Home | History | Annotate | Download | only in TableGen
      1 //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This tablegen backend emits a target specifier matcher for converting parsed
     11 // assembly operands in the MCInst structures. It also emits a matcher for
     12 // custom operand parsing.
     13 //
     14 // Converting assembly operands into MCInst structures
     15 // ---------------------------------------------------
     16 //
     17 // The input to the target specific matcher is a list of literal tokens and
     18 // operands. The target specific parser should generally eliminate any syntax
     19 // which is not relevant for matching; for example, comma tokens should have
     20 // already been consumed and eliminated by the parser. Most instructions will
     21 // end up with a single literal token (the instruction name) and some number of
     22 // operands.
     23 //
     24 // Some example inputs, for X86:
     25 //   'addl' (immediate ...) (register ...)
     26 //   'add' (immediate ...) (memory ...)
     27 //   'call' '*' %epc
     28 //
     29 // The assembly matcher is responsible for converting this input into a precise
     30 // machine instruction (i.e., an instruction with a well defined encoding). This
     31 // mapping has several properties which complicate matching:
     32 //
     33 //  - It may be ambiguous; many architectures can legally encode particular
     34 //    variants of an instruction in different ways (for example, using a smaller
     35 //    encoding for small immediates). Such ambiguities should never be
     36 //    arbitrarily resolved by the assembler, the assembler is always responsible
     37 //    for choosing the "best" available instruction.
     38 //
     39 //  - It may depend on the subtarget or the assembler context. Instructions
     40 //    which are invalid for the current mode, but otherwise unambiguous (e.g.,
     41 //    an SSE instruction in a file being assembled for i486) should be accepted
     42 //    and rejected by the assembler front end. However, if the proper encoding
     43 //    for an instruction is dependent on the assembler context then the matcher
     44 //    is responsible for selecting the correct machine instruction for the
     45 //    current mode.
     46 //
     47 // The core matching algorithm attempts to exploit the regularity in most
     48 // instruction sets to quickly determine the set of possibly matching
     49 // instructions, and the simplify the generated code. Additionally, this helps
     50 // to ensure that the ambiguities are intentionally resolved by the user.
     51 //
     52 // The matching is divided into two distinct phases:
     53 //
     54 //   1. Classification: Each operand is mapped to the unique set which (a)
     55 //      contains it, and (b) is the largest such subset for which a single
     56 //      instruction could match all members.
     57 //
     58 //      For register classes, we can generate these subgroups automatically. For
     59 //      arbitrary operands, we expect the user to define the classes and their
     60 //      relations to one another (for example, 8-bit signed immediates as a
     61 //      subset of 32-bit immediates).
     62 //
     63 //      By partitioning the operands in this way, we guarantee that for any
     64 //      tuple of classes, any single instruction must match either all or none
     65 //      of the sets of operands which could classify to that tuple.
     66 //
     67 //      In addition, the subset relation amongst classes induces a partial order
     68 //      on such tuples, which we use to resolve ambiguities.
     69 //
     70 //   2. The input can now be treated as a tuple of classes (static tokens are
     71 //      simple singleton sets). Each such tuple should generally map to a single
     72 //      instruction (we currently ignore cases where this isn't true, whee!!!),
     73 //      which we can emit a simple matcher for.
     74 //
     75 // Custom Operand Parsing
     76 // ----------------------
     77 //
     78 //  Some targets need a custom way to parse operands, some specific instructions
     79 //  can contain arguments that can represent processor flags and other kinds of
     80 //  identifiers that need to be mapped to specific values in the final encoded
     81 //  instructions. The target specific custom operand parsing works in the
     82 //  following way:
     83 //
     84 //   1. A operand match table is built, each entry contains a mnemonic, an
     85 //      operand class, a mask for all operand positions for that same
     86 //      class/mnemonic and target features to be checked while trying to match.
     87 //
     88 //   2. The operand matcher will try every possible entry with the same
     89 //      mnemonic and will check if the target feature for this mnemonic also
     90 //      matches. After that, if the operand to be matched has its index
     91 //      present in the mask, a successful match occurs. Otherwise, fallback
     92 //      to the regular operand parsing.
     93 //
     94 //   3. For a match success, each operand class that has a 'ParserMethod'
     95 //      becomes part of a switch from where the custom method is called.
     96 //
     97 //===----------------------------------------------------------------------===//
     98 
     99 #include "CodeGenTarget.h"
    100 #include "StringToOffsetTable.h"
    101 #include "llvm/ADT/OwningPtr.h"
    102 #include "llvm/ADT/PointerUnion.h"
    103 #include "llvm/ADT/STLExtras.h"
    104 #include "llvm/ADT/SmallPtrSet.h"
    105 #include "llvm/ADT/SmallVector.h"
    106 #include "llvm/ADT/StringExtras.h"
    107 #include "llvm/Support/CommandLine.h"
    108 #include "llvm/Support/Debug.h"
    109 #include "llvm/Support/ErrorHandling.h"
    110 #include "llvm/TableGen/Error.h"
    111 #include "llvm/TableGen/Record.h"
    112 #include "llvm/TableGen/StringMatcher.h"
    113 #include "llvm/TableGen/TableGenBackend.h"
    114 #include <cassert>
    115 #include <map>
    116 #include <set>
    117 using namespace llvm;
    118 
    119 static cl::opt<std::string>
    120 MatchPrefix("match-prefix", cl::init(""),
    121             cl::desc("Only match instructions with the given prefix"));
    122 
    123 namespace {
    124 class AsmMatcherInfo;
    125 struct SubtargetFeatureInfo;
    126 
    127 class AsmMatcherEmitter {
    128   RecordKeeper &Records;
    129 public:
    130   AsmMatcherEmitter(RecordKeeper &R) : Records(R) {}
    131 
    132   void run(raw_ostream &o);
    133 };
    134 
    135 /// ClassInfo - Helper class for storing the information about a particular
    136 /// class of operands which can be matched.
    137 struct ClassInfo {
    138   enum ClassInfoKind {
    139     /// Invalid kind, for use as a sentinel value.
    140     Invalid = 0,
    141 
    142     /// The class for a particular token.
    143     Token,
    144 
    145     /// The (first) register class, subsequent register classes are
    146     /// RegisterClass0+1, and so on.
    147     RegisterClass0,
    148 
    149     /// The (first) user defined class, subsequent user defined classes are
    150     /// UserClass0+1, and so on.
    151     UserClass0 = 1<<16
    152   };
    153 
    154   /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
    155   /// N) for the Nth user defined class.
    156   unsigned Kind;
    157 
    158   /// SuperClasses - The super classes of this class. Note that for simplicities
    159   /// sake user operands only record their immediate super class, while register
    160   /// operands include all superclasses.
    161   std::vector<ClassInfo*> SuperClasses;
    162 
    163   /// Name - The full class name, suitable for use in an enum.
    164   std::string Name;
    165 
    166   /// ClassName - The unadorned generic name for this class (e.g., Token).
    167   std::string ClassName;
    168 
    169   /// ValueName - The name of the value this class represents; for a token this
    170   /// is the literal token string, for an operand it is the TableGen class (or
    171   /// empty if this is a derived class).
    172   std::string ValueName;
    173 
    174   /// PredicateMethod - The name of the operand method to test whether the
    175   /// operand matches this class; this is not valid for Token or register kinds.
    176   std::string PredicateMethod;
    177 
    178   /// RenderMethod - The name of the operand method to add this operand to an
    179   /// MCInst; this is not valid for Token or register kinds.
    180   std::string RenderMethod;
    181 
    182   /// ParserMethod - The name of the operand method to do a target specific
    183   /// parsing on the operand.
    184   std::string ParserMethod;
    185 
    186   /// For register classes, the records for all the registers in this class.
    187   std::set<Record*> Registers;
    188 
    189   /// For custom match classes, he diagnostic kind for when the predicate fails.
    190   std::string DiagnosticType;
    191 public:
    192   /// isRegisterClass() - Check if this is a register class.
    193   bool isRegisterClass() const {
    194     return Kind >= RegisterClass0 && Kind < UserClass0;
    195   }
    196 
    197   /// isUserClass() - Check if this is a user defined class.
    198   bool isUserClass() const {
    199     return Kind >= UserClass0;
    200   }
    201 
    202   /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes
    203   /// are related if they are in the same class hierarchy.
    204   bool isRelatedTo(const ClassInfo &RHS) const {
    205     // Tokens are only related to tokens.
    206     if (Kind == Token || RHS.Kind == Token)
    207       return Kind == Token && RHS.Kind == Token;
    208 
    209     // Registers classes are only related to registers classes, and only if
    210     // their intersection is non-empty.
    211     if (isRegisterClass() || RHS.isRegisterClass()) {
    212       if (!isRegisterClass() || !RHS.isRegisterClass())
    213         return false;
    214 
    215       std::set<Record*> Tmp;
    216       std::insert_iterator< std::set<Record*> > II(Tmp, Tmp.begin());
    217       std::set_intersection(Registers.begin(), Registers.end(),
    218                             RHS.Registers.begin(), RHS.Registers.end(),
    219                             II);
    220 
    221       return !Tmp.empty();
    222     }
    223 
    224     // Otherwise we have two users operands; they are related if they are in the
    225     // same class hierarchy.
    226     //
    227     // FIXME: This is an oversimplification, they should only be related if they
    228     // intersect, however we don't have that information.
    229     assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
    230     const ClassInfo *Root = this;
    231     while (!Root->SuperClasses.empty())
    232       Root = Root->SuperClasses.front();
    233 
    234     const ClassInfo *RHSRoot = &RHS;
    235     while (!RHSRoot->SuperClasses.empty())
    236       RHSRoot = RHSRoot->SuperClasses.front();
    237 
    238     return Root == RHSRoot;
    239   }
    240 
    241   /// isSubsetOf - Test whether this class is a subset of \p RHS.
    242   bool isSubsetOf(const ClassInfo &RHS) const {
    243     // This is a subset of RHS if it is the same class...
    244     if (this == &RHS)
    245       return true;
    246 
    247     // ... or if any of its super classes are a subset of RHS.
    248     for (std::vector<ClassInfo*>::const_iterator it = SuperClasses.begin(),
    249            ie = SuperClasses.end(); it != ie; ++it)
    250       if ((*it)->isSubsetOf(RHS))
    251         return true;
    252 
    253     return false;
    254   }
    255 
    256   /// operator< - Compare two classes.
    257   bool operator<(const ClassInfo &RHS) const {
    258     if (this == &RHS)
    259       return false;
    260 
    261     // Unrelated classes can be ordered by kind.
    262     if (!isRelatedTo(RHS))
    263       return Kind < RHS.Kind;
    264 
    265     switch (Kind) {
    266     case Invalid:
    267       llvm_unreachable("Invalid kind!");
    268 
    269     default:
    270       // This class precedes the RHS if it is a proper subset of the RHS.
    271       if (isSubsetOf(RHS))
    272         return true;
    273       if (RHS.isSubsetOf(*this))
    274         return false;
    275 
    276       // Otherwise, order by name to ensure we have a total ordering.
    277       return ValueName < RHS.ValueName;
    278     }
    279   }
    280 };
    281 
    282 namespace {
    283 /// Sort ClassInfo pointers independently of pointer value.
    284 struct LessClassInfoPtr {
    285   bool operator()(const ClassInfo *LHS, const ClassInfo *RHS) const {
    286     return *LHS < *RHS;
    287   }
    288 };
    289 }
    290 
    291 /// MatchableInfo - Helper class for storing the necessary information for an
    292 /// instruction or alias which is capable of being matched.
    293 struct MatchableInfo {
    294   struct AsmOperand {
    295     /// Token - This is the token that the operand came from.
    296     StringRef Token;
    297 
    298     /// The unique class instance this operand should match.
    299     ClassInfo *Class;
    300 
    301     /// The operand name this is, if anything.
    302     StringRef SrcOpName;
    303 
    304     /// The suboperand index within SrcOpName, or -1 for the entire operand.
    305     int SubOpIdx;
    306 
    307     /// Register record if this token is singleton register.
    308     Record *SingletonReg;
    309 
    310     explicit AsmOperand(StringRef T) : Token(T), Class(0), SubOpIdx(-1),
    311                                        SingletonReg(0) {}
    312   };
    313 
    314   /// ResOperand - This represents a single operand in the result instruction
    315   /// generated by the match.  In cases (like addressing modes) where a single
    316   /// assembler operand expands to multiple MCOperands, this represents the
    317   /// single assembler operand, not the MCOperand.
    318   struct ResOperand {
    319     enum {
    320       /// RenderAsmOperand - This represents an operand result that is
    321       /// generated by calling the render method on the assembly operand.  The
    322       /// corresponding AsmOperand is specified by AsmOperandNum.
    323       RenderAsmOperand,
    324 
    325       /// TiedOperand - This represents a result operand that is a duplicate of
    326       /// a previous result operand.
    327       TiedOperand,
    328 
    329       /// ImmOperand - This represents an immediate value that is dumped into
    330       /// the operand.
    331       ImmOperand,
    332 
    333       /// RegOperand - This represents a fixed register that is dumped in.
    334       RegOperand
    335     } Kind;
    336 
    337     union {
    338       /// This is the operand # in the AsmOperands list that this should be
    339       /// copied from.
    340       unsigned AsmOperandNum;
    341 
    342       /// TiedOperandNum - This is the (earlier) result operand that should be
    343       /// copied from.
    344       unsigned TiedOperandNum;
    345 
    346       /// ImmVal - This is the immediate value added to the instruction.
    347       int64_t ImmVal;
    348 
    349       /// Register - This is the register record.
    350       Record *Register;
    351     };
    352 
    353     /// MINumOperands - The number of MCInst operands populated by this
    354     /// operand.
    355     unsigned MINumOperands;
    356 
    357     static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
    358       ResOperand X;
    359       X.Kind = RenderAsmOperand;
    360       X.AsmOperandNum = AsmOpNum;
    361       X.MINumOperands = NumOperands;
    362       return X;
    363     }
    364 
    365     static ResOperand getTiedOp(unsigned TiedOperandNum) {
    366       ResOperand X;
    367       X.Kind = TiedOperand;
    368       X.TiedOperandNum = TiedOperandNum;
    369       X.MINumOperands = 1;
    370       return X;
    371     }
    372 
    373     static ResOperand getImmOp(int64_t Val) {
    374       ResOperand X;
    375       X.Kind = ImmOperand;
    376       X.ImmVal = Val;
    377       X.MINumOperands = 1;
    378       return X;
    379     }
    380 
    381     static ResOperand getRegOp(Record *Reg) {
    382       ResOperand X;
    383       X.Kind = RegOperand;
    384       X.Register = Reg;
    385       X.MINumOperands = 1;
    386       return X;
    387     }
    388   };
    389 
    390   /// AsmVariantID - Target's assembly syntax variant no.
    391   int AsmVariantID;
    392 
    393   /// TheDef - This is the definition of the instruction or InstAlias that this
    394   /// matchable came from.
    395   Record *const TheDef;
    396 
    397   /// DefRec - This is the definition that it came from.
    398   PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
    399 
    400   const CodeGenInstruction *getResultInst() const {
    401     if (DefRec.is<const CodeGenInstruction*>())
    402       return DefRec.get<const CodeGenInstruction*>();
    403     return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
    404   }
    405 
    406   /// ResOperands - This is the operand list that should be built for the result
    407   /// MCInst.
    408   SmallVector<ResOperand, 8> ResOperands;
    409 
    410   /// AsmString - The assembly string for this instruction (with variants
    411   /// removed), e.g. "movsx $src, $dst".
