute = false;
    318   }
    319 
    320   if (Absolute &&
    321       (Inst.getOperand(AddrBase + 0).getReg() != 0 ||
    322        Inst.getOperand(AddrBase + 2).getReg() != 0 ||
    323        Inst.getOperand(AddrBase + 4).getReg() != 0 ||
    324        Inst.getOperand(AddrBase + 1).getImm() != 1))
    325     return;
    326 
    327   // If so, rewrite the instruction.
    328   MCOperand Saved = Inst.getOperand(AddrOp);
    329   Inst = MCInst();
    330   Inst.setOpcode(Opcode);
    331   Inst.addOperand(Saved);
    332 }
    333 
    334 void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
    335   OutMI.setOpcode(MI->getOpcode());
    336 
    337   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    338     const MachineOperand &MO = MI->getOperand(i);
    339 
    340     MCOperand MCOp;
    341     switch (MO.getType()) {
    342     default:
    343       MI->dump();
    344       llvm_unreachable("unknown operand type");
    345     case MachineOperand::MO_Register:
    346       // Ignore all implicit register operands.
    347       if (MO.isImplicit()) continue;
    348       MCOp = MCOperand::CreateReg(MO.getReg());
    349       break;
    350     case MachineOperand::MO_Immediate:
    351       MCOp = MCOperand::CreateImm(MO.getImm());
    352       break;
    353     case MachineOperand::MO_MachineBasicBlock:
    354     case MachineOperand::MO_GlobalAddress:
    355     case MachineOperand::MO_ExternalSymbol:
    356       MCOp = LowerSymbolOperand(MO, GetSymbolFromOperand(MO));
    357       break;
    358     case MachineOperand::MO_JumpTableIndex:
    359       MCOp = LowerSymbolOperand(MO, AsmPrinter.GetJTISymbol(MO.getIndex()));
    360       break;
    361     case MachineOperand::MO_ConstantPoolIndex:
    362       MCOp = LowerSymbolOperand(MO, AsmPrinter.GetCPISymbol(MO.getIndex()));
    363       break;
    364     case MachineOperand::MO_BlockAddress:
    365       MCOp = LowerSymbolOperand(MO,
    366                      AsmPrinter.GetBlockAddressSymbol(MO.getBlockAddress()));
    367       break;
    368     case MachineOperand::MO_RegisterMask:
    369       // Ignore call clobbers.
    370       continue;
    371     }
    372 
    373     OutMI.addOperand(MCOp);
    374   }
    375 
    376   // Handle a few special cases to eliminate operand modifiers.
    377 ReSimplify:
    378   switch (OutMI.getOpcode()) {
    379   case X86::LEA64_32r: // Handle 'subreg rewriting' for the lea64_32mem operand.
    380     lower_lea64_32mem(&OutMI, 1);
    381     // FALL THROUGH.
    382   case X86::LEA64r:
    383   case X86::LEA16r:
    384   case X86::LEA32r:
    385     // LEA should have a segment register, but it must be empty.
    386     assert(OutMI.getNumOperands() == 1+X86::AddrNumOperands &&
    387            "Unexpected # of LEA operands");
    388     assert(OutMI.getOperand(1+X86::AddrSegmentReg).getReg() == 0 &&
    389            "LEA has segment specified!");
    390     break;
    391   case X86::MOVZX64rr32:  LowerSubReg32_Op0(OutMI, X86::MOV32rr); break;
    392   case X86::MOVZX64rm32:  LowerSubReg32_Op0(OutMI, X86::MOV32rm); break;
    393   case X86::MOV64ri64i32: LowerSubReg32_Op0(OutMI, X86::MOV32ri); break;
    394   case X86::MOVZX64rr8:   LowerSubReg32_Op0(OutMI, X86::MOVZX32rr8); break;
    395   case X86::MOVZX64rm8:   LowerSubReg32_Op0(OutMI, X86::MOVZX32rm8); break;
    396   case X86::MOVZX64rr16:  LowerSubReg32_Op0(OutMI, X86::MOVZX32rr16); break;
    397   case X86::MOVZX64rm16:  LowerSubReg32_Op0(OutMI, X86::MOVZX32rm16); break;
    398   case X86::MOV8r0:       LowerUnaryToTwoAddr(OutMI, X86::XOR8rr); break;
    399   case X86::MOV32r0:      LowerUnaryToTwoAddr(OutMI, X86::XOR32rr); break;
    400 
    401   case X86::MOV16r0:
    402     LowerSubReg32_Op0(OutMI, X86::MOV32r0);   // MOV16r0 -> MOV32r0
    403     LowerUnaryToTwoAddr(OutMI, X86::XOR32rr); // MOV32r0 -> XOR32rr
    404     break;
    405   case X86::MOV64r0:
    406     LowerSubReg32_Op0(OutMI, X86::MOV32r0);   // MOV64r0 -> MOV32r0
    407     LowerUnaryToTwoAddr(OutMI, X86::XOR32rr); // MOV32r0 -> XOR32rr
    408     break;
    409 
    410   // Commute operands to get a smaller encoding by using VEX.R instead of VEX.B
    411   // if one of the registers is extended, but other isn't.
