Home | History | Annotate | Download | only in Sema
      1 //===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements extra semantic analysis beyond what is enforced
     11 //  by the C type system.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "clang/Sema/SemaInternal.h"
     16 #include "clang/AST/ASTContext.h"
     17 #include "clang/AST/CharUnits.h"
     18 #include "clang/AST/DeclCXX.h"
     19 #include "clang/AST/DeclObjC.h"
     20 #include "clang/AST/EvaluatedExprVisitor.h"
     21 #include "clang/AST/Expr.h"
     22 #include "clang/AST/ExprCXX.h"
     23 #include "clang/AST/ExprObjC.h"
     24 #include "clang/AST/StmtCXX.h"
     25 #include "clang/AST/StmtObjC.h"
     26 #include "clang/Analysis/Analyses/FormatString.h"
     27 #include "clang/Basic/CharInfo.h"
     28 #include "clang/Basic/TargetBuiltins.h"
     29 #include "clang/Basic/TargetInfo.h"
     30 #include "clang/Lex/Preprocessor.h"
     31 #include "clang/Sema/Initialization.h"
     32 #include "clang/Sema/Lookup.h"
     33 #include "clang/Sema/ScopeInfo.h"
     34 #include "clang/Sema/Sema.h"
     35 #include "llvm/ADT/BitVector.h"
     36 #include "llvm/ADT/STLExtras.h"
     37 #include "llvm/ADT/SmallString.h"
     38 #include "llvm/Support/ConvertUTF.h"
     39 #include "llvm/Support/raw_ostream.h"
     40 #include <limits>
     41 using namespace clang;
     42 using namespace sema;
     43 
     44 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
     45                                                     unsigned ByteNo) const {
     46   return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
     47                                PP.getLangOpts(), PP.getTargetInfo());
     48 }
     49 
     50 /// Checks that a call expression's argument count is the desired number.
     51 /// This is useful when doing custom type-checking.  Returns true on error.
     52 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
     53   unsigned argCount = call->getNumArgs();
     54   if (argCount == desiredArgCount) return false;
     55 
     56   if (argCount < desiredArgCount)
     57     return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
     58         << 0 /*function call*/ << desiredArgCount << argCount
     59         << call->getSourceRange();
     60 
     61   // Highlight all the excess arguments.
     62   SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
     63                     call->getArg(argCount - 1)->getLocEnd());
     64 
     65   return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
     66     << 0 /*function call*/ << desiredArgCount << argCount
     67     << call->getArg(1)->getSourceRange();
     68 }
     69 
     70 /// Check that the first argument to __builtin_annotation is an integer
     71 /// and the second argument is a non-wide string literal.
     72 static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
     73   if (checkArgCount(S, TheCall, 2))
     74     return true;
     75 
     76   // First argument should be an integer.
     77   Expr *ValArg = TheCall->getArg(0);
     78   QualType Ty = ValArg->getType();
     79   if (!Ty->isIntegerType()) {
     80     S.Diag(ValArg->getLocStart(), diag::err_builtin_annotation_first_arg)
     81       << ValArg->getSourceRange();
     82     return true;
     83   }
     84 
     85   // Second argument should be a constant string.
     86   Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
     87   StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
     88   if (!Literal || !Literal->isAscii()) {
     89     S.Diag(StrArg->getLocStart(), diag::err_builtin_annotation_second_arg)
     90       << StrArg->getSourceRange();
     91     return true;
     92   }
     93 
     94   TheCall->setType(Ty);
     95   return false;
     96 }
     97 
     98 ExprResult
     99 Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
    100   ExprResult TheCallResult(Owned(TheCall));
    101 
    102   // Find out if any arguments are required to be integer constant expressions.
    103   unsigned ICEArguments = 0;
    104   ASTContext::GetBuiltinTypeError Error;
    105   Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
    106   if (Error != ASTContext::GE_None)
    107     ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
    108 
    109   // If any arguments are required to be ICE's, check and diagnose.
    110   for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
    111     // Skip arguments not required to be ICE's.
    112     if ((ICEArguments & (1 << ArgNo)) == 0) continue;
    113 
    114     llvm::APSInt Result;
    115     if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
    116       return true;
    117     ICEArguments &= ~(1 << ArgNo);
    118   }
    119 
    120   switch (BuiltinID) {
    121   case Builtin::BI__builtin___CFStringMakeConstantString:
    122     assert(TheCall->getNumArgs() == 1 &&
    123            "Wrong # arguments to builtin CFStringMakeConstantString");
    124     if (CheckObjCString(TheCall->getArg(0)))
    125       return ExprError();
    126     break;
    127   case Builtin::BI__builtin_stdarg_start:
    128   case Builtin::BI__builtin_va_start:
    129     if (SemaBuiltinVAStart(TheCall))
    130       return ExprError();
    131     break;
    132   case Builtin::BI__builtin_isgreater:
    133   case Builtin::BI__builtin_isgreaterequal:
    134   case Builtin::BI__builtin_isless:
    135   case Builtin::BI__builtin_islessequal:
    136   case Builtin::BI__builtin_islessgreater:
    137   case Builtin::BI__builtin_isunordered:
    138     if (SemaBuiltinUnorderedCompare(TheCall))
    139       return ExprError();
    140     break;
    141   case Builtin::BI__builtin_fpclassify:
    142     if (SemaBuiltinFPClassification(TheCall, 6))
    143       return ExprError();
    144     break;
    145   case Builtin::BI__builtin_isfinite:
    146   case Builtin::BI__builtin_isinf:
    147   case Builtin::BI__builtin_isinf_sign:
    148   case Builtin::BI__builtin_isnan:
    149   case Builtin::BI__builtin_isnormal:
    150     if (SemaBuiltinFPClassification(TheCall, 1))
    151       return ExprError();
    152     break;
    153   case Builtin::BI__builtin_shufflevector:
    154     return SemaBuiltinShuffleVector(TheCall);
    155     // TheCall will be freed by the smart pointer here, but that's fine, since
    156     // SemaBuiltinShuffleVector guts it, but then doesn't release it.
    157   case Builtin::BI__builtin_prefetch:
    158     if (SemaBuiltinPrefetch(TheCall))
    159       return ExprError();
    160     break;
    161   case Builtin::BI__builtin_object_size:
    162     if (SemaBuiltinObjectSize(TheCall))
    163       return ExprError();
    164     break;
    165   case Builtin::BI__builtin_longjmp:
    166     if (SemaBuiltinLongjmp(TheCall))
    167       return ExprError();
    168     break;
    169 
    170   case Builtin::BI__builtin_classify_type:
    171     if (checkArgCount(*this, TheCall, 1)) return true;
    172     TheCall->setType(Context.IntTy);
    173     break;
    174   case Builtin::BI__builtin_constant_p:
    175     if (checkArgCount(*this, TheCall, 1)) return true;
    176     TheCall->setType(Context.IntTy);
    177     break;
    178   case Builtin::BI__sync_fetch_and_add:
    179   case Builtin::BI__sync_fetch_and_add_1:
    180   case Builtin::BI__sync_fetch_and_add_2:
    181   case Builtin::BI__sync_fetch_and_add_4:
    182   case Builtin::BI__sync_fetch_and_add_8:
    183   case Builtin::BI__sync_fetch_and_add_16:
    184   case Builtin::BI__sync_fetch_and_sub:
    185   case Builtin::BI__sync_fetch_and_sub_1:
    186   case Builtin::BI__sync_fetch_and_sub_2:
    187   case Builtin::BI__sync_fetch_and_sub_4:
    188   case Builtin::BI__sync_fetch_and_sub_8:
    189   case Builtin::BI__sync_fetch_and_sub_16:
    190   case Builtin::BI__sync_fetch_and_or:
    191   case Builtin::BI__sync_fetch_and_or_1:
    192   case Builtin::BI__sync_fetch_and_or_2:
    193   case Builtin::BI__sync_fetch_and_or_4:
    194   case Builtin::BI__sync_fetch_and_or_8:
    195   case Builtin::BI__sync_fetch_and_or_16:
    196   case Builtin::BI__sync_fetch_and_and:
    197   case Builtin::BI__sync_fetch_and_and_1:
    198   case Builtin::BI__sync_fetch_and_and_2:
    199   case Builtin::BI__sync_fetch_and_and_4:
    200   case Builtin::BI__sync_fetch_and_and_8:
    201   case Builtin::BI__sync_fetch_and_and_16:
    202   case Builtin::BI__sync_fetch_and_xor:
    203   case Builtin::BI__sync_fetch_and_xor_1:
    204   case Builtin::BI__sync_fetch_and_xor_2:
    205   case Builtin::BI__sync_fetch_and_xor_4:
    206   case Builtin::BI__sync_fetch_and_xor_8:
    207   case Builtin::BI__sync_fetch_and_xor_16:
    208   case Builtin::BI__sync_add_and_fetch:
    209   case Builtin::BI__sync_add_and_fetch_1:
    210   case Builtin::BI__sync_add_and_fetch_2:
    211   case Builtin::BI__sync_add_and_fetch_4:
    212   case Builtin::BI__sync_add_and_fetch_8:
    213   case Builtin::BI__sync_add_and_fetch_16:
    214   case Builtin::BI__sync_sub_and_fetch:
    215   case Builtin::BI__sync_sub_and_fetch_1:
    216   case Builtin::BI__sync_sub_and_fetch_2:
    217   case Builtin::BI__sync_sub_and_fetch_4:
    218   case Builtin::BI__sync_sub_and_fetch_8:
    219   case Builtin::BI__sync_sub_and_fetch_16:
    220   case Builtin::BI__sync_and_and_fetch:
    221   case Builtin::BI__sync_and_and_fetch_1:
    222   case Builtin::BI__sync_and_and_fetch_2:
    223   case Builtin::BI__sync_and_and_fetch_4:
    224   case Builtin::BI__sync_and_and_fetch_8:
    225   case Builtin::BI__sync_and_and_fetch_16:
    226   case Builtin::BI__sync_or_and_fetch:
    227   case Builtin::BI__sync_or_and_fetch_1:
    228   case Builtin::BI__sync_or_and_fetch_2:
    229   case Builtin::BI__sync_or_and_fetch_4:
    230   case Builtin::BI__sync_or_and_fetch_8:
    231   case Builtin::BI__sync_or_and_fetch_16:
    232   case Builtin::BI__sync_xor_and_fetch:
    233   case Builtin::BI__sync_xor_and_fetch_1:
    234   case Builtin::BI__sync_xor_and_fetch_2:
    235   case Builtin::BI__sync_xor_and_fetch_4:
    236   case Builtin::BI__sync_xor_and_fetch_8:
    237   case Builtin::BI__sync_xor_and_fetch_16:
    238   case Builtin::BI__sync_val_compare_and_swap:
    239   case Builtin::BI__sync_val_compare_and_swap_1:
    240   case Builtin::BI__sync_val_compare_and_swap_2:
    241   case Builtin::BI__sync_val_compare_and_swap_4:
    242   case Builtin::BI__sync_val_compare_and_swap_8:
    243   case Builtin::BI__sync_val_compare_and_swap_16:
    244   case Builtin::BI__sync_bool_compare_and_swap:
    245   case Builtin::BI__sync_bool_compare_and_swap_1:
    246   case Builtin::BI__sync_bool_compare_and_swap_2:
    247   case Builtin::BI__sync_bool_compare_and_swap_4:
    248   case Builtin::BI__sync_bool_compare_and_swap_8:
    249   case Builtin::BI__sync_bool_compare_and_swap_16:
    250   case Builtin::BI__sync_lock_test_and_set:
    251   case Builtin::BI__sync_lock_test_and_set_1:
    252   case Builtin::BI__sync_lock_test_and_set_2:
    253   case Builtin::BI__sync_lock_test_and_set_4:
    254   case Builtin::BI__sync_lock_test_and_set_8:
    255   case Builtin::BI__sync_lock_test_and_set_16:
    256   case Builtin::BI__sync_lock_release:
    257   case Builtin::BI__sync_lock_release_1:
    258   case Builtin::BI__sync_lock_release_2:
    259   case Builtin::BI__sync_lock_release_4:
    260   case Builtin::BI__sync_lock_release_8:
    261   case Builtin::BI__sync_lock_release_16:
    262   case Builtin::BI__sync_swap:
    263   case Builtin::BI__sync_swap_1:
    264   case Builtin::BI__sync_swap_2:
    265   case Builtin::BI__sync_swap_4:
    266   case Builtin::BI__sync_swap_8:
    267   case Builtin::BI__sync_swap_16:
    268     return SemaBuiltinAtomicOverloaded(TheCallResult);
    269 #define BUILTIN(ID, TYPE, ATTRS)
    270 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
    271   case Builtin::BI##ID: \
    272     return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
    273 #include "clang/Basic/Builtins.def"
    274   case Builtin::BI__builtin_annotation:
    275     if (SemaBuiltinAnnotation(*this, TheCall))
    276       return ExprError();
    277     break;
    278   }
    279 
    280   // Since the target specific builtins for each arch overlap, only check those
    281   // of the arch we are compiling for.
    282   if (BuiltinID >= Builtin::FirstTSBuiltin) {
    283     switch (Context.getTargetInfo().getTriple().getArch()) {
    284       case llvm::Triple::arm:
    285       case llvm::Triple::thumb:
    286         if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
    287           return ExprError();
    288         break;
    289       case llvm::Triple::mips:
    290       case llvm::Triple::mipsel:
    291       case llvm::Triple::mips64:
    292       case llvm::Triple::mips64el:
    293         if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall))
    294           return ExprError();
    295         break;
    296       default:
    297         break;
    298     }
    299   }
    300 
    301   return TheCallResult;
    302 }
    303 
    304 // Get the valid immediate range for the specified NEON type code.
    305 static unsigned RFT(unsigned t, bool shift = false) {
    306   NeonTypeFlags Type(t);
    307   int IsQuad = Type.isQuad();
    308   switch (Type.getEltType()) {
    309   case NeonTypeFlags::Int8:
    310   case NeonTypeFlags::Poly8:
    311     return shift ? 7 : (8 << IsQuad) - 1;
    312   case NeonTypeFlags::Int16:
    313   case NeonTypeFlags::Poly16:
    314     return shift ? 15 : (4 << IsQuad) - 1;
    315   case NeonTypeFlags::Int32:
    316     return shift ? 31 : (2 << IsQuad) - 1;
    317   case NeonTypeFlags::Int64:
    318     return shift ? 63 : (1 << IsQuad) - 1;
    319   case NeonTypeFlags::Float16:
    320     assert(!shift && "cannot shift float types!");
    321     return (4 << IsQuad) - 1;
    322   case NeonTypeFlags::Float32:
    323     assert(!shift && "cannot shift float types!");
    324     return (2 << IsQuad) - 1;
    325   }
    326   llvm_unreachable("Invalid NeonTypeFlag!");
    327 }
    328 
    329 /// getNeonEltType - Return the QualType corresponding to the elements of
    330 /// the vector type specified by the NeonTypeFlags.  This is used to check
    331 /// the pointer arguments for Neon load/store intrinsics.
    332 static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context) {
    333   switch (Flags.getEltType()) {
    334   case NeonTypeFlags::Int8:
    335     return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
    336   case NeonTypeFlags::Int16:
    337     return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
    338   case NeonTypeFlags::Int32:
    339     return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
    340   case NeonTypeFlags::Int64:
    341     return Flags.isUnsigned() ? Context.UnsignedLongLongTy : Context.LongLongTy;
    342   case NeonTypeFlags::Poly8:
    343     return Context.SignedCharTy;
    344   case NeonTypeFlags::Poly16:
    345     return Context.ShortTy;
    346   case NeonTypeFlags::Float16:
    347     return Context.UnsignedShortTy;
    348   case NeonTypeFlags::Float32:
    349     return Context.FloatTy;
    350   }
    351   llvm_unreachable("Invalid NeonTypeFlag!");
    352 }
    353 
    354 bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
    355   llvm::APSInt Result;
    356 
    357   uint64_t mask = 0;
    358   unsigned TV = 0;
    359   int PtrArgNum = -1;
    360   bool HasConstPtr = false;
    361   switch (BuiltinID) {
    362 #define GET_NEON_OVERLOAD_CHECK
    363 #include "clang/Basic/arm_neon.inc"
    364 #undef GET_NEON_OVERLOAD_CHECK
    365   }
    366 
    367   // For NEON intrinsics which are overloaded on vector element type, validate
    368   // the immediate which specifies which variant to emit.
    369   unsigned ImmArg = TheCall->getNumArgs()-1;
    370   if (mask) {
    371     if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
    372       return true;
    373 
    374     TV = Result.getLimitedValue(64);
    375     if ((TV > 63) || (mask & (1ULL << TV)) == 0)
    376       return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
    377         << TheCall->getArg(ImmArg)->getSourceRange();
    378   }
    379 
    380   if (PtrArgNum >= 0) {
    381     // Check that pointer arguments have the specified type.
    382     Expr *Arg = TheCall->getArg(PtrArgNum);
    383     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
    384       Arg = ICE->getSubExpr();
    385     ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
    386     QualType RHSTy = RHS.get()->getType();
    387     QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context);
    388     if (HasConstPtr)
    389       EltTy = EltTy.withConst();
    390     QualType LHSTy = Context.getPointerType(EltTy);
    391     AssignConvertType ConvTy;
    392     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
    393     if (RHS.isInvalid())
    394       return true;
    395     if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
    396                                  RHS.get(), AA_Assigning))
    397       return true;
    398   }
    399 
    400   // For NEON intrinsics which take an immediate value as part of the
    401   // instruction, range check them here.
    402   unsigned i = 0, l = 0, u = 0;
    403   switch (BuiltinID) {
    404   default: return false;
    405   case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
    406   case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
    407   case ARM::BI__builtin_arm_vcvtr_f:
    408   case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
    409 #define GET_NEON_IMMEDIATE_CHECK
    410 #include "clang/Basic/arm_neon.inc"
    411 #undef GET_NEON_IMMEDIATE_CHECK
    412   };
    413 
    414   // We can't check the value of a dependent argument.
    415   if (TheCall->getArg(i)->isTypeDependent() ||
    416       TheCall->getArg(i)->isValueDependent())
    417     return false;
    418 
    419   // Check that the immediate argument is actually a constant.
    420   if (SemaBuiltinConstantArg(TheCall, i, Result))
    421     return true;
    422 
    423   // Range check against the upper/lower values for this isntruction.
    424   unsigned Val = Result.getZExtValue();
    425   if (Val < l || Val > (u + l))
    426     return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
    427       << l << u+l << TheCall->getArg(i)->getSourceRange();
    428 
    429   // FIXME: VFP Intrinsics should error if VFP not present.
    430   return false;
    431 }
    432 
    433 bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
    434   unsigned i = 0, l = 0, u = 0;
    435   switch (BuiltinID) {
    436   default: return false;
    437   case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
    438   case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
    439   case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
    440   case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
    441   case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
    442   case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
    443   case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
    444   };
    445 
    446   // We can't check the value of a dependent argument.
    447   if (TheCall->getArg(i)->isTypeDependent() ||
    448       TheCall->getArg(i)->isValueDependent())
    449     return false;
    450 
    451   // Check that the immediate argument is actually a constant.
    452   llvm::APSInt Result;
    453   if (SemaBuiltinConstantArg(TheCall, i, Result))
    454     return true;
    455 
    456   // Range check against the upper/lower values for this instruction.
    457   unsigned Val = Result.getZExtValue();
    458   if (Val < l || Val > u)
    459     return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
    460       << l << u << TheCall->getArg(i)->getSourceRange();
    461 
    462   return false;
    463 }
    464 
    465 /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
    466 /// parameter with the FormatAttr's correct format_idx and firstDataArg.
    467 /// Returns true when the format fits the function and the FormatStringInfo has
    468 /// been populated.
    469 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
    470                                FormatStringInfo *FSI) {
    471   FSI->HasVAListArg = Format->getFirstArg() == 0;
    472   FSI->FormatIdx = Format->getFormatIdx() - 1;
    473   FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
    474 
    475   // The way the format attribute works in GCC, the implicit this argument
    476   // of member functions is counted. However, it doesn't appear in our own
    477   // lists, so decrement format_idx in that case.
    478   if (IsCXXMember) {
    479     if(FSI->FormatIdx == 0)
    480       return false;
    481     --FSI->FormatIdx;
    482     if (FSI->FirstDataArg != 0)
    483       --FSI->FirstDataArg;
    484   }
    485   return true;
    486 }
    487 
    488 /// Handles the checks for format strings, non-POD arguments to vararg
    489 /// functions, and NULL arguments passed to non-NULL parameters.
    490 void Sema::checkCall(NamedDecl *FDecl,
    491                      ArrayRef<const Expr *> Args,
    492                      unsigned NumProtoArgs,
    493                      bool IsMemberFunction,
    494                      SourceLocation Loc,
    495                      SourceRange Range,
    496                      VariadicCallType CallType) {
    497   if (CurContext->isDependentContext())
    498     return;
    499 
    500   // Printf and scanf checking.