    412   std::string AsmString;
    413 
    414   /// Mnemonic - This is the first token of the matched instruction, its
    415   /// mnemonic.
    416   StringRef Mnemonic;
    417 
    418   /// AsmOperands - The textual operands that this instruction matches,
    419   /// annotated with a class and where in the OperandList they were defined.
    420   /// This directly corresponds to the tokenized AsmString after the mnemonic is
    421   /// removed.
    422   SmallVector<AsmOperand, 8> AsmOperands;
    423 
    424   /// Predicates - The required subtarget features to match this instruction.
    425   SmallVector<SubtargetFeatureInfo*, 4> RequiredFeatures;
    426 
    427   /// ConversionFnKind - The enum value which is passed to the generated
    428   /// convertToMCInst to convert parsed operands into an MCInst for this
    429   /// function.
    430   std::string ConversionFnKind;
    431 
    432   MatchableInfo(const CodeGenInstruction &CGI)
    433     : AsmVariantID(0), TheDef(CGI.TheDef), DefRec(&CGI),
    434       AsmString(CGI.AsmString) {
    435   }
    436 
    437   MatchableInfo(const CodeGenInstAlias *Alias)
    438     : AsmVariantID(0), TheDef(Alias->TheDef), DefRec(Alias),
    439       AsmString(Alias->AsmString) {
    440   }
    441 
    442   // Two-operand aliases clone from the main matchable, but mark the second
    443   // operand as a tied operand of the first for purposes of the assembler.
    444   void formTwoOperandAlias(StringRef Constraint);
    445 
    446   void initialize(const AsmMatcherInfo &Info,
    447                   SmallPtrSet<Record*, 16> &SingletonRegisters,
    448                   int AsmVariantNo, std::string &RegisterPrefix);
    449 
    450   /// validate - Return true if this matchable is a valid thing to match against
    451   /// and perform a bunch of validity checking.
    452   bool validate(StringRef CommentDelimiter, bool Hack) const;
    453 
    454   /// extractSingletonRegisterForAsmOperand - Extract singleton register,
    455   /// if present, from specified token.
    456   void
    457   extractSingletonRegisterForAsmOperand(unsigned i, const AsmMatcherInfo &Info,
    458                                         std::string &RegisterPrefix);
    459 
    460   /// findAsmOperand - Find the AsmOperand with the specified name and
    461   /// suboperand index.
    462   int findAsmOperand(StringRef N, int SubOpIdx) const {
    463     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
    464       if (N == AsmOperands[i].SrcOpName &&
    465           SubOpIdx == AsmOperands[i].SubOpIdx)
    466         return i;
    467     return -1;
    468   }
    469 
    470   /// findAsmOperandNamed - Find the first AsmOperand with the specified name.
    471   /// This does not check the suboperand index.
    472   int findAsmOperandNamed(StringRef N) const {
    473     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
    474       if (N == AsmOperands[i].SrcOpName)
    475         return i;
    476     return -1;
    477   }
    478 
    479   void buildInstructionResultOperands();
    480   void buildAliasResultOperands();
    481 
    482   /// operator< - Compare two matchables.
    483   bool operator<(const MatchableInfo &RHS) const {
    484     // The primary comparator is the instruction mnemonic.
    485     if (Mnemonic != RHS.Mnemonic)
    486       return Mnemonic < RHS.Mnemonic;
    487 
    488     if (AsmOperands.size() != RHS.AsmOperands.size())
    489       return AsmOperands.size() < RHS.AsmOperands.size();
    490 
    491     // Compare lexicographically by operand. The matcher validates that other
    492     // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith().
    493     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
    494       if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
    495         return true;
    496       if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
    497         return false;
    498     }
    499 
    500     // Give matches that require more features higher precedence. This is useful
    501     // because we cannot define AssemblerPredicates with the negation of
    502     // processor features. For example, ARM v6 "nop" may be either a HINT or
    503     // MOV. With v6, we want to match HINT. The assembler has no way to
    504     // predicate MOV under "NoV6", but HINT will always match first because it
    505     // requires V6 while MOV does not.
    506     if (RequiredFeatures.size() != RHS.RequiredFeatures.size())
    507       return RequiredFeatures.size() > RHS.RequiredFeatures.size();
    508 
    509     return false;
    510   }
    511 
    512   /// couldMatchAmbiguouslyWith - Check whether this matchable could
    513   /// ambiguously match the same set of operands as \p RHS (without being a
    514   /// strictly superior match).
    515   bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) {
    516     // The primary comparator is the instruction mnemonic.
    517     if (Mnemonic != RHS.Mnemonic)
    518       return false;
    519 
    520     // The number of operands is unambiguous.
    521     if (AsmOperands.size() != RHS.AsmOperands.size())
    522       return false;
    523 
    524     // Otherwise, make sure the ordering of the two instructions is unambiguous
    525     // by checking that either (a) a token or operand kind discriminates them,
    526     // or (b) the ordering among equivalent kinds is consistent.
    527 
    528     // Tokens and operand kinds are unambiguous (assuming a correct target
    529     // specific parser).
    530     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
    531       if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
    532           AsmOperands[i].Class->Kind == ClassInfo::Token)
    533         if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
    534             *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
    535           return false;
    536 
    537     // Otherwise, this operand could commute if all operands are equivalent, or
    538     // there is a pair of operands that compare less than and a pair that
    539     // compare greater than.
    540     bool HasLT = false, HasGT = false;
    541     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
    542       if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
    543         HasLT = true;
    544       if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
    545         HasGT = true;
    546     }
    547 
    548     return !(HasLT ^ HasGT);
    549   }
    550 
    551   void dump();
    552 
    553 private:
    554   void tokenizeAsmString(const AsmMatcherInfo &Info);
    555 };
    556 
    557 /// SubtargetFeatureInfo - Helper class for storing information on a subtarget
    558 /// feature which participates in instruction matching.
    559 struct SubtargetFeatureInfo {
    560   /// \brief The predicate record for this feature.
    561   Record *TheDef;
    562 
    563   /// \brief An unique index assigned to represent this feature.
    564   unsigned Index;
    565 
    566   SubtargetFeatureInfo(Record *D, unsigned Idx) : TheDef(D), Index(Idx) {}
    567 
    568   /// \brief The name of the enumerated constant identifying this feature.
    569   std::string getEnumName() const {
    570     return "Feature_" + TheDef->getName();
    571   }
    572 };
    573 
    574 struct OperandMatchEntry {
    575   unsigned OperandMask;
    576   MatchableInfo* MI;
    577   ClassInfo *CI;
    578 
    579   static OperandMatchEntry create(MatchableInfo* mi, ClassInfo *ci,
    580                                   unsigned opMask) {
    581     OperandMatchEntry X;
    582     X.OperandMask = opMask;
    583     X.CI = ci;
    584     X.MI = mi;
    585     return X;
    586   }
    587 };
    588 
    589 
    590 class AsmMatcherInfo {
    591 public:
    592   /// Tracked Records
    593   RecordKeeper &Records;
    594 
    595   /// The tablegen AsmParser record.
    596   Record *AsmParser;
    597 
    598   /// Target - The target information.
    599   CodeGenTarget &Target;
    600 
    601   /// The classes which are needed for matching.
    602   std::vector<ClassInfo*> Classes;
    603 
    604   /// The information on the matchables to match.
    605   std::vector<MatchableInfo*> Matchables;
    606 
    607   /// Info for custom matching operands by user defined methods.
    608   std::vector<OperandMatchEntry> OperandMatchInfo;
    609 
    610   /// Map of Register records to their class information.
    611   typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy;
    612   RegisterClassesTy RegisterClasses;
    613 
    614   /// Map of Predicate records to their subtarget information.
    615   std::map<Record*, SubtargetFeatureInfo*> SubtargetFeatures;
    616 
    617   /// Map of AsmOperandClass records to their class information.
    618   std::map<Record*, ClassInfo*> AsmOperandClasses;
    619 
    620 private:
    621   /// Map of token to class information which has already been constructed.
    622   std::map<std::string, ClassInfo*> TokenClasses;
    623 
    624   /// Map of RegisterClass records to their class information.
    625   std::map<Record*, ClassInfo*> RegisterClassClasses;
    626 
    627 private:
    628   /// getTokenClass - Lookup or create the class for the given token.
    629   ClassInfo *getTokenClass(StringRef Token);
    630 
    631   /// getOperandClass - Lookup or create the class for the given operand.
    632   ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
    633                              int SubOpIdx);
    634   ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);
    635 
    636   /// buildRegisterClasses - Build the ClassInfo* instances for register
    637   /// classes.
    638   void buildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters);
    639 
    640   /// buildOperandClasses - Build the ClassInfo* instances for user defined
    641   /// operand classes.
    642   void buildOperandClasses();
    643 
    644   void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
    645                                         unsigned AsmOpIdx);
    646   void buildAliasOperandReference(MatchableInfo *II, StringRef OpName,
    647                                   MatchableInfo::AsmOperand &Op);
    648 
    649 public:
    650   AsmMatcherInfo(Record *AsmParser,
    651                  CodeGenTarget &Target,
    652                  RecordKeeper &Records);
    653 
    654   /// buildInfo - Construct the various tables used during matching.
    655   void buildInfo();
    656 
    657   /// buildOperandMatchInfo - Build the necessary information to handle user
    658   /// defined operand parsing methods.
    659   void buildOperandMatchInfo();
    660 
    661   /// getSubtargetFeature - Lookup or create the subtarget feature info for the
    662   /// given operand.
    663   SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
    664     assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
    665     std::map<Record*, SubtargetFeatureInfo*>::const_iterator I =
    666       SubtargetFeatures.find(Def);
    667     return I == SubtargetFeatures.end() ? 0 : I->second;
    668   }
    669 
    670   RecordKeeper &getRecords() const {
    671     return Records;
    672   }
    673 };
    674 
    675 } // End anonymous namespace
    676 
    677 void MatchableInfo::dump() {
    678   errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
    679 
    680   for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
    681     AsmOperand &Op = AsmOperands[i];
    682     errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
    683     errs() << '\"' << Op.Token << "\"\n";
    684   }
    685 }
    686 
    687 static std::pair<StringRef, StringRef>
    688 parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) {
    689   // Split via the '='.
    690   std::pair<StringRef, StringRef> Ops = S.split('=');
    691   if (Ops.second == "")
    692     PrintFatalError(Loc, "missing '=' in two-operand alias constraint");
    693   // Trim whitespace and the leading '$' on the operand names.
    694   size_t start = Ops.first.find_first_of('$');
    695   if (start == std::string::npos)
    696     PrintFatalError(Loc, "expected '$' prefix on asm operand name");
    697   Ops.first = Ops.first.slice(start + 1, std::string::npos);
    698   size_t end = Ops.first.find_last_of(" \t");
    699   Ops.first = Ops.first.slice(0, end);
    700   // Now the second operand.
    701   start = Ops.second.find_first_of('$');
    702   if (start == std::string::npos)
    703     PrintFatalError(Loc, "expected '$' prefix on asm operand name");
    704   Ops.second = Ops.second.slice(start + 1, std::string::npos);
    705   end = Ops.second.find_last_of(" \t");
    706   Ops.first = Ops.first.slice(0, end);
    707   return Ops;
    708 }
    709 
    710 void MatchableInfo::formTwoOperandAlias(StringRef Constraint) {
    711   // Figure out which operands are aliased and mark them as tied.
    712   std::pair<StringRef, StringRef> Ops =
    713     parseTwoOperandConstraint(Constraint, TheDef->getLoc());
    714 
    715   // Find the AsmOperands that refer to the operands we're aliasing.
    716   int SrcAsmOperand = findAsmOperandNamed(Ops.first);
    717   int DstAsmOperand = findAsmOperandNamed(Ops.second);
    718   if (SrcAsmOperand == -1)
    719     PrintFatalError(TheDef->getLoc(),
    720                   "unknown source two-operand alias operand '" +
    721                   Ops.first.str() + "'.");
    722   if (DstAsmOperand == -1)
    723     PrintFatalError(TheDef->getLoc(),
    724                   "unknown destination two-operand alias operand '" +
    725                   Ops.second.str() + "'.");
    726 
    727   // Find the ResOperand that refers to the operand we're aliasing away
    728   // and update it to refer to the combined operand instead.
    729   for (unsigned i = 0, e = ResOperands.size(); i != e; ++i) {
    730     ResOperand &Op = ResOperands[i];
    731     if (Op.Kind == ResOperand::RenderAsmOperand &&
    732         Op.AsmOperandNum == (unsigned)SrcAsmOperand) {
    733       Op.AsmOperandNum = DstAsmOperand;
    734       break;
    735     }
    736   }
    737   // Remove the AsmOperand for the alias operand.
    738   AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand);
    739   // Adjust the ResOperand references to any AsmOperands that followed
    740   // the one we just deleted.
    741   for (unsigned i = 0, e = ResOperands.size(); i != e; ++i) {
    742     ResOperand &Op = ResOperands[i];
    743     switch(Op.Kind) {
    744     default:
    745       // Nothing to do for operands that don't reference AsmOperands.
    746       break;
    747     case ResOperand::RenderAsmOperand:
    748       if (Op.AsmOperandNum > (unsigned)SrcAsmOperand)
    749         --Op.AsmOperandNum;
    750       break;
    751     case ResOperand::TiedOperand:
    752       if (Op.TiedOperandNum > (unsigned)SrcAsmOperand)
    753         --Op.TiedOperandNum;
    754       break;
    755     }
    756   }
    757 }
    758 
    759 void MatchableInfo::initialize(const AsmMatcherInfo &Info,
    760                                SmallPtrSet<Record*, 16> &SingletonRegisters,
    761                                int AsmVariantNo, std::string &RegisterPrefix) {
    762   AsmVariantID = AsmVariantNo;
    763   AsmString =
    764     CodeGenInstruction::FlattenAsmStringVariants(AsmString, AsmVariantNo);
    765 
    766   tokenizeAsmString(Info);
    767 
    768   // Compute the require features.
    769   std::vector<Record*> Predicates =TheDef->getValueAsListOfDefs("Predicates");
    770   for (unsigned i = 0, e = Predicates.size(); i != e; ++i)
    771     if (SubtargetFeatureInfo *Feature =
    772         Info.getSubtargetFeature(Predicates[i]))
    773       RequiredFeatures.push_back(Feature);
    774 
    775   // Collect singleton registers, if used.
    776   for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
    777     extractSingletonRegisterForAsmOperand(i, Info, RegisterPrefix);
    778     if (Record *Reg = AsmOperands[i].SingletonReg)
    779       SingletonRegisters.insert(Reg);
    780   }
    781 }
    782 
    783 /// tokenizeAsmString - Tokenize a simplified assembly string.
    784 void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info) {
    785   StringRef String = AsmString;
    786   unsigned Prev = 0;
    787   bool InTok = true;
    788   for (unsigned i = 0, e = String.size(); i != e; ++i) {
    789     switch (String[i]) {
    790     case '[':
    791     case ']':
    792     case '*':
    793     case '!':
    794     case ' ':
    795     case '\t':
    796     case ',':
    797       if (InTok) {
    798         AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
    799         InTok = false;
    800       }
    801       if (!isspace(String[i]) && String[i] != ',')
    802         AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
    803       Prev = i + 1;
    804       break;
    805 
    806     case '\\':
    807       if (InTok) {
    808         AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
    809         InTok = false;
    810       }
    811       ++i;
    812       assert(i != String.size() && "Invalid quoted character");
    813       AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
    814       Prev = i + 1;
    815       break;
    816 
    817     case '$': {
    818       if (InTok) {
    819         AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
    820         InTok = false;
    821       }
    822 
    823       // If this isn't "${", treat like a normal token.