    412   case X86::VMOVAPDrr:
    413   case X86::VMOVAPDYrr:
    414   case X86::VMOVAPSrr:
    415   case X86::VMOVAPSYrr:
    416   case X86::VMOVDQArr:
    417   case X86::VMOVDQAYrr:
    418   case X86::VMOVDQUrr:
    419   case X86::VMOVDQUYrr:
    420   case X86::VMOVUPDrr:
    421   case X86::VMOVUPDYrr:
    422   case X86::VMOVUPSrr:
    423   case X86::VMOVUPSYrr: {
    424     if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
    425         X86II::isX86_64ExtendedReg(OutMI.getOperand(1).getReg())) {
    426       unsigned NewOpc;
    427       switch (OutMI.getOpcode()) {
    428       default: llvm_unreachable("Invalid opcode");
    429       case X86::VMOVAPDrr:  NewOpc = X86::VMOVAPDrr_REV;  break;
    430       case X86::VMOVAPDYrr: NewOpc = X86::VMOVAPDYrr_REV; break;
    431       case X86::VMOVAPSrr:  NewOpc = X86::VMOVAPSrr_REV;  break;
    432       case X86::VMOVAPSYrr: NewOpc = X86::VMOVAPSYrr_REV; break;
    433       case X86::VMOVDQArr:  NewOpc = X86::VMOVDQArr_REV;  break;
    434       case X86::VMOVDQAYrr: NewOpc = X86::VMOVDQAYrr_REV; break;
    435       case X86::VMOVDQUrr:  NewOpc = X86::VMOVDQUrr_REV;  break;
    436       case X86::VMOVDQUYrr: NewOpc = X86::VMOVDQUYrr_REV; break;
    437       case X86::VMOVUPDrr:  NewOpc = X86::VMOVUPDrr_REV;  break;
    438       case X86::VMOVUPDYrr: NewOpc = X86::VMOVUPDYrr_REV; break;
    439       case X86::VMOVUPSrr:  NewOpc = X86::VMOVUPSrr_REV;  break;
    440       case X86::VMOVUPSYrr: NewOpc = X86::VMOVUPSYrr_REV; break;
    441       }
    442       OutMI.setOpcode(NewOpc);
    443     }
    444     break;
    445   }
    446   case X86::VMOVSDrr:
    447   case X86::VMOVSSrr: {
    448     if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
    449         X86II::isX86_64ExtendedReg(OutMI.getOperand(2).getReg())) {
    450       unsigned NewOpc;
    451       switch (OutMI.getOpcode()) {
    452       default: llvm_unreachable("Invalid opcode");
    453       case X86::VMOVSDrr:   NewOpc = X86::VMOVSDrr_REV;   break;
    454       case X86::VMOVSSrr:   NewOpc = X86::VMOVSSrr_REV;   break;
    455       }
    456       OutMI.setOpcode(NewOpc);
    457     }
    458     break;
    459   }
    460 
    461   // TAILJMPr64, CALL64r, CALL64pcrel32 - These instructions have register
    462   // inputs modeled as normal uses instead of implicit uses.  As such, truncate
    463   // off all but the first operand (the callee).  FIXME: Change isel.