    501   bool HandledFormatString = false;
    502   for (specific_attr_iterator<FormatAttr>
    503          I = FDecl->specific_attr_begin<FormatAttr>(),
    504          E = FDecl->specific_attr_end<FormatAttr>(); I != E ; ++I)
    505     if (CheckFormatArguments(*I, Args, IsMemberFunction, CallType, Loc, Range))
    506         HandledFormatString = true;
    507 
    508   // Refuse POD arguments that weren't caught by the format string
    509   // checks above.
    510   if (!HandledFormatString && CallType != VariadicDoesNotApply)
    511     for (unsigned ArgIdx = NumProtoArgs; ArgIdx < Args.size(); ++ArgIdx) {
    512       // Args[ArgIdx] can be null in malformed code.
    513       if (const Expr *Arg = Args[ArgIdx])
    514         variadicArgumentPODCheck(Arg, CallType);
    515     }
    516 
    517   for (specific_attr_iterator<NonNullAttr>
    518          I = FDecl->specific_attr_begin<NonNullAttr>(),
    519          E = FDecl->specific_attr_end<NonNullAttr>(); I != E; ++I)
    520     CheckNonNullArguments(*I, Args.data(), Loc);
    521 
    522   // Type safety checking.
    523   for (specific_attr_iterator<ArgumentWithTypeTagAttr>
    524          i = FDecl->specific_attr_begin<ArgumentWithTypeTagAttr>(),
    525          e = FDecl->specific_attr_end<ArgumentWithTypeTagAttr>(); i != e; ++i) {
    526     CheckArgumentWithTypeTag(*i, Args.data());
    527   }
    528 }
    529 
    530 /// CheckConstructorCall - Check a constructor call for correctness and safety
    531 /// properties not enforced by the C type system.
    532 void Sema::CheckConstructorCall(FunctionDecl *FDecl,
    533                                 ArrayRef<const Expr *> Args,
    534                                 const FunctionProtoType *Proto,
    535                                 SourceLocation Loc) {
    536   VariadicCallType CallType =
    537     Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
    538   checkCall(FDecl, Args, Proto->getNumArgs(),
    539             /*IsMemberFunction=*/true, Loc, SourceRange(), CallType);
    540 }
    541 
    542 /// CheckFunctionCall - Check a direct function call for various correctness
    543 /// and safety properties not strictly enforced by the C type system.
    544 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
    545                              const FunctionProtoType *Proto) {
    546   bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
    547                               isa<CXXMethodDecl>(FDecl);
    548   bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
    549                           IsMemberOperatorCall;
    550   VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
    551                                                   TheCall->getCallee());
    552   unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
    553   Expr** Args = TheCall->getArgs();
    554   unsigned NumArgs = TheCall->getNumArgs();
    555   if (IsMemberOperatorCall) {
    556     // If this is a call to a member operator, hide the first argument
    557     // from checkCall.
    558     // FIXME: Our choice of AST representation here is less than ideal.
    559     ++Args;
    560     --NumArgs;
    561   }
    562   checkCall(FDecl, llvm::makeArrayRef<const Expr *>(Args, NumArgs),
    563             NumProtoArgs,
    564             IsMemberFunction, TheCall->getRParenLoc(),
    565             TheCall->getCallee()->getSourceRange(), CallType);
    566 
    567   IdentifierInfo *FnInfo = FDecl->getIdentifier();
    568   // None of the checks below are needed for functions that don't have
    569   // simple names (e.g., C++ conversion functions).
    570   if (!FnInfo)
    571     return false;
    572 
    573   unsigned CMId = FDecl->getMemoryFunctionKind();
    574   if (CMId == 0)
    575     return false;
    576 
    577   // Handle memory setting and copying functions.
    578   if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
    579     CheckStrlcpycatArguments(TheCall, FnInfo);
    580   else if (CMId == Builtin::BIstrncat)
    581     CheckStrncatArguments(TheCall, FnInfo);
    582   else
    583     CheckMemaccessArguments(TheCall, CMId, FnInfo);
    584 
    585   return false;
    586 }
    587 
    588 bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
    589                                Expr **Args, unsigned NumArgs) {
    590   VariadicCallType CallType =
    591       Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
    592 
    593   checkCall(Method, llvm::makeArrayRef<const Expr *>(Args, NumArgs),
    594             Method->param_size(),
    595             /*IsMemberFunction=*/false,
    596             lbrac, Method->getSourceRange(), CallType);
    597 
    598   return false;
    599 }
    600 
    601 bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall,
    602                           const FunctionProtoType *Proto) {
    603   const VarDecl *V = dyn_cast<VarDecl>(NDecl);
    604   if (!V)
    605     return false;
    606 
    607   QualType Ty = V->getType();
    608   if (!Ty->isBlockPointerType())
    609     return false;
    610 
    611   VariadicCallType CallType =
    612       Proto && Proto->isVariadic() ? VariadicBlock : VariadicDoesNotApply ;
    613   unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
    614 
    615   checkCall(NDecl,
    616             llvm::makeArrayRef<const Expr *>(TheCall->getArgs(),
    617                                              TheCall->getNumArgs()),
    618             NumProtoArgs, /*IsMemberFunction=*/false,
    619             TheCall->getRParenLoc(),
    620             TheCall->getCallee()->getSourceRange(), CallType);
    621 
    622   return false;
    623 }
    624 
    625 ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
    626                                          AtomicExpr::AtomicOp Op) {
    627   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
    628   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
    629 
    630   // All these operations take one of the following forms:
    631   enum {
    632     // C    __c11_atomic_init(A *, C)
    633     Init,
    634     // C    __c11_atomic_load(A *, int)
    635     Load,
    636     // void __atomic_load(A *, CP, int)
    637     Copy,
    638     // C    __c11_atomic_add(A *, M, int)
    639     Arithmetic,
    640     // C    __atomic_exchange_n(A *, CP, int)
    641     Xchg,
    642     // void __atomic_exchange(A *, C *, CP, int)
    643     GNUXchg,
    644     // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
    645     C11CmpXchg,
    646     // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
    647     GNUCmpXchg
    648   } Form = Init;
    649   const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 4, 5, 6 };
    650   const unsigned NumVals[] = { 1, 0, 1, 1, 1, 2, 2, 3 };
    651   // where:
    652   //   C is an appropriate type,
    653   //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
    654   //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
    655   //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
    656   //   the int parameters are for orderings.
    657 
    658   assert(AtomicExpr::AO__c11_atomic_init == 0 &&
    659          AtomicExpr::AO__c11_atomic_fetch_xor + 1 == AtomicExpr::AO__atomic_load
    660          && "need to update code for modified C11 atomics");
    661   bool IsC11 = Op >= AtomicExpr::AO__c11_atomic_init &&
    662                Op <= AtomicExpr::AO__c11_atomic_fetch_xor;
    663   bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
    664              Op == AtomicExpr::AO__atomic_store_n ||
    665              Op == AtomicExpr::AO__atomic_exchange_n ||
    666              Op == AtomicExpr::AO__atomic_compare_exchange_n;
    667   bool IsAddSub = false;
    668 
    669   switch (Op) {
    670   case AtomicExpr::AO__c11_atomic_init:
    671     Form = Init;
    672     break;
    673 
    674   case AtomicExpr::AO__c11_atomic_load:
    675   case AtomicExpr::AO__atomic_load_n:
    676     Form = Load;
    677     break;
    678 
    679   case AtomicExpr::AO__c11_atomic_store:
    680   case AtomicExpr::AO__atomic_load:
    681   case AtomicExpr::AO__atomic_store:
    682   case AtomicExpr::AO__atomic_store_n:
    683     Form = Copy;
    684     break;
    685 
    686   case AtomicExpr::AO__c11_atomic_fetch_add:
    687   case AtomicExpr::AO__c11_atomic_fetch_sub:
    688   case AtomicExpr::AO__atomic_fetch_add:
    689   case AtomicExpr::AO__atomic_fetch_sub:
    690   case AtomicExpr::AO__atomic_add_fetch:
    691   case AtomicExpr::AO__atomic_sub_fetch:
    692     IsAddSub = true;
    693     // Fall through.
    694   case AtomicExpr::AO__c11_atomic_fetch_and:
    695   case AtomicExpr::AO__c11_atomic_fetch_or:
    696   case AtomicExpr::AO__c11_atomic_fetch_xor:
    697   case AtomicExpr::AO__atomic_fetch_and:
    698   case AtomicExpr::AO__atomic_fetch_or:
    699   case AtomicExpr::AO__atomic_fetch_xor:
    700   case AtomicExpr::AO__atomic_fetch_nand:
    701   case AtomicExpr::AO__atomic_and_fetch:
    702   case AtomicExpr::AO__atomic_or_fetch:
    703   case AtomicExpr::AO__atomic_xor_fetch:
    704   case AtomicExpr::AO__atomic_nand_fetch:
    705     Form = Arithmetic;
    706     break;
    707 
    708   case AtomicExpr::AO__c11_atomic_exchange:
    709   case AtomicExpr::AO__atomic_exchange_n:
    710     Form = Xchg;
    711     break;
    712 
    713   case AtomicExpr::AO__atomic_exchange:
    714     Form = GNUXchg;
    715     break;
    716 
    717   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
    718   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
    719     Form = C11CmpXchg;
    720     break;
    721 
    722   case AtomicExpr::AO__atomic_compare_exchange:
    723   case AtomicExpr::AO__atomic_compare_exchange_n:
    724     Form = GNUCmpXchg;
    725     break;
    726   }
    727 
    728   // Check we have the right number of arguments.
    729   if (TheCall->getNumArgs() < NumArgs[Form]) {
    730     Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
    731       << 0 << NumArgs[Form] << TheCall->getNumArgs()
    732       << TheCall->getCallee()->getSourceRange();
    733     return ExprError();
    734   } else if (TheCall->getNumArgs() > NumArgs[Form]) {
    735     Diag(TheCall->getArg(NumArgs[Form])->getLocStart(),
    736          diag::err_typecheck_call_too_many_args)
    737       << 0 << NumArgs[Form] << TheCall->getNumArgs()
    738       << TheCall->getCallee()->getSourceRange();
    739     return ExprError();
    740   }
    741 
    742   // Inspect the first argument of the atomic operation.
    743   Expr *Ptr = TheCall->getArg(0);
    744   Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
    745   const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
    746   if (!pointerType) {
    747     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
    748       << Ptr->getType() << Ptr->getSourceRange();
    749     return ExprError();
    750   }
    751 
    752   // For a __c11 builtin, this should be a pointer to an _Atomic type.
    753   QualType AtomTy = pointerType->getPointeeType(); // 'A'
    754   QualType ValType = AtomTy; // 'C'
    755   if (IsC11) {
    756     if (!AtomTy->isAtomicType()) {
    757       Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
    758         << Ptr->getType() << Ptr->getSourceRange();
    759       return ExprError();
    760     }
    761     if (AtomTy.isConstQualified()) {
    762       Diag(DRE->getLocStart(), diag::err_atomic_op_needs_non_const_atomic)
    763         << Ptr->getType() << Ptr->getSourceRange();
    764       return ExprError();
    765     }
    766     ValType = AtomTy->getAs<AtomicType>()->getValueType();
    767   }
    768 
    769   // For an arithmetic operation, the implied arithmetic must be well-formed.
    770   if (Form == Arithmetic) {
    771     // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
    772     if (IsAddSub && !ValType->isIntegerType() && !ValType->isPointerType()) {
    773       Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
    774         << IsC11 << Ptr->getType() << Ptr->getSourceRange();
    775       return ExprError();
    776     }
    777     if (!IsAddSub && !ValType->isIntegerType()) {
    778       Diag(DRE->getLocStart(), diag::err_atomic_op_bitwise_needs_atomic_int)
    779         << IsC11 << Ptr->getType() << Ptr->getSourceRange();
    780       return ExprError();
    781     }
    782   } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
    783     // For __atomic_*_n operations, the value type must be a scalar integral or
    784     // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
    785     Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
    786       << IsC11 << Ptr->getType() << Ptr->getSourceRange();
    787     return ExprError();
    788   }
    789 
    790   if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context)) {
    791     // For GNU atomics, require a trivially-copyable type. This is not part of
    792     // the GNU atomics specification, but we enforce it for sanity.
    793     Diag(DRE->getLocStart(), diag::err_atomic_op_needs_trivial_copy)
    794       << Ptr->getType() << Ptr->getSourceRange();
    795     return ExprError();
    796   }
    797 
    798   // FIXME: For any builtin other than a load, the ValType must not be
    799   // const-qualified.
    800 
    801   switch (ValType.getObjCLifetime()) {
    802   case Qualifiers::OCL_None:
    803   case Qualifiers::OCL_ExplicitNone:
    804     // okay
    805     break;
    806 
    807   case Qualifiers::OCL_Weak:
    808   case Qualifiers::OCL_Strong:
    809   case Qualifiers::OCL_Autoreleasing:
    810     // FIXME: Can this happen? By this point, ValType should be known
    811     // to be trivially copyable.
    812     Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
    813       << ValType << Ptr->getSourceRange();
    814     return ExprError();
    815   }
    816 
    817   QualType ResultType = ValType;
    818   if (Form == Copy || Form == GNUXchg || Form == Init)
    819     ResultType = Context.VoidTy;
    820   else if (Form == C11CmpXchg || Form == GNUCmpXchg)
    821     ResultType = Context.BoolTy;
    822 
    823   // The type of a parameter passed 'by value'. In the GNU atomics, such
    824   // arguments are actually passed as pointers.
    825   QualType ByValType = ValType; // 'CP'
    826   if (!IsC11 && !IsN)
    827     ByValType = Ptr->getType();
    828 
    829   // The first argument --- the pointer --- has a fixed type; we
    830   // deduce the types of the rest of the arguments accordingly.  Walk
    831   // the remaining arguments, converting them to the deduced value type.
    832   for (unsigned i = 1; i != NumArgs[Form]; ++i) {
    833     QualType Ty;
    834     if (i < NumVals[Form] + 1) {
    835       switch (i) {
    836       case 1:
    837         // The second argument is the non-atomic operand. For arithmetic, this
    838         // is always passed by value, and for a compare_exchange it is always
    839         // passed by address. For the rest, GNU uses by-address and C11 uses
    840         // by-value.
    841         assert(Form != Load);
    842         if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
    843           Ty = ValType;
    844         else if (Form == Copy || Form == Xchg)
    845           Ty = ByValType;
    846         else if (Form == Arithmetic)
    847           Ty = Context.getPointerDiffType();
    848         else
    849           Ty = Context.getPointerType(ValType.getUnqualifiedType());
    850         break;
    851       case 2:
    852         // The third argument to compare_exchange / GNU exchange is a
    853         // (pointer to a) desired value.
    854         Ty = ByValType;
    855         break;
    856       case 3:
    857         // The fourth argument to GNU compare_exchange is a 'weak' flag.
    858         Ty = Context.BoolTy;
    859         break;
    860       }
    861     } else {
    862       // The order(s) are always converted to int.
    863       Ty = Context.IntTy;
    864     }
    865 
    866     InitializedEntity Entity =
    867         InitializedEntity::InitializeParameter(Context, Ty, false);
    868     ExprResult Arg = TheCall->getArg(i);
    869     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
    870     if (Arg.isInvalid())
    871       return true;
    872     TheCall->setArg(i, Arg.get());
    873   }
    874 
    875   // Permute the arguments into a 'consistent' order.
    876   SmallVector<Expr*, 5> SubExprs;
    877   SubExprs.push_back(Ptr);
    878   switch (Form) {
    879   case Init:
    880     // Note, AtomicExpr::getVal1() has a special case for this atomic.
    881     SubExprs.push_back(TheCall->getArg(1)); // Val1
    882     break;
    883   case Load:
    884     SubExprs.push_back(TheCall->getArg(1)); // Order
    885     break;
    886   case Copy:
    887   case Arithmetic:
    888   case Xchg:
    889     SubExprs.push_back(TheCall->getArg(2)); // Order
    890     SubExprs.push_back(TheCall->getArg(1)); // Val1
    891     break;
    892   case GNUXchg:
    893     // Note, AtomicExpr::getVal2() has a special case for this atomic.
    894     SubExprs.push_back(TheCall->getArg(3)); // Order
    895     SubExprs.push_back(TheCall->getArg(1)); // Val1
    896     SubExprs.push_back(TheCall->getArg(2)); // Val2
    897     break;
    898   case C11CmpXchg:
    899     SubExprs.push_back(TheCall->getArg(3)); // Order
    900     SubExprs.push_back(TheCall->getArg(1)); // Val1
    901     SubExprs.push_back(TheCall->getArg(4)); // OrderFail
    902     SubExprs.push_back(TheCall->getArg(2)); // Val2
    903     break;
    904   case GNUCmpXchg:
    905     SubExprs.push_back(TheCall->getArg(4)); // Order
    906     SubExprs.push_back(TheCall->getArg(1)); // Val1
    907     SubExprs.push_back(TheCall->getArg(5)); // OrderFail
    908     SubExprs.push_back(TheCall->getArg(2)); // Val2
    909     SubExprs.push_back(TheCall->getArg(3)); // Weak
    910     break;
    911   }
    912 
    913   return Owned(new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
    914                                         SubExprs, ResultType, Op,
    915                                         TheCall->getRParenLoc()));
    916 }
    917 
    918 
    919 /// checkBuiltinArgument - Given a call to a builtin function, perform
    920 /// normal type-checking on the given argument, updating the call in
    921 /// place.  This is useful when a builtin function requires custom
    922 /// type-checking for some of its arguments but not necessarily all of
    923 /// them.
    924 ///
    925 /// Returns true on error.
    926 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
    927   FunctionDecl *Fn = E->getDirectCallee();
    928   assert(Fn && "builtin call without direct callee!");
    929 
    930   ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
    931   InitializedEntity Entity =
    932     InitializedEntity::InitializeParameter(S.Context, Param);
    933 
    934   ExprResult Arg = E->getArg(0);
    935   Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
    936   if (Arg.isInvalid())
    937     return true;
    938 
    939   E->setArg(ArgIndex, Arg.take());
    940   return false;
    941 }
    942 
    943 /// SemaBuiltinAtomicOverloaded - We have a call to a function like
    944 /// __sync_fetch_and_add, which is an overloaded function based on the pointer
    945 /// type of its first argument.  The main ActOnCallExpr routines have already
    946 /// promoted the types of arguments because all of these calls are prototyped as
    947 /// void(...).
    948 ///
    949 /// This function goes through and does final semantic checking for these
    950 /// builtins,
    951 ExprResult
    952 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
    953   CallExpr *TheCall = (CallExpr *)TheCallResult.get();
    954   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
    955   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
    956 
    957   // Ensure that we have at least one argument to do type inference from.
    958   if (TheCall->getNumArgs() < 1) {
    959     Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
    960       << 0 << 1 << TheCall->getNumArgs()
    961       << TheCall->getCallee()->getSourceRange();
    962     return ExprError();
    963   }
    964 
    965   // Inspect the first argument of the atomic builtin.  This should always be
    966   // a pointer type, whose element is an integral scalar or pointer type.
    967   // Because it is a pointer type, we don't have to worry about any implicit
    968   // casts here.
    969   // FIXME: We don't allow floating point scalars as input.
    970   Expr *FirstArg = TheCall->getArg(0);
    971   ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
    972   if (FirstArgResult.isInvalid())
    973     return ExprError();
    974   FirstArg = FirstArgResult.take();
    975   TheCall->setArg(0, FirstArg);
    976 
    977   const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
    978   if (!pointerType) {
    979     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
    980       << FirstArg->getType() << FirstArg->getSourceRange();
    981     return ExprError();
    982   }
    983 
    984   QualType ValType = pointerType->getPointeeType();
    985   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
    986       !ValType->isBlockPointerType()) {
    987     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
    988       << FirstArg->getType() << FirstArg->getSourceRange();
    989     return ExprError();
    990   }
    991 
    992   switch (ValType.getObjCLifetime()) {
    993   case Qualifiers::OCL_None:
    994   case Qualifiers::OCL_ExplicitNone:
    995     // okay
    996     break;
    997 
    998   case Qualifiers::OCL_Weak:
    999   case Qualifiers::OCL_Strong:
   1000   case Qualifiers::OCL_Autoreleasing:
   1001     Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
   1002       << ValType << FirstArg->getSourceRange();
   1003     return ExprError();
   1004   }
   1005 
   1006   // Strip any qualifiers off ValType.
   1007   ValType = ValType.getUnqualifiedType();
   1008 
   1009   // The majority of builtins return a value, but a few have special return
   1010   // types, so allow them to override appropriately below.
   1011   QualType ResultType = ValType;
   1012 
   1013   // We need to figure out which concrete builtin this maps onto.  For example,
   1014   // __sync_fetch_and_add with a 2 byte object turns into
   1015   // __sync_fetch_and_add_2.