    824       if (i + 1 == String.size() || String[i + 1] != '{') {
    825         Prev = i;
    826         break;
    827       }
    828 
    829       StringRef::iterator End = std::find(String.begin() + i, String.end(),'}');
    830       assert(End != String.end() && "Missing brace in operand reference!");
    831       size_t EndPos = End - String.begin();
    832       AsmOperands.push_back(AsmOperand(String.slice(i, EndPos+1)));
    833       Prev = EndPos + 1;
    834       i = EndPos;
    835       break;
    836     }
    837 
    838     case '.':
    839       if (InTok)
    840         AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
    841       Prev = i;
    842       InTok = true;
    843       break;
    844 
    845     default:
    846       InTok = true;
    847     }
    848   }
    849   if (InTok && Prev != String.size())
    850     AsmOperands.push_back(AsmOperand(String.substr(Prev)));
    851 
    852   // The first token of the instruction is the mnemonic, which must be a
    853   // simple string, not a $foo variable or a singleton register.
    854   if (AsmOperands.empty())
    855     PrintFatalError(TheDef->getLoc(),
    856                   "Instruction '" + TheDef->getName() + "' has no tokens");
    857   Mnemonic = AsmOperands[0].Token;
    858   if (Mnemonic.empty())
    859     PrintFatalError(TheDef->getLoc(),
    860                   "Missing instruction mnemonic");
    861   // FIXME : Check and raise an error if it is a register.
    862   if (Mnemonic[0] == '$')
    863     PrintFatalError(TheDef->getLoc(),
    864                   "Invalid instruction mnemonic '" + Mnemonic.str() + "'!");
    865 
    866   // Remove the first operand, it is tracked in the mnemonic field.
    867   AsmOperands.erase(AsmOperands.begin());
    868 }
    869 
    870 bool MatchableInfo::validate(StringRef CommentDelimiter, bool Hack) const {
    871   // Reject matchables with no .s string.
    872   if (AsmString.empty())
    873     PrintFatalError(TheDef->getLoc(), "instruction with empty asm string");
    874 
    875   // Reject any matchables with a newline in them, they should be marked
    876   // isCodeGenOnly if they are pseudo instructions.
    877   if (AsmString.find('\n') != std::string::npos)
    878     PrintFatalError(TheDef->getLoc(),
    879                   "multiline instruction is not valid for the asmparser, "
    880                   "mark it isCodeGenOnly");
    881 
    882   // Remove comments from the asm string.  We know that the asmstring only
    883   // has one line.
    884   if (!CommentDelimiter.empty() &&
    885       StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
    886     PrintFatalError(TheDef->getLoc(),
    887                   "asmstring for instruction has comment character in it, "
    888                   "mark it isCodeGenOnly");
    889 
    890   // Reject matchables with operand modifiers, these aren't something we can
    891   // handle, the target should be refactored to use operands instead of
    892   // modifiers.
    893   //
    894   // Also, check for instructions which reference the operand multiple times;
    895   // this implies a constraint we would not honor.
    896   std::set<std::string> OperandNames;
    897   for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
    898     StringRef Tok = AsmOperands[i].Token;
    899     if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
    900       PrintFatalError(TheDef->getLoc(),
    901                     "matchable with operand modifier '" + Tok.str() +
    902                     "' not supported by asm matcher.  Mark isCodeGenOnly!");
    903 
    904     // Verify that any operand is only mentioned once.
    905     // We reject aliases and ignore instructions for now.
    906     if (Tok[0] == '$' && !OperandNames.insert(Tok).second) {
    907       if (!Hack)
    908         PrintFatalError(TheDef->getLoc(),
    909                       "ERROR: matchable with tied operand '" + Tok.str() +
    910                       "' can never be matched!");
    911       // FIXME: Should reject these.  The ARM backend hits this with $lane in a
    912       // bunch of instructions.  It is unclear what the right answer is.
    913       DEBUG({
    914         errs() << "warning: '" << TheDef->getName() << "': "
    915                << "ignoring instruction with tied operand '"
    916                << Tok.str() << "'\n";
    917       });
    918       return false;
    919     }
    920   }
    921 
    922   return true;
    923 }
    924 
    925 /// extractSingletonRegisterForAsmOperand - Extract singleton register,
    926 /// if present, from specified token.
    927 void MatchableInfo::
    928 extractSingletonRegisterForAsmOperand(unsigned OperandNo,
    929                                       const AsmMatcherInfo &Info,
    930                                       std::string &RegisterPrefix) {
    931   StringRef Tok = AsmOperands[OperandNo].Token;
    932   if (RegisterPrefix.empty()) {
    933     std::string LoweredTok = Tok.lower();
    934     if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
    935       AsmOperands[OperandNo].SingletonReg = Reg->TheDef;
    936     return;
    937   }
    938 
    939   if (!Tok.startswith(RegisterPrefix))
    940     return;
    941 
    942   StringRef RegName = Tok.substr(RegisterPrefix.size());
    943   if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
    944     AsmOperands[OperandNo].SingletonReg = Reg->TheDef;
    945 
    946   // If there is no register prefix (i.e. "%" in "%eax"), then this may
    947   // be some random non-register token, just ignore it.
    948   return;
    949 }
    950 
    951 static std::string getEnumNameForToken(StringRef Str) {
    952   std::string Res;
    953 
    954   for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
    955     switch (*it) {
    956     case '*': Res += "_STAR_"; break;
    957     case '%': Res += "_PCT_"; break;
    958     case ':': Res += "_COLON_"; break;
    959     case '!': Res += "_EXCLAIM_"; break;
    960     case '.': Res += "_DOT_"; break;
    961     case '<': Res += "_LT_"; break;
    962     case '>': Res += "_GT_"; break;
    963     default:
    964       if ((*it >= 'A' && *it <= 'Z') ||
    965           (*it >= 'a' && *it <= 'z') ||
    966           (*it >= '0' && *it <= '9'))
    967         Res += *it;
    968       else
    969         Res += "_" + utostr((unsigned) *it) + "_";
    970     }
    971   }
    972 
    973   return Res;
    974 }
    975 
    976 ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
    977   ClassInfo *&Entry = TokenClasses[Token];
    978 
    979   if (!Entry) {
    980     Entry = new ClassInfo();
    981     Entry->Kind = ClassInfo::Token;
    982     Entry->ClassName = "Token";
    983     Entry->Name = "MCK_" + getEnumNameForToken(Token);
    984     Entry->ValueName = Token;
    985     Entry->PredicateMethod = "<invalid>";
    986     Entry->RenderMethod = "<invalid>";
    987     Entry->ParserMethod = "";
    988     Entry->DiagnosticType = "";
    989     Classes.push_back(Entry);
    990   }
    991 
    992   return Entry;
    993 }
    994 
    995 ClassInfo *
    996 AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
    997                                 int SubOpIdx) {
    998   Record *Rec = OI.Rec;
    999   if (SubOpIdx != -1)
   1000     Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
   1001   return getOperandClass(Rec, SubOpIdx);
   1002 }
   1003 
   1004 ClassInfo *
   1005 AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
   1006   if (Rec->isSubClassOf("RegisterOperand")) {
   1007     // RegisterOperand may have an associated ParserMatchClass. If it does,
   1008     // use it, else just fall back to the underlying register class.
   1009     const RecordVal *R = Rec->getValue("ParserMatchClass");
   1010     if (R == 0 || R->getValue() == 0)
   1011       PrintFatalError("Record `" + Rec->getName() +
   1012         "' does not have a ParserMatchClass!\n");
   1013 
   1014     if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) {
   1015       Record *MatchClass = DI->getDef();
   1016       if (ClassInfo *CI = AsmOperandClasses[MatchClass])
   1017         return CI;
   1018     }
   1019 
   1020     // No custom match class. Just use the register class.
   1021     Record *ClassRec = Rec->getValueAsDef("RegClass");
   1022     if (!ClassRec)
   1023       PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() +
   1024                     "' has no associated register class!\n");
   1025     if (ClassInfo *CI = RegisterClassClasses[ClassRec])
   1026       return CI;
   1027     PrintFatalError(Rec->getLoc(), "register class has no class info!");
   1028   }
   1029 
   1030 
   1031   if (Rec->isSubClassOf("RegisterClass")) {
   1032     if (ClassInfo *CI = RegisterClassClasses[Rec])
   1033       return CI;
   1034     PrintFatalError(Rec->getLoc(), "register class has no class info!");
   1035   }
   1036 
   1037   if (!Rec->isSubClassOf("Operand"))
   1038     PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() +
   1039                   "' does not derive from class Operand!\n");
   1040   Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
   1041   if (ClassInfo *CI = AsmOperandClasses[MatchClass])
   1042     return CI;
   1043 
   1044   PrintFatalError(Rec->getLoc(), "operand has no match class!");
   1045 }
   1046 
   1047 void AsmMatcherInfo::
   1048 buildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters) {
   1049   const std::vector<CodeGenRegister*> &Registers =
   1050     Target.getRegBank().getRegisters();
   1051   ArrayRef<CodeGenRegisterClass*> RegClassList =
   1052     Target.getRegBank().getRegClasses();
   1053 
   1054   // The register sets used for matching.
   1055   std::set< std::set<Record*> > RegisterSets;
   1056 
   1057   // Gather the defined sets.
   1058   for (ArrayRef<CodeGenRegisterClass*>::const_iterator it =
   1059        RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it)
   1060     RegisterSets.insert(std::set<Record*>(
   1061         (*it)->getOrder().begin(), (*it)->getOrder().end()));
   1062 
   1063   // Add any required singleton sets.
   1064   for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
   1065        ie = SingletonRegisters.end(); it != ie; ++it) {
   1066     Record *Rec = *it;
   1067     RegisterSets.insert(std::set<Record*>(&Rec, &Rec + 1));
   1068   }
   1069 
   1070   // Introduce derived sets where necessary (when a register does not determine
   1071   // a unique register set class), and build the mapping of registers to the set
   1072   // they should classify to.
   1073   std::map<Record*, std::set<Record*> > RegisterMap;
   1074   for (std::vector<CodeGenRegister*>::const_iterator it = Registers.begin(),
   1075          ie = Registers.end(); it != ie; ++it) {
   1076     const CodeGenRegister &CGR = **it;
   1077     // Compute the intersection of all sets containing this register.
   1078     std::set<Record*> ContainingSet;
   1079 
   1080     for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
   1081            ie = RegisterSets.end(); it != ie; ++it) {
   1082       if (!it->count(CGR.TheDef))
   1083         continue;
   1084 
   1085       if (ContainingSet.empty()) {
   1086         ContainingSet = *it;
   1087         continue;
   1088       }
   1089 
   1090       std::set<Record*> Tmp;
   1091       std::swap(Tmp, ContainingSet);
   1092       std::insert_iterator< std::set<Record*> > II(ContainingSet,
   1093                                                    ContainingSet.begin());
   1094       std::set_intersection(Tmp.begin(), Tmp.end(), it->begin(), it->end(), II);
   1095     }
   1096 
   1097     if (!ContainingSet.empty()) {
   1098       RegisterSets.insert(ContainingSet);
   1099       RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
   1100     }
   1101   }
   1102 
   1103   // Construct the register classes.
   1104   std::map<std::set<Record*>, ClassInfo*> RegisterSetClasses;
   1105   unsigned Index = 0;
   1106   for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
   1107          ie = RegisterSets.end(); it != ie; ++it, ++Index) {
   1108     ClassInfo *CI = new ClassInfo();
   1109     CI->Kind = ClassInfo::RegisterClass0 + Index;
   1110     CI->ClassName = "Reg" + utostr(Index);
   1111     CI->Name = "MCK_Reg" + utostr(Index);
   1112     CI->ValueName = "";
   1113     CI->PredicateMethod = ""; // unused
   1114     CI->RenderMethod = "addRegOperands";
   1115     CI->Registers = *it;
   1116     // FIXME: diagnostic type.
   1117     CI->DiagnosticType = "";
   1118     Classes.push_back(CI);
   1119     RegisterSetClasses.insert(std::make_pair(*it, CI));
   1120   }
   1121 
   1122   // Find the superclasses; we could compute only the subgroup lattice edges,
   1123   // but there isn't really a point.
   1124   for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
   1125          ie = RegisterSets.end(); it != ie; ++it) {
   1126     ClassInfo *CI = RegisterSetClasses[*it];
   1127     for (std::set< std::set<Record*> >::iterator it2 = RegisterSets.begin(),
   1128            ie2 = RegisterSets.end(); it2 != ie2; ++it2)
   1129       if (*it != *it2 &&
   1130           std::includes(it2->begin(), it2->end(), it->begin(), it->end()))
   1131         CI->SuperClasses.push_back(RegisterSetClasses[*it2]);
   1132   }
   1133 
   1134   // Name the register classes which correspond to a user defined RegisterClass.
   1135   for (ArrayRef<CodeGenRegisterClass*>::const_iterator
   1136        it = RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it) {
   1137     const CodeGenRegisterClass &RC = **it;
   1138     // Def will be NULL for non-user defined register classes.
   1139     Record *Def = RC.getDef();
   1140     if (!Def)
   1141       continue;
   1142     ClassInfo *CI = RegisterSetClasses[std::set<Record*>(RC.getOrder().begin(),
   1143                                                          RC.getOrder().end())];
   1144     if (CI->ValueName.empty()) {
   1145       CI->ClassName = RC.getName();
   1146       CI->Name = "MCK_" + RC.getName();
   1147       CI->ValueName = RC.getName();
   1148     } else
   1149       CI->ValueName = CI->ValueName + "," + RC.getName();
   1150 
   1151     RegisterClassClasses.insert(std::make_pair(Def, CI));
   1152   }
   1153 
   1154   // Populate the map for individual registers.
   1155   for (std::map<Record*, std::set<Record*> >::iterator it = RegisterMap.begin(),
   1156          ie = RegisterMap.end(); it != ie; ++it)
   1157     RegisterClasses[it->first] = RegisterSetClasses[it->second];
   1158 
   1159   // Name the register classes which correspond to singleton registers.
   1160   for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
   1161          ie = SingletonRegisters.end(); it != ie; ++it) {
   1162     Record *Rec = *it;
   1163     ClassInfo *CI = RegisterClasses[Rec];
   1164     assert(CI && "Missing singleton register class info!");
   1165 
   1166     if (CI->ValueName.empty()) {
   1167       CI->ClassName = Rec->getName();
   1168       CI->Name = "MCK_" + Rec->getName();
   1169       CI->ValueName = Rec->getName();
   1170     } else
   1171       CI->ValueName = CI->ValueName + "," + Rec->getName();
   1172   }
   1173 }
   1174 
   1175 void AsmMatcherInfo::buildOperandClasses() {
   1176   std::vector<Record*> AsmOperands =
   1177     Records.getAllDerivedDefinitions("AsmOperandClass");
   1178 
   1179   // Pre-populate AsmOperandClasses map.