    464   case X86::TAILJMPr64:
    465   case X86::CALL64r:
    466   case X86::CALL64pcrel32: {
    467     unsigned Opcode = OutMI.getOpcode();
    468     MCOperand Saved = OutMI.getOperand(0);
    469     OutMI = MCInst();
    470     OutMI.setOpcode(Opcode);
    471     OutMI.addOperand(Saved);
    472     break;
    473   }
    474 
    475   case X86::EH_RETURN:
    476   case X86::EH_RETURN64: {
    477     OutMI = MCInst();
    478     OutMI.setOpcode(X86::RET);
    479     break;
    480   }
    481 
    482   // TAILJMPd, TAILJMPd64 - Lower to the correct jump instructions.
    483   case X86::TAILJMPr:
    484   case X86::TAILJMPd:
    485   case X86::TAILJMPd64: {
    486     unsigned Opcode;
    487     switch (OutMI.getOpcode()) {
    488     default: llvm_unreachable("Invalid opcode");
    489     case X86::TAILJMPr: Opcode = X86::JMP32r; break;
    490     case X86::TAILJMPd:
    491     case X86::TAILJMPd64: Opcode = X86::JMP_1; break;
    492     }
    493 
    494     MCOperand Saved = OutMI.getOperand(0);
    495     OutMI = MCInst();
    496     OutMI.setOpcode(Opcode);
    497     OutMI.addOperand(Saved);
    498     break;
    499   }
    500 
    501   // These are pseudo-ops for OR to help with the OR->ADD transformation.  We do
    502   // this with an ugly goto in case the resultant OR uses EAX and needs the
    503   // short form.
    504   case X86::ADD16rr_DB:   OutMI.setOpcode(X86::OR16rr); goto ReSimplify;
    505   case X86::ADD32rr_DB:   OutMI.setOpcode(X86::OR32rr); goto ReSimplify;
    506   case X86::ADD64rr_DB:   OutMI.setOpcode(X86::OR64rr); goto ReSimplify;
    507   case X86::ADD16ri_DB:   OutMI.setOpcode(X86::OR16ri); goto ReSimplify;
    508   case X86::ADD32ri_DB:   OutMI.setOpcode(X86::OR32ri); goto ReSimplify;
    509   case X86::ADD64ri32_DB: OutMI.setOpcode(X86::OR64ri32); goto ReSimplify;
    510   case X86::ADD16ri8_DB:  OutMI.setOpcode(X86::OR16ri8); goto ReSimplify;
    511   case X86::ADD32ri8_DB:  OutMI.setOpcode(X86::OR32ri8); goto ReSimplify;
    512   case X86::ADD64ri8_DB:  OutMI.setOpcode(X86::OR64ri8); goto ReSimplify;
    513 
    514   // The assembler backend wants to see branches in their small form and relax
    515   // them to their large form.  The JIT can only handle the large form because
    516   // it does not do relaxation.  For now, translate the large form to the
    517   // small one here.