   1016 #define BUILTIN_ROW(x) \
   1017   { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
   1018     Builtin::BI##x##_8, Builtin::BI##x##_16 }
   1019 
   1020   static const unsigned BuiltinIndices[][5] = {
   1021     BUILTIN_ROW(__sync_fetch_and_add),
   1022     BUILTIN_ROW(__sync_fetch_and_sub),
   1023     BUILTIN_ROW(__sync_fetch_and_or),
   1024     BUILTIN_ROW(__sync_fetch_and_and),
   1025     BUILTIN_ROW(__sync_fetch_and_xor),
   1026 
   1027     BUILTIN_ROW(__sync_add_and_fetch),
   1028     BUILTIN_ROW(__sync_sub_and_fetch),
   1029     BUILTIN_ROW(__sync_and_and_fetch),
   1030     BUILTIN_ROW(__sync_or_and_fetch),
   1031     BUILTIN_ROW(__sync_xor_and_fetch),
   1032 
   1033     BUILTIN_ROW(__sync_val_compare_and_swap),
   1034     BUILTIN_ROW(__sync_bool_compare_and_swap),
   1035     BUILTIN_ROW(__sync_lock_test_and_set),
   1036     BUILTIN_ROW(__sync_lock_release),
   1037     BUILTIN_ROW(__sync_swap)
   1038   };
   1039 #undef BUILTIN_ROW
   1040 
   1041   // Determine the index of the size.
   1042   unsigned SizeIndex;
   1043   switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
   1044   case 1: SizeIndex = 0; break;
   1045   case 2: SizeIndex = 1; break;
   1046   case 4: SizeIndex = 2; break;
   1047   case 8: SizeIndex = 3; break;
   1048   case 16: SizeIndex = 4; break;
   1049   default:
   1050     Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
   1051       << FirstArg->getType() << FirstArg->getSourceRange();
   1052     return ExprError();
   1053   }
   1054 
   1055   // Each of these builtins has one pointer argument, followed by some number of
   1056   // values (0, 1 or 2) followed by a potentially empty varags list of stuff
   1057   // that we ignore.  Find out which row of BuiltinIndices to read from as well
   1058   // as the number of fixed args.
   1059   unsigned BuiltinID = FDecl->getBuiltinID();
   1060   unsigned BuiltinIndex, NumFixed = 1;
   1061   switch (BuiltinID) {
   1062   default: llvm_unreachable("Unknown overloaded atomic builtin!");
   1063   case Builtin::BI__sync_fetch_and_add:
   1064   case Builtin::BI__sync_fetch_and_add_1:
   1065   case Builtin::BI__sync_fetch_and_add_2:
   1066   case Builtin::BI__sync_fetch_and_add_4:
   1067   case Builtin::BI__sync_fetch_and_add_8:
   1068   case Builtin::BI__sync_fetch_and_add_16:
   1069     BuiltinIndex = 0;
   1070     break;
   1071 
   1072   case Builtin::BI__sync_fetch_and_sub:
   1073   case Builtin::BI__sync_fetch_and_sub_1:
   1074   case Builtin::BI__sync_fetch_and_sub_2:
   1075   case Builtin::BI__sync_fetch_and_sub_4:
   1076   case Builtin::BI__sync_fetch_and_sub_8:
   1077   case Builtin::BI__sync_fetch_and_sub_16:
   1078     BuiltinIndex = 1;
   1079     break;
   1080 
   1081   case Builtin::BI__sync_fetch_and_or:
   1082   case Builtin::BI__sync_fetch_and_or_1:
   1083   case Builtin::BI__sync_fetch_and_or_2:
   1084   case Builtin::BI__sync_fetch_and_or_4:
   1085   case Builtin::BI__sync_fetch_and_or_8:
   1086   case Builtin::BI__sync_fetch_and_or_16:
   1087     BuiltinIndex = 2;
   1088     break;
   1089 
   1090   case Builtin::BI__sync_fetch_and_and:
   1091   case Builtin::BI__sync_fetch_and_and_1:
   1092   case Builtin::BI__sync_fetch_and_and_2:
   1093   case Builtin::BI__sync_fetch_and_and_4:
   1094   case Builtin::BI__sync_fetch_and_and_8:
   1095   case Builtin::BI__sync_fetch_and_and_16:
   1096     BuiltinIndex = 3;
   1097     break;
   1098 
   1099   case Builtin::BI__sync_fetch_and_xor:
   1100   case Builtin::BI__sync_fetch_and_xor_1:
   1101   case Builtin::BI__sync_fetch_and_xor_2:
   1102   case Builtin::BI__sync_fetch_and_xor_4:
   1103   case Builtin::BI__sync_fetch_and_xor_8:
   1104   case Builtin::BI__sync_fetch_and_xor_16:
   1105     BuiltinIndex = 4;
   1106     break;
   1107 
   1108   case Builtin::BI__sync_add_and_fetch:
   1109   case Builtin::BI__sync_add_and_fetch_1:
   1110   case Builtin::BI__sync_add_and_fetch_2:
   1111   case Builtin::BI__sync_add_and_fetch_4:
   1112   case Builtin::BI__sync_add_and_fetch_8:
   1113   case Builtin::BI__sync_add_and_fetch_16:
   1114     BuiltinIndex = 5;
   1115     break;
   1116 
   1117   case Builtin::BI__sync_sub_and_fetch:
   1118   case Builtin::BI__sync_sub_and_fetch_1:
   1119   case Builtin::BI__sync_sub_and_fetch_2:
   1120   case Builtin::BI__sync_sub_and_fetch_4:
   1121   case Builtin::BI__sync_sub_and_fetch_8:
   1122   case Builtin::BI__sync_sub_and_fetch_16:
   1123     BuiltinIndex = 6;
   1124     break;
   1125 
   1126   case Builtin::BI__sync_and_and_fetch:
   1127   case Builtin::BI__sync_and_and_fetch_1:
   1128   case Builtin::BI__sync_and_and_fetch_2:
   1129   case Builtin::BI__sync_and_and_fetch_4:
   1130   case Builtin::BI__sync_and_and_fetch_8:
   1131   case Builtin::BI__sync_and_and_fetch_16:
   1132     BuiltinIndex = 7;
   1133     break;
   1134 
   1135   case Builtin::BI__sync_or_and_fetch:
   1136   case Builtin::BI__sync_or_and_fetch_1:
   1137   case Builtin::BI__sync_or_and_fetch_2:
   1138   case Builtin::BI__sync_or_and_fetch_4:
   1139   case Builtin::BI__sync_or_and_fetch_8:
   1140   case Builtin::BI__sync_or_and_fetch_16:
   1141     BuiltinIndex = 8;
   1142     break;
   1143 
   1144   case Builtin::BI__sync_xor_and_fetch:
   1145   case Builtin::BI__sync_xor_and_fetch_1:
   1146   case Builtin::BI__sync_xor_and_fetch_2:
   1147   case Builtin::BI__sync_xor_and_fetch_4:
   1148   case Builtin::BI__sync_xor_and_fetch_8:
   1149   case Builtin::BI__sync_xor_and_fetch_16:
   1150     BuiltinIndex = 9;
   1151     break;
   1152 
   1153   case Builtin::BI__sync_val_compare_and_swap:
   1154   case Builtin::BI__sync_val_compare_and_swap_1:
   1155   case Builtin::BI__sync_val_compare_and_swap_2:
   1156   case Builtin::BI__sync_val_compare_and_swap_4:
   1157   case Builtin::BI__sync_val_compare_and_swap_8:
   1158   case Builtin::BI__sync_val_compare_and_swap_16:
   1159     BuiltinIndex = 10;
   1160     NumFixed = 2;
   1161     break;
   1162 
   1163   case Builtin::BI__sync_bool_compare_and_swap:
   1164   case Builtin::BI__sync_bool_compare_and_swap_1:
   1165   case Builtin::BI__sync_bool_compare_and_swap_2:
   1166   case Builtin::BI__sync_bool_compare_and_swap_4:
   1167   case Builtin::BI__sync_bool_compare_and_swap_8:
   1168   case Builtin::BI__sync_bool_compare_and_swap_16:
   1169     BuiltinIndex = 11;
   1170     NumFixed = 2;
   1171     ResultType = Context.BoolTy;
   1172     break;
   1173 
   1174   case Builtin::BI__sync_lock_test_and_set:
   1175   case Builtin::BI__sync_lock_test_and_set_1:
   1176   case Builtin::BI__sync_lock_test_and_set_2:
   1177   case Builtin::BI__sync_lock_test_and_set_4:
   1178   case Builtin::BI__sync_lock_test_and_set_8:
   1179   case Builtin::BI__sync_lock_test_and_set_16:
   1180     BuiltinIndex = 12;
   1181     break;
   1182 
   1183   case Builtin::BI__sync_lock_release:
   1184   case Builtin::BI__sync_lock_release_1:
   1185   case Builtin::BI__sync_lock_release_2:
   1186   case Builtin::BI__sync_lock_release_4:
   1187   case Builtin::BI__sync_lock_release_8:
   1188   case Builtin::BI__sync_lock_release_16:
   1189     BuiltinIndex = 13;
   1190     NumFixed = 0;
   1191     ResultType = Context.VoidTy;
   1192     break;
   1193 
   1194   case Builtin::BI__sync_swap:
   1195   case Builtin::BI__sync_swap_1:
   1196   case Builtin::BI__sync_swap_2:
   1197   case Builtin::BI__sync_swap_4:
   1198   case Builtin::BI__sync_swap_8:
   1199   case Builtin::BI__sync_swap_16:
   1200     BuiltinIndex = 14;
   1201     break;
   1202   }
   1203 
   1204   // Now that we know how many fixed arguments we expect, first check that we
   1205   // have at least that many.
   1206   if (TheCall->getNumArgs() < 1+NumFixed) {
   1207     Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
   1208       << 0 << 1+NumFixed << TheCall->getNumArgs()
   1209       << TheCall->getCallee()->getSourceRange();
   1210     return ExprError();
   1211   }
   1212 
   1213   // Get the decl for the concrete builtin from this, we can tell what the
   1214   // concrete integer type we should convert to is.
   1215   unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
   1216   const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
   1217   FunctionDecl *NewBuiltinDecl;
   1218   if (NewBuiltinID == BuiltinID)
   1219     NewBuiltinDecl = FDecl;
   1220   else {
   1221     // Perform builtin lookup to avoid redeclaring it.
   1222     DeclarationName DN(&Context.Idents.get(NewBuiltinName));
   1223     LookupResult Res(*this, DN, DRE->getLocStart(), LookupOrdinaryName);
   1224     LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
   1225     assert(Res.getFoundDecl());
   1226     NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
   1227     if (NewBuiltinDecl == 0)
   1228       return ExprError();
   1229   }
   1230 
   1231   // The first argument --- the pointer --- has a fixed type; we
   1232   // deduce the types of the rest of the arguments accordingly.  Walk
   1233   // the remaining arguments, converting them to the deduced value type.
   1234   for (unsigned i = 0; i != NumFixed; ++i) {
   1235     ExprResult Arg = TheCall->getArg(i+1);
   1236 
   1237     // GCC does an implicit conversion to the pointer or integer ValType.  This
   1238     // can fail in some cases (1i -> int**), check for this error case now.
   1239     // Initialize the argument.
   1240     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
   1241                                                    ValType, /*consume*/ false);
   1242     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
   1243     if (Arg.isInvalid())
   1244       return ExprError();
   1245 
   1246     // Okay, we have something that *can* be converted to the right type.  Check
   1247     // to see if there is a potentially weird extension going on here.  This can
   1248     // happen when you do an atomic operation on something like an char* and
   1249     // pass in 42.  The 42 gets converted to char.  This is even more strange
   1250     // for things like 45.123 -> char, etc.
   1251     // FIXME: Do this check.
   1252     TheCall->setArg(i+1, Arg.take());
   1253   }
   1254 
   1255   ASTContext& Context = this->getASTContext();
   1256 
   1257   // Create a new DeclRefExpr to refer to the new decl.
   1258   DeclRefExpr* NewDRE = DeclRefExpr::Create(
   1259       Context,
   1260       DRE->getQualifierLoc(),
   1261       SourceLocation(),
   1262       NewBuiltinDecl,
   1263       /*enclosing*/ false,
   1264       DRE->getLocation(),
   1265       Context.BuiltinFnTy,
   1266       DRE->getValueKind());
   1267 
   1268   // Set the callee in the CallExpr.
   1269   // FIXME: This loses syntactic information.
   1270   QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
   1271   ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
   1272                                               CK_BuiltinFnToFnPtr);
   1273   TheCall->setCallee(PromotedCall.take());
   1274 
   1275   // Change the result type of the call to match the original value type. This
   1276   // is arbitrary, but the codegen for these builtins ins design to handle it
   1277   // gracefully.
   1278   TheCall->setType(ResultType);
   1279 
   1280   return TheCallResult;
   1281 }
   1282 
   1283 /// CheckObjCString - Checks that the argument to the builtin
   1284 /// CFString constructor is correct
   1285 /// Note: It might also make sense to do the UTF-16 conversion here (would
   1286 /// simplify the backend).
   1287 bool Sema::CheckObjCString(Expr *Arg) {
   1288   Arg = Arg->IgnoreParenCasts();
   1289   StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
   1290 
   1291   if (!Literal || !Literal->isAscii()) {
   1292     Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
   1293       << Arg->getSourceRange();
   1294     return true;
   1295   }
   1296 
   1297   if (Literal->containsNonAsciiOrNull()) {
   1298     StringRef String = Literal->getString();
   1299     unsigned NumBytes = String.size();
   1300     SmallVector<UTF16, 128> ToBuf(NumBytes);
   1301     const UTF8 *FromPtr = (const UTF8 *)String.data();
   1302     UTF16 *ToPtr = &ToBuf[0];
   1303 
   1304     ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
   1305                                                  &ToPtr, ToPtr + NumBytes,
   1306                                                  strictConversion);
   1307     // Check for conversion failure.
   1308     if (Result != conversionOK)
   1309       Diag(Arg->getLocStart(),
   1310            diag::warn_cfstring_truncated) << Arg->getSourceRange();
   1311   }
   1312   return false;
   1313 }
   1314 
   1315 /// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
   1316 /// Emit an error and return true on failure, return false on success.
   1317 bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
   1318   Expr *Fn = TheCall->getCallee();
   1319   if (TheCall->getNumArgs() > 2) {
   1320     Diag(TheCall->getArg(2)->getLocStart(),
   1321          diag::err_typecheck_call_too_many_args)
   1322       << 0 /*function call*/ << 2 << TheCall->getNumArgs()
   1323       << Fn->getSourceRange()
   1324       << SourceRange(TheCall->getArg(2)->getLocStart(),
   1325                      (*(TheCall->arg_end()-1))->getLocEnd());
   1326     return true;
   1327   }
   1328 
   1329   if (TheCall->getNumArgs() < 2) {
   1330     return Diag(TheCall->getLocEnd(),
   1331       diag::err_typecheck_call_too_few_args_at_least)
   1332       << 0 /*function call*/ << 2 << TheCall->getNumArgs();
   1333   }
   1334 
   1335   // Type-check the first argument normally.
   1336   if (checkBuiltinArgument(*this, TheCall, 0))
   1337     return true;
   1338 
   1339   // Determine whether the current function is variadic or not.
   1340   BlockScopeInfo *CurBlock = getCurBlock();
   1341   bool isVariadic;
   1342   if (CurBlock)
   1343     isVariadic = CurBlock->TheDecl->isVariadic();
   1344   else if (FunctionDecl *FD = getCurFunctionDecl())
   1345     isVariadic = FD->isVariadic();
   1346   else
   1347     isVariadic = getCurMethodDecl()->isVariadic();
   1348 
   1349   if (!isVariadic) {
   1350     Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
   1351     return true;
   1352   }
   1353 
   1354   // Verify that the second argument to the builtin is the last argument of the
   1355   // current function or method.
   1356   bool SecondArgIsLastNamedArgument = false;
   1357   const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
   1358 
   1359   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
   1360     if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
   1361       // FIXME: This isn't correct for methods (results in bogus warning).
   1362       // Get the last formal in the current function.
   1363       const ParmVarDecl *LastArg;
   1364       if (CurBlock)
   1365         LastArg = *(CurBlock->TheDecl->param_end()-1);
   1366       else if (FunctionDecl *FD = getCurFunctionDecl())
   1367         LastArg = *(FD->param_end()-1);
   1368       else
   1369         LastArg = *(getCurMethodDecl()->param_end()-1);
   1370       SecondArgIsLastNamedArgument = PV == LastArg;
   1371     }
   1372   }
   1373 
   1374   if (!SecondArgIsLastNamedArgument)
   1375     Diag(TheCall->getArg(1)->getLocStart(),
   1376          diag::warn_second_parameter_of_va_start_not_last_named_argument);
   1377   return false;
   1378 }
   1379 
   1380 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
   1381 /// friends.  This is declared to take (...), so we have to check everything.
   1382 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
   1383   if (TheCall->getNumArgs() < 2)
   1384     return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
   1385       << 0 << 2 << TheCall->getNumArgs()/*function call*/;
   1386   if (TheCall->getNumArgs() > 2)
   1387     return Diag(TheCall->getArg(2)->getLocStart(),
   1388                 diag::err_typecheck_call_too_many_args)
   1389       << 0 /*function call*/ << 2 << TheCall->getNumArgs()
   1390       << SourceRange(TheCall->getArg(2)->getLocStart(),
   1391                      (*(TheCall->arg_end()-1))->getLocEnd());
   1392 
   1393   ExprResult OrigArg0 = TheCall->getArg(0);
   1394   ExprResult OrigArg1 = TheCall->getArg(1);
   1395 
   1396   // Do standard promotions between the two arguments, returning their common
   1397   // type.
   1398   QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
   1399   if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
   1400     return true;
   1401 
   1402   // Make sure any conversions are pushed back into the call; this is
   1403   // type safe since unordered compare builtins are declared as "_Bool
   1404   // foo(...)".
   1405   TheCall->setArg(0, OrigArg0.get());
   1406   TheCall->setArg(1, OrigArg1.get());
   1407 
   1408   if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
   1409     return false;
   1410 
   1411   // If the common type isn't a real floating type, then the arguments were
   1412   // invalid for this operation.
   1413   if (Res.isNull() || !Res->isRealFloatingType())
   1414     return Diag(OrigArg0.get()->getLocStart(),
   1415                 diag::err_typecheck_call_invalid_ordered_compare)
   1416       << OrigArg0.get()->getType() << OrigArg1.get()->getType()
   1417       << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
   1418 
   1419   return false;
   1420 }
   1421 
   1422 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
   1423 /// __builtin_isnan and friends.  This is declared to take (...), so we have
   1424 /// to check everything. We expect the last argument to be a floating point
   1425 /// value.
   1426 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
   1427   if (TheCall->getNumArgs() < NumArgs)
   1428     return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
   1429       << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
   1430   if (TheCall->getNumArgs() > NumArgs)
   1431     return Diag(TheCall->getArg(NumArgs)->getLocStart(),
   1432                 diag::err_typecheck_call_too_many_args)
   1433       << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
   1434       << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
   1435                      (*(TheCall->arg_end()-1))->getLocEnd());
   1436 
   1437   Expr *OrigArg = TheCall->getArg(NumArgs-1);
   1438 
   1439   if (OrigArg->isTypeDependent())
   1440     return false;
   1441 
   1442   // This operation requires a non-_Complex floating-point number.
   1443   if (!OrigArg->getType()->isRealFloatingType())
   1444     return Diag(OrigArg->getLocStart(),
   1445                 diag::err_typecheck_call_invalid_unary_fp)
   1446       << OrigArg->getType() << OrigArg->getSourceRange();
   1447 
   1448   // If this is an implicit conversion from float -> double, remove it.
   1449   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
   1450     Expr *CastArg = Cast->getSubExpr();
   1451     if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
   1452       assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
   1453              "promotion from float to double is the only expected cast here");
   1454       Cast->setSubExpr(0);
   1455       TheCall->setArg(NumArgs-1, CastArg);
   1456     }
   1457   }
   1458 
   1459   return false;
   1460 }
   1461 
   1462 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
   1463 // This is declared to take (...), so we have to check everything.
   1464 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
   1465   if (TheCall->getNumArgs() < 2)
   1466     return ExprError(Diag(TheCall->getLocEnd(),
   1467                           diag::err_typecheck_call_too_few_args_at_least)
   1468       << 0 /*function call*/ << 2 << TheCall->getNumArgs()
   1469       << TheCall->getSourceRange());
   1470 
   1471   // Determine which of the following types of shufflevector we're checking:
   1472   // 1) unary, vector mask: (lhs, mask)
   1473   // 2) binary, vector mask: (lhs, rhs, mask)
   1474   // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
   1475   QualType resType = TheCall->getArg(0)->getType();
   1476   unsigned numElements = 0;
   1477 
   1478   if (!TheCall->getArg(0)->isTypeDependent() &&
   1479       !TheCall->getArg(1)->isTypeDependent()) {
   1480     QualType LHSType = TheCall->getArg(0)->getType();
   1481     QualType RHSType = TheCall->getArg(1)->getType();
   1482 
   1483     if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
   1484       Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
   1485         << SourceRange(TheCall->getArg(0)->getLocStart(),
   1486                        TheCall->getArg(1)->getLocEnd());
   1487       return ExprError();
   1488     }
   1489 
   1490     numElements = LHSType->getAs<VectorType>()->getNumElements();
   1491     unsigned numResElements = TheCall->getNumArgs() - 2;
   1492 
   1493     // Check to see if we have a call with 2 vector arguments, the unary shuffle
   1494     // with mask.  If so, verify that RHS is an integer vector type with the
   1495     // same number of elts as lhs.