   1180   for (std::vector<Record*>::iterator it = AsmOperands.begin(),
   1181          ie = AsmOperands.end(); it != ie; ++it)
   1182     AsmOperandClasses[*it] = new ClassInfo();
   1183 
   1184   unsigned Index = 0;
   1185   for (std::vector<Record*>::iterator it = AsmOperands.begin(),
   1186          ie = AsmOperands.end(); it != ie; ++it, ++Index) {
   1187     ClassInfo *CI = AsmOperandClasses[*it];
   1188     CI->Kind = ClassInfo::UserClass0 + Index;
   1189 
   1190     ListInit *Supers = (*it)->getValueAsListInit("SuperClasses");
   1191     for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) {
   1192       DefInit *DI = dyn_cast<DefInit>(Supers->getElement(i));
   1193       if (!DI) {
   1194         PrintError((*it)->getLoc(), "Invalid super class reference!");
   1195         continue;
   1196       }
   1197 
   1198       ClassInfo *SC = AsmOperandClasses[DI->getDef()];
   1199       if (!SC)
   1200         PrintError((*it)->getLoc(), "Invalid super class reference!");
   1201       else
   1202         CI->SuperClasses.push_back(SC);
   1203     }
   1204     CI->ClassName = (*it)->getValueAsString("Name");
   1205     CI->Name = "MCK_" + CI->ClassName;
   1206     CI->ValueName = (*it)->getName();
   1207 
   1208     // Get or construct the predicate method name.
   1209     Init *PMName = (*it)->getValueInit("PredicateMethod");
   1210     if (StringInit *SI = dyn_cast<StringInit>(PMName)) {
   1211       CI->PredicateMethod = SI->getValue();
   1212     } else {
   1213       assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!");
   1214       CI->PredicateMethod = "is" + CI->ClassName;
   1215     }
   1216 
   1217     // Get or construct the render method name.
   1218     Init *RMName = (*it)->getValueInit("RenderMethod");
   1219     if (StringInit *SI = dyn_cast<StringInit>(RMName)) {
   1220       CI->RenderMethod = SI->getValue();
   1221     } else {
   1222       assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!");
   1223       CI->RenderMethod = "add" + CI->ClassName + "Operands";
   1224     }
   1225 
   1226     // Get the parse method name or leave it as empty.
   1227     Init *PRMName = (*it)->getValueInit("ParserMethod");
   1228     if (StringInit *SI = dyn_cast<StringInit>(PRMName))
   1229       CI->ParserMethod = SI->getValue();
   1230 
   1231     // Get the diagnostic type or leave it as empty.
   1232     // Get the parse method name or leave it as empty.
   1233     Init *DiagnosticType = (*it)->getValueInit("DiagnosticType");
   1234     if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
   1235       CI->DiagnosticType = SI->getValue();
   1236 
   1237     AsmOperandClasses[*it] = CI;
   1238     Classes.push_back(CI);
   1239   }
   1240 }
   1241 
   1242 AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
   1243                                CodeGenTarget &target,
   1244                                RecordKeeper &records)
   1245   : Records(records), AsmParser(asmParser), Target(target) {
   1246 }
   1247 
   1248 /// buildOperandMatchInfo - Build the necessary information to handle user
   1249 /// defined operand parsing methods.
   1250 void AsmMatcherInfo::buildOperandMatchInfo() {
   1251 
   1252   /// Map containing a mask with all operands indices that can be found for
   1253   /// that class inside a instruction.
   1254   typedef std::map<ClassInfo*, unsigned, LessClassInfoPtr> OpClassMaskTy;
   1255   OpClassMaskTy OpClassMask;
   1256 
   1257   for (std::vector<MatchableInfo*>::const_iterator it =
   1258        Matchables.begin(), ie = Matchables.end();
   1259        it != ie; ++it) {
   1260     MatchableInfo &II = **it;
   1261     OpClassMask.clear();
   1262 
   1263     // Keep track of all operands of this instructions which belong to the
   1264     // same class.
   1265     for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) {
   1266       MatchableInfo::AsmOperand &Op = II.AsmOperands[i];
   1267       if (Op.Class->ParserMethod.empty())
   1268         continue;
   1269       unsigned &OperandMask = OpClassMask[Op.Class];
   1270       OperandMask |= (1 << i);
   1271     }
   1272 
   1273     // Generate operand match info for each mnemonic/operand class pair.
   1274     for (OpClassMaskTy::iterator iit = OpClassMask.begin(),
   1275          iie = OpClassMask.end(); iit != iie; ++iit) {
   1276       unsigned OpMask = iit->second;
   1277       ClassInfo *CI = iit->first;
   1278       OperandMatchInfo.push_back(OperandMatchEntry::create(&II, CI, OpMask));
   1279     }
   1280   }
   1281 }
   1282 
   1283 void AsmMatcherInfo::buildInfo() {
   1284   // Build information about all of the AssemblerPredicates.
   1285   std::vector<Record*> AllPredicates =
   1286     Records.getAllDerivedDefinitions("Predicate");
   1287   for (unsigned i = 0, e = AllPredicates.size(); i != e; ++i) {
   1288     Record *Pred = AllPredicates[i];
   1289     // Ignore predicates that are not intended for the assembler.
   1290     if (!Pred->getValueAsBit("AssemblerMatcherPredicate"))
   1291       continue;
   1292 
   1293     if (Pred->getName().empty())
   1294       PrintFatalError(Pred->getLoc(), "Predicate has no name!");
   1295 
   1296     unsigned FeatureNo = SubtargetFeatures.size();
   1297     SubtargetFeatures[Pred] = new SubtargetFeatureInfo(Pred, FeatureNo);
   1298     assert(FeatureNo < 32 && "Too many subtarget features!");
   1299   }
   1300 
   1301   // Parse the instructions; we need to do this first so that we can gather the
   1302   // singleton register classes.
   1303   SmallPtrSet<Record*, 16> SingletonRegisters;
   1304   unsigned VariantCount = Target.getAsmParserVariantCount();
   1305   for (unsigned VC = 0; VC != VariantCount; ++VC) {
   1306     Record *AsmVariant = Target.getAsmParserVariant(VC);
   1307     std::string CommentDelimiter =
   1308       AsmVariant->getValueAsString("CommentDelimiter");
   1309     std::string RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
   1310     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
   1311 
   1312     for (CodeGenTarget::inst_iterator I = Target.inst_begin(),
   1313            E = Target.inst_end(); I != E; ++I) {
   1314       const CodeGenInstruction &CGI = **I;
   1315 
   1316       // If the tblgen -match-prefix option is specified (for tblgen hackers),
   1317       // filter the set of instructions we consider.
   1318       if (!StringRef(CGI.TheDef->getName()).startswith(MatchPrefix))
   1319         continue;
   1320 
   1321       // Ignore "codegen only" instructions.
   1322       if (CGI.TheDef->getValueAsBit("isCodeGenOnly"))
   1323         continue;
   1324 
   1325       // Validate the operand list to ensure we can handle this instruction.
   1326       for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
   1327         const CGIOperandList::OperandInfo &OI = CGI.Operands[i];
   1328 
   1329         // Validate tied operands.
   1330         if (OI.getTiedRegister() != -1) {
   1331           // If we have a tied operand that consists of multiple MCOperands,
   1332           // reject it.  We reject aliases and ignore instructions for now.
   1333           if (OI.MINumOperands != 1) {
   1334             // FIXME: Should reject these.  The ARM backend hits this with $lane
   1335             // in a bunch of instructions. The right answer is unclear.
   1336             DEBUG({
   1337                 errs() << "warning: '" << CGI.TheDef->getName() << "': "
   1338                      << "ignoring instruction with multi-operand tied operand '"
   1339                      << OI.Name << "'\n";
   1340               });
   1341             continue;
   1342           }
   1343         }
   1344       }
   1345 
   1346       OwningPtr<MatchableInfo> II(new MatchableInfo(CGI));
   1347 
   1348       II->initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix);
   1349 
   1350       // Ignore instructions which shouldn't be matched and diagnose invalid
   1351       // instruction definitions with an error.
   1352       if (!II->validate(CommentDelimiter, true))
   1353         continue;
   1354 
   1355       // Ignore "Int_*" and "*_Int" instructions, which are internal aliases.
   1356       //
   1357       // FIXME: This is a total hack.
   1358       if (StringRef(II->TheDef->getName()).startswith("Int_") ||
   1359           StringRef(II->TheDef->getName()).endswith("_Int"))
   1360         continue;
   1361 
   1362       Matchables.push_back(II.take());
   1363     }
   1364 
   1365     // Parse all of the InstAlias definitions and stick them in the list of
   1366     // matchables.
   1367     std::vector<Record*> AllInstAliases =
   1368       Records.getAllDerivedDefinitions("InstAlias");
   1369     for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) {
   1370       CodeGenInstAlias *Alias = new CodeGenInstAlias(AllInstAliases[i], Target);
   1371 
   1372       // If the tblgen -match-prefix option is specified (for tblgen hackers),
   1373       // filter the set of instruction aliases we consider, based on the target
   1374       // instruction.
   1375       if (!StringRef(Alias->ResultInst->TheDef->getName())
   1376             .startswith( MatchPrefix))
   1377         continue;
   1378 
   1379       OwningPtr<MatchableInfo> II(new MatchableInfo(Alias));
   1380 
   1381       II->initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix);
   1382 
   1383       // Validate the alias definitions.
   1384       II->validate(CommentDelimiter, false);
   1385 
   1386       Matchables.push_back(II.take());
   1387     }
   1388   }
   1389 
   1390   // Build info for the register classes.
   1391   buildRegisterClasses(SingletonRegisters);
   1392 
   1393   // Build info for the user defined assembly operand classes.
   1394   buildOperandClasses();
   1395 
   1396   // Build the information about matchables, now that we have fully formed
   1397   // classes.
   1398   std::vector<MatchableInfo*> NewMatchables;
   1399   for (std::vector<MatchableInfo*>::iterator it = Matchables.begin(),
   1400          ie = Matchables.end(); it != ie; ++it) {
   1401     MatchableInfo *II = *it;
   1402 
   1403     // Parse the tokens after the mnemonic.
   1404     // Note: buildInstructionOperandReference may insert new AsmOperands, so
   1405     // don't precompute the loop bound.
   1406     for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
   1407       MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
   1408       StringRef Token = Op.Token;
   1409 
   1410       // Check for singleton registers.
   1411       if (Record *RegRecord = II->AsmOperands[i].SingletonReg) {
   1412         Op.Class = RegisterClasses[RegRecord];
   1413         assert(Op.Class && Op.Class->Registers.size() == 1 &&
   1414                "Unexpected class for singleton register");
   1415         continue;
   1416       }
   1417 
   1418       // Check for simple tokens.
   1419       if (Token[0] != '$') {
   1420         Op.Class = getTokenClass(Token);
   1421         continue;
   1422       }
   1423 
   1424       if (Token.size() > 1 && isdigit(Token[1])) {
   1425         Op.Class = getTokenClass(Token);
   1426         continue;
   1427       }
   1428 
   1429       // Otherwise this is an operand reference.
   1430       StringRef OperandName;
   1431       if (Token[1] == '{')
   1432         OperandName = Token.substr(2, Token.size() - 3);
   1433       else
   1434         OperandName = Token.substr(1);
   1435 
   1436       if (II->DefRec.is<const CodeGenInstruction*>())
   1437         buildInstructionOperandReference(II, OperandName, i);
   1438       else
   1439         buildAliasOperandReference(II, OperandName, Op);
   1440     }
   1441 
   1442     if (II->DefRec.is<const CodeGenInstruction*>()) {
   1443       II->buildInstructionResultOperands();
   1444       // If the instruction has a two-operand alias, build up the
   1445       // matchable here. We'll add them in bulk at the end to avoid
   1446       // confusing this loop.
   1447       std::string Constraint =
   1448         II->TheDef->getValueAsString("TwoOperandAliasConstraint");
   1449       if (Constraint != "") {
   1450         // Start by making a copy of the original matchable.
   1451         OwningPtr<MatchableInfo> AliasII(new MatchableInfo(*II));
   1452 
   1453         // Adjust it to be a two-operand alias.
   1454         AliasII->formTwoOperandAlias(Constraint);
   1455 
   1456         // Add the alias to the matchables list.
   1457         NewMatchables.push_back(AliasII.take());
   1458       }
   1459     } else
   1460       II->buildAliasResultOperands();
   1461   }
   1462   if (!NewMatchables.empty())
   1463     Matchables.insert(Matchables.end(), NewMatchables.begin(),
   1464                       NewMatchables.end());
   1465 
   1466   // Process token alias definitions and set up the associated superclass
   1467   // information.
   1468   std::vector<Record*> AllTokenAliases =
   1469     Records.getAllDerivedDefinitions("TokenAlias");
   1470   for (unsigned i = 0, e = AllTokenAliases.size(); i != e; ++i) {
   1471     Record *Rec = AllTokenAliases[i];
   1472     ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
   1473     ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
   1474     if (FromClass == ToClass)
   1475       PrintFatalError(Rec->getLoc(),
   1476                     "error: Destination value identical to source value.");
   1477     FromClass->SuperClasses.push_back(ToClass);
   1478   }
   1479 
   1480   // Reorder classes so that classes precede super classes.
   1481   std::sort(Classes.begin(), Classes.end(), less_ptr<ClassInfo>());
   1482 }
   1483 
   1484 /// buildInstructionOperandReference - The specified operand is a reference to a
   1485 /// named operand such as $src.  Resolve the Class and OperandInfo pointers.
   1486 void AsmMatcherInfo::
   1487 buildInstructionOperandReference(MatchableInfo *II,
   1488                                  StringRef OperandName,
   1489                                  unsigned AsmOpIdx) {
   1490   const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
   1491   const CGIOperandList &Operands = CGI.Operands;
   1492   MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
   1493 
   1494   // Map this token to an operand.
   1495   unsigned Idx;
   1496   if (!Operands.hasOperandNamed(OperandName, Idx))
   1497     PrintFatalError(II->TheDef->getLoc(), "error: unable to find operand: '" +
   1498                   OperandName.str() + "'");
   1499 
   1500   // If the instruction operand has multiple suboperands, but the parser
   1501   // match class for the asm operand is still the default "ImmAsmOperand",
   1502   // then handle each suboperand separately.
   1503   if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
   1504     Record *Rec = Operands[Idx].Rec;
   1505     assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
   1506     Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
   1507     if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
   1508       // Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
   1509       StringRef Token = Op->Token; // save this in case Op gets moved
   1510       for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
   1511         MatchableInfo::AsmOperand NewAsmOp(Token);
   1512         NewAsmOp.SubOpIdx = SI;
   1513         II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp);
   1514       }
   1515       // Replace Op with first suboperand.
   1516       Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
   1517       Op->SubOpIdx = 0;
   1518     }
   1519   }
   1520 
   1521   // Set up the operand class.
   1522   Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
   1523 
   1524   // If the named operand is tied, canonicalize it to the untied operand.
   1525   // For example, something like:
   1526   //   (outs GPR:$dst), (ins GPR:$src)
   1527   // with an asmstring of
   1528   //   "inc $src"
   1529   // we want to canonicalize to:
   1530   //   "inc $dst"
   1531   // so that we know how to provide the $dst operand when filling in the result.
   1532   int OITied = Operands[Idx].getTiedRegister();
   1533   if (OITied != -1) {
   1534     // The tied operand index is an MIOperand index, find the operand that
   1535     // contains it.
   1536     std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
   1537     OperandName = Operands[Idx.first].Name;
   1538     Op->SubOpIdx = Idx.second;
   1539   }
   1540 
   1541   Op->SrcOpName = OperandName;
   1542 }
   1543 
   1544 /// buildAliasOperandReference - When parsing an operand reference out of the
   1545 /// matching string (e.g. "movsx $src, $dst"), determine what the class of the
   1546 /// operand reference is by looking it up in the result pattern definition.
   1547 void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II,
   1548                                                 StringRef OperandName,
   1549                                                 MatchableInfo::AsmOperand &Op) {
   1550   const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();
   1551 
   1552   // Set up the operand class.