    518   case X86::JMP_4: OutMI.setOpcode(X86::JMP_1); break;
    519   case X86::JO_4:  OutMI.setOpcode(X86::JO_1); break;
    520   case X86::JNO_4: OutMI.setOpcode(X86::JNO_1); break;
    521   case X86::JB_4:  OutMI.setOpcode(X86::JB_1); break;
    522   case X86::JAE_4: OutMI.setOpcode(X86::JAE_1); break;
    523   case X86::JE_4:  OutMI.setOpcode(X86::JE_1); break;
    524   case X86::JNE_4: OutMI.setOpcode(X86::JNE_1); break;
    525   case X86::JBE_4: OutMI.setOpcode(X86::JBE_1); break;
    526   case X86::JA_4:  OutMI.setOpcode(X86::JA_1); break;
    527   case X86::JS_4:  OutMI.setOpcode(X86::JS_1); break;
    528   case X86::JNS_4: OutMI.setOpcode(X86::JNS_1); break;
    529   case X86::JP_4:  OutMI.setOpcode(X86::JP_1); break;
    530   case X86::JNP_4: OutMI.setOpcode(X86::JNP_1); break;
    531   case X86::JL_4:  OutMI.setOpcode(X86::JL_1); break;
    532   case X86::JGE_4: OutMI.setOpcode(X86::JGE_1); break;
    533   case X86::JLE_4: OutMI.setOpcode(X86::JLE_1); break;
    534   case X86::JG_4:  OutMI.setOpcode(X86::JG_1); break;
    535 
    536   // Atomic load and store require a separate pseudo-inst because Acquire
    537   // implies mayStore and Release implies mayLoad; fix these to regular MOV
    538   // instructions here
    539   case X86::ACQUIRE_MOV8rm:  OutMI.setOpcode(X86::MOV8rm); goto ReSimplify;
    540   case X86::ACQUIRE_MOV16rm: OutMI.setOpcode(X86::MOV16rm); goto ReSimplify;
    541   case X86::ACQUIRE_MOV32rm: OutMI.setOpcode(X86::MOV32rm); goto ReSimplify;
    542   case X86::ACQUIRE_MOV64rm: OutMI.setOpcode(X86::MOV64rm); goto ReSimplify;
    543   case X86::RELEASE_MOV8mr:  OutMI.setOpcode(X86::MOV8mr); goto ReSimplify;
    544   case X86::RELEASE_MOV16mr: OutMI.setOpcode(X86::MOV16mr); goto ReSimplify;
    545   case X86::RELEASE_MOV32mr: OutMI.setOpcode(X86::MOV32mr); goto ReSimplify;
    546   case X86::RELEASE_MOV64mr: OutMI.setOpcode(X86::MOV64mr); goto ReSimplify;
    547 
    548   // We don't currently select the correct instruction form for instructions
    549   // which have a short %eax, etc. form. Handle this by custom lowering, for
    550   // now.
    551   //
    552   // Note, we are currently not handling the following instructions:
    553   // MOV64ao8, MOV64o8a
    554   // XCHG16ar, XCHG32ar, XCHG64ar
    555   case X86::MOV8mr_NOREX:
    556   case X86::MOV8mr:     SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8ao8); break;
    557   case X86::MOV8rm_NOREX:
    558   case X86::MOV8rm:     SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8o8a); break;
    559   case X86::MOV16mr:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16ao16); break;
    560   case X86::MOV16rm:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16o16a); break;
    561   case X86::MOV32mr:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32ao32); break;
    562   case X86::MOV32rm:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32o32a); break;
    563 
    564   case X86::ADC8ri:     SimplifyShortImmForm(OutMI, X86::ADC8i8);    break;
    565   case X86::ADC16ri:    SimplifyShortImmForm(OutMI, X86::ADC16i16);  break;
    566   case X86::ADC32ri:    SimplifyShortImmForm(OutMI, X86::ADC32i32);  break;
    567   case X86::ADC64ri32:  SimplifyShortImmForm(OutMI, X86::ADC64i32);  break;
    568   case X86::ADD8ri:     SimplifyShortImmForm(OutMI, X86::ADD8i8);    break;
    569   case X86::ADD16ri:    SimplifyShortImmForm(OutMI, X86::ADD16i16);  break;
    570   case X86::ADD32ri:    SimplifyShortImmForm(OutMI, X86::ADD32i32);  break;