   1496     if (TheCall->getNumArgs() == 2) {
   1497       if (!RHSType->hasIntegerRepresentation() ||
   1498           RHSType->getAs<VectorType>()->getNumElements() != numElements)
   1499         Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
   1500           << SourceRange(TheCall->getArg(1)->getLocStart(),
   1501                          TheCall->getArg(1)->getLocEnd());
   1502       numResElements = numElements;
   1503     }
   1504     else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
   1505       Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
   1506         << SourceRange(TheCall->getArg(0)->getLocStart(),
   1507                        TheCall->getArg(1)->getLocEnd());
   1508       return ExprError();
   1509     } else if (numElements != numResElements) {
   1510       QualType eltType = LHSType->getAs<VectorType>()->getElementType();
   1511       resType = Context.getVectorType(eltType, numResElements,
   1512                                       VectorType::GenericVector);
   1513     }
   1514   }
   1515 
   1516   for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
   1517     if (TheCall->getArg(i)->isTypeDependent() ||
   1518         TheCall->getArg(i)->isValueDependent())
   1519       continue;
   1520 
   1521     llvm::APSInt Result(32);
   1522     if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
   1523       return ExprError(Diag(TheCall->getLocStart(),
   1524                   diag::err_shufflevector_nonconstant_argument)
   1525                 << TheCall->getArg(i)->getSourceRange());
   1526 
   1527     if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
   1528       return ExprError(Diag(TheCall->getLocStart(),
   1529                   diag::err_shufflevector_argument_too_large)
   1530                << TheCall->getArg(i)->getSourceRange());
   1531   }
   1532 
   1533   SmallVector<Expr*, 32> exprs;
   1534 
   1535   for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
   1536     exprs.push_back(TheCall->getArg(i));
   1537     TheCall->setArg(i, 0);
   1538   }
   1539 
   1540   return Owned(new (Context) ShuffleVectorExpr(Context, exprs, resType,
   1541                                             TheCall->getCallee()->getLocStart(),
   1542                                             TheCall->getRParenLoc()));
   1543 }
   1544 
   1545 /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
   1546 // This is declared to take (const void*, ...) and can take two
   1547 // optional constant int args.
   1548 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
   1549   unsigned NumArgs = TheCall->getNumArgs();
   1550 
   1551   if (NumArgs > 3)
   1552     return Diag(TheCall->getLocEnd(),
   1553              diag::err_typecheck_call_too_many_args_at_most)
   1554              << 0 /*function call*/ << 3 << NumArgs
   1555              << TheCall->getSourceRange();
   1556 
   1557   // Argument 0 is checked for us and the remaining arguments must be
   1558   // constant integers.
   1559   for (unsigned i = 1; i != NumArgs; ++i) {
   1560     Expr *Arg = TheCall->getArg(i);
   1561 
   1562     // We can't check the value of a dependent argument.
   1563     if (Arg->isTypeDependent() || Arg->isValueDependent())
   1564       continue;
   1565 
   1566     llvm::APSInt Result;
   1567     if (SemaBuiltinConstantArg(TheCall, i, Result))
   1568       return true;
   1569 
   1570     // FIXME: gcc issues a warning and rewrites these to 0. These
   1571     // seems especially odd for the third argument since the default
   1572     // is 3.
   1573     if (i == 1) {
   1574       if (Result.getLimitedValue() > 1)
   1575         return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
   1576              << "0" << "1" << Arg->getSourceRange();
   1577     } else {
   1578       if (Result.getLimitedValue() > 3)
   1579         return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
   1580             << "0" << "3" << Arg->getSourceRange();
   1581     }
   1582   }
   1583 
   1584   return false;
   1585 }
   1586 
   1587 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
   1588 /// TheCall is a constant expression.
   1589 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
   1590                                   llvm::APSInt &Result) {
   1591   Expr *Arg = TheCall->getArg(ArgNum);
   1592   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
   1593   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
   1594 
   1595   if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
   1596 
   1597   if (!Arg->isIntegerConstantExpr(Result, Context))
   1598     return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
   1599                 << FDecl->getDeclName() <<  Arg->getSourceRange();
   1600 
   1601   return false;
   1602 }
   1603 
   1604 /// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
   1605 /// int type). This simply type checks that type is one of the defined
   1606 /// constants (0-3).
   1607 // For compatibility check 0-3, llvm only handles 0 and 2.
   1608 bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
   1609   llvm::APSInt Result;
   1610 
   1611   // We can't check the value of a dependent argument.
   1612   if (TheCall->getArg(1)->isTypeDependent() ||
   1613       TheCall->getArg(1)->isValueDependent())
   1614     return false;
   1615 
   1616   // Check constant-ness first.
   1617   if (SemaBuiltinConstantArg(TheCall, 1, Result))
   1618     return true;
   1619 
   1620   Expr *Arg = TheCall->getArg(1);
   1621   if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
   1622     return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
   1623              << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
   1624   }
   1625 
   1626   return false;
   1627 }
   1628 
   1629 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
   1630 /// This checks that val is a constant 1.
   1631 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
   1632   Expr *Arg = TheCall->getArg(1);
   1633   llvm::APSInt Result;
   1634 
   1635   // TODO: This is less than ideal. Overload this to take a value.
   1636   if (SemaBuiltinConstantArg(TheCall, 1, Result))
   1637     return true;
   1638 
   1639   if (Result != 1)
   1640     return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
   1641              << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
   1642 
   1643   return false;
   1644 }
   1645 
   1646 // Determine if an expression is a string literal or constant string.
   1647 // If this function returns false on the arguments to a function expecting a
   1648 // format string, we will usually need to emit a warning.
   1649 // True string literals are then checked by CheckFormatString.
   1650 Sema::StringLiteralCheckType
   1651 Sema::checkFormatStringExpr(const Expr *E, ArrayRef<const Expr *> Args,
   1652                             bool HasVAListArg,
   1653                             unsigned format_idx, unsigned firstDataArg,
   1654                             FormatStringType Type, VariadicCallType CallType,
   1655                             bool inFunctionCall) {
   1656  tryAgain:
   1657   if (E->isTypeDependent() || E->isValueDependent())
   1658     return SLCT_NotALiteral;
   1659 
   1660   E = E->IgnoreParenCasts();
   1661 
   1662   if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
   1663     // Technically -Wformat-nonliteral does not warn about this case.
   1664     // The behavior of printf and friends in this case is implementation
   1665     // dependent.  Ideally if the format string cannot be null then
   1666     // it should have a 'nonnull' attribute in the function prototype.
   1667     return SLCT_CheckedLiteral;
   1668 
   1669   switch (E->getStmtClass()) {
   1670   case Stmt::BinaryConditionalOperatorClass:
   1671   case Stmt::ConditionalOperatorClass: {
   1672     // The expression is a literal if both sub-expressions were, and it was
   1673     // completely checked only if both sub-expressions were checked.
   1674     const AbstractConditionalOperator *C =
   1675         cast<AbstractConditionalOperator>(E);
   1676     StringLiteralCheckType Left =
   1677         checkFormatStringExpr(C->getTrueExpr(), Args,
   1678                               HasVAListArg, format_idx, firstDataArg,
   1679                               Type, CallType, inFunctionCall);
   1680     if (Left == SLCT_NotALiteral)
   1681       return SLCT_NotALiteral;
   1682     StringLiteralCheckType Right =
   1683         checkFormatStringExpr(C->getFalseExpr(), Args,
   1684                               HasVAListArg, format_idx, firstDataArg,
   1685                               Type, CallType, inFunctionCall);
   1686     return Left < Right ? Left : Right;
   1687   }
   1688 
   1689   case Stmt::ImplicitCastExprClass: {
   1690     E = cast<ImplicitCastExpr>(E)->getSubExpr();
   1691     goto tryAgain;
   1692   }
   1693 
   1694   case Stmt::OpaqueValueExprClass:
   1695     if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
   1696       E = src;
   1697       goto tryAgain;
   1698     }
   1699     return SLCT_NotALiteral;
   1700 
   1701   case Stmt::PredefinedExprClass:
   1702     // While __func__, etc., are technically not string literals, they
   1703     // cannot contain format specifiers and thus are not a security
   1704     // liability.
   1705     return SLCT_UncheckedLiteral;
   1706 
   1707   case Stmt::DeclRefExprClass: {
   1708     const DeclRefExpr *DR = cast<DeclRefExpr>(E);
   1709 
   1710     // As an exception, do not flag errors for variables binding to
   1711     // const string literals.
   1712     if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
   1713       bool isConstant = false;
   1714       QualType T = DR->getType();
   1715 
   1716       if (const ArrayType *AT = Context.getAsArrayType(T)) {
   1717         isConstant = AT->getElementType().isConstant(Context);
   1718       } else if (const PointerType *PT = T->getAs<PointerType>()) {
   1719         isConstant = T.isConstant(Context) &&
   1720                      PT->getPointeeType().isConstant(Context);
   1721       } else if (T->isObjCObjectPointerType()) {
   1722         // In ObjC, there is usually no "const ObjectPointer" type,
   1723         // so don't check if the pointee type is constant.
   1724         isConstant = T.isConstant(Context);
   1725       }
   1726 
   1727       if (isConstant) {
   1728         if (const Expr *Init = VD->getAnyInitializer()) {
   1729           // Look through initializers like const char c[] = { "foo" }
   1730           if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
   1731             if (InitList->isStringLiteralInit())
   1732               Init = InitList->getInit(0)->IgnoreParenImpCasts();
   1733           }
   1734           return checkFormatStringExpr(Init, Args,
   1735                                        HasVAListArg, format_idx,
   1736                                        firstDataArg, Type, CallType,
   1737                                        /*inFunctionCall*/false);
   1738         }
   1739       }
   1740 
   1741       // For vprintf* functions (i.e., HasVAListArg==true), we add a
   1742       // special check to see if the format string is a function parameter
   1743       // of the function calling the printf function.  If the function
   1744       // has an attribute indicating it is a printf-like function, then we
   1745       // should suppress warnings concerning non-literals being used in a call
   1746       // to a vprintf function.  For example:
   1747       //
   1748       // void
   1749       // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
   1750       //      va_list ap;
   1751       //      va_start(ap, fmt);
   1752       //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
   1753       //      ...
   1754       //
   1755       if (HasVAListArg) {
   1756         if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
   1757           if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
   1758             int PVIndex = PV->getFunctionScopeIndex() + 1;
   1759             for (specific_attr_iterator<FormatAttr>
   1760                  i = ND->specific_attr_begin<FormatAttr>(),
   1761                  e = ND->specific_attr_end<FormatAttr>(); i != e ; ++i) {
   1762               FormatAttr *PVFormat = *i;
   1763               // adjust for implicit parameter
   1764               if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
   1765                 if (MD->isInstance())
   1766                   ++PVIndex;
   1767               // We also check if the formats are compatible.
   1768               // We can't pass a 'scanf' string to a 'printf' function.
   1769               if (PVIndex == PVFormat->getFormatIdx() &&
   1770                   Type == GetFormatStringType(PVFormat))
   1771                 return SLCT_UncheckedLiteral;
   1772             }
   1773           }
   1774         }
   1775       }
   1776     }
   1777 
   1778     return SLCT_NotALiteral;
   1779   }
   1780 
   1781   case Stmt::CallExprClass:
   1782   case Stmt::CXXMemberCallExprClass: {
   1783     const CallExpr *CE = cast<CallExpr>(E);
   1784     if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
   1785       if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
   1786         unsigned ArgIndex = FA->getFormatIdx();
   1787         if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
   1788           if (MD->isInstance())
   1789             --ArgIndex;
   1790         const Expr *Arg = CE->getArg(ArgIndex - 1);
   1791 
   1792         return checkFormatStringExpr(Arg, Args,
   1793                                      HasVAListArg, format_idx, firstDataArg,
   1794                                      Type, CallType, inFunctionCall);
   1795       } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
   1796         unsigned BuiltinID = FD->getBuiltinID();
   1797         if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
   1798             BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
   1799           const Expr *Arg = CE->getArg(0);
   1800           return checkFormatStringExpr(Arg, Args,
   1801                                        HasVAListArg, format_idx,
   1802                                        firstDataArg, Type, CallType,
   1803                                        inFunctionCall);
   1804         }
   1805       }
   1806     }
   1807 
   1808     return SLCT_NotALiteral;
   1809   }
   1810   case Stmt::ObjCStringLiteralClass:
   1811   case Stmt::StringLiteralClass: {
   1812     const StringLiteral *StrE = NULL;
   1813 
   1814     if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
   1815       StrE = ObjCFExpr->getString();
   1816     else
   1817       StrE = cast<StringLiteral>(E);
   1818 
   1819     if (StrE) {
   1820       CheckFormatString(StrE, E, Args, HasVAListArg, format_idx,
   1821                         firstDataArg, Type, inFunctionCall, CallType);
   1822       return SLCT_CheckedLiteral;
   1823     }
   1824 
   1825     return SLCT_NotALiteral;
   1826   }
   1827 
   1828   default:
   1829     return SLCT_NotALiteral;
   1830   }
   1831 }
   1832 
   1833 void
   1834 Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
   1835                             const Expr * const *ExprArgs,
   1836                             SourceLocation CallSiteLoc) {
   1837   for (NonNullAttr::args_iterator i = NonNull->args_begin(),
   1838                                   e = NonNull->args_end();
   1839        i != e; ++i) {
   1840     const Expr *ArgExpr = ExprArgs[*i];
   1841 
   1842     // As a special case, transparent unions initialized with zero are
   1843     // considered null for the purposes of the nonnull attribute.
   1844     if (const RecordType *UT = ArgExpr->getType()->getAsUnionType()) {
   1845       if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
   1846         if (const CompoundLiteralExpr *CLE =
   1847             dyn_cast<CompoundLiteralExpr>(ArgExpr))
   1848           if (const InitListExpr *ILE =
   1849               dyn_cast<InitListExpr>(CLE->getInitializer()))
   1850             ArgExpr = ILE->getInit(0);
   1851     }
   1852 
   1853     bool Result;
   1854     if (ArgExpr->EvaluateAsBooleanCondition(Result, Context) && !Result)
   1855       Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
   1856   }
   1857 }
   1858 
   1859 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
   1860   return llvm::StringSwitch<FormatStringType>(Format->getType())
   1861   .Case("scanf", FST_Scanf)
   1862   .Cases("printf", "printf0", FST_Printf)
   1863   .Cases("NSString", "CFString", FST_NSString)
   1864   .Case("strftime", FST_Strftime)
   1865   .Case("strfmon", FST_Strfmon)
   1866   .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
   1867   .Default(FST_Unknown);
   1868 }
   1869 
   1870 /// CheckFormatArguments - Check calls to printf and scanf (and similar
   1871 /// functions) for correct use of format strings.
   1872 /// Returns true if a format string has been fully checked.
   1873 bool Sema::CheckFormatArguments(const FormatAttr *Format,
   1874                                 ArrayRef<const Expr *> Args,
   1875                                 bool IsCXXMember,
   1876                                 VariadicCallType CallType,
   1877                                 SourceLocation Loc, SourceRange Range) {
   1878   FormatStringInfo FSI;
   1879   if (getFormatStringInfo(Format, IsCXXMember, &FSI))
   1880     return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
   1881                                 FSI.FirstDataArg, GetFormatStringType(Format),
   1882                                 CallType, Loc, Range);
   1883   return false;
   1884 }
   1885 
   1886 bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
   1887                                 bool HasVAListArg, unsigned format_idx,
   1888                                 unsigned firstDataArg, FormatStringType Type,
   1889                                 VariadicCallType CallType,
   1890                                 SourceLocation Loc, SourceRange Range) {
   1891   // CHECK: printf/scanf-like function is called with no format string.
   1892   if (format_idx >= Args.size()) {
   1893     Diag(Loc, diag::warn_missing_format_string) << Range;
   1894     return false;
   1895   }
   1896 
   1897   const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
   1898 
   1899   // CHECK: format string is not a string literal.
   1900   //
   1901   // Dynamically generated format strings are difficult to
   1902   // automatically vet at compile time.  Requiring that format strings
   1903   // are string literals: (1) permits the checking of format strings by
   1904   // the compiler and thereby (2) can practically remove the source of
   1905   // many format string exploits.
   1906 
   1907   // Format string can be either ObjC string (e.g. @"%d") or
   1908   // C string (e.g. "%d")
   1909   // ObjC string uses the same format specifiers as C string, so we can use
   1910   // the same format string checking logic for both ObjC and C strings.
   1911   StringLiteralCheckType CT =
   1912       checkFormatStringExpr(OrigFormatExpr, Args, HasVAListArg,
   1913                             format_idx, firstDataArg, Type, CallType);
   1914   if (CT != SLCT_NotALiteral)
   1915     // Literal format string found, check done!
   1916     return CT == SLCT_CheckedLiteral;
   1917 
   1918   // Strftime is particular as it always uses a single 'time' argument,
   1919   // so it is safe to pass a non-literal string.
   1920   if (Type == FST_Strftime)
   1921     return false;
   1922 
   1923   // Do not emit diag when the string param is a macro expansion and the
   1924   // format is either NSString or CFString. This is a hack to prevent
   1925   // diag when using the NSLocalizedString and CFCopyLocalizedString macros
   1926   // which are usually used in place of NS and CF string literals.
   1927   if (Type == FST_NSString &&
   1928       SourceMgr.isInSystemMacro(Args[format_idx]->getLocStart()))
   1929     return false;
   1930 
   1931   // If there are no arguments specified, warn with -Wformat-security, otherwise
   1932   // warn only with -Wformat-nonliteral.
   1933   if (Args.size() == format_idx+1)
   1934     Diag(Args[format_idx]->getLocStart(),
   1935          diag::warn_format_nonliteral_noargs)
   1936       << OrigFormatExpr->getSourceRange();
   1937   else
   1938     Diag(Args[format_idx]->getLocStart(),
   1939          diag::warn_format_nonliteral)
   1940            << OrigFormatExpr->getSourceRange();
   1941   return false;
   1942 }
   1943 
   1944 namespace {
   1945 class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
   1946 protected:
   1947   Sema &S;
   1948   const StringLiteral *FExpr;
   1949   const Expr *OrigFormatExpr;
   1950   const unsigned FirstDataArg;
   1951   const unsigned NumDataArgs;
   1952   const char *Beg; // Start of format string.