   1553   for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
   1554     if (CGA.ResultOperands[i].isRecord() &&
   1555         CGA.ResultOperands[i].getName() == OperandName) {
   1556       // It's safe to go with the first one we find, because CodeGenInstAlias
   1557       // validates that all operands with the same name have the same record.
   1558       Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
   1559       // Use the match class from the Alias definition, not the
   1560       // destination instruction, as we may have an immediate that's
   1561       // being munged by the match class.
   1562       Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(),
   1563                                  Op.SubOpIdx);
   1564       Op.SrcOpName = OperandName;
   1565       return;
   1566     }
   1567 
   1568   PrintFatalError(II->TheDef->getLoc(), "error: unable to find operand: '" +
   1569                 OperandName.str() + "'");
   1570 }
   1571 
   1572 void MatchableInfo::buildInstructionResultOperands() {
   1573   const CodeGenInstruction *ResultInst = getResultInst();
   1574 
   1575   // Loop over all operands of the result instruction, determining how to
   1576   // populate them.
   1577   for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
   1578     const CGIOperandList::OperandInfo &OpInfo = ResultInst->Operands[i];
   1579 
   1580     // If this is a tied operand, just copy from the previously handled operand.
   1581     int TiedOp = OpInfo.getTiedRegister();
   1582     if (TiedOp != -1) {
   1583       ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
   1584       continue;
   1585     }
   1586 
   1587     // Find out what operand from the asmparser this MCInst operand comes from.
   1588     int SrcOperand = findAsmOperandNamed(OpInfo.Name);
   1589     if (OpInfo.Name.empty() || SrcOperand == -1)
   1590       PrintFatalError(TheDef->getLoc(), "Instruction '" +
   1591                     TheDef->getName() + "' has operand '" + OpInfo.Name +
   1592                     "' that doesn't appear in asm string!");
   1593 
   1594     // Check if the one AsmOperand populates the entire operand.
   1595     unsigned NumOperands = OpInfo.MINumOperands;
   1596     if (AsmOperands[SrcOperand].SubOpIdx == -1) {
   1597       ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
   1598       continue;
   1599     }
   1600 
   1601     // Add a separate ResOperand for each suboperand.
   1602     for (unsigned AI = 0; AI < NumOperands; ++AI) {
   1603       assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI &&
   1604              AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name &&
   1605              "unexpected AsmOperands for suboperands");
   1606       ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
   1607     }
   1608   }
   1609 }
   1610 
   1611 void MatchableInfo::buildAliasResultOperands() {
   1612   const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
   1613   const CodeGenInstruction *ResultInst = getResultInst();
   1614 
   1615   // Loop over all operands of the result instruction, determining how to
   1616   // populate them.
   1617   unsigned AliasOpNo = 0;
   1618   unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
   1619   for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
   1620     const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
   1621 
   1622     // If this is a tied operand, just copy from the previously handled operand.
   1623     int TiedOp = OpInfo->getTiedRegister();
   1624     if (TiedOp != -1) {
   1625       ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
   1626       continue;
   1627     }
   1628 
   1629     // Handle all the suboperands for this operand.
   1630     const std::string &OpName = OpInfo->Name;
   1631     for ( ; AliasOpNo <  LastOpNo &&
   1632             CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) {
   1633       int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
   1634 
   1635       // Find out what operand from the asmparser that this MCInst operand
   1636       // comes from.
   1637       switch (CGA.ResultOperands[AliasOpNo].Kind) {
   1638       case CodeGenInstAlias::ResultOperand::K_Record: {
   1639         StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
   1640         int SrcOperand = findAsmOperand(Name, SubIdx);
   1641         if (SrcOperand == -1)
   1642           PrintFatalError(TheDef->getLoc(), "Instruction '" +
   1643                         TheDef->getName() + "' has operand '" + OpName +
   1644                         "' that doesn't appear in asm string!");
   1645         unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
   1646         ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand,
   1647                                                         NumOperands));
   1648         break;
   1649       }
   1650       case CodeGenInstAlias::ResultOperand::K_Imm: {
   1651         int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
   1652         ResOperands.push_back(ResOperand::getImmOp(ImmVal));
   1653         break;
   1654       }
   1655       case CodeGenInstAlias::ResultOperand::K_Reg: {
   1656         Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
   1657         ResOperands.push_back(ResOperand::getRegOp(Reg));
   1658         break;
   1659       }
   1660       }
   1661     }
   1662   }
   1663 }
   1664 
   1665 static unsigned getConverterOperandID(const std::string &Name,
   1666                                       SetVector<std::string> &Table,
   1667                                       bool &IsNew) {
   1668   IsNew = Table.insert(Name);
   1669 
   1670   unsigned ID = IsNew ? Table.size() - 1 :
   1671     std::find(Table.begin(), Table.end(), Name) - Table.begin();
   1672 
   1673   assert(ID < Table.size());
   1674 
   1675   return ID;
   1676 }
   1677 
   1678 
   1679 static void emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName,
   1680                              std::vector<MatchableInfo*> &Infos,
   1681                              raw_ostream &OS) {
   1682   SetVector<std::string> OperandConversionKinds;
   1683   SetVector<std::string> InstructionConversionKinds;
   1684   std::vector<std::vector<uint8_t> > ConversionTable;
   1685   size_t MaxRowLength = 2; // minimum is custom converter plus terminator.
   1686 
   1687   // TargetOperandClass - This is the target's operand class, like X86Operand.
   1688   std::string TargetOperandClass = Target.getName() + "Operand";
   1689 
   1690   // Write the convert function to a separate stream, so we can drop it after
   1691   // the enum. We'll build up the conversion handlers for the individual
   1692   // operand types opportunistically as we encounter them.
   1693   std::string ConvertFnBody;
   1694   raw_string_ostream CvtOS(ConvertFnBody);
   1695   // Start the unified conversion function.
   1696   CvtOS << "void " << Target.getName() << ClassName << "::\n"
   1697         << "convertToMCInst(unsigned Kind, MCInst &Inst, "
   1698         << "unsigned Opcode,\n"
   1699         << "                const SmallVectorImpl<MCParsedAsmOperand*"
   1700         << "> &Operands) {\n"
   1701         << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
   1702         << "  const uint8_t *Converter = ConversionTable[Kind];\n"
   1703         << "  Inst.setOpcode(Opcode);\n"
   1704         << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n"
   1705         << "    switch (*p) {\n"
   1706         << "    default: llvm_unreachable(\"invalid conversion entry!\");\n"
   1707         << "    case CVT_Reg:\n"
   1708         << "      static_cast<" << TargetOperandClass
   1709         << "*>(Operands[*(p + 1)])->addRegOperands(Inst, 1);\n"
   1710         << "      break;\n"
   1711         << "    case CVT_Tied:\n"
   1712         << "      Inst.addOperand(Inst.getOperand(*(p + 1)));\n"
   1713         << "      break;\n";
   1714 
   1715   std::string OperandFnBody;
   1716   raw_string_ostream OpOS(OperandFnBody);
   1717   // Start the operand number lookup function.
   1718   OpOS << "void " << Target.getName() << ClassName << "::\n"
   1719        << "convertToMapAndConstraints(unsigned Kind,\n";
   1720   OpOS.indent(27);
   1721   OpOS << "const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {\n"
   1722        << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
   1723        << "  unsigned NumMCOperands = 0;\n"
   1724        << "  const uint8_t *Converter = ConversionTable[Kind];\n"
   1725        << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n"
   1726        << "    switch (*p) {\n"
   1727        << "    default: llvm_unreachable(\"invalid conversion entry!\");\n"
   1728        << "    case CVT_Reg:\n"
   1729        << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
   1730        << "      Operands[*(p + 1)]->setConstraint(\"r\");\n"
   1731        << "      ++NumMCOperands;\n"
   1732        << "      break;\n"
   1733        << "    case CVT_Tied:\n"
   1734        << "      ++NumMCOperands;\n"
   1735        << "      break;\n";
   1736 
   1737   // Pre-populate the operand conversion kinds with the standard always
   1738   // available entries.
   1739   OperandConversionKinds.insert("CVT_Done");
   1740   OperandConversionKinds.insert("CVT_Reg");
   1741   OperandConversionKinds.insert("CVT_Tied");
   1742   enum { CVT_Done, CVT_Reg, CVT_Tied };
   1743 
   1744   for (std::vector<MatchableInfo*>::const_iterator it = Infos.begin(),
   1745          ie = Infos.end(); it != ie; ++it) {
   1746     MatchableInfo &II = **it;
   1747 
   1748     // Check if we have a custom match function.
   1749     std::string AsmMatchConverter =
   1750       II.getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
   1751     if (!AsmMatchConverter.empty()) {
   1752       std::string Signature = "ConvertCustom_" + AsmMatchConverter;
   1753       II.ConversionFnKind = Signature;
   1754 
   1755       // Check if we have already generated this signature.
   1756       if (!InstructionConversionKinds.insert(Signature))
   1757         continue;
   1758 
   1759       // Remember this converter for the kind enum.
   1760       unsigned KindID = OperandConversionKinds.size();
   1761       OperandConversionKinds.insert("CVT_" +
   1762                                     getEnumNameForToken(AsmMatchConverter));
   1763 
   1764       // Add the converter row for this instruction.
   1765       ConversionTable.push_back(std::vector<uint8_t>());
   1766       ConversionTable.back().push_back(KindID);
   1767       ConversionTable.back().push_back(CVT_Done);
   1768 
   1769       // Add the handler to the conversion driver function.
   1770       CvtOS << "    case CVT_"
   1771             << getEnumNameForToken(AsmMatchConverter) << ":\n"
   1772             << "      " << AsmMatchConverter << "(Inst, Operands);\n"
   1773             << "      break;\n";
   1774 
   1775       // FIXME: Handle the operand number lookup for custom match functions.
   1776       continue;
   1777     }
   1778 
   1779     // Build the conversion function signature.
   1780     std::string Signature = "Convert";
   1781 
   1782     std::vector<uint8_t> ConversionRow;
   1783 
   1784     // Compute the convert enum and the case body.
   1785     MaxRowLength = std::max(MaxRowLength, II.ResOperands.size()*2 + 1 );
   1786 
   1787     for (unsigned i = 0, e = II.ResOperands.size(); i != e; ++i) {
   1788       const MatchableInfo::ResOperand &OpInfo = II.ResOperands[i];
   1789 
   1790       // Generate code to populate each result operand.
   1791       switch (OpInfo.Kind) {
   1792       case MatchableInfo::ResOperand::RenderAsmOperand: {
   1793         // This comes from something we parsed.
   1794         MatchableInfo::AsmOperand &Op = II.AsmOperands[OpInfo.AsmOperandNum];
   1795 
   1796         // Registers are always converted the same, don't duplicate the
   1797         // conversion function based on them.
   1798         Signature += "__";
   1799         std::string Class;
   1800         Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName;
   1801         Signature += Class;
   1802         Signature += utostr(OpInfo.MINumOperands);
   1803         Signature += "_" + itostr(OpInfo.AsmOperandNum);
   1804 
   1805         // Add the conversion kind, if necessary, and get the associated ID
   1806         // the index of its entry in the vector).
   1807         std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" :
   1808                                      Op.Class->RenderMethod);
   1809         Name = getEnumNameForToken(Name);
   1810 
   1811         bool IsNewConverter = false;
   1812         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
   1813                                             IsNewConverter);
   1814 
   1815         // Add the operand entry to the instruction kind conversion row.
   1816         ConversionRow.push_back(ID);
   1817         ConversionRow.push_back(OpInfo.AsmOperandNum + 1);
   1818 
   1819         if (!IsNewConverter)
   1820           break;
   1821 
   1822         // This is a new operand kind. Add a handler for it to the
   1823         // converter driver.
   1824         CvtOS << "    case " << Name << ":\n"
   1825               << "      static_cast<" << TargetOperandClass
   1826               << "*>(Operands[*(p + 1)])->"
   1827               << Op.Class->RenderMethod << "(Inst, " << OpInfo.MINumOperands
   1828               << ");\n"
   1829               << "      break;\n";
   1830 
   1831         // Add a handler for the operand number lookup.
   1832         OpOS << "    case " << Name << ":\n"
   1833              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n";
   1834 
   1835         if (Op.Class->isRegisterClass())
   1836           OpOS << "      Operands[*(p + 1)]->setConstraint(\"r\");\n";
   1837         else
   1838           OpOS << "      Operands[*(p + 1)]->setConstraint(\"m\");\n";
   1839         OpOS << "      NumMCOperands += " << OpInfo.MINumOperands << ";\n"
   1840              << "      break;\n";
   1841         break;
   1842       }
   1843       case MatchableInfo::ResOperand::TiedOperand: {
   1844         // If this operand is tied to a previous one, just copy the MCInst
   1845         // operand from the earlier one.We can only tie single MCOperand values.
   1846         //assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
   1847         unsigned TiedOp = OpInfo.TiedOperandNum;
   1848         assert(i > TiedOp && "Tied operand precedes its target!");
   1849         Signature += "__Tie" + utostr(TiedOp);
   1850         ConversionRow.push_back(CVT_Tied);
   1851         ConversionRow.push_back(TiedOp);
   1852         // FIXME: Handle the operand number lookup for tied operands.
   1853         break;
   1854       }
   1855       case MatchableInfo::ResOperand::ImmOperand: {
   1856         int64_t Val = OpInfo.ImmVal;
   1857         std::string Ty = "imm_" + itostr(Val);
   1858         Signature += "__" + Ty;
   1859 
   1860         std::string Name = "CVT_" + Ty;
   1861         bool IsNewConverter = false;
   1862         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
   1863                                             IsNewConverter);
   1864         // Add the operand entry to the instruction kind conversion row.
   1865         ConversionRow.push_back(ID);
   1866         ConversionRow.push_back(0);
   1867 
   1868         if (!IsNewConverter)
   1869           break;
   1870 
   1871         CvtOS << "    case " << Name << ":\n"
   1872               << "      Inst.addOperand(MCOperand::CreateImm(" << Val << "));\n"
   1873               << "      break;\n";
   1874 
   1875         OpOS << "    case " << Name << ":\n"
   1876              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
   1877              << "      Operands[*(p + 1)]->setConstraint(\"\");\n"
   1878              << "      ++NumMCOperands;\n"
   1879              << "      break;\n";
   1880         break;
   1881       }
   1882       case MatchableInfo::ResOperand::RegOperand: {
   1883         std::string Reg, Name;
   1884         if (OpInfo.Register == 0) {
   1885           Name = "reg0";
   1886           Reg = "0";
   1887         } else {
   1888           Reg = getQualifiedName(OpInfo.Register);
   1889           Name = "reg" + OpInfo.Register->getName();
   1890         }
   1891         Signature += "__" + Name;
   1892         Name = "CVT_" + Name;
   1893         bool IsNewConverter = false;
   1894         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
   1895                                             IsNewConverter);
   1896         // Add the operand entry to the instruction kind conversion row.
   1897         ConversionRow.push_back(ID);
   1898         ConversionRow.push_back(0);
   1899 
   1900         if (!IsNewConverter)
   1901           break;
   1902         CvtOS << "    case " << Name << ":\n"
   1903               << "      Inst.addOperand(MCOperand::CreateReg(" << Reg << "));\n"
   1904               << "      break;\n";
   1905 
   1906         OpOS << "    case " << Name << ":\n"
   1907              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
   1908              << "      Operands[*(p + 1)]->setConstraint(\"m\");\n"
   1909              << "      ++NumMCOperands;\n"
   1910              << "      break;\n";
   1911       }
   1912       }
   1913     }
   1914 
   1915     // If there were no operands, add to the signature to that effect
   1916     if (Signature == "Convert")
   1917       Signature += "_NoOperands";
   1918 
   1919     II.ConversionFnKind = Signature;
   1920 
   1921     // Save the signature. If we already have it, don't add a new row
   1922     // to the table.