    571   case X86::ADD64ri32:  SimplifyShortImmForm(OutMI, X86::ADD64i32);  break;
    572   case X86::AND8ri:     SimplifyShortImmForm(OutMI, X86::AND8i8);    break;
    573   case X86::AND16ri:    SimplifyShortImmForm(OutMI, X86::AND16i16);  break;
    574   case X86::AND32ri:    SimplifyShortImmForm(OutMI, X86::AND32i32);  break;
    575   case X86::AND64ri32:  SimplifyShortImmForm(OutMI, X86::AND64i32);  break;
    576   case X86::CMP8ri:     SimplifyShortImmForm(OutMI, X86::CMP8i8);    break;
    577   case X86::CMP16ri:    SimplifyShortImmForm(OutMI, X86::CMP16i16);  break;
    578   case X86::CMP32ri:    SimplifyShortImmForm(OutMI, X86::CMP32i32);  break;
    579   case X86::CMP64ri32:  SimplifyShortImmForm(OutMI, X86::CMP64i32);  break;
    580   case X86::OR8ri:      SimplifyShortImmForm(OutMI, X86::OR8i8);     break;
    581   case X86::OR16ri:     SimplifyShortImmForm(OutMI, X86::OR16i16);   break;
    582   case X86::OR32ri:     SimplifyShortImmForm(OutMI, X86::OR32i32);   break;
    583   case X86::OR64ri32:   SimplifyShortImmForm(OutMI, X86::OR64i32);   break;
    584   case X86::SBB8ri:     SimplifyShortImmForm(OutMI, X86::SBB8i8);    break;
    585   case X86::SBB16ri:    SimplifyShortImmForm(OutMI, X86::SBB16i16);  break;
    586   case X86::SBB32ri:    SimplifyShortImmForm(OutMI, X86::SBB32i32);  break;
    587   case X86::SBB64ri32:  SimplifyShortImmForm(OutMI, X86::SBB64i32);  break;
    588   case X86::SUB8ri:     SimplifyShortImmForm(OutMI, X86::SUB8i8);    break;
    589   case X86::SUB16ri:    SimplifyShortImmForm(OutMI, X86::SUB16i16);  break;
    590   case X86::SUB32ri:    SimplifyShortImmForm(OutMI, X86::SUB32i32);  break;
    591   case X86::SUB64ri32:  SimplifyShortImmForm(OutMI, X86::SUB64i32);  break;
    592   case X86::TEST8ri:    SimplifyShortImmForm(OutMI, X86::TEST8i8);   break;
    593   case X86::TEST16ri:   SimplifyShortImmForm(OutMI, X86::TEST16i16); break;
    594   case X86::TEST32ri:   SimplifyShortImmForm(OutMI, X86::TEST32i32); break;
    595   case X86::TEST64ri32: SimplifyShortImmForm(OutMI, X86::TEST64i32); break;
    596   case X86::XOR8ri:     SimplifyShortImmForm(OutMI, X86::XOR8i8);    break;
    597   case X86::XOR16ri:    SimplifyShortImmForm(OutMI, X86::XOR16i16);  break;
    598   case X86::XOR32ri:    SimplifyShortImmForm(OutMI, X86::XOR32i32);  break;
    599   case X86::XOR64ri32:  SimplifyShortImmForm(OutMI, X86::XOR64i32);  break;
    600 
    601   case X86::MORESTACK_RET:
    602     OutMI.setOpcode(X86::RET);
    603     break;
    604 
    605   case X86::MORESTACK_RET_RESTORE_R10:
    606     OutMI.setOpcode(X86::MOV64rr);
    607     OutMI.addOperand(MCOperand::CreateReg(X86::R10));
    608     OutMI.addOperand(MCOperand::CreateReg(X86::RAX));
    609 
    610     AsmPrinter.OutStreamer.EmitInstruction(MCInstBuilder(X86::RET));
    611     break;
    612   }
    613 }
    614 
    615 static void LowerTlsAddr(MCStreamer &OutStreamer,
    616                          X86MCInstLower &MCInstLowering,
    617                          const MachineInstr &MI) {
    618 
    619   bool is64Bits = MI.getOpcode() == X86::TLS_addr64 ||
    620                   MI.getOpcode() == X86::TLS_base_addr64;
    621 
    622   bool needsPadding = MI.getOpcode() == X86::TLS_addr64;
    623 
    624   MCContext &context = OutStreamer.getContext();
    625 
    626   if (needsPadding)
    627     OutStreamer.EmitInstruction(MCInstBuilder(X86::DATA16_PREFIX));
    628 
    629   MCSymbolRefExpr::VariantKind SRVK;
    630   switch (MI.getOpcode()) {