   1953   const bool HasVAListArg;
   1954   ArrayRef<const Expr *> Args;
   1955   unsigned FormatIdx;
   1956   llvm::BitVector CoveredArgs;
   1957   bool usesPositionalArgs;
   1958   bool atFirstArg;
   1959   bool inFunctionCall;
   1960   Sema::VariadicCallType CallType;
   1961 public:
   1962   CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
   1963                      const Expr *origFormatExpr, unsigned firstDataArg,
   1964                      unsigned numDataArgs, const char *beg, bool hasVAListArg,
   1965                      ArrayRef<const Expr *> Args,
   1966                      unsigned formatIdx, bool inFunctionCall,
   1967                      Sema::VariadicCallType callType)
   1968     : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
   1969       FirstDataArg(firstDataArg), NumDataArgs(numDataArgs),
   1970       Beg(beg), HasVAListArg(hasVAListArg),
   1971       Args(Args), FormatIdx(formatIdx),
   1972       usesPositionalArgs(false), atFirstArg(true),
   1973       inFunctionCall(inFunctionCall), CallType(callType) {
   1974         CoveredArgs.resize(numDataArgs);
   1975         CoveredArgs.reset();
   1976       }
   1977 
   1978   void DoneProcessing();
   1979 
   1980   void HandleIncompleteSpecifier(const char *startSpecifier,
   1981                                  unsigned specifierLen);
   1982 
   1983   void HandleInvalidLengthModifier(
   1984       const analyze_format_string::FormatSpecifier &FS,
   1985       const analyze_format_string::ConversionSpecifier &CS,
   1986       const char *startSpecifier, unsigned specifierLen, unsigned DiagID);
   1987 
   1988   void HandleNonStandardLengthModifier(
   1989       const analyze_format_string::FormatSpecifier &FS,
   1990       const char *startSpecifier, unsigned specifierLen);
   1991 
   1992   void HandleNonStandardConversionSpecifier(
   1993       const analyze_format_string::ConversionSpecifier &CS,
   1994       const char *startSpecifier, unsigned specifierLen);
   1995 
   1996   virtual void HandlePosition(const char *startPos, unsigned posLen);
   1997 
   1998   virtual void HandleInvalidPosition(const char *startSpecifier,
   1999                                      unsigned specifierLen,
   2000                                      analyze_format_string::PositionContext p);
   2001 
   2002   virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
   2003 
   2004   void HandleNullChar(const char *nullCharacter);
   2005 
   2006   template <typename Range>
   2007   static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
   2008                                    const Expr *ArgumentExpr,
   2009                                    PartialDiagnostic PDiag,
   2010                                    SourceLocation StringLoc,
   2011                                    bool IsStringLocation, Range StringRange,
   2012                             ArrayRef<FixItHint> Fixit = ArrayRef<FixItHint>());
   2013 
   2014 protected:
   2015   bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
   2016                                         const char *startSpec,
   2017                                         unsigned specifierLen,
   2018                                         const char *csStart, unsigned csLen);
   2019 
   2020   void HandlePositionalNonpositionalArgs(SourceLocation Loc,
   2021                                          const char *startSpec,
   2022                                          unsigned specifierLen);
   2023 
   2024   SourceRange getFormatStringRange();
   2025   CharSourceRange getSpecifierRange(const char *startSpecifier,
   2026                                     unsigned specifierLen);
   2027   SourceLocation getLocationOfByte(const char *x);
   2028 
   2029   const Expr *getDataArg(unsigned i) const;
   2030 
   2031   bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
   2032                     const analyze_format_string::ConversionSpecifier &CS,
   2033                     const char *startSpecifier, unsigned specifierLen,
   2034                     unsigned argIndex);
   2035 
   2036   template <typename Range>
   2037   void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
   2038                             bool IsStringLocation, Range StringRange,
   2039                             ArrayRef<FixItHint> Fixit = ArrayRef<FixItHint>());
   2040 
   2041   void CheckPositionalAndNonpositionalArgs(
   2042       const analyze_format_string::FormatSpecifier *FS);
   2043 };
   2044 }
   2045 
   2046 SourceRange CheckFormatHandler::getFormatStringRange() {
   2047   return OrigFormatExpr->getSourceRange();
   2048 }
   2049 
   2050 CharSourceRange CheckFormatHandler::
   2051 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
   2052   SourceLocation Start = getLocationOfByte(startSpecifier);
   2053   SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
   2054 
   2055   // Advance the end SourceLocation by one due to half-open ranges.
   2056   End = End.getLocWithOffset(1);
   2057 
   2058   return CharSourceRange::getCharRange(Start, End);
   2059 }
   2060 
   2061 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
   2062   return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
   2063 }
   2064 
   2065 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
   2066                                                    unsigned specifierLen){
   2067   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
   2068                        getLocationOfByte(startSpecifier),
   2069                        /*IsStringLocation*/true,
   2070                        getSpecifierRange(startSpecifier, specifierLen));
   2071 }
   2072 
   2073 void CheckFormatHandler::HandleInvalidLengthModifier(
   2074     const analyze_format_string::FormatSpecifier &FS,
   2075     const analyze_format_string::ConversionSpecifier &CS,
   2076     const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
   2077   using namespace analyze_format_string;
   2078 
   2079   const LengthModifier &LM = FS.getLengthModifier();
   2080   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
   2081 
   2082   // See if we know how to fix this length modifier.
   2083   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
   2084   if (FixedLM) {
   2085     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
   2086                          getLocationOfByte(LM.getStart()),
   2087                          /*IsStringLocation*/true,
   2088                          getSpecifierRange(startSpecifier, specifierLen));
   2089 
   2090     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
   2091       << FixedLM->toString()
   2092       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
   2093 
   2094   } else {
   2095     FixItHint Hint;
   2096     if (DiagID == diag::warn_format_nonsensical_length)
   2097       Hint = FixItHint::CreateRemoval(LMRange);
   2098 
   2099     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
   2100                          getLocationOfByte(LM.getStart()),
   2101                          /*IsStringLocation*/true,
   2102                          getSpecifierRange(startSpecifier, specifierLen),
   2103                          Hint);
   2104   }
   2105 }
   2106 
   2107 void CheckFormatHandler::HandleNonStandardLengthModifier(
   2108     const analyze_format_string::FormatSpecifier &FS,
   2109     const char *startSpecifier, unsigned specifierLen) {
   2110   using namespace analyze_format_string;
   2111 
   2112   const LengthModifier &LM = FS.getLengthModifier();
   2113   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
   2114 
   2115   // See if we know how to fix this length modifier.
   2116   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
   2117   if (FixedLM) {
   2118     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
   2119                            << LM.toString() << 0,
   2120                          getLocationOfByte(LM.getStart()),
   2121                          /*IsStringLocation*/true,
   2122                          getSpecifierRange(startSpecifier, specifierLen));
   2123 
   2124     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
   2125       << FixedLM->toString()
   2126       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
   2127 
   2128   } else {
   2129     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
   2130                            << LM.toString() << 0,
   2131                          getLocationOfByte(LM.getStart()),
   2132                          /*IsStringLocation*/true,
   2133                          getSpecifierRange(startSpecifier, specifierLen));
   2134   }
   2135 }
   2136 
   2137 void CheckFormatHandler::HandleNonStandardConversionSpecifier(
   2138     const analyze_format_string::ConversionSpecifier &CS,
   2139     const char *startSpecifier, unsigned specifierLen) {
   2140   using namespace analyze_format_string;
   2141 
   2142   // See if we know how to fix this conversion specifier.
   2143   Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
   2144   if (FixedCS) {
   2145     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
   2146                           << CS.toString() << /*conversion specifier*/1,
   2147                          getLocationOfByte(CS.getStart()),
   2148                          /*IsStringLocation*/true,
   2149                          getSpecifierRange(startSpecifier, specifierLen));
   2150 
   2151     CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
   2152     S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
   2153       << FixedCS->toString()
   2154       << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
   2155   } else {
   2156     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
   2157                           << CS.toString() << /*conversion specifier*/1,
   2158                          getLocationOfByte(CS.getStart()),
   2159                          /*IsStringLocation*/true,
   2160                          getSpecifierRange(startSpecifier, specifierLen));
   2161   }
   2162 }
   2163 
   2164 void CheckFormatHandler::HandlePosition(const char *startPos,
   2165                                         unsigned posLen) {
   2166   EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
   2167                                getLocationOfByte(startPos),
   2168                                /*IsStringLocation*/true,
   2169                                getSpecifierRange(startPos, posLen));
   2170 }
   2171 
   2172 void
   2173 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
   2174                                      analyze_format_string::PositionContext p) {
   2175   EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
   2176                          << (unsigned) p,
   2177                        getLocationOfByte(startPos), /*IsStringLocation*/true,
   2178                        getSpecifierRange(startPos, posLen));
   2179 }
   2180 
   2181 void CheckFormatHandler::HandleZeroPosition(const char *startPos,
   2182                                             unsigned posLen) {
   2183   EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
   2184                                getLocationOfByte(startPos),
   2185                                /*IsStringLocation*/true,
   2186                                getSpecifierRange(startPos, posLen));
   2187 }
   2188 
   2189 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
   2190   if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
   2191     // The presence of a null character is likely an error.
   2192     EmitFormatDiagnostic(
   2193       S.PDiag(diag::warn_printf_format_string_contains_null_char),
   2194       getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
   2195       getFormatStringRange());
   2196   }
   2197 }
   2198 
   2199 // Note that this may return NULL if there was an error parsing or building
   2200 // one of the argument expressions.
   2201 const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
   2202   return Args[FirstDataArg + i];
   2203 }
   2204 
   2205 void CheckFormatHandler::DoneProcessing() {
   2206     // Does the number of data arguments exceed the number of
   2207     // format conversions in the format string?
   2208   if (!HasVAListArg) {
   2209       // Find any arguments that weren't covered.
   2210     CoveredArgs.flip();
   2211     signed notCoveredArg = CoveredArgs.find_first();
   2212     if (notCoveredArg >= 0) {
   2213       assert((unsigned)notCoveredArg < NumDataArgs);
   2214       if (const Expr *E = getDataArg((unsigned) notCoveredArg)) {
   2215         SourceLocation Loc = E->getLocStart();
   2216         if (!S.getSourceManager().isInSystemMacro(Loc)) {
   2217           EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
   2218                                Loc, /*IsStringLocation*/false,
   2219                                getFormatStringRange());
   2220         }
   2221       }
   2222     }
   2223   }
   2224 }
   2225 
   2226 bool
   2227 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
   2228                                                      SourceLocation Loc,
   2229                                                      const char *startSpec,
   2230                                                      unsigned specifierLen,
   2231                                                      const char *csStart,
   2232                                                      unsigned csLen) {
   2233 
   2234   bool keepGoing = true;
   2235   if (argIndex < NumDataArgs) {
   2236     // Consider the argument coverered, even though the specifier doesn't
   2237     // make sense.
   2238     CoveredArgs.set(argIndex);
   2239   }
   2240   else {
   2241     // If argIndex exceeds the number of data arguments we
   2242     // don't issue a warning because that is just a cascade of warnings (and
   2243     // they may have intended '%%' anyway). We don't want to continue processing
   2244     // the format string after this point, however, as we will like just get
   2245     // gibberish when trying to match arguments.
   2246     keepGoing = false;
   2247   }
   2248 
   2249   EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
   2250                          << StringRef(csStart, csLen),
   2251                        Loc, /*IsStringLocation*/true,
   2252                        getSpecifierRange(startSpec, specifierLen));
   2253 
   2254   return keepGoing;
   2255 }
   2256 
   2257 void
   2258 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
   2259                                                       const char *startSpec,
   2260                                                       unsigned specifierLen) {
   2261   EmitFormatDiagnostic(
   2262     S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
   2263     Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
   2264 }
   2265 
   2266 bool
   2267 CheckFormatHandler::CheckNumArgs(
   2268   const analyze_format_string::FormatSpecifier &FS,
   2269   const analyze_format_string::ConversionSpecifier &CS,
   2270   const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
   2271 
   2272   if (argIndex >= NumDataArgs) {
   2273     PartialDiagnostic PDiag = FS.usesPositionalArg()
   2274       ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
   2275            << (argIndex+1) << NumDataArgs)
   2276       : S.PDiag(diag::warn_printf_insufficient_data_args);
   2277     EmitFormatDiagnostic(
   2278       PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
   2279       getSpecifierRange(startSpecifier, specifierLen));
   2280     return false;
   2281   }
   2282   return true;
   2283 }
   2284 
   2285 template<typename Range>
   2286 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
   2287                                               SourceLocation Loc,
   2288                                               bool IsStringLocation,
   2289                                               Range StringRange,
   2290                                               ArrayRef<FixItHint> FixIt) {
   2291   EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
   2292                        Loc, IsStringLocation, StringRange, FixIt);
   2293 }
   2294 
   2295 /// \brief If the format string is not within the funcion call, emit a note
   2296 /// so that the function call and string are in diagnostic messages.
   2297 ///
   2298 /// \param InFunctionCall if true, the format string is within the function
   2299 /// call and only one diagnostic message will be produced.  Otherwise, an
   2300 /// extra note will be emitted pointing to location of the format string.
   2301 ///
   2302 /// \param ArgumentExpr the expression that is passed as the format string
   2303 /// argument in the function call.  Used for getting locations when two
   2304 /// diagnostics are emitted.
   2305 ///
   2306 /// \param PDiag the callee should already have provided any strings for the
   2307 /// diagnostic message.  This function only adds locations and fixits
   2308 /// to diagnostics.
   2309 ///
   2310 /// \param Loc primary location for diagnostic.  If two diagnostics are
   2311 /// required, one will be at Loc and a new SourceLocation will be created for
   2312 /// the other one.
   2313 ///
   2314 /// \param IsStringLocation if true, Loc points to the format string should be
   2315 /// used for the note.  Otherwise, Loc points to the argument list and will
   2316 /// be used with PDiag.
   2317 ///
   2318 /// \param StringRange some or all of the string to highlight.  This is
   2319 /// templated so it can accept either a CharSourceRange or a SourceRange.
   2320 ///
   2321 /// \param FixIt optional fix it hint for the format string.
   2322 template<typename Range>
   2323 void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
   2324                                               const Expr *ArgumentExpr,
   2325                                               PartialDiagnostic PDiag,
   2326                                               SourceLocation Loc,
   2327                                               bool IsStringLocation,
   2328                                               Range StringRange,
   2329                                               ArrayRef<FixItHint> FixIt) {
   2330   if (InFunctionCall) {
   2331     const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
   2332     D << StringRange;
   2333     for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
   2334          I != E; ++I) {
   2335       D << *I;
   2336     }
   2337   } else {
   2338     S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
   2339       << ArgumentExpr->getSourceRange();
   2340 
   2341     const Sema::SemaDiagnosticBuilder &Note =
   2342       S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
   2343              diag::note_format_string_defined);
   2344 
   2345     Note << StringRange;
   2346     for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
   2347          I != E; ++I) {
   2348       Note << *I;
   2349     }
   2350   }
   2351 }
   2352 
   2353 //===--- CHECK: Printf format string checking ------------------------------===//
   2354 
   2355 namespace {
   2356 class CheckPrintfHandler : public CheckFormatHandler {
   2357   bool ObjCContext;
   2358 public:
   2359   CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
   2360                      const Expr *origFormatExpr, unsigned firstDataArg,
   2361                      unsigned numDataArgs, bool isObjC,
   2362                      const char *beg, bool hasVAListArg,
   2363                      ArrayRef<const Expr *> Args,
   2364                      unsigned formatIdx, bool inFunctionCall,
   2365                      Sema::VariadicCallType CallType)
   2366   : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
   2367                        numDataArgs, beg, hasVAListArg, Args,
   2368                        formatIdx, inFunctionCall, CallType), ObjCContext(isObjC)
   2369   {}
   2370 
   2371 
   2372   bool HandleInvalidPrintfConversionSpecifier(
   2373                                       const analyze_printf::PrintfSpecifier &FS,
   2374                                       const char *startSpecifier,
   2375                                       unsigned specifierLen);
   2376 
   2377   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
   2378                              const char *startSpecifier,
   2379                              unsigned specifierLen);
   2380   bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
   2381                        const char *StartSpecifier,
   2382                        unsigned SpecifierLen,
   2383                        const Expr *E);
   2384 
   2385   bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
   2386                     const char *startSpecifier, unsigned specifierLen);
   2387   void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
   2388                            const analyze_printf::OptionalAmount &Amt,
   2389                            unsigned type,
   2390                            const char *startSpecifier, unsigned specifierLen);
   2391   void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
   2392                   const analyze_printf::OptionalFlag &flag,
   2393                   const char *startSpecifier, unsigned specifierLen);
   2394   void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
   2395                          const analyze_printf::OptionalFlag &ignoredFlag,
   2396                          const analyze_printf::OptionalFlag &flag,
   2397                          const char *startSpecifier, unsigned specifierLen);
   2398   bool checkForCStrMembers(const analyze_printf::ArgType &AT,
   2399                            const Expr *E, const CharSourceRange &CSR);
   2400 
   2401 };
   2402 }
   2403 
   2404 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
   2405                                       const analyze_printf::PrintfSpecifier &FS,
   2406                                       const char *startSpecifier,
   2407                                       unsigned specifierLen) {
   2408   const analyze_printf::PrintfConversionSpecifier &CS =
   2409     FS.getConversionSpecifier();
   2410 
   2411   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
   2412                                           getLocationOfByte(CS.getStart()),
   2413                                           startSpecifier, specifierLen,
   2414                                           CS.getStart(), CS.getLength());
   2415 }
   2416 
   2417 bool CheckPrintfHandler::HandleAmount(
   2418                                const analyze_format_string::OptionalAmount &Amt,
   2419                                unsigned k, const char *startSpecifier,
   2420                                unsigned specifierLen) {
   2421 
   2422   if (Amt.hasDataArgument()) {
   2423     if (!HasVAListArg) {
   2424       unsigned argIndex = Amt.getArgIndex();
   2425       if (argIndex >= NumDataArgs) {
   2426         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
   2427                                << k,
   2428                              getLocationOfByte(Amt.getStart()),
   2429                              /*IsStringLocation*/true,
   2430                              getSpecifierRange(startSpecifier, specifierLen));
   2431         // Don't do any more checking.  We will just emit
   2432         // spurious errors.
   2433         return false;
   2434       }
   2435 
   2436       // Type check the data argument.  It should be an 'int'.
   2437       // Although not in conformance with C99, we also allow the argument to be
   2438       // an 'unsigned int' as that is a reasonably safe case.  GCC also
   2439       // doesn't emit a warning for that case.
   2440       CoveredArgs.set(argIndex);
   2441       const Expr *Arg = getDataArg(argIndex);
   2442       if (!Arg)
   2443         return false;
   2444 
   2445       QualType T = Arg->getType();
   2446 
   2447       const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
   2448       assert(AT.isValid());
   2449 
   2450       if (!AT.matchesType(S.Context, T)) {
   2451         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
   2452                                << k << AT.getRepresentativeTypeName(S.Context)
   2453                                << T << Arg->getSourceRange(),
   2454                              getLocationOfByte(Amt.getStart()),
   2455                              /*IsStringLocation*/true,
   2456                              getSpecifierRange(startSpecifier, specifierLen));
   2457         // Don't do any more checking.  We will just emit
   2458         // spurious errors.
   2459         return false;
   2460       }
   2461     }
   2462   }
   2463   return true;
   2464 }
   2465 
   2466 void CheckPrintfHandler::HandleInvalidAmount(
   2467                                       const analyze_printf::PrintfSpecifier &FS,
   2468                                       const analyze_printf::OptionalAmount &Amt,
   2469                                       unsigned type,
   2470                                       const char *startSpecifier,
   2471                                       unsigned specifierLen) {
   2472   const analyze_printf::PrintfConversionSpecifier &CS =
   2473     FS.getConversionSpecifier();
   2474 
   2475   FixItHint fixit =
   2476     Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
   2477       ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
   2478                                  Amt.getConstantLength()))
   2479       : FixItHint();
   2480 
   2481   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
   2482                          << type << CS.toString(),
   2483                        getLocationOfByte(Amt.getStart()),
   2484                        /*IsStringLocation*/true,
   2485                        getSpecifierRange(startSpecifier, specifierLen),
   2486                        fixit);
   2487 }
   2488 
   2489 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
   2490                                     const analyze_printf::OptionalFlag &flag,
   2491                                     const char *startSpecifier,
   2492                                     unsigned specifierLen) {
   2493   // Warn about pointless flag with a fixit removal.
   2494   const analyze_printf::PrintfConversionSpecifier &CS =
   2495     FS.getConversionSpecifier();
   2496   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
   2497                          << flag.toString() << CS.toString(),
   2498                        getLocationOfByte(flag.getPosition()),
   2499                        /*IsStringLocation*/true,
   2500                        getSpecifierRange(startSpecifier, specifierLen),
   2501                        FixItHint::CreateRemoval(
   2502                          getSpecifierRange(flag.getPosition(), 1)));
   2503 }
   2504 
   2505 void CheckPrintfHandler::HandleIgnoredFlag(
   2506                                 const analyze_printf::PrintfSpecifier &FS,
   2507                                 const analyze_printf::OptionalFlag &ignoredFlag,
   2508                                 const analyze_printf::OptionalFlag &flag,
   2509                                 const char *startSpecifier,
   2510                                 unsigned specifierLen) {
   2511   // Warn about ignored flag with a fixit removal.
   2512   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
   2513                          << ignoredFlag.toString() << flag.toString(),
   2514                        getLocationOfByte(ignoredFlag.getPosition()),
   2515                        /*IsStringLocation*/true,
   2516                        getSpecifierRange(startSpecifier, specifierLen),
   2517                        FixItHint::CreateRemoval(
   2518                          getSpecifierRange(ignoredFlag.getPosition(), 1)));
   2519 }
   2520 
   2521 // Determines if the specified is a C++ class or struct containing
   2522 // a member with the specified name and kind (e.g. a CXXMethodDecl named
   2523 // "c_str()").
   2524 template<typename MemberKind>
   2525 static llvm::SmallPtrSet<MemberKind*, 1>
   2526 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
   2527   const RecordType *RT = Ty->getAs<RecordType>();
   2528   llvm::SmallPtrSet<MemberKind*, 1> Results;
   2529 
   2530   if (!RT)
   2531     return Results;
   2532   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
   2533   if (!RD)
   2534     return Results;
   2535 
   2536   LookupResult R(S, &S.PP.getIdentifierTable().get(Name), SourceLocation(),
   2537                  Sema::LookupMemberName);
   2538 
   2539   // We just need to include all members of the right kind turned up by the
   2540   // filter, at this point.
   2541   if (S.LookupQualifiedName(R, RT->getDecl()))
   2542     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
   2543       NamedDecl *decl = (*I)->getUnderlyingDecl();
   2544       if (MemberKind *FK = dyn_cast<MemberKind>(decl))
   2545         Results.insert(FK);
   2546     }
   2547   return Results;
   2548 }
   2549 
   2550 // Check if a (w)string was passed when a (w)char* was needed, and offer a
   2551 // better diagnostic if so. AT is assumed to be valid.