   1923     if (!InstructionConversionKinds.insert(Signature))
   1924       continue;
   1925 
   1926     // Add the row to the table.
   1927     ConversionTable.push_back(ConversionRow);
   1928   }
   1929 
   1930   // Finish up the converter driver function.
   1931   CvtOS << "    }\n  }\n}\n\n";
   1932 
   1933   // Finish up the operand number lookup function.
   1934   OpOS << "    }\n  }\n}\n\n";
   1935 
   1936   OS << "namespace {\n";
   1937 
   1938   // Output the operand conversion kind enum.
   1939   OS << "enum OperatorConversionKind {\n";
   1940   for (unsigned i = 0, e = OperandConversionKinds.size(); i != e; ++i)
   1941     OS << "  " << OperandConversionKinds[i] << ",\n";
   1942   OS << "  CVT_NUM_CONVERTERS\n";
   1943   OS << "};\n\n";
   1944 
   1945   // Output the instruction conversion kind enum.
   1946   OS << "enum InstructionConversionKind {\n";
   1947   for (SetVector<std::string>::const_iterator
   1948          i = InstructionConversionKinds.begin(),
   1949          e = InstructionConversionKinds.end(); i != e; ++i)
   1950     OS << "  " << *i << ",\n";
   1951   OS << "  CVT_NUM_SIGNATURES\n";
   1952   OS << "};\n\n";
   1953 
   1954 
   1955   OS << "} // end anonymous namespace\n\n";
   1956 
   1957   // Output the conversion table.
   1958   OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES]["
   1959      << MaxRowLength << "] = {\n";
   1960 
   1961   for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) {
   1962     assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!");
   1963     OS << "  // " << InstructionConversionKinds[Row] << "\n";
   1964     OS << "  { ";
   1965     for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2)
   1966       OS << OperandConversionKinds[ConversionTable[Row][i]] << ", "
   1967          << (unsigned)(ConversionTable[Row][i + 1]) << ", ";
   1968     OS << "CVT_Done },\n";
   1969   }
   1970 
   1971   OS << "};\n\n";
   1972 
   1973   // Spit out the conversion driver function.
   1974   OS << CvtOS.str();
   1975 
   1976   // Spit out the operand number lookup function.
   1977   OS << OpOS.str();
   1978 }
   1979 
   1980 /// emitMatchClassEnumeration - Emit the enumeration for match class kinds.
   1981 static void emitMatchClassEnumeration(CodeGenTarget &Target,
   1982                                       std::vector<ClassInfo*> &Infos,
   1983                                       raw_ostream &OS) {
   1984   OS << "namespace {\n\n";
   1985 
   1986   OS << "/// MatchClassKind - The kinds of classes which participate in\n"
   1987      << "/// instruction matching.\n";
   1988   OS << "enum MatchClassKind {\n";
   1989   OS << "  InvalidMatchClass = 0,\n";
   1990   for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
   1991          ie = Infos.end(); it != ie; ++it) {
   1992     ClassInfo &CI = **it;
   1993     OS << "  " << CI.Name << ", // ";
   1994     if (CI.Kind == ClassInfo::Token) {
   1995       OS << "'" << CI.ValueName << "'\n";
   1996     } else if (CI.isRegisterClass()) {
   1997       if (!CI.ValueName.empty())
   1998         OS << "register class '" << CI.ValueName << "'\n";
   1999       else
   2000         OS << "derived register class\n";
   2001     } else {
   2002       OS << "user defined class '" << CI.ValueName << "'\n";
   2003     }
   2004   }
   2005   OS << "  NumMatchClassKinds\n";
   2006   OS << "};\n\n";
   2007 
   2008   OS << "}\n\n";
   2009 }
   2010 
   2011 /// emitValidateOperandClass - Emit the function to validate an operand class.
   2012 static void emitValidateOperandClass(AsmMatcherInfo &Info,
   2013                                      raw_ostream &OS) {
   2014   OS << "static unsigned validateOperandClass(MCParsedAsmOperand *GOp, "
   2015      << "MatchClassKind Kind) {\n";
   2016   OS << "  " << Info.Target.getName() << "Operand &Operand = *("
   2017      << Info.Target.getName() << "Operand*)GOp;\n";
   2018 
   2019   // The InvalidMatchClass is not to match any operand.
   2020   OS << "  if (Kind == InvalidMatchClass)\n";
   2021   OS << "    return MCTargetAsmParser::Match_InvalidOperand;\n\n";
   2022 
   2023   // Check for Token operands first.
   2024   // FIXME: Use a more specific diagnostic type.
   2025   OS << "  if (Operand.isToken())\n";
   2026   OS << "    return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n"
   2027      << "             MCTargetAsmParser::Match_Success :\n"
   2028      << "             MCTargetAsmParser::Match_InvalidOperand;\n\n";
   2029 
   2030   // Check the user classes. We don't care what order since we're only
   2031   // actually matching against one of them.
   2032   for (std::vector<ClassInfo*>::iterator it = Info.Classes.begin(),
   2033          ie = Info.Classes.end(); it != ie; ++it) {
   2034     ClassInfo &CI = **it;
   2035 
   2036     if (!CI.isUserClass())
   2037       continue;
   2038 
   2039     OS << "  // '" << CI.ClassName << "' class\n";
   2040     OS << "  if (Kind == " << CI.Name << ") {\n";
   2041     OS << "    if (Operand." << CI.PredicateMethod << "())\n";
   2042     OS << "      return MCTargetAsmParser::Match_Success;\n";
   2043     if (!CI.DiagnosticType.empty())
   2044       OS << "    return " << Info.Target.getName() << "AsmParser::Match_"
   2045          << CI.DiagnosticType << ";\n";
   2046     OS << "  }\n\n";
   2047   }
   2048 
   2049   // Check for register operands, including sub-classes.
   2050   OS << "  if (Operand.isReg()) {\n";
   2051   OS << "    MatchClassKind OpKind;\n";
   2052   OS << "    switch (Operand.getReg()) {\n";
   2053   OS << "    default: OpKind = InvalidMatchClass; break;\n";
   2054   for (AsmMatcherInfo::RegisterClassesTy::iterator
   2055          it = Info.RegisterClasses.begin(), ie = Info.RegisterClasses.end();
   2056        it != ie; ++it)
   2057     OS << "    case " << Info.Target.getName() << "::"
   2058        << it->first->getName() << ": OpKind = " << it->second->Name
   2059        << "; break;\n";
   2060   OS << "    }\n";
   2061   OS << "    return isSubclass(OpKind, Kind) ? "
   2062      << "MCTargetAsmParser::Match_Success :\n                             "
   2063      << "         MCTargetAsmParser::Match_InvalidOperand;\n  }\n\n";
   2064 
   2065   // Generic fallthrough match failure case for operands that don't have
   2066   // specialized diagnostic types.
   2067   OS << "  return MCTargetAsmParser::Match_InvalidOperand;\n";
   2068   OS << "}\n\n";
   2069 }
   2070 
   2071 /// emitIsSubclass - Emit the subclass predicate function.
   2072 static void emitIsSubclass(CodeGenTarget &Target,
   2073                            std::vector<ClassInfo*> &Infos,
   2074                            raw_ostream &OS) {
   2075   OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n";
   2076   OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
   2077   OS << "  if (A == B)\n";
   2078   OS << "    return true;\n\n";
   2079 
   2080   OS << "  switch (A) {\n";
   2081   OS << "  default:\n";
   2082   OS << "    return false;\n";
   2083   for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
   2084          ie = Infos.end(); it != ie; ++it) {
   2085     ClassInfo &A = **it;
   2086 
   2087     std::vector<StringRef> SuperClasses;
   2088     for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
   2089          ie = Infos.end(); it != ie; ++it) {
   2090       ClassInfo &B = **it;
   2091 
   2092       if (&A != &B && A.isSubsetOf(B))
   2093         SuperClasses.push_back(B.Name);
   2094     }
   2095 
   2096     if (SuperClasses.empty())
   2097       continue;
   2098 
   2099     OS << "\n  case " << A.Name << ":\n";
   2100 
   2101     if (SuperClasses.size() == 1) {
   2102       OS << "    return B == " << SuperClasses.back() << ";\n";
   2103       continue;
   2104     }
   2105 
   2106     OS << "    switch (B) {\n";
   2107     OS << "    default: return false;\n";
   2108     for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
   2109       OS << "    case " << SuperClasses[i] << ": return true;\n";
   2110     OS << "    }\n";
   2111   }
   2112   OS << "  }\n";
   2113   OS << "}\n\n";
   2114 }
   2115 
   2116 /// emitMatchTokenString - Emit the function to match a token string to the
   2117 /// appropriate match class value.
   2118 static void emitMatchTokenString(CodeGenTarget &Target,
   2119                                  std::vector<ClassInfo*> &Infos,
   2120                                  raw_ostream &OS) {
   2121   // Construct the match list.
   2122   std::vector<StringMatcher::StringPair> Matches;
   2123   for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
   2124          ie = Infos.end(); it != ie; ++it) {
   2125     ClassInfo &CI = **it;
   2126 
   2127     if (CI.Kind == ClassInfo::Token)
   2128       Matches.push_back(StringMatcher::StringPair(CI.ValueName,
   2129                                                   "return " + CI.Name + ";"));
   2130   }
   2131 
   2132   OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
   2133 
   2134   StringMatcher("Name", Matches, OS).Emit();
   2135 
   2136   OS << "  return InvalidMatchClass;\n";
   2137   OS << "}\n\n";
   2138 }
   2139 
   2140 /// emitMatchRegisterName - Emit the function to match a string to the target
   2141 /// specific register enum.
   2142 static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
   2143                                   raw_ostream &OS) {
   2144   // Construct the match list.
   2145   std::vector<StringMatcher::StringPair> Matches;
   2146   const std::vector<CodeGenRegister*> &Regs =
   2147     Target.getRegBank().getRegisters();
   2148   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
   2149     const CodeGenRegister *Reg = Regs[i];
   2150     if (Reg->TheDef->getValueAsString("AsmName").empty())
   2151       continue;
   2152 
   2153     Matches.push_back(StringMatcher::StringPair(
   2154                                      Reg->TheDef->getValueAsString("AsmName"),
   2155                                      "return " + utostr(Reg->EnumValue) + ";"));
   2156   }
   2157 
   2158   OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
   2159 
   2160   StringMatcher("Name", Matches, OS).Emit();
   2161 
   2162   OS << "  return 0;\n";
   2163   OS << "}\n\n";
   2164 }
   2165 
   2166 /// emitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag
   2167 /// definitions.
   2168 static void emitSubtargetFeatureFlagEnumeration(AsmMatcherInfo &Info,
   2169                                                 raw_ostream &OS) {
   2170   OS << "// Flags for subtarget features that participate in "
   2171      << "instruction matching.\n";
   2172   OS << "enum SubtargetFeatureFlag {\n";
   2173   for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
   2174          it = Info.SubtargetFeatures.begin(),
   2175          ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
   2176     SubtargetFeatureInfo &SFI = *it->second;
   2177     OS << "  " << SFI.getEnumName() << " = (1 << " << SFI.Index << "),\n";
   2178   }
   2179   OS << "  Feature_None = 0\n";
   2180   OS << "};\n\n";
   2181 }
   2182 
   2183 /// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types.
   2184 static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) {
   2185   // Get the set of diagnostic types from all of the operand classes.
   2186   std::set<StringRef> Types;
   2187   for (std::map<Record*, ClassInfo*>::const_iterator
   2188        I = Info.AsmOperandClasses.begin(),
   2189        E = Info.AsmOperandClasses.end(); I != E; ++I) {
   2190     if (!I->second->DiagnosticType.empty())
   2191       Types.insert(I->second->DiagnosticType);
   2192   }
   2193 
   2194   if (Types.empty()) return;
   2195 
   2196   // Now emit the enum entries.
   2197   for (std::set<StringRef>::const_iterator I = Types.begin(), E = Types.end();
   2198        I != E; ++I)
   2199     OS << "  Match_" << *I << ",\n";
   2200   OS << "  END_OPERAND_DIAGNOSTIC_TYPES\n";
   2201 }
   2202 
   2203 /// emitGetSubtargetFeatureName - Emit the helper function to get the
   2204 /// user-level name for a subtarget feature.
   2205 static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) {
   2206   OS << "// User-level names for subtarget features that participate in\n"
   2207      << "// instruction matching.\n"
   2208      << "static const char *getSubtargetFeatureName(unsigned Val) {\n"
   2209      << "  switch(Val) {\n";
   2210   for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
   2211          it = Info.SubtargetFeatures.begin(),
   2212          ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
   2213     SubtargetFeatureInfo &SFI = *it->second;
   2214     // FIXME: Totally just a placeholder name to get the algorithm working.
   2215     OS << "  case " << SFI.getEnumName() << ": return \""
   2216        << SFI.TheDef->getValueAsString("PredicateName") << "\";\n";
   2217   }
   2218   OS << "  default: return \"(unknown)\";\n";
   2219   OS << "  }\n}\n\n";
   2220 }
   2221 
   2222 /// emitComputeAvailableFeatures - Emit the function to compute the list of
   2223 /// available features given a subtarget.
   2224 static void emitComputeAvailableFeatures(AsmMatcherInfo &Info,
   2225                                          raw_ostream &OS) {
   2226   std::string ClassName =
   2227     Info.AsmParser->getValueAsString("AsmParserClassName");
   2228 
   2229   OS << "unsigned " << Info.Target.getName() << ClassName << "::\n"
   2230      << "ComputeAvailableFeatures(uint64_t FB) const {\n";
   2231   OS << "  unsigned Features = 0;\n";
   2232   for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
   2233          it = Info.SubtargetFeatures.begin(),
   2234          ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
   2235     SubtargetFeatureInfo &SFI = *it->second;
   2236 
   2237     OS << "  if (";
   2238     std::string CondStorage =
   2239       SFI.TheDef->getValueAsString("AssemblerCondString");
   2240     StringRef Conds = CondStorage;
   2241     std::pair<StringRef,StringRef> Comma = Conds.split(',');
   2242     bool First = true;
   2243     do {
   2244       if (!First)
   2245         OS << " && ";
   2246 
   2247       bool Neg = false;
   2248       StringRef Cond = Comma.first;
   2249       if (Cond[0] == '!') {
   2250         Neg = true;
   2251         Cond = Cond.substr(1);
   2252       }
   2253 
   2254       OS << "((FB & " << Info.Target.getName() << "::" << Cond << ")";
   2255       if (Neg)
   2256         OS << " == 0";
   2257       else
   2258         OS << " != 0";
   2259       OS << ")";
   2260 
   2261       if (Comma.second.empty())
   2262         break;
   2263 
   2264       First = false;
   2265       Comma = Comma.second.split(',');
   2266     } while (true);
   2267 
   2268     OS << ")\n";
   2269     OS << "    Features |= " << SFI.getEnumName() << ";\n";
   2270   }
   2271   OS << "  return Features;\n";
   2272   OS << "}\n\n";
   2273 }
   2274 
   2275 static std::string GetAliasRequiredFeatures(Record *R,
   2276                                             const AsmMatcherInfo &Info) {
   2277   std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
   2278   std::string Result;
   2279   unsigned NumFeatures = 0;
   2280   for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
   2281     SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
   2282 
   2283     if (F == 0)
   2284       PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
   2285                     "' is not marked as an AssemblerPredicate!");
   2286 
   2287     if (NumFeatures)
   2288       Result += '|';
   2289 
   2290     Result += F->getEnumName();
   2291     ++NumFeatures;
   2292   }
   2293 
   2294   if (NumFeatures > 1)
   2295     Result = '(' + Result + ')';
   2296   return Result;
   2297 }
   2298 
   2299 /// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
   2300 /// emit a function for them and return true, otherwise return false.