    631     case X86::TLS_addr32:
    632     case X86::TLS_addr64:
    633       SRVK = MCSymbolRefExpr::VK_TLSGD;
    634       break;
    635     case X86::TLS_base_addr32:
    636       SRVK = MCSymbolRefExpr::VK_TLSLDM;
    637       break;
    638     case X86::TLS_base_addr64:
    639       SRVK = MCSymbolRefExpr::VK_TLSLD;
    640       break;
    641     default:
    642       llvm_unreachable("unexpected opcode");
    643   }
    644 
    645   MCSymbol *sym = MCInstLowering.GetSymbolFromOperand(MI.getOperand(3));
    646   const MCSymbolRefExpr *symRef = MCSymbolRefExpr::Create(sym, SRVK, context);
    647 
    648   MCInst LEA;
    649   if (is64Bits) {
    650     LEA.setOpcode(X86::LEA64r);
    651     LEA.addOperand(MCOperand::CreateReg(X86::RDI)); // dest
    652     LEA.addOperand(MCOperand::CreateReg(X86::RIP)); // base
    653     LEA.addOperand(MCOperand::CreateImm(1));        // scale
    654     LEA.addOperand(MCOperand::CreateReg(0));        // index
    655     LEA.addOperand(MCOperand::CreateExpr(symRef));  // disp
    656     LEA.addOperand(MCOperand::CreateReg(0));        // seg
    657   } else if (SRVK == MCSymbolRefExpr::VK_TLSLDM) {
    658     LEA.setOpcode(X86::LEA32r);
    659     LEA.addOperand(MCOperand::CreateReg(X86::EAX)); // dest
    660     LEA.addOperand(MCOperand::CreateReg(X86::EBX)); // base
    661     LEA.addOperand(MCOperand::CreateImm(1));        // scale
    662     LEA.addOperand(MCOperand::CreateReg(0));        // index
    663     LEA.addOperand(MCOperand::CreateExpr(symRef));  // disp
    664     LEA.addOperand(MCOperand::CreateReg(0));        // seg
    665   } else {
    666     LEA.setOpcode(X86::LEA32r);
    667     LEA.addOperand(MCOperand::CreateReg(X86::EAX)); // dest
    668     LEA.addOperand(MCOperand::CreateReg(0));        // base
    669     LEA.addOperand(MCOperand::CreateImm(1));        // scale
    670     LEA.addOperand(MCOperand::CreateReg(X86::EBX)); // index
    671     LEA.addOperand(MCOperand::CreateExpr(symRef));  // disp
    672     LEA.addOperand(MCOperand::CreateReg(0));        // seg
    673   }
    674   OutStreamer.EmitInstruction(LEA);
    675 
    676   if (needsPadding) {
    677     OutStreamer.EmitInstruction(MCInstBuilder(X86::DATA16_PREFIX));
    678     OutStreamer.EmitInstruction(MCInstBuilder(X86::DATA16_PREFIX));
    679     OutStreamer.EmitInstruction(MCInstBuilder(X86::REX64_PREFIX));
    680   }
    681 
    682   StringRef name = is64Bits ? "__tls_get_addr" : "___tls_get_addr";
    683   MCSymbol *tlsGetAddr = context.GetOrCreateSymbol(name);
    684   const MCSymbolRefExpr *tlsRef =
    685     MCSymbolRefExpr::Create(tlsGetAddr,
    686                             MCSymbolRefExpr::VK_PLT,
    687                             context);
    688 
    689   OutStreamer.EmitInstruction(MCInstBuilder(is64Bits ? X86::CALL64pcrel32
    690                                                      : X86::CALLpcrel32)
    691     .addExpr(tlsRef));
    692 }
    693 
    694 void X86AsmPrinter::EmitInstruction(const MachineInstr *MI) {
    695   X86MCInstLower MCInstLowering(Mang, *MF, *this);
    696   switch (MI->getOpcode()) {
    697   case TargetOpcode::DBG_VALUE:
    698     if (isVerbose() && OutStreamer.hasRawTextSupport()) {
    699       std::string TmpStr;
    700       raw_string_ostream OS(TmpStr);
    701       PrintDebugValueComment(MI, OS);
    702       OutStreamer.EmitRawText(StringRef(OS.str()));
    703     }
    704     return;
    705 
    706   // Emit nothing here but a comment if we can.