   2552 // Returns true when a c_str() conversion method is found.
   2553 bool CheckPrintfHandler::checkForCStrMembers(
   2554     const analyze_printf::ArgType &AT, const Expr *E,
   2555     const CharSourceRange &CSR) {
   2556   typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
   2557 
   2558   MethodSet Results =
   2559       CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
   2560 
   2561   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
   2562        MI != ME; ++MI) {
   2563     const CXXMethodDecl *Method = *MI;
   2564     if (Method->getNumParams() == 0 &&
   2565           AT.matchesType(S.Context, Method->getResultType())) {
   2566       // FIXME: Suggest parens if the expression needs them.
   2567       SourceLocation EndLoc =
   2568           S.getPreprocessor().getLocForEndOfToken(E->getLocEnd());
   2569       S.Diag(E->getLocStart(), diag::note_printf_c_str)
   2570           << "c_str()"
   2571           << FixItHint::CreateInsertion(EndLoc, ".c_str()");
   2572       return true;
   2573     }
   2574   }
   2575 
   2576   return false;
   2577 }
   2578 
   2579 bool
   2580 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
   2581                                             &FS,
   2582                                           const char *startSpecifier,
   2583                                           unsigned specifierLen) {
   2584 
   2585   using namespace analyze_format_string;
   2586   using namespace analyze_printf;
   2587   const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
   2588 
   2589   if (FS.consumesDataArgument()) {
   2590     if (atFirstArg) {
   2591         atFirstArg = false;
   2592         usesPositionalArgs = FS.usesPositionalArg();
   2593     }
   2594     else if (usesPositionalArgs != FS.usesPositionalArg()) {
   2595       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
   2596                                         startSpecifier, specifierLen);
   2597       return false;
   2598     }
   2599   }
   2600 
   2601   // First check if the field width, precision, and conversion specifier
   2602   // have matching data arguments.
   2603   if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
   2604                     startSpecifier, specifierLen)) {
   2605     return false;
   2606   }
   2607 
   2608   if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
   2609                     startSpecifier, specifierLen)) {
   2610     return false;
   2611   }
   2612 
   2613   if (!CS.consumesDataArgument()) {
   2614     // FIXME: Technically specifying a precision or field width here
   2615     // makes no sense.  Worth issuing a warning at some point.
   2616     return true;
   2617   }
   2618 
   2619   // Consume the argument.
   2620   unsigned argIndex = FS.getArgIndex();
   2621   if (argIndex < NumDataArgs) {
   2622     // The check to see if the argIndex is valid will come later.
   2623     // We set the bit here because we may exit early from this
   2624     // function if we encounter some other error.
   2625     CoveredArgs.set(argIndex);
   2626   }
   2627 
   2628   // Check for using an Objective-C specific conversion specifier
   2629   // in a non-ObjC literal.
   2630   if (!ObjCContext && CS.isObjCArg()) {
   2631     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
   2632                                                   specifierLen);
   2633   }
   2634 
   2635   // Check for invalid use of field width
   2636   if (!FS.hasValidFieldWidth()) {
   2637     HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
   2638         startSpecifier, specifierLen);
   2639   }
   2640 
   2641   // Check for invalid use of precision
   2642   if (!FS.hasValidPrecision()) {
   2643     HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
   2644         startSpecifier, specifierLen);
   2645   }
   2646 
   2647   // Check each flag does not conflict with any other component.
   2648   if (!FS.hasValidThousandsGroupingPrefix())
   2649     HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
   2650   if (!FS.hasValidLeadingZeros())
   2651     HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
   2652   if (!FS.hasValidPlusPrefix())
   2653     HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
   2654   if (!FS.hasValidSpacePrefix())
   2655     HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
   2656   if (!FS.hasValidAlternativeForm())
   2657     HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
   2658   if (!FS.hasValidLeftJustified())
   2659     HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
   2660 
   2661   // Check that flags are not ignored by another flag
   2662   if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
   2663     HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
   2664         startSpecifier, specifierLen);
   2665   if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
   2666     HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
   2667             startSpecifier, specifierLen);
   2668 
   2669   // Check the length modifier is valid with the given conversion specifier.
   2670   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
   2671     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
   2672                                 diag::warn_format_nonsensical_length);
   2673   else if (!FS.hasStandardLengthModifier())
   2674     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
   2675   else if (!FS.hasStandardLengthConversionCombination())
   2676     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
   2677                                 diag::warn_format_non_standard_conversion_spec);
   2678 
   2679   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
   2680     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
   2681 
   2682   // The remaining checks depend on the data arguments.
   2683   if (HasVAListArg)
   2684     return true;
   2685 
   2686   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
   2687     return false;
   2688 
   2689   const Expr *Arg = getDataArg(argIndex);
   2690   if (!Arg)
   2691     return true;
   2692 
   2693   return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
   2694 }
   2695 
   2696 static bool requiresParensToAddCast(const Expr *E) {
   2697   // FIXME: We should have a general way to reason about operator
   2698   // precedence and whether parens are actually needed here.
   2699   // Take care of a few common cases where they aren't.
   2700   const Expr *Inside = E->IgnoreImpCasts();
   2701   if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
   2702     Inside = POE->getSyntacticForm()->IgnoreImpCasts();
   2703 
   2704   switch (Inside->getStmtClass()) {
   2705   case Stmt::ArraySubscriptExprClass:
   2706   case Stmt::CallExprClass:
   2707   case Stmt::CharacterLiteralClass:
   2708   case Stmt::CXXBoolLiteralExprClass:
   2709   case Stmt::DeclRefExprClass:
   2710   case Stmt::FloatingLiteralClass:
   2711   case Stmt::IntegerLiteralClass:
   2712   case Stmt::MemberExprClass:
   2713   case Stmt::ObjCArrayLiteralClass:
   2714   case Stmt::ObjCBoolLiteralExprClass:
   2715   case Stmt::ObjCBoxedExprClass:
   2716   case Stmt::ObjCDictionaryLiteralClass:
   2717   case Stmt::ObjCEncodeExprClass:
   2718   case Stmt::ObjCIvarRefExprClass:
   2719   case Stmt::ObjCMessageExprClass:
   2720   case Stmt::ObjCPropertyRefExprClass:
   2721   case Stmt::ObjCStringLiteralClass:
   2722   case Stmt::ObjCSubscriptRefExprClass:
   2723   case Stmt::ParenExprClass:
   2724   case Stmt::StringLiteralClass:
   2725   case Stmt::UnaryOperatorClass:
   2726     return false;
   2727   default:
   2728     return true;
   2729   }
   2730 }
   2731 
   2732 bool
   2733 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
   2734                                     const char *StartSpecifier,
   2735                                     unsigned SpecifierLen,
   2736                                     const Expr *E) {
   2737   using namespace analyze_format_string;
   2738   using namespace analyze_printf;
   2739   // Now type check the data expression that matches the
   2740   // format specifier.
   2741   const analyze_printf::ArgType &AT = FS.getArgType(S.Context,
   2742                                                     ObjCContext);
   2743   if (!AT.isValid())
   2744     return true;
   2745 
   2746   QualType ExprTy = E->getType();
   2747   if (AT.matchesType(S.Context, ExprTy))
   2748     return true;
   2749 
   2750   // Look through argument promotions for our error message's reported type.
   2751   // This includes the integral and floating promotions, but excludes array
   2752   // and function pointer decay; seeing that an argument intended to be a
   2753   // string has type 'char [6]' is probably more confusing than 'char *'.
   2754   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
   2755     if (ICE->getCastKind() == CK_IntegralCast ||
   2756         ICE->getCastKind() == CK_FloatingCast) {
   2757       E = ICE->getSubExpr();
   2758       ExprTy = E->getType();
   2759 
   2760       // Check if we didn't match because of an implicit cast from a 'char'
   2761       // or 'short' to an 'int'.  This is done because printf is a varargs
   2762       // function.
   2763       if (ICE->getType() == S.Context.IntTy ||
   2764           ICE->getType() == S.Context.UnsignedIntTy) {
   2765         // All further checking is done on the subexpression.
   2766         if (AT.matchesType(S.Context, ExprTy))
   2767           return true;
   2768       }
   2769     }
   2770   } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
   2771     // Special case for 'a', which has type 'int' in C.
   2772     // Note, however, that we do /not/ want to treat multibyte constants like
   2773     // 'MooV' as characters! This form is deprecated but still exists.
   2774     if (ExprTy == S.Context.IntTy)
   2775       if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
   2776         ExprTy = S.Context.CharTy;
   2777   }
   2778 
   2779   // %C in an Objective-C context prints a unichar, not a wchar_t.
   2780   // If the argument is an integer of some kind, believe the %C and suggest
   2781   // a cast instead of changing the conversion specifier.
   2782   QualType IntendedTy = ExprTy;
   2783   if (ObjCContext &&
   2784       FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
   2785     if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
   2786         !ExprTy->isCharType()) {
   2787       // 'unichar' is defined as a typedef of unsigned short, but we should
   2788       // prefer using the typedef if it is visible.
   2789       IntendedTy = S.Context.UnsignedShortTy;
   2790 
   2791       LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getLocStart(),
   2792                           Sema::LookupOrdinaryName);
   2793       if (S.LookupName(Result, S.getCurScope())) {
   2794         NamedDecl *ND = Result.getFoundDecl();
   2795         if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
   2796           if (TD->getUnderlyingType() == IntendedTy)
   2797             IntendedTy = S.Context.getTypedefType(TD);
   2798       }
   2799     }
   2800   }
   2801 
   2802   // Special-case some of Darwin's platform-independence types by suggesting
   2803   // casts to primitive types that are known to be large enough.
   2804   bool ShouldNotPrintDirectly = false;
   2805   if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
   2806     if (const TypedefType *UserTy = IntendedTy->getAs<TypedefType>()) {
   2807       StringRef Name = UserTy->getDecl()->getName();
   2808       QualType CastTy = llvm::StringSwitch<QualType>(Name)
   2809         .Case("NSInteger", S.Context.LongTy)
   2810         .Case("NSUInteger", S.Context.UnsignedLongTy)
   2811         .Case("SInt32", S.Context.IntTy)
   2812         .Case("UInt32", S.Context.UnsignedIntTy)
   2813         .Default(QualType());
   2814 
   2815       if (!CastTy.isNull()) {
   2816         ShouldNotPrintDirectly = true;
   2817         IntendedTy = CastTy;
   2818       }
   2819     }
   2820   }
   2821 
   2822   // We may be able to offer a FixItHint if it is a supported type.
   2823   PrintfSpecifier fixedFS = FS;
   2824   bool success = fixedFS.fixType(IntendedTy, S.getLangOpts(),
   2825                                  S.Context, ObjCContext);
   2826 
   2827   if (success) {
   2828     // Get the fix string from the fixed format specifier
   2829     SmallString<16> buf;
   2830     llvm::raw_svector_ostream os(buf);
   2831     fixedFS.toString(os);
   2832 
   2833     CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
   2834 
   2835     if (IntendedTy == ExprTy) {
   2836       // In this case, the specifier is wrong and should be changed to match
   2837       // the argument.
   2838       EmitFormatDiagnostic(
   2839         S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
   2840           << AT.getRepresentativeTypeName(S.Context) << IntendedTy
   2841           << E->getSourceRange(),
   2842         E->getLocStart(),
   2843         /*IsStringLocation*/false,
   2844         SpecRange,
   2845         FixItHint::CreateReplacement(SpecRange, os.str()));
   2846 
   2847     } else {
   2848       // The canonical type for formatting this value is different from the
   2849       // actual type of the expression. (This occurs, for example, with Darwin's
   2850       // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
   2851       // should be printed as 'long' for 64-bit compatibility.)
   2852       // Rather than emitting a normal format/argument mismatch, we want to
   2853       // add a cast to the recommended type (and correct the format string
   2854       // if necessary).
   2855       SmallString<16> CastBuf;
   2856       llvm::raw_svector_ostream CastFix(CastBuf);
   2857       CastFix << "(";
   2858       IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
   2859       CastFix << ")";
   2860 
   2861       SmallVector<FixItHint,4> Hints;
   2862       if (!AT.matchesType(S.Context, IntendedTy))
   2863         Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
   2864 
   2865       if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
   2866         // If there's already a cast present, just replace it.
   2867         SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
   2868         Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
   2869 
   2870       } else if (!requiresParensToAddCast(E)) {
   2871         // If the expression has high enough precedence,
   2872         // just write the C-style cast.
   2873         Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
   2874                                                    CastFix.str()));
   2875       } else {
   2876         // Otherwise, add parens around the expression as well as the cast.
   2877         CastFix << "(";
   2878         Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
   2879                                                    CastFix.str()));
   2880 
   2881         SourceLocation After = S.PP.getLocForEndOfToken(E->getLocEnd());
   2882         Hints.push_back(FixItHint::CreateInsertion(After, ")"));
   2883       }
   2884 
   2885       if (ShouldNotPrintDirectly) {
   2886         // The expression has a type that should not be printed directly.
   2887         // We extract the name from the typedef because we don't want to show
   2888         // the underlying type in the diagnostic.
   2889         StringRef Name = cast<TypedefType>(ExprTy)->getDecl()->getName();
   2890 
   2891         EmitFormatDiagnostic(S.PDiag(diag::warn_format_argument_needs_cast)
   2892                                << Name << IntendedTy
   2893                                << E->getSourceRange(),
   2894                              E->getLocStart(), /*IsStringLocation=*/false,
   2895                              SpecRange, Hints);
   2896       } else {
   2897         // In this case, the expression could be printed using a different
   2898         // specifier, but we've decided that the specifier is probably correct
   2899         // and we should cast instead. Just use the normal warning message.
   2900         EmitFormatDiagnostic(
   2901           S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
   2902             << AT.getRepresentativeTypeName(S.Context) << ExprTy
   2903             << E->getSourceRange(),
   2904           E->getLocStart(), /*IsStringLocation*/false,
   2905           SpecRange, Hints);
   2906       }
   2907     }
   2908   } else {
   2909     const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
   2910                                                    SpecifierLen);
   2911     // Since the warning for passing non-POD types to variadic functions
   2912     // was deferred until now, we emit a warning for non-POD
   2913     // arguments here.
   2914     if (S.isValidVarArgType(ExprTy) == Sema::VAK_Invalid) {
   2915       unsigned DiagKind;
   2916       if (ExprTy->isObjCObjectType())
   2917         DiagKind = diag::err_cannot_pass_objc_interface_to_vararg_format;
   2918       else
   2919         DiagKind = diag::warn_non_pod_vararg_with_format_string;
   2920 
   2921       EmitFormatDiagnostic(
   2922         S.PDiag(DiagKind)
   2923           << S.getLangOpts().CPlusPlus11
   2924           << ExprTy
   2925           << CallType
   2926           << AT.getRepresentativeTypeName(S.Context)
   2927           << CSR
   2928           << E->getSourceRange(),
   2929         E->getLocStart(), /*IsStringLocation*/false, CSR);
   2930 
   2931       checkForCStrMembers(AT, E, CSR);
   2932     } else
   2933       EmitFormatDiagnostic(
   2934         S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
   2935           << AT.getRepresentativeTypeName(S.Context) << ExprTy
   2936           << CSR
   2937           << E->getSourceRange(),
   2938         E->getLocStart(), /*IsStringLocation*/false, CSR);
   2939   }
   2940 
   2941   return true;
   2942 }
   2943 
   2944 //===--- CHECK: Scanf format string checking ------------------------------===//
   2945 
   2946 namespace {
   2947 class CheckScanfHandler : public CheckFormatHandler {
   2948 public:
   2949   CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
   2950                     const Expr *origFormatExpr, unsigned firstDataArg,
   2951                     unsigned numDataArgs, const char *beg, bool hasVAListArg,
   2952                     ArrayRef<const Expr *> Args,
   2953                     unsigned formatIdx, bool inFunctionCall,
   2954                     Sema::VariadicCallType CallType)
   2955   : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
   2956                        numDataArgs, beg, hasVAListArg,
   2957                        Args, formatIdx, inFunctionCall, CallType)
   2958   {}
   2959 
   2960   bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
   2961                             const char *startSpecifier,
   2962                             unsigned specifierLen);
   2963 
   2964   bool HandleInvalidScanfConversionSpecifier(
   2965           const analyze_scanf::ScanfSpecifier &FS,
   2966           const char *startSpecifier,
   2967           unsigned specifierLen);
   2968 
   2969   void HandleIncompleteScanList(const char *start, const char *end);
   2970 };
   2971 }
   2972 
   2973 void CheckScanfHandler::HandleIncompleteScanList(const char *start,
   2974                                                  const char *end) {
   2975   EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
   2976                        getLocationOfByte(end), /*IsStringLocation*/true,
   2977                        getSpecifierRange(start, end - start));
   2978 }
   2979 
   2980 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
   2981                                         const analyze_scanf::ScanfSpecifier &FS,
   2982                                         const char *startSpecifier,
   2983                                         unsigned specifierLen) {
   2984 
   2985   const analyze_scanf::ScanfConversionSpecifier &CS =
   2986     FS.getConversionSpecifier();
   2987 
   2988   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
   2989                                           getLocationOfByte(CS.getStart()),
   2990                                           startSpecifier, specifierLen,
   2991                                           CS.getStart(), CS.getLength());
   2992 }
   2993 
   2994 bool CheckScanfHandler::HandleScanfSpecifier(
   2995                                        const analyze_scanf::ScanfSpecifier &FS,
   2996                                        const char *startSpecifier,
   2997                                        unsigned specifierLen) {
   2998 
   2999   using namespace analyze_scanf;
   3000   using namespace analyze_format_string;
   3001 
   3002   const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
   3003 
   3004   // Handle case where '%' and '*' don't consume an argument.  These shouldn't
   3005   // be used to decide if we are using positional arguments consistently.
   3006   if (FS.consumesDataArgument()) {
   3007     if (atFirstArg) {
   3008       atFirstArg = false;
   3009       usesPositionalArgs = FS.usesPositionalArg();
   3010     }
   3011     else if (usesPositionalArgs != FS.usesPositionalArg()) {
   3012       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
   3013                                         startSpecifier, specifierLen);
   3014       return false;
   3015     }
   3016   }
   3017 
   3018   // Check if the field with is non-zero.
   3019   const OptionalAmount &Amt = FS.getFieldWidth();
   3020   if (Amt.getHowSpecified() == OptionalAmount::Constant) {
   3021     if (Amt.getConstantAmount() == 0) {
   3022       const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
   3023                                                    Amt.getConstantLength());
   3024       EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
   3025                            getLocationOfByte(Amt.getStart()),
   3026                            /*IsStringLocation*/true, R,
   3027                            FixItHint::CreateRemoval(R));
   3028     }
   3029   }
   3030 
   3031   if (!FS.consumesDataArgument()) {
   3032     // FIXME: Technically specifying a precision or field width here
   3033     // makes no sense.  Worth issuing a warning at some point.
   3034     return true;
   3035   }
   3036 
   3037   // Consume the argument.
   3038   unsigned argIndex = FS.getArgIndex();
   3039   if (argIndex < NumDataArgs) {
   3040       // The check to see if the argIndex is valid will come later.
   3041       // We set the bit here because we may exit early from this
   3042       // function if we encounter some other error.
   3043     CoveredArgs.set(argIndex);
   3044   }
   3045 
   3046   // Check the length modifier is valid with the given conversion specifier.
   3047   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
   3048     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
   3049                                 diag::warn_format_nonsensical_length);
   3050   else if (!FS.hasStandardLengthModifier())
   3051     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
   3052   else if (!FS.hasStandardLengthConversionCombination())
   3053     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
   3054                                 diag::warn_format_non_standard_conversion_spec);
   3055 
   3056   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
   3057     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
   3058 
   3059   // The remaining checks depend on the data arguments.
   3060   if (HasVAListArg)
   3061     return true;
   3062 
   3063   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
   3064     return false;
   3065 
   3066   // Check that the argument type matches the format specifier.
   3067   const Expr *Ex = getDataArg(argIndex);
   3068   if (!Ex)
   3069     return true;
   3070 
   3071   const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
   3072   if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) {
   3073     ScanfSpecifier fixedFS = FS;
   3074     bool success = fixedFS.fixType(Ex->getType(), S.getLangOpts(),
   3075                                    S.Context);
   3076 
   3077     if (success) {
   3078       // Get the fix string from the fixed format specifier.