   2301 static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info) {
   2302   // Ignore aliases when match-prefix is set.
   2303   if (!MatchPrefix.empty())
   2304     return false;
   2305 
   2306   std::vector<Record*> Aliases =
   2307     Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
   2308   if (Aliases.empty()) return false;
   2309 
   2310   OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
   2311         "unsigned Features) {\n";
   2312 
   2313   // Keep track of all the aliases from a mnemonic.  Use an std::map so that the
   2314   // iteration order of the map is stable.
   2315   std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
   2316 
   2317   for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
   2318     Record *R = Aliases[i];
   2319     AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
   2320   }
   2321 
   2322   // Process each alias a "from" mnemonic at a time, building the code executed
   2323   // by the string remapper.
   2324   std::vector<StringMatcher::StringPair> Cases;
   2325   for (std::map<std::string, std::vector<Record*> >::iterator
   2326        I = AliasesFromMnemonic.begin(), E = AliasesFromMnemonic.end();
   2327        I != E; ++I) {
   2328     const std::vector<Record*> &ToVec = I->second;
   2329 
   2330     // Loop through each alias and emit code that handles each case.  If there
   2331     // are two instructions without predicates, emit an error.  If there is one,
   2332     // emit it last.
   2333     std::string MatchCode;
   2334     int AliasWithNoPredicate = -1;
   2335 
   2336     for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
   2337       Record *R = ToVec[i];
   2338       std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
   2339 
   2340       // If this unconditionally matches, remember it for later and diagnose
   2341       // duplicates.
   2342       if (FeatureMask.empty()) {
   2343         if (AliasWithNoPredicate != -1) {
   2344           // We can't have two aliases from the same mnemonic with no predicate.
   2345           PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
   2346                      "two MnemonicAliases with the same 'from' mnemonic!");
   2347           PrintFatalError(R->getLoc(), "this is the other MnemonicAlias.");
   2348         }
   2349 
   2350         AliasWithNoPredicate = i;
   2351         continue;
   2352       }
   2353       if (R->getValueAsString("ToMnemonic") == I->first)
   2354         PrintFatalError(R->getLoc(), "MnemonicAlias to the same string");
   2355 
   2356       if (!MatchCode.empty())
   2357         MatchCode += "else ";
   2358       MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n";
   2359       MatchCode += "  Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n";
   2360     }
   2361 
   2362     if (AliasWithNoPredicate != -1) {
   2363       Record *R = ToVec[AliasWithNoPredicate];
   2364       if (!MatchCode.empty())
   2365         MatchCode += "else\n  ";
   2366       MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n";
   2367     }
   2368 
   2369     MatchCode += "return;";
   2370 
   2371     Cases.push_back(std::make_pair(I->first, MatchCode));
   2372   }
   2373 
   2374   StringMatcher("Mnemonic", Cases, OS).Emit();
   2375   OS << "}\n\n";
   2376 
   2377   return true;
   2378 }
   2379 
   2380 static const char *getMinimalTypeForRange(uint64_t Range) {
   2381   assert(Range < 0xFFFFFFFFULL && "Enum too large");
   2382   if (Range > 0xFFFF)
   2383     return "uint32_t";
   2384   if (Range > 0xFF)
   2385     return "uint16_t";
   2386   return "uint8_t";
   2387 }
   2388 
   2389 static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
   2390                               const AsmMatcherInfo &Info, StringRef ClassName,
   2391                               StringToOffsetTable &StringTable,
   2392                               unsigned MaxMnemonicIndex) {
   2393   unsigned MaxMask = 0;
   2394   for (std::vector<OperandMatchEntry>::const_iterator it =
   2395        Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end();
   2396        it != ie; ++it) {
   2397     MaxMask |= it->OperandMask;
   2398   }
   2399 
   2400   // Emit the static custom operand parsing table;
   2401   OS << "namespace {\n";
   2402   OS << "  struct OperandMatchEntry {\n";
   2403   OS << "    " << getMinimalTypeForRange(1ULL << Info.SubtargetFeatures.size())
   2404                << " RequiredFeatures;\n";
   2405   OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
   2406                << " Mnemonic;\n";
   2407   OS << "    " << getMinimalTypeForRange(Info.Classes.size())
   2408                << " Class;\n";
   2409   OS << "    " << getMinimalTypeForRange(MaxMask)
   2410                << " OperandMask;\n\n";
   2411   OS << "    StringRef getMnemonic() const {\n";
   2412   OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
   2413   OS << "                       MnemonicTable[Mnemonic]);\n";
   2414   OS << "    }\n";
   2415   OS << "  };\n\n";
   2416 
   2417   OS << "  // Predicate for searching for an opcode.\n";
   2418   OS << "  struct LessOpcodeOperand {\n";
   2419   OS << "    bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
   2420   OS << "      return LHS.getMnemonic()  < RHS;\n";
   2421   OS << "    }\n";
   2422   OS << "    bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
   2423   OS << "      return LHS < RHS.getMnemonic();\n";
   2424   OS << "    }\n";
   2425   OS << "    bool operator()(const OperandMatchEntry &LHS,";
   2426   OS << " const OperandMatchEntry &RHS) {\n";
   2427   OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
   2428   OS << "    }\n";
   2429   OS << "  };\n";
   2430 
   2431   OS << "} // end anonymous namespace.\n\n";
   2432 
   2433   OS << "static const OperandMatchEntry OperandMatchTable["
   2434      << Info.OperandMatchInfo.size() << "] = {\n";
   2435 
   2436   OS << "  /* Operand List Mask, Mnemonic, Operand Class, Features */\n";
   2437   for (std::vector<OperandMatchEntry>::const_iterator it =
   2438        Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end();
   2439        it != ie; ++it) {
   2440     const OperandMatchEntry &OMI = *it;
   2441     const MatchableInfo &II = *OMI.MI;
   2442 
   2443     OS << "  { ";
   2444 
   2445     // Write the required features mask.
   2446     if (!II.RequiredFeatures.empty()) {
   2447       for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
   2448         if (i) OS << "|";
   2449         OS << II.RequiredFeatures[i]->getEnumName();
   2450       }
   2451     } else
   2452       OS << "0";
   2453 
   2454     // Store a pascal-style length byte in the mnemonic.
   2455     std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
   2456     OS << ", " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
   2457        << " /* " << II.Mnemonic << " */, ";
   2458 
   2459     OS << OMI.CI->Name;
   2460 
   2461     OS << ", " << OMI.OperandMask;
   2462     OS << " /* ";
   2463     bool printComma = false;
   2464     for (int i = 0, e = 31; i !=e; ++i)
   2465       if (OMI.OperandMask & (1 << i)) {
   2466         if (printComma)
   2467           OS << ", ";
   2468         OS << i;
   2469         printComma = true;
   2470       }
   2471     OS << " */";
   2472 
   2473     OS << " },\n";
   2474   }
   2475   OS << "};\n\n";
   2476 
   2477   // Emit the operand class switch to call the correct custom parser for
   2478   // the found operand class.
   2479   OS << Target.getName() << ClassName << "::OperandMatchResultTy "
   2480      << Target.getName() << ClassName << "::\n"
   2481      << "tryCustomParseOperand(SmallVectorImpl<MCParsedAsmOperand*>"
   2482      << " &Operands,\n                      unsigned MCK) {\n\n"
   2483      << "  switch(MCK) {\n";
   2484 
   2485   for (std::vector<ClassInfo*>::const_iterator it = Info.Classes.begin(),
   2486        ie = Info.Classes.end(); it != ie; ++it) {
   2487     ClassInfo *CI = *it;
   2488     if (CI->ParserMethod.empty())
   2489       continue;
   2490     OS << "  case " << CI->Name << ":\n"
   2491        << "    return " << CI->ParserMethod << "(Operands);\n";
   2492   }
   2493 
   2494   OS << "  default:\n";
   2495   OS << "    return MatchOperand_NoMatch;\n";
   2496   OS << "  }\n";
   2497   OS << "  return MatchOperand_NoMatch;\n";
   2498   OS << "}\n\n";
   2499 
   2500   // Emit the static custom operand parser. This code is very similar with
   2501   // the other matcher. Also use MatchResultTy here just in case we go for
   2502   // a better error handling.
   2503   OS << Target.getName() << ClassName << "::OperandMatchResultTy "
   2504      << Target.getName() << ClassName << "::\n"
   2505      << "MatchOperandParserImpl(SmallVectorImpl<MCParsedAsmOperand*>"
   2506      << " &Operands,\n                       StringRef Mnemonic) {\n";
   2507 
   2508   // Emit code to get the available features.
   2509   OS << "  // Get the current feature set.\n";
   2510   OS << "  unsigned AvailableFeatures = getAvailableFeatures();\n\n";
   2511 
   2512   OS << "  // Get the next operand index.\n";
   2513   OS << "  unsigned NextOpNum = Operands.size()-1;\n";
   2514 
   2515   // Emit code to search the table.
   2516   OS << "  // Search the table.\n";
   2517   OS << "  std::pair<const OperandMatchEntry*, const OperandMatchEntry*>";
   2518   OS << " MnemonicRange =\n";
   2519   OS << "    std::equal_range(OperandMatchTable, OperandMatchTable+"
   2520      << Info.OperandMatchInfo.size() << ", Mnemonic,\n"
   2521      << "                     LessOpcodeOperand());\n\n";
   2522 
   2523   OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
   2524   OS << "    return MatchOperand_NoMatch;\n\n";
   2525 
   2526   OS << "  for (const OperandMatchEntry *it = MnemonicRange.first,\n"
   2527      << "       *ie = MnemonicRange.second; it != ie; ++it) {\n";
   2528 
   2529   OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
   2530   OS << "    assert(Mnemonic == it->getMnemonic());\n\n";
   2531 
   2532   // Emit check that the required features are available.
   2533   OS << "    // check if the available features match\n";
   2534   OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
   2535      << "!= it->RequiredFeatures) {\n";
   2536   OS << "      continue;\n";
   2537   OS << "    }\n\n";
   2538 
   2539   // Emit check to ensure the operand number matches.
   2540   OS << "    // check if the operand in question has a custom parser.\n";
   2541   OS << "    if (!(it->OperandMask & (1 << NextOpNum)))\n";
   2542   OS << "      continue;\n\n";
   2543 
   2544   // Emit call to the custom parser method
   2545   OS << "    // call custom parse method to handle the operand\n";
   2546   OS << "    OperandMatchResultTy Result = ";
   2547   OS << "tryCustomParseOperand(Operands, it->Class);\n";
   2548   OS << "    if (Result != MatchOperand_NoMatch)\n";
   2549   OS << "      return Result;\n";
   2550   OS << "  }\n\n";
   2551 
   2552   OS << "  // Okay, we had no match.\n";
   2553   OS << "  return MatchOperand_NoMatch;\n";
   2554   OS << "}\n\n";
   2555 }
   2556 
   2557 void AsmMatcherEmitter::run(raw_ostream &OS) {
   2558   CodeGenTarget Target(Records);
   2559   Record *AsmParser = Target.getAsmParser();
   2560   std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
   2561 
   2562   // Compute the information on the instructions to match.
   2563   AsmMatcherInfo Info(AsmParser, Target, Records);
   2564   Info.buildInfo();
   2565 
   2566   // Sort the instruction table using the partial order on classes. We use
   2567   // stable_sort to ensure that ambiguous instructions are still
   2568   // deterministically ordered.
   2569   std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(),
   2570                    less_ptr<MatchableInfo>());
   2571 
   2572   DEBUG_WITH_TYPE("instruction_info", {
   2573       for (std::vector<MatchableInfo*>::iterator
   2574              it = Info.Matchables.begin(), ie = Info.Matchables.end();
   2575            it != ie; ++it)
   2576         (*it)->dump();
   2577     });
   2578 
   2579   // Check for ambiguous matchables.
   2580   DEBUG_WITH_TYPE("ambiguous_instrs", {
   2581     unsigned NumAmbiguous = 0;
   2582     for (unsigned i = 0, e = Info.Matchables.size(); i != e; ++i) {
   2583       for (unsigned j = i + 1; j != e; ++j) {
   2584         MatchableInfo &A = *Info.Matchables[i];
   2585         MatchableInfo &B = *Info.Matchables[j];
   2586 
   2587         if (A.couldMatchAmbiguouslyWith(B)) {
   2588           errs() << "warning: ambiguous matchables:\n";
   2589           A.dump();
   2590           errs() << "\nis incomparable with:\n";
   2591           B.dump();
   2592           errs() << "\n\n";
   2593           ++NumAmbiguous;
   2594         }
   2595       }
   2596     }
   2597     if (NumAmbiguous)
   2598       errs() << "warning: " << NumAmbiguous
   2599              << " ambiguous matchables!\n";
   2600   });
   2601 
   2602   // Compute the information on the custom operand parsing.
   2603   Info.buildOperandMatchInfo();
   2604 
   2605   // Write the output.
   2606 
   2607   // Information for the class declaration.
   2608   OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
   2609   OS << "#undef GET_ASSEMBLER_HEADER\n";
   2610   OS << "  // This should be included into the middle of the declaration of\n";
   2611   OS << "  // your subclasses implementation of MCTargetAsmParser.\n";
   2612   OS << "  unsigned ComputeAvailableFeatures(uint64_t FeatureBits) const;\n";
   2613   OS << "  void convertToMCInst(unsigned Kind, MCInst &Inst, "
   2614      << "unsigned Opcode,\n"
   2615      << "                       const SmallVectorImpl<MCParsedAsmOperand*> "
   2616      << "&Operands);\n";
   2617   OS << "  void convertToMapAndConstraints(unsigned Kind,\n                ";
   2618   OS << "           const SmallVectorImpl<MCParsedAsmOperand*> &Operands);\n";
   2619   OS << "  bool mnemonicIsValid(StringRef Mnemonic);\n";
   2620   OS << "  unsigned MatchInstructionImpl(\n";
   2621   OS.indent(27);
   2622   OS << "const SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n"
   2623      << "                                MCInst &Inst,\n"
   2624      << "                                unsigned &ErrorInfo,"
   2625      << " bool matchingInlineAsm,\n"
   2626      << "                                unsigned VariantID = 0);\n";
   2627 
   2628   if (Info.OperandMatchInfo.size()) {
   2629     OS << "\n  enum OperandMatchResultTy {\n";
   2630     OS << "    MatchOperand_Success,    // operand matched successfully\n";
   2631     OS << "    MatchOperand_NoMatch,    // operand did not match\n";
   2632     OS << "    MatchOperand_ParseFail   // operand matched but had errors\n";
   2633     OS << "  };\n";
   2634     OS << "  OperandMatchResultTy MatchOperandParserImpl(\n";
   2635     OS << "    SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
   2636     OS << "    StringRef Mnemonic);\n";
   2637 
   2638     OS << "  OperandMatchResultTy tryCustomParseOperand(\n";
   2639     OS << "    SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
   2640     OS << "    unsigned MCK);\n\n";
   2641   }
   2642 
   2643   OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
   2644 
   2645   // Emit the operand match diagnostic enum names.
   2646   OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n";
   2647   OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
   2648   emitOperandDiagnosticTypes(Info, OS);
   2649   OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
   2650 
   2651 
   2652   OS << "\n#ifdef GET_REGISTER_MATCHER\n";
   2653   OS << "#undef GET_REGISTER_MATCHER\n\n";
   2654 
   2655   // Emit the subtarget feature enumeration.