    707   case X86::Int_MemBarrier:
    708     if (OutStreamer.hasRawTextSupport())
    709       OutStreamer.EmitRawText(StringRef("\t#MEMBARRIER"));
    710     return;
    711 
    712 
    713   case X86::EH_RETURN:
    714   case X86::EH_RETURN64: {
    715     // Lower these as normal, but add some comments.
    716     unsigned Reg = MI->getOperand(0).getReg();
    717     OutStreamer.AddComment(StringRef("eh_return, addr: %") +
    718                            X86ATTInstPrinter::getRegisterName(Reg));
    719     break;
    720   }
    721   case X86::TAILJMPr:
    722   case X86::TAILJMPd:
    723   case X86::TAILJMPd64:
    724     // Lower these as normal, but add some comments.
    725     OutStreamer.AddComment("TAILCALL");
    726     break;
    727 
    728   case X86::TLS_addr32:
    729   case X86::TLS_addr64:
    730   case X86::TLS_base_addr32:
    731   case X86::TLS_base_addr64:
    732     return LowerTlsAddr(OutStreamer, MCInstLowering, *MI);
    733 
    734   case X86::MOVPC32r: {
    735     // This is a pseudo op for a two instruction sequence with a label, which
    736     // looks like:
    737     //     call "L1$pb"
    738     // "L1$pb":
    739     //     popl %esi
    740 
    741     // Emit the call.
    742     MCSymbol *PICBase = MF->getPICBaseSymbol();
    743     // FIXME: We would like an efficient form for this, so we don't have to do a
    744     // lot of extra uniquing.
    745     OutStreamer.EmitInstruction(MCInstBuilder(X86::CALLpcrel32)
    746       .addExpr(MCSymbolRefExpr::Create(PICBase, OutContext)));
    747 
    748     // Emit the label.
    749     OutStreamer.EmitLabel(PICBase);
    750 
    751     // popl $reg
    752     OutStreamer.EmitInstruction(MCInstBuilder(X86::POP32r)
    753       .addReg(MI->getOperand(0).getReg()));
    754     return;
    755   }
    756 
    757   case X86::ADD32ri: {
    758     // Lower the MO_GOT_ABSOLUTE_ADDRESS form of ADD32ri.
    759     if (MI->getOperand(2).getTargetFlags() != X86II::MO_GOT_ABSOLUTE_ADDRESS)
    760       break;
    761 
    762     // Okay, we have something like:
    763     //  EAX = ADD32ri EAX, MO_GOT_ABSOLUTE_ADDRESS(@MYGLOBAL)
    764 
    765     // For this, we want to print something like:
    766     //   MYGLOBAL + (. - PICBASE)
    767     // However, we can't generate a ".", so just emit a new label here and refer
    768     // to it.
    769     MCSymbol *DotSym = OutContext.CreateTempSymbol();
    770     OutStreamer.EmitLabel(DotSym);
    771 
    772     // Now that we have emitted the label, lower the complex operand expression.
    773     MCSymbol *OpSym = MCInstLowering.GetSymbolFromOperand(MI->getOperand(2));
    774 
    775     const MCExpr *DotExpr = MCSymbolRefExpr::Create(DotSym, OutContext);
    776     const MCExpr *PICBase =
    777       MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), OutContext);
    778     DotExpr = MCBinaryExpr::CreateSub(DotExpr, PICBase, OutContext);
    779 
    780     DotExpr = MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(OpSym,OutContext),
    781                                       DotExpr, OutContext);
    782 
    783     OutStreamer.EmitInstruction(MCInstBuilder(X86::ADD32ri)
    784       .addReg(MI->getOperand(0).getReg())
    785       .addReg(MI->getOperand(1).getReg())
    786       .addExpr(DotExpr));
    787     return;
    788   }
    789   }
    790 
    791   MCInst TmpInst;
    792   MCInstLowering.Lower(MI, TmpInst);
    793   OutStreamer.EmitInstruction(TmpInst);
    794 }
    795