   3079       SmallString<128> buf;
   3080       llvm::raw_svector_ostream os(buf);
   3081       fixedFS.toString(os);
   3082 
   3083       EmitFormatDiagnostic(
   3084         S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
   3085           << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
   3086           << Ex->getSourceRange(),
   3087         Ex->getLocStart(),
   3088         /*IsStringLocation*/false,
   3089         getSpecifierRange(startSpecifier, specifierLen),
   3090         FixItHint::CreateReplacement(
   3091           getSpecifierRange(startSpecifier, specifierLen),
   3092           os.str()));
   3093     } else {
   3094       EmitFormatDiagnostic(
   3095         S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
   3096           << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
   3097           << Ex->getSourceRange(),
   3098         Ex->getLocStart(),
   3099         /*IsStringLocation*/false,
   3100         getSpecifierRange(startSpecifier, specifierLen));
   3101     }
   3102   }
   3103 
   3104   return true;
   3105 }
   3106 
   3107 void Sema::CheckFormatString(const StringLiteral *FExpr,
   3108                              const Expr *OrigFormatExpr,
   3109                              ArrayRef<const Expr *> Args,
   3110                              bool HasVAListArg, unsigned format_idx,
   3111                              unsigned firstDataArg, FormatStringType Type,
   3112                              bool inFunctionCall, VariadicCallType CallType) {
   3113 
   3114   // CHECK: is the format string a wide literal?
   3115   if (!FExpr->isAscii() && !FExpr->isUTF8()) {
   3116     CheckFormatHandler::EmitFormatDiagnostic(
   3117       *this, inFunctionCall, Args[format_idx],
   3118       PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
   3119       /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
   3120     return;
   3121   }
   3122 
   3123   // Str - The format string.  NOTE: this is NOT null-terminated!
   3124   StringRef StrRef = FExpr->getString();
   3125   const char *Str = StrRef.data();
   3126   unsigned StrLen = StrRef.size();
   3127   const unsigned numDataArgs = Args.size() - firstDataArg;
   3128 
   3129   // CHECK: empty format string?
   3130   if (StrLen == 0 && numDataArgs > 0) {
   3131     CheckFormatHandler::EmitFormatDiagnostic(
   3132       *this, inFunctionCall, Args[format_idx],
   3133       PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
   3134       /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
   3135     return;
   3136   }
   3137 
   3138   if (Type == FST_Printf || Type == FST_NSString) {
   3139     CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
   3140                          numDataArgs, (Type == FST_NSString),
   3141                          Str, HasVAListArg, Args, format_idx,
   3142                          inFunctionCall, CallType);
   3143 
   3144     if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
   3145                                                   getLangOpts(),
   3146                                                   Context.getTargetInfo()))
   3147       H.DoneProcessing();
   3148   } else if (Type == FST_Scanf) {
   3149     CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg, numDataArgs,
   3150                         Str, HasVAListArg, Args, format_idx,
   3151                         inFunctionCall, CallType);
   3152 
   3153     if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
   3154                                                  getLangOpts(),
   3155                                                  Context.getTargetInfo()))
   3156       H.DoneProcessing();
   3157   } // TODO: handle other formats
   3158 }
   3159 
   3160 //===--- CHECK: Standard memory functions ---------------------------------===//
   3161 
   3162 /// \brief Determine whether the given type is a dynamic class type (e.g.,
   3163 /// whether it has a vtable).
   3164 static bool isDynamicClassType(QualType T) {
   3165   if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
   3166     if (CXXRecordDecl *Definition = Record->getDefinition())
   3167       if (Definition->isDynamicClass())
   3168         return true;
   3169 
   3170   return false;
   3171 }
   3172 
   3173 /// \brief If E is a sizeof expression, returns its argument expression,
   3174 /// otherwise returns NULL.
   3175 static const Expr *getSizeOfExprArg(const Expr* E) {
   3176   if (const UnaryExprOrTypeTraitExpr *SizeOf =
   3177       dyn_cast<UnaryExprOrTypeTraitExpr>(E))
   3178     if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
   3179       return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
   3180 
   3181   return 0;
   3182 }
   3183 
   3184 /// \brief If E is a sizeof expression, returns its argument type.
   3185 static QualType getSizeOfArgType(const Expr* E) {
   3186   if (const UnaryExprOrTypeTraitExpr *SizeOf =
   3187       dyn_cast<UnaryExprOrTypeTraitExpr>(E))
   3188     if (SizeOf->getKind() == clang::UETT_SizeOf)
   3189       return SizeOf->getTypeOfArgument();
   3190 
   3191   return QualType();
   3192 }
   3193 
   3194 /// \brief Check for dangerous or invalid arguments to memset().
   3195 ///
   3196 /// This issues warnings on known problematic, dangerous or unspecified
   3197 /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
   3198 /// function calls.
   3199 ///
   3200 /// \param Call The call expression to diagnose.
   3201 void Sema::CheckMemaccessArguments(const CallExpr *Call,
   3202                                    unsigned BId,
   3203                                    IdentifierInfo *FnName) {
   3204   assert(BId != 0);
   3205 
   3206   // It is possible to have a non-standard definition of memset.  Validate
   3207   // we have enough arguments, and if not, abort further checking.
   3208   unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
   3209   if (Call->getNumArgs() < ExpectedNumArgs)
   3210     return;
   3211 
   3212   unsigned LastArg = (BId == Builtin::BImemset ||
   3213                       BId == Builtin::BIstrndup ? 1 : 2);
   3214   unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
   3215   const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
   3216 
   3217   // We have special checking when the length is a sizeof expression.
   3218   QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
   3219   const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
   3220   llvm::FoldingSetNodeID SizeOfArgID;
   3221 
   3222   for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
   3223     const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
   3224     SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
   3225 
   3226     QualType DestTy = Dest->getType();
   3227     if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
   3228       QualType PointeeTy = DestPtrTy->getPointeeType();
   3229 
   3230       // Never warn about void type pointers. This can be used to suppress
   3231       // false positives.
   3232       if (PointeeTy->isVoidType())
   3233         continue;
   3234 
   3235       // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
   3236       // actually comparing the expressions for equality. Because computing the
   3237       // expression IDs can be expensive, we only do this if the diagnostic is
   3238       // enabled.
   3239       if (SizeOfArg &&
   3240           Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
   3241                                    SizeOfArg->getExprLoc())) {
   3242         // We only compute IDs for expressions if the warning is enabled, and
   3243         // cache the sizeof arg's ID.
   3244         if (SizeOfArgID == llvm::FoldingSetNodeID())
   3245           SizeOfArg->Profile(SizeOfArgID, Context, true);
   3246         llvm::FoldingSetNodeID DestID;
   3247         Dest->Profile(DestID, Context, true);
   3248         if (DestID == SizeOfArgID) {
   3249           // TODO: For strncpy() and friends, this could suggest sizeof(dst)
   3250           //       over sizeof(src) as well.
   3251           unsigned ActionIdx = 0; // Default is to suggest dereferencing.
   3252           StringRef ReadableName = FnName->getName();
   3253 
   3254           if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
   3255             if (UnaryOp->getOpcode() == UO_AddrOf)
   3256               ActionIdx = 1; // If its an address-of operator, just remove it.
   3257           if (!PointeeTy->isIncompleteType() &&
   3258               (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
   3259             ActionIdx = 2; // If the pointee's size is sizeof(char),
   3260                            // suggest an explicit length.
   3261 
   3262           // If the function is defined as a builtin macro, do not show macro
   3263           // expansion.
   3264           SourceLocation SL = SizeOfArg->getExprLoc();
   3265           SourceRange DSR = Dest->getSourceRange();
   3266           SourceRange SSR = SizeOfArg->getSourceRange();
   3267           SourceManager &SM  = PP.getSourceManager();
   3268 
   3269           if (SM.isMacroArgExpansion(SL)) {
   3270             ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
   3271             SL = SM.getSpellingLoc(SL);
   3272             DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
   3273                              SM.getSpellingLoc(DSR.getEnd()));
   3274             SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
   3275                              SM.getSpellingLoc(SSR.getEnd()));
   3276           }
   3277 
   3278           DiagRuntimeBehavior(SL, SizeOfArg,
   3279                               PDiag(diag::warn_sizeof_pointer_expr_memaccess)
   3280                                 << ReadableName
   3281                                 << PointeeTy
   3282                                 << DestTy
   3283                                 << DSR
   3284                                 << SSR);
   3285           DiagRuntimeBehavior(SL, SizeOfArg,
   3286                          PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
   3287                                 << ActionIdx
   3288                                 << SSR);
   3289 
   3290           break;
   3291         }
   3292       }
   3293 
   3294       // Also check for cases where the sizeof argument is the exact same
   3295       // type as the memory argument, and where it points to a user-defined
   3296       // record type.
   3297       if (SizeOfArgTy != QualType()) {
   3298         if (PointeeTy->isRecordType() &&
   3299             Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
   3300           DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
   3301                               PDiag(diag::warn_sizeof_pointer_type_memaccess)
   3302                                 << FnName << SizeOfArgTy << ArgIdx
   3303                                 << PointeeTy << Dest->getSourceRange()
   3304                                 << LenExpr->getSourceRange());
   3305           break;
   3306         }
   3307       }
   3308 
   3309       // Always complain about dynamic classes.
   3310       if (isDynamicClassType(PointeeTy)) {
   3311 
   3312         unsigned OperationType = 0;
   3313         // "overwritten" if we're warning about the destination for any call
   3314         // but memcmp; otherwise a verb appropriate to the call.
   3315         if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
   3316           if (BId == Builtin::BImemcpy)
   3317             OperationType = 1;
   3318           else if(BId == Builtin::BImemmove)
   3319             OperationType = 2;
   3320           else if (BId == Builtin::BImemcmp)
   3321             OperationType = 3;
   3322         }
   3323 
   3324         DiagRuntimeBehavior(
   3325           Dest->getExprLoc(), Dest,
   3326           PDiag(diag::warn_dyn_class_memaccess)
   3327             << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
   3328             << FnName << PointeeTy
   3329             << OperationType
   3330             << Call->getCallee()->getSourceRange());
   3331       } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
   3332                BId != Builtin::BImemset)
   3333         DiagRuntimeBehavior(
   3334           Dest->getExprLoc(), Dest,
   3335           PDiag(diag::warn_arc_object_memaccess)
   3336             << ArgIdx << FnName << PointeeTy
   3337             << Call->getCallee()->getSourceRange());
   3338       else
   3339         continue;
   3340 
   3341       DiagRuntimeBehavior(
   3342         Dest->getExprLoc(), Dest,
   3343         PDiag(diag::note_bad_memaccess_silence)
   3344           << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
   3345       break;
   3346     }
   3347   }
   3348 }
   3349 
   3350 // A little helper routine: ignore addition and subtraction of integer literals.
   3351 // This intentionally does not ignore all integer constant expressions because
   3352 // we don't want to remove sizeof().
   3353 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
   3354   Ex = Ex->IgnoreParenCasts();
   3355 
   3356   for (;;) {
   3357     const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
   3358     if (!BO || !BO->isAdditiveOp())
   3359       break;
   3360 
   3361     const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
   3362     const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
   3363 
   3364     if (isa<IntegerLiteral>(RHS))
   3365       Ex = LHS;
   3366     else if (isa<IntegerLiteral>(LHS))
   3367       Ex = RHS;
   3368     else
   3369       break;
   3370   }
   3371 
   3372   return Ex;
   3373 }
   3374 
   3375 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
   3376                                                       ASTContext &Context) {
   3377   // Only handle constant-sized or VLAs, but not flexible members.
   3378   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
   3379     // Only issue the FIXIT for arrays of size > 1.
   3380     if (CAT->getSize().getSExtValue() <= 1)
   3381       return false;
   3382   } else if (!Ty->isVariableArrayType()) {
   3383     return false;
   3384   }
   3385   return true;
   3386 }
   3387 
   3388 // Warn if the user has made the 'size' argument to strlcpy or strlcat
   3389 // be the size of the source, instead of the destination.
   3390 void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
   3391                                     IdentifierInfo *FnName) {
   3392 
   3393   // Don't crash if the user has the wrong number of arguments
   3394   if (Call->getNumArgs() != 3)
   3395     return;
   3396 
   3397   const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
   3398   const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
   3399   const Expr *CompareWithSrc = NULL;
   3400 
   3401   // Look for 'strlcpy(dst, x, sizeof(x))'
   3402   if (const Expr *Ex = getSizeOfExprArg(SizeArg))
   3403     CompareWithSrc = Ex;
   3404   else {
   3405     // Look for 'strlcpy(dst, x, strlen(x))'
   3406     if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
   3407       if (SizeCall->isBuiltinCall() == Builtin::BIstrlen
   3408           && SizeCall->getNumArgs() == 1)
   3409         CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
   3410     }
   3411   }
   3412 
   3413   if (!CompareWithSrc)
   3414     return;
   3415 
   3416   // Determine if the argument to sizeof/strlen is equal to the source
   3417   // argument.  In principle there's all kinds of things you could do
   3418   // here, for instance creating an == expression and evaluating it with
   3419   // EvaluateAsBooleanCondition, but this uses a more direct technique:
   3420   const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
   3421   if (!SrcArgDRE)
   3422     return;
   3423 
   3424   const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
   3425   if (!CompareWithSrcDRE ||
   3426       SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
   3427     return;
   3428 
   3429   const Expr *OriginalSizeArg = Call->getArg(2);
   3430   Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
   3431     << OriginalSizeArg->getSourceRange() << FnName;
   3432 
   3433   // Output a FIXIT hint if the destination is an array (rather than a
   3434   // pointer to an array).  This could be enhanced to handle some
   3435   // pointers if we know the actual size, like if DstArg is 'array+2'
   3436   // we could say 'sizeof(array)-2'.
   3437   const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
   3438   if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
   3439     return;
   3440 
   3441   SmallString<128> sizeString;
   3442   llvm::raw_svector_ostream OS(sizeString);
   3443   OS << "sizeof(";
   3444   DstArg->printPretty(OS, 0, getPrintingPolicy());
   3445   OS << ")";
   3446 
   3447   Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
   3448     << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
   3449                                     OS.str());
   3450 }
   3451 
   3452 /// Check if two expressions refer to the same declaration.
   3453 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
   3454   if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
   3455     if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
   3456       return D1->getDecl() == D2->getDecl();
   3457   return false;
   3458 }
   3459 
   3460 static const Expr *getStrlenExprArg(const Expr *E) {
   3461   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
   3462     const FunctionDecl *FD = CE->getDirectCallee();
   3463     if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
   3464       return 0;
   3465     return CE->getArg(0)->IgnoreParenCasts();
   3466   }
   3467   return 0;
   3468 }
   3469 
   3470 // Warn on anti-patterns as the 'size' argument to strncat.
   3471 // The correct size argument should look like following:
   3472 //   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
   3473 void Sema::CheckStrncatArguments(const CallExpr *CE,
   3474                                  IdentifierInfo *FnName) {
   3475   // Don't crash if the user has the wrong number of arguments.
   3476   if (CE->getNumArgs() < 3)
   3477     return;
   3478   const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
   3479   const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
   3480   const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
   3481 
   3482   // Identify common expressions, which are wrongly used as the size argument
   3483   // to strncat and may lead to buffer overflows.
   3484   unsigned PatternType = 0;
   3485   if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
   3486     // - sizeof(dst)
   3487     if (referToTheSameDecl(SizeOfArg, DstArg))
   3488       PatternType = 1;
   3489     // - sizeof(src)
   3490     else if (referToTheSameDecl(SizeOfArg, SrcArg))
   3491       PatternType = 2;
   3492   } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
   3493     if (BE->getOpcode() == BO_Sub) {
   3494       const Expr *L = BE->getLHS()->IgnoreParenCasts();
   3495       const Expr *R = BE->getRHS()->IgnoreParenCasts();
   3496       // - sizeof(dst) - strlen(dst)
   3497       if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
   3498           referToTheSameDecl(DstArg, getStrlenExprArg(R)))
   3499         PatternType = 1;
   3500       // - sizeof(src) - (anything)
   3501       else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
   3502         PatternType = 2;
   3503     }
   3504   }
   3505 
   3506   if (PatternType == 0)
   3507     return;
   3508 
   3509   // Generate the diagnostic.
   3510   SourceLocation SL = LenArg->getLocStart();
   3511   SourceRange SR = LenArg->getSourceRange();
   3512   SourceManager &SM  = PP.getSourceManager();
   3513 
   3514   // If the function is defined as a builtin macro, do not show macro expansion.
   3515   if (SM.isMacroArgExpansion(SL)) {
   3516     SL = SM.getSpellingLoc(SL);
   3517     SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
   3518                      SM.getSpellingLoc(SR.getEnd()));
   3519   }
   3520 
   3521   // Check if the destination is an array (rather than a pointer to an array).
   3522   QualType DstTy = DstArg->getType();
   3523   bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
   3524                                                                     Context);
   3525   if (!isKnownSizeArray) {
   3526     if (PatternType == 1)
   3527       Diag(SL, diag::warn_strncat_wrong_size) << SR;
   3528     else
   3529       Diag(SL, diag::warn_strncat_src_size) << SR;
   3530     return;
   3531   }
   3532 
   3533   if (PatternType == 1)
   3534     Diag(SL, diag::warn_strncat_large_size) << SR;
   3535   else
   3536     Diag(SL, diag::warn_strncat_src_size) << SR;
   3537 
   3538   SmallString<128> sizeString;
   3539   llvm::raw_svector_ostream OS(sizeString);
   3540   OS << "sizeof(";
   3541   DstArg->printPretty(OS, 0, getPrintingPolicy());
   3542   OS << ") - ";
   3543   OS << "strlen(";
   3544   DstArg->printPretty(OS, 0, getPrintingPolicy());
   3545   OS << ") - 1";
   3546 
   3547   Diag(SL, diag::note_strncat_wrong_size)
   3548     << FixItHint::CreateReplacement(SR, OS.str());
   3549 }
   3550 
   3551 //===--- CHECK: Return Address of Stack Variable --------------------------===//
   3552 
   3553 static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
   3554                      Decl *ParentDecl);
   3555 static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars,
   3556                       Decl *ParentDecl);
   3557 
   3558 /// CheckReturnStackAddr - Check if a return statement returns the address
   3559 ///   of a stack variable.
   3560 void
   3561 Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
   3562                            SourceLocation ReturnLoc) {
   3563 
   3564   Expr *stackE = 0;
   3565   SmallVector<DeclRefExpr *, 8> refVars;
   3566 
   3567   // Perform checking for returned stack addresses, local blocks,
   3568   // label addresses or references to temporaries.
   3569   if (lhsType->isPointerType() ||
   3570       (!getLangOpts().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
   3571     stackE = EvalAddr(RetValExp, refVars, /*ParentDecl=*/0);
   3572   } else if (lhsType->isReferenceType()) {
   3573     stackE = EvalVal(RetValExp, refVars, /*ParentDecl=*/0);
   3574   }
   3575 
   3576   if (stackE == 0)
   3577     return; // Nothing suspicious was found.
   3578 
   3579   SourceLocation diagLoc;
   3580   SourceRange diagRange;
   3581   if (refVars.empty()) {
   3582     diagLoc = stackE->getLocStart();
   3583     diagRange = stackE->getSourceRange();
   3584   } else {
   3585     // We followed through a reference variable. 'stackE' contains the
   3586     // problematic expression but we will warn at the return statement pointing
   3587     // at the reference variable. We will later display the "trail" of
   3588     // reference variables using notes.
   3589     diagLoc = refVars[0]->getLocStart();
   3590     diagRange = refVars[0]->getSourceRange();
   3591   }
   3592 
   3593   if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
   3594     Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
   3595                                              : diag::warn_ret_stack_addr)
   3596      << DR->getDecl()->getDeclName() << diagRange;
   3597   } else if (isa<BlockExpr>(stackE)) { // local block.
   3598     Diag(diagLoc, diag::err_ret_local_block) << diagRange;
   3599   } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
   3600     Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
   3601   } else { // local temporary.
   3602     Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
   3603                                              : diag::warn_ret_local_temp_addr)
   3604      << diagRange;
   3605   }
   3606 
   3607   // Display the "trail" of reference variables that we followed until we
   3608   // found the problematic expression using notes.
   3609   for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
   3610     VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
   3611     // If this var binds to another reference var, show the range of the next
   3612     // var, otherwise the var binds to the problematic expression, in which case
   3613     // show the range of the expression.
   3614     SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
   3615                                   : stackE->getSourceRange();
   3616     Diag(VD->getLocation(), diag::note_ref_var_local_bind)
   3617       << VD->getDeclName() << range;
   3618   }
   3619 }
   3620 
   3621 /// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
   3622 ///  check if the expression in a return statement evaluates to an address
   3623 ///  to a location on the stack, a local block, an address of a label, or a
   3624 ///  reference to local temporary. The recursion is used to traverse the
   3625 ///  AST of the return expression, with recursion backtracking when we
   3626 ///  encounter a subexpression that (1) clearly does not lead to one of the
   3627 ///  above problematic expressions (2) is something we cannot determine leads to
   3628 ///  a problematic expression based on such local checking.
   3629 ///
   3630 ///  Both EvalAddr and EvalVal follow through reference variables to evaluate
   3631 ///  the expression that they point to. Such variables are added to the
   3632 ///  'refVars' vector so that we know what the reference variable "trail" was.