   2656   emitSubtargetFeatureFlagEnumeration(Info, OS);
   2657 
   2658   // Emit the function to match a register name to number.
   2659   // This should be omitted for Mips target
   2660   if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName"))
   2661     emitMatchRegisterName(Target, AsmParser, OS);
   2662 
   2663   OS << "#endif // GET_REGISTER_MATCHER\n\n";
   2664 
   2665   OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n";
   2666   OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n";
   2667 
   2668   // Generate the helper function to get the names for subtarget features.
   2669   emitGetSubtargetFeatureName(Info, OS);
   2670 
   2671   OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n";
   2672 
   2673   OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
   2674   OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
   2675 
   2676   // Generate the function that remaps for mnemonic aliases.
   2677   bool HasMnemonicAliases = emitMnemonicAliases(OS, Info);
   2678 
   2679   // Generate the convertToMCInst function to convert operands into an MCInst.
   2680   // Also, generate the convertToMapAndConstraints function for MS-style inline
   2681   // assembly.  The latter doesn't actually generate a MCInst.
   2682   emitConvertFuncs(Target, ClassName, Info.Matchables, OS);
   2683 
   2684   // Emit the enumeration for classes which participate in matching.
   2685   emitMatchClassEnumeration(Target, Info.Classes, OS);
   2686 
   2687   // Emit the routine to match token strings to their match class.
   2688   emitMatchTokenString(Target, Info.Classes, OS);
   2689 
   2690   // Emit the subclass predicate routine.
   2691   emitIsSubclass(Target, Info.Classes, OS);
   2692 
   2693   // Emit the routine to validate an operand against a match class.
   2694   emitValidateOperandClass(Info, OS);
   2695 
   2696   // Emit the available features compute function.
   2697   emitComputeAvailableFeatures(Info, OS);
   2698 
   2699 
   2700   StringToOffsetTable StringTable;
   2701 
   2702   size_t MaxNumOperands = 0;
   2703   unsigned MaxMnemonicIndex = 0;
   2704   for (std::vector<MatchableInfo*>::const_iterator it =
   2705          Info.Matchables.begin(), ie = Info.Matchables.end();
   2706        it != ie; ++it) {
   2707     MatchableInfo &II = **it;
   2708     MaxNumOperands = std::max(MaxNumOperands, II.AsmOperands.size());
   2709 
   2710     // Store a pascal-style length byte in the mnemonic.
   2711     std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
   2712     MaxMnemonicIndex = std::max(MaxMnemonicIndex,
   2713                         StringTable.GetOrAddStringOffset(LenMnemonic, false));
   2714   }
   2715 
   2716   OS << "static const char *const MnemonicTable =\n";
   2717   StringTable.EmitString(OS);
   2718   OS << ";\n\n";
   2719 
   2720   // Emit the static match table; unused classes get initalized to 0 which is
   2721   // guaranteed to be InvalidMatchClass.
   2722   //
   2723   // FIXME: We can reduce the size of this table very easily. First, we change
   2724   // it so that store the kinds in separate bit-fields for each index, which
   2725   // only needs to be the max width used for classes at that index (we also need
   2726   // to reject based on this during classification). If we then make sure to
   2727   // order the match kinds appropriately (putting mnemonics last), then we
   2728   // should only end up using a few bits for each class, especially the ones
   2729   // following the mnemonic.
   2730   OS << "namespace {\n";
   2731   OS << "  struct MatchEntry {\n";
   2732   OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
   2733                << " Mnemonic;\n";
   2734   OS << "    uint16_t Opcode;\n";
   2735   OS << "    " << getMinimalTypeForRange(Info.Matchables.size())
   2736                << " ConvertFn;\n";
   2737   OS << "    " << getMinimalTypeForRange(1ULL << Info.SubtargetFeatures.size())
   2738                << " RequiredFeatures;\n";
   2739   OS << "    " << getMinimalTypeForRange(Info.Classes.size())
   2740                << " Classes[" << MaxNumOperands << "];\n";
   2741   OS << "    uint8_t AsmVariantID;\n\n";
   2742   OS << "    StringRef getMnemonic() const {\n";
   2743   OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
   2744   OS << "                       MnemonicTable[Mnemonic]);\n";
   2745   OS << "    }\n";
   2746   OS << "  };\n\n";
   2747 
   2748   OS << "  // Predicate for searching for an opcode.\n";
   2749   OS << "  struct LessOpcode {\n";
   2750   OS << "    bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
   2751   OS << "      return LHS.getMnemonic() < RHS;\n";
   2752   OS << "    }\n";
   2753   OS << "    bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
   2754   OS << "      return LHS < RHS.getMnemonic();\n";
   2755   OS << "    }\n";
   2756   OS << "    bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
   2757   OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
   2758   OS << "    }\n";
   2759   OS << "  };\n";
   2760 
   2761   OS << "} // end anonymous namespace.\n\n";
   2762 
   2763   OS << "static const MatchEntry MatchTable["
   2764      << Info.Matchables.size() << "] = {\n";
   2765 
   2766   for (std::vector<MatchableInfo*>::const_iterator it =
   2767        Info.Matchables.begin(), ie = Info.Matchables.end();
   2768        it != ie; ++it) {
   2769     MatchableInfo &II = **it;
   2770 
   2771     // Store a pascal-style length byte in the mnemonic.
   2772     std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
   2773     OS << "  { " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
   2774        << " /* " << II.Mnemonic << " */, "
   2775        << Target.getName() << "::"
   2776        << II.getResultInst()->TheDef->getName() << ", "
   2777        << II.ConversionFnKind << ", ";
   2778 
   2779     // Write the required features mask.
   2780     if (!II.RequiredFeatures.empty()) {
   2781       for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
   2782         if (i) OS << "|";
   2783         OS << II.RequiredFeatures[i]->getEnumName();
   2784       }
   2785     } else
   2786       OS << "0";
   2787 
   2788     OS << ", { ";
   2789     for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) {
   2790       MatchableInfo::AsmOperand &Op = II.AsmOperands[i];
   2791 
   2792       if (i) OS << ", ";
   2793       OS << Op.Class->Name;
   2794     }
   2795     OS << " }, " << II.AsmVariantID;
   2796     OS << "},\n";
   2797   }
   2798 
   2799   OS << "};\n\n";
   2800 
   2801   // A method to determine if a mnemonic is in the list.
   2802   OS << "bool " << Target.getName() << ClassName << "::\n"
   2803      << "mnemonicIsValid(StringRef Mnemonic) {\n";
   2804   OS << "  // Search the table.\n";
   2805   OS << "  std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
   2806   OS << "    std::equal_range(MatchTable, MatchTable+"
   2807      << Info.Matchables.size() << ", Mnemonic, LessOpcode());\n";
   2808   OS << "  return MnemonicRange.first != MnemonicRange.second;\n";
   2809   OS << "}\n\n";
   2810 
   2811   // Finally, build the match function.
   2812   OS << "unsigned "
   2813      << Target.getName() << ClassName << "::\n"
   2814      << "MatchInstructionImpl(const SmallVectorImpl<MCParsedAsmOperand*>"
   2815      << " &Operands,\n";
   2816   OS << "                     MCInst &Inst,\n"
   2817      << "unsigned &ErrorInfo, bool matchingInlineAsm, unsigned VariantID) {\n";
   2818 
   2819   OS << "  // Eliminate obvious mismatches.\n";
   2820   OS << "  if (Operands.size() > " << (MaxNumOperands+1) << ") {\n";
   2821   OS << "    ErrorInfo = " << (MaxNumOperands+1) << ";\n";
   2822   OS << "    return Match_InvalidOperand;\n";
   2823   OS << "  }\n\n";
   2824 
   2825   // Emit code to get the available features.
   2826   OS << "  // Get the current feature set.\n";
   2827   OS << "  unsigned AvailableFeatures = getAvailableFeatures();\n\n";
   2828 
   2829   OS << "  // Get the instruction mnemonic, which is the first token.\n";
   2830   OS << "  StringRef Mnemonic = ((" << Target.getName()
   2831      << "Operand*)Operands[0])->getToken();\n\n";
   2832 
   2833   if (HasMnemonicAliases) {
   2834     OS << "  // Process all MnemonicAliases to remap the mnemonic.\n";
   2835     OS << "  // FIXME : Add an entry in AsmParserVariant to check this.\n";
   2836     OS << "  if (!VariantID)\n";
   2837     OS << "    applyMnemonicAliases(Mnemonic, AvailableFeatures);\n\n";
   2838   }
   2839 
   2840   // Emit code to compute the class list for this operand vector.
   2841   OS << "  // Some state to try to produce better error messages.\n";
   2842   OS << "  bool HadMatchOtherThanFeatures = false;\n";
   2843   OS << "  bool HadMatchOtherThanPredicate = false;\n";
   2844   OS << "  unsigned RetCode = Match_InvalidOperand;\n";
   2845   OS << "  unsigned MissingFeatures = ~0U;\n";
   2846   OS << "  // Set ErrorInfo to the operand that mismatches if it is\n";
   2847   OS << "  // wrong for all instances of the instruction.\n";
   2848   OS << "  ErrorInfo = ~0U;\n";
   2849 
   2850   // Emit code to search the table.
   2851   OS << "  // Search the table.\n";
   2852   OS << "  std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
   2853   OS << "    std::equal_range(MatchTable, MatchTable+"
   2854      << Info.Matchables.size() << ", Mnemonic, LessOpcode());\n\n";
   2855 
   2856   OS << "  // Return a more specific error code if no mnemonics match.\n";
   2857   OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
   2858   OS << "    return Match_MnemonicFail;\n\n";
   2859 
   2860   OS << "  for (const MatchEntry *it = MnemonicRange.first, "
   2861      << "*ie = MnemonicRange.second;\n";
   2862   OS << "       it != ie; ++it) {\n";
   2863 
   2864   OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
   2865   OS << "    assert(Mnemonic == it->getMnemonic());\n";
   2866 
   2867   // Emit check that the subclasses match.
   2868   OS << "    if (VariantID != it->AsmVariantID) continue;\n";
   2869   OS << "    bool OperandsValid = true;\n";
   2870   OS << "    for (unsigned i = 0; i != " << MaxNumOperands << "; ++i) {\n";
   2871   OS << "      if (i + 1 >= Operands.size()) {\n";
   2872   OS << "        OperandsValid = (it->Classes[i] == " <<"InvalidMatchClass);\n";
   2873   OS << "        if (!OperandsValid) ErrorInfo = i + 1;\n";
   2874   OS << "        break;\n";
   2875   OS << "      }\n";
   2876   OS << "      unsigned Diag = validateOperandClass(Operands[i+1],\n";
   2877   OS.indent(43);
   2878   OS << "(MatchClassKind)it->Classes[i]);\n";
   2879   OS << "      if (Diag == Match_Success)\n";
   2880   OS << "        continue;\n";
   2881   OS << "      // If the generic handler indicates an invalid operand\n";
   2882   OS << "      // failure, check for a special case.\n";
   2883   OS << "      if (Diag == Match_InvalidOperand) {\n";
   2884   OS << "        Diag = validateTargetOperandClass(Operands[i+1],\n";
   2885   OS.indent(43);
   2886   OS << "(MatchClassKind)it->Classes[i]);\n";
   2887   OS << "        if (Diag == Match_Success)\n";
   2888   OS << "          continue;\n";
   2889   OS << "      }\n";
   2890   OS << "      // If this operand is broken for all of the instances of this\n";
   2891   OS << "      // mnemonic, keep track of it so we can report loc info.\n";
   2892   OS << "      // If we already had a match that only failed due to a\n";
   2893   OS << "      // target predicate, that diagnostic is preferred.\n";
   2894   OS << "      if (!HadMatchOtherThanPredicate &&\n";
   2895   OS << "          (it == MnemonicRange.first || ErrorInfo <= i+1)) {\n";
   2896   OS << "        ErrorInfo = i+1;\n";
   2897   OS << "        // InvalidOperand is the default. Prefer specificity.\n";
   2898   OS << "        if (Diag != Match_InvalidOperand)\n";
   2899   OS << "          RetCode = Diag;\n";
   2900   OS << "      }\n";
   2901   OS << "      // Otherwise, just reject this instance of the mnemonic.\n";
   2902   OS << "      OperandsValid = false;\n";
   2903   OS << "      break;\n";
   2904   OS << "    }\n\n";
   2905 
   2906   OS << "    if (!OperandsValid) continue;\n";
   2907 
   2908   // Emit check that the required features are available.
   2909   OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
   2910      << "!= it->RequiredFeatures) {\n";
   2911   OS << "      HadMatchOtherThanFeatures = true;\n";
   2912   OS << "      unsigned NewMissingFeatures = it->RequiredFeatures & "
   2913         "~AvailableFeatures;\n";
   2914   OS << "      if (CountPopulation_32(NewMissingFeatures) <=\n"
   2915         "          CountPopulation_32(MissingFeatures))\n";
   2916   OS << "        MissingFeatures = NewMissingFeatures;\n";
   2917   OS << "      continue;\n";
   2918   OS << "    }\n";
   2919   OS << "\n";
   2920   OS << "    if (matchingInlineAsm) {\n";
   2921   OS << "      Inst.setOpcode(it->Opcode);\n";
   2922   OS << "      convertToMapAndConstraints(it->ConvertFn, Operands);\n";
   2923   OS << "      return Match_Success;\n";
   2924   OS << "    }\n\n";
   2925   OS << "    // We have selected a definite instruction, convert the parsed\n"
   2926      << "    // operands into the appropriate MCInst.\n";
   2927   OS << "    convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
   2928   OS << "\n";
   2929 
   2930   // Verify the instruction with the target-specific match predicate function.
   2931   OS << "    // We have a potential match. Check the target predicate to\n"
   2932      << "    // handle any context sensitive constraints.\n"
   2933      << "    unsigned MatchResult;\n"
   2934      << "    if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
   2935      << " Match_Success) {\n"
   2936      << "      Inst.clear();\n"
   2937      << "      RetCode = MatchResult;\n"
   2938      << "      HadMatchOtherThanPredicate = true;\n"
   2939      << "      continue;\n"
   2940      << "    }\n\n";
   2941 
   2942   // Call the post-processing function, if used.
   2943   std::string InsnCleanupFn =
   2944     AsmParser->getValueAsString("AsmParserInstCleanup");
   2945   if (!InsnCleanupFn.empty())
   2946     OS << "    " << InsnCleanupFn << "(Inst);\n";
   2947 
   2948   OS << "    return Match_Success;\n";
   2949   OS << "  }\n\n";
   2950 
   2951   OS << "  // Okay, we had no match.  Try to return a useful error code.\n";
   2952   OS << "  if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n";
   2953   OS << "    return RetCode;\n\n";
   2954   OS << "  // Missing feature matches return which features were missing\n";
   2955   OS << "  ErrorInfo = MissingFeatures;\n";
   2956   OS << "  return Match_MissingFeature;\n";
   2957   OS << "}\n\n";
   2958 
   2959   if (Info.OperandMatchInfo.size())
   2960     emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable,
   2961                              MaxMnemonicIndex);
   2962 
   2963   OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
   2964 }
   2965 
   2966 namespace llvm {
   2967 
   2968 void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) {
   2969   emitSourceFileHeader("Assembly Matcher Source Fragment", OS);
   2970   AsmMatcherEmitter(RK).run(OS);
   2971 }
   2972 
   2973 } // End llvm namespace
   2974