   3633 ///
   3634 ///  EvalAddr processes expressions that are pointers that are used as
   3635 ///  references (and not L-values).  EvalVal handles all other values.
   3636 ///  At the base case of the recursion is a check for the above problematic
   3637 ///  expressions.
   3638 ///
   3639 ///  This implementation handles:
   3640 ///
   3641 ///   * pointer-to-pointer casts
   3642 ///   * implicit conversions from array references to pointers
   3643 ///   * taking the address of fields
   3644 ///   * arbitrary interplay between "&" and "*" operators
   3645 ///   * pointer arithmetic from an address of a stack variable
   3646 ///   * taking the address of an array element where the array is on the stack
   3647 static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
   3648                       Decl *ParentDecl) {
   3649   if (E->isTypeDependent())
   3650       return NULL;
   3651 
   3652   // We should only be called for evaluating pointer expressions.
   3653   assert((E->getType()->isAnyPointerType() ||
   3654           E->getType()->isBlockPointerType() ||
   3655           E->getType()->isObjCQualifiedIdType()) &&
   3656          "EvalAddr only works on pointers");
   3657 
   3658   E = E->IgnoreParens();
   3659 
   3660   // Our "symbolic interpreter" is just a dispatch off the currently
   3661   // viewed AST node.  We then recursively traverse the AST by calling
   3662   // EvalAddr and EvalVal appropriately.
   3663   switch (E->getStmtClass()) {
   3664   case Stmt::DeclRefExprClass: {
   3665     DeclRefExpr *DR = cast<DeclRefExpr>(E);
   3666 
   3667     if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
   3668       // If this is a reference variable, follow through to the expression that
   3669       // it points to.
   3670       if (V->hasLocalStorage() &&
   3671           V->getType()->isReferenceType() && V->hasInit()) {
   3672         // Add the reference variable to the "trail".
   3673         refVars.push_back(DR);
   3674         return EvalAddr(V->getInit(), refVars, ParentDecl);
   3675       }
   3676 
   3677     return NULL;
   3678   }
   3679 
   3680   case Stmt::UnaryOperatorClass: {
   3681     // The only unary operator that make sense to handle here
   3682     // is AddrOf.  All others don't make sense as pointers.
   3683     UnaryOperator *U = cast<UnaryOperator>(E);
   3684 
   3685     if (U->getOpcode() == UO_AddrOf)
   3686       return EvalVal(U->getSubExpr(), refVars, ParentDecl);
   3687     else
   3688       return NULL;
   3689   }
   3690 
   3691   case Stmt::BinaryOperatorClass: {
   3692     // Handle pointer arithmetic.  All other binary operators are not valid
   3693     // in this context.
   3694     BinaryOperator *B = cast<BinaryOperator>(E);
   3695     BinaryOperatorKind op = B->getOpcode();
   3696 
   3697     if (op != BO_Add && op != BO_Sub)
   3698       return NULL;
   3699 
   3700     Expr *Base = B->getLHS();
   3701 
   3702     // Determine which argument is the real pointer base.  It could be
   3703     // the RHS argument instead of the LHS.
   3704     if (!Base->getType()->isPointerType()) Base = B->getRHS();
   3705 
   3706     assert (Base->getType()->isPointerType());
   3707     return EvalAddr(Base, refVars, ParentDecl);
   3708   }
   3709 
   3710   // For conditional operators we need to see if either the LHS or RHS are
   3711   // valid DeclRefExpr*s.  If one of them is valid, we return it.
   3712   case Stmt::ConditionalOperatorClass: {
   3713     ConditionalOperator *C = cast<ConditionalOperator>(E);
   3714 
   3715     // Handle the GNU extension for missing LHS.
   3716     if (Expr *lhsExpr = C->getLHS()) {
   3717     // In C++, we can have a throw-expression, which has 'void' type.
   3718       if (!lhsExpr->getType()->isVoidType())
   3719         if (Expr* LHS = EvalAddr(lhsExpr, refVars, ParentDecl))
   3720           return LHS;
   3721     }
   3722 
   3723     // In C++, we can have a throw-expression, which has 'void' type.
   3724     if (C->getRHS()->getType()->isVoidType())
   3725       return NULL;
   3726 
   3727     return EvalAddr(C->getRHS(), refVars, ParentDecl);
   3728   }
   3729 
   3730   case Stmt::BlockExprClass:
   3731     if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
   3732       return E; // local block.
   3733     return NULL;
   3734 
   3735   case Stmt::AddrLabelExprClass:
   3736     return E; // address of label.
   3737 
   3738   case Stmt::ExprWithCleanupsClass:
   3739     return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
   3740                     ParentDecl);
   3741 
   3742   // For casts, we need to handle conversions from arrays to
   3743   // pointer values, and pointer-to-pointer conversions.
   3744   case Stmt::ImplicitCastExprClass:
   3745   case Stmt::CStyleCastExprClass:
   3746   case Stmt::CXXFunctionalCastExprClass:
   3747   case Stmt::ObjCBridgedCastExprClass:
   3748   case Stmt::CXXStaticCastExprClass:
   3749   case Stmt::CXXDynamicCastExprClass:
   3750   case Stmt::CXXConstCastExprClass:
   3751   case Stmt::CXXReinterpretCastExprClass: {
   3752     Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
   3753     switch (cast<CastExpr>(E)->getCastKind()) {
   3754     case CK_BitCast:
   3755     case CK_LValueToRValue:
   3756     case CK_NoOp:
   3757     case CK_BaseToDerived:
   3758     case CK_DerivedToBase:
   3759     case CK_UncheckedDerivedToBase:
   3760     case CK_Dynamic:
   3761     case CK_CPointerToObjCPointerCast:
   3762     case CK_BlockPointerToObjCPointerCast:
   3763     case CK_AnyPointerToBlockPointerCast:
   3764       return EvalAddr(SubExpr, refVars, ParentDecl);
   3765 
   3766     case CK_ArrayToPointerDecay:
   3767       return EvalVal(SubExpr, refVars, ParentDecl);
   3768 
   3769     default:
   3770       return 0;
   3771     }
   3772   }
   3773 
   3774   case Stmt::MaterializeTemporaryExprClass:
   3775     if (Expr *Result = EvalAddr(
   3776                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
   3777                                 refVars, ParentDecl))
   3778       return Result;
   3779 
   3780     return E;
   3781 
   3782   // Everything else: we simply don't reason about them.
   3783   default:
   3784     return NULL;
   3785   }
   3786 }
   3787 
   3788 
   3789 ///  EvalVal - This function is complements EvalAddr in the mutual recursion.
   3790 ///   See the comments for EvalAddr for more details.
   3791 static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
   3792                      Decl *ParentDecl) {
   3793 do {
   3794   // We should only be called for evaluating non-pointer expressions, or
   3795   // expressions with a pointer type that are not used as references but instead
   3796   // are l-values (e.g., DeclRefExpr with a pointer type).
   3797 
   3798   // Our "symbolic interpreter" is just a dispatch off the currently
   3799   // viewed AST node.  We then recursively traverse the AST by calling
   3800   // EvalAddr and EvalVal appropriately.
   3801 
   3802   E = E->IgnoreParens();
   3803   switch (E->getStmtClass()) {
   3804   case Stmt::ImplicitCastExprClass: {
   3805     ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
   3806     if (IE->getValueKind() == VK_LValue) {
   3807       E = IE->getSubExpr();
   3808       continue;
   3809     }
   3810     return NULL;
   3811   }
   3812 
   3813   case Stmt::ExprWithCleanupsClass:
   3814     return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,ParentDecl);
   3815 
   3816   case Stmt::DeclRefExprClass: {
   3817     // When we hit a DeclRefExpr we are looking at code that refers to a
   3818     // variable's name. If it's not a reference variable we check if it has
   3819     // local storage within the function, and if so, return the expression.
   3820     DeclRefExpr *DR = cast<DeclRefExpr>(E);
   3821 
   3822     if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) {
   3823       // Check if it refers to itself, e.g. "int& i = i;".
   3824       if (V == ParentDecl)
   3825         return DR;
   3826 
   3827       if (V->hasLocalStorage()) {
   3828         if (!V->getType()->isReferenceType())
   3829           return DR;
   3830 
   3831         // Reference variable, follow through to the expression that
   3832         // it points to.
   3833         if (V->hasInit()) {
   3834           // Add the reference variable to the "trail".
   3835           refVars.push_back(DR);
   3836           return EvalVal(V->getInit(), refVars, V);
   3837         }
   3838       }
   3839     }
   3840 
   3841     return NULL;
   3842   }
   3843 
   3844   case Stmt::UnaryOperatorClass: {
   3845     // The only unary operator that make sense to handle here
   3846     // is Deref.  All others don't resolve to a "name."  This includes
   3847     // handling all sorts of rvalues passed to a unary operator.
   3848     UnaryOperator *U = cast<UnaryOperator>(E);
   3849 
   3850     if (U->getOpcode() == UO_Deref)
   3851       return EvalAddr(U->getSubExpr(), refVars, ParentDecl);
   3852 
   3853     return NULL;
   3854   }
   3855 
   3856   case Stmt::ArraySubscriptExprClass: {
   3857     // Array subscripts are potential references to data on the stack.  We
   3858     // retrieve the DeclRefExpr* for the array variable if it indeed
   3859     // has local storage.
   3860     return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars,ParentDecl);
   3861   }
   3862 
   3863   case Stmt::ConditionalOperatorClass: {
   3864     // For conditional operators we need to see if either the LHS or RHS are
   3865     // non-NULL Expr's.  If one is non-NULL, we return it.
   3866     ConditionalOperator *C = cast<ConditionalOperator>(E);
   3867 
   3868     // Handle the GNU extension for missing LHS.
   3869     if (Expr *lhsExpr = C->getLHS())
   3870       if (Expr *LHS = EvalVal(lhsExpr, refVars, ParentDecl))
   3871         return LHS;
   3872 
   3873     return EvalVal(C->getRHS(), refVars, ParentDecl);
   3874   }
   3875 
   3876   // Accesses to members are potential references to data on the stack.
   3877   case Stmt::MemberExprClass: {
   3878     MemberExpr *M = cast<MemberExpr>(E);
   3879 
   3880     // Check for indirect access.  We only want direct field accesses.
   3881     if (M->isArrow())
   3882       return NULL;
   3883 
   3884     // Check whether the member type is itself a reference, in which case
   3885     // we're not going to refer to the member, but to what the member refers to.
   3886     if (M->getMemberDecl()->getType()->isReferenceType())
   3887       return NULL;
   3888 
   3889     return EvalVal(M->getBase(), refVars, ParentDecl);
   3890   }
   3891 
   3892   case Stmt::MaterializeTemporaryExprClass:
   3893     if (Expr *Result = EvalVal(
   3894                           cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
   3895                                refVars, ParentDecl))
   3896       return Result;
   3897 
   3898     return E;
   3899 
   3900   default:
   3901     // Check that we don't return or take the address of a reference to a
   3902     // temporary. This is only useful in C++.
   3903     if (!E->isTypeDependent() && E->isRValue())
   3904       return E;
   3905 
   3906     // Everything else: we simply don't reason about them.
   3907     return NULL;
   3908   }
   3909 } while (true);
   3910 }
   3911 
   3912 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
   3913 
   3914 /// Check for comparisons of floating point operands using != and ==.
   3915 /// Issue a warning if these are no self-comparisons, as they are not likely
   3916 /// to do what the programmer intended.
   3917 void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
   3918   Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
   3919   Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
   3920 
   3921   // Special case: check for x == x (which is OK).
   3922   // Do not emit warnings for such cases.
   3923   if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
   3924     if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
   3925       if (DRL->getDecl() == DRR->getDecl())
   3926         return;
   3927 
   3928 
   3929   // Special case: check for comparisons against literals that can be exactly
   3930   //  represented by APFloat.  In such cases, do not emit a warning.  This
   3931   //  is a heuristic: often comparison against such literals are used to
   3932   //  detect if a value in a variable has not changed.  This clearly can
   3933   //  lead to false negatives.
   3934   if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
   3935     if (FLL->isExact())
   3936       return;
   3937   } else
   3938     if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
   3939       if (FLR->isExact())
   3940         return;
   3941 
   3942   // Check for comparisons with builtin types.
   3943   if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
   3944     if (CL->isBuiltinCall())
   3945       return;
   3946 
   3947   if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
   3948     if (CR->isBuiltinCall())
   3949       return;
   3950 
   3951   // Emit the diagnostic.
   3952   Diag(Loc, diag::warn_floatingpoint_eq)
   3953     << LHS->getSourceRange() << RHS->getSourceRange();
   3954 }
   3955 
   3956 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
   3957 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
   3958 
   3959 namespace {
   3960 
   3961 /// Structure recording the 'active' range of an integer-valued
   3962 /// expression.
   3963 struct IntRange {
   3964   /// The number of bits active in the int.
   3965   unsigned Width;
   3966 
   3967   /// True if the int is known not to have negative values.
   3968   bool NonNegative;
   3969 
   3970   IntRange(unsigned Width, bool NonNegative)
   3971     : Width(Width), NonNegative(NonNegative)
   3972   {}
   3973 
   3974   /// Returns the range of the bool type.
   3975   static IntRange forBoolType() {
   3976     return IntRange(1, true);
   3977   }
   3978 
   3979   /// Returns the range of an opaque value of the given integral type.
   3980   static IntRange forValueOfType(ASTContext &C, QualType T) {
   3981     return forValueOfCanonicalType(C,
   3982                           T->getCanonicalTypeInternal().getTypePtr());
   3983   }
   3984 
   3985   /// Returns the range of an opaque value of a canonical integral type.
   3986   static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
   3987     assert(T->isCanonicalUnqualified());
   3988 
   3989     if (const VectorType *VT = dyn_cast<VectorType>(T))
   3990       T = VT->getElementType().getTypePtr();
   3991     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
   3992       T = CT->getElementType().getTypePtr();
   3993 
   3994     // For enum types, use the known bit width of the enumerators.
   3995     if (const EnumType *ET = dyn_cast<EnumType>(T)) {
   3996       EnumDecl *Enum = ET->getDecl();
   3997       if (!Enum->isCompleteDefinition())
   3998         return IntRange(C.getIntWidth(QualType(T, 0)), false);
   3999 
   4000       unsigned NumPositive = Enum->getNumPositiveBits();
   4001       unsigned NumNegative = Enum->getNumNegativeBits();
   4002 
   4003       if (NumNegative == 0)
   4004         return IntRange(NumPositive, true/*NonNegative*/);
   4005       else
   4006         return IntRange(std::max(NumPositive + 1, NumNegative),
   4007                         false/*NonNegative*/);
   4008     }
   4009 
   4010     const BuiltinType *BT = cast<BuiltinType>(T);
   4011     assert(BT->isInteger());
   4012 
   4013     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
   4014   }
   4015 
   4016   /// Returns the "target" range of a canonical integral type, i.e.
   4017   /// the range of values expressible in the type.
   4018   ///
   4019   /// This matches forValueOfCanonicalType except that enums have the
   4020   /// full range of their type, not the range of their enumerators.
   4021   static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
   4022     assert(T->isCanonicalUnqualified());
   4023 
   4024     if (const VectorType *VT = dyn_cast<VectorType>(T))
   4025       T = VT->getElementType().getTypePtr();
   4026     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
   4027       T = CT->getElementType().getTypePtr();
   4028     if (const EnumType *ET = dyn_cast<EnumType>(T))
   4029       T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
   4030 
   4031     const BuiltinType *BT = cast<BuiltinType>(T);
   4032     assert(BT->isInteger());
   4033 
   4034     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
   4035   }
   4036 
   4037   /// Returns the supremum of two ranges: i.e. their conservative merge.
   4038   static IntRange join(IntRange L, IntRange R) {
   4039     return IntRange(std::max(L.Width, R.Width),
   4040                     L.NonNegative && R.NonNegative);
   4041   }
   4042 
   4043   /// Returns the infinum of two ranges: i.e. their aggressive merge.
   4044   static IntRange meet(IntRange L, IntRange R) {
   4045     return IntRange(std::min(L.Width, R.Width),
   4046                     L.NonNegative || R.NonNegative);
   4047   }
   4048 };
   4049 
   4050 static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
   4051                               unsigned MaxWidth) {
   4052   if (value.isSigned() && value.isNegative())
   4053     return IntRange(value.getMinSignedBits(), false);
   4054 
   4055   if (value.getBitWidth() > MaxWidth)
   4056     value = value.trunc(MaxWidth);
   4057 
   4058   // isNonNegative() just checks the sign bit without considering
   4059   // signedness.
   4060   return IntRange(value.getActiveBits(), true);
   4061 }
   4062 
   4063 static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
   4064                               unsigned MaxWidth) {
   4065   if (result.isInt())
   4066     return GetValueRange(C, result.getInt(), MaxWidth);
   4067 
   4068   if (result.isVector()) {
   4069     IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
   4070     for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
   4071       IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
   4072       R = IntRange::join(R, El);
   4073     }
   4074     return R;
   4075   }
   4076 
   4077   if (result.isComplexInt()) {
   4078     IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
   4079     IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
   4080     return IntRange::join(R, I);
   4081   }
   4082 
   4083   // This can happen with lossless casts to intptr_t of "based" lvalues.
   4084   // Assume it might use arbitrary bits.
   4085   // FIXME: The only reason we need to pass the type in here is to get
   4086   // the sign right on this one case.  It would be nice if APValue
   4087   // preserved this.
   4088   assert(result.isLValue() || result.isAddrLabelDiff());
   4089   return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
   4090 }
   4091 
   4092 /// Pseudo-evaluate the given integer expression, estimating the
   4093 /// range of values it might take.
   4094 ///
   4095 /// \param MaxWidth - the width to which the value will be truncated
   4096 static IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
   4097   E = E->IgnoreParens();
   4098 
   4099   // Try a full evaluation first.
   4100   Expr::EvalResult result;
   4101   if (E->EvaluateAsRValue(result, C))
   4102     return GetValueRange(C, result.Val, E->getType(), MaxWidth);
   4103 
   4104   // I think we only want to look through implicit casts here; if the
   4105   // user has an explicit widening cast, we should treat the value as
   4106   // being of the new, wider type.
   4107   if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
   4108     if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
   4109       return GetExprRange(C, CE->getSubExpr(), MaxWidth);
   4110 
   4111     IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
   4112 
   4113     bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
   4114 
   4115     // Assume that non-integer casts can span the full range of the type.
   4116     if (!isIntegerCast)
   4117       return OutputTypeRange;
   4118 
   4119     IntRange SubRange
   4120       = GetExprRange(C, CE->getSubExpr(),
   4121                      std::min(MaxWidth, OutputTypeRange.Width));
   4122 
   4123     // Bail out if the subexpr's range is as wide as the cast type.
   4124     if (SubRange.Width >= OutputTypeRange.Width)
   4125       return OutputTypeRange;
   4126 
   4127     // Otherwise, we take the smaller width, and we're non-negative if
   4128     // either the output type or the subexpr is.
   4129     return IntRange(SubRange.Width,
   4130                     SubRange.NonNegative || OutputTypeRange.NonNegative);
   4131   }
   4132 
   4133   if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
   4134     // If we can fold the condition, just take that operand.
   4135     bool CondResult;
   4136     if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
   4137       return GetExprRange(C, CondResult ? CO->getTrueExpr()
   4138                                         : CO->getFalseExpr(),
   4139                           MaxWidth);
   4140 
   4141     // Otherwise, conservatively merge.
   4142     IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
   4143     IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
   4144     return IntRange::join(L, R);
   4145   }
   4146 
   4147   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
   4148     switch (BO->getOpcode()) {
   4149 
   4150     // Boolean-valued operations are single-bit and positive.
   4151     case BO_LAnd:
   4152     case BO_LOr:
   4153     case BO_LT:
   4154     case BO_GT:
   4155     case BO_LE:
   4156     case BO_GE:
   4157     case BO_EQ:
   4158     case BO_NE:
   4159       return IntRange::forBoolType();
   4160 
   4161     // The type of the assignments is the type of the LHS, so the RHS
   4162     // is not necessarily the same type.
   4163     case BO_MulAssign:
   4164     case BO_DivAssign:
   4165     case BO_RemAssign:
   4166     case BO_AddAssign:
   4167     case BO_SubAssign:
   4168     case BO_XorAssign:
   4169     case BO_OrAssign:
   4170       // TODO: bitfields?
   4171       return IntRange::forValueOfType(C, E->getType());
   4172 
   4173     // Simple assignments just pass through the RHS, which will have
   4174     // been coerced to the LHS type.
   4175     case BO_Assign:
   4176       // TODO: bitfields?
   4177       return GetExprRange(C, BO->getRHS(), MaxWidth);
   4178 
   4179     // Operations with opaque sources are black-listed.
   4180     case BO_PtrMemD:
   4181     case BO_PtrMemI:
   4182       return IntRange::forValueOfType(C, E->getType());
   4183 
   4184     // Bitwise-and uses the *infinum* of the two source ranges.
   4185     case BO_And:
   4186     case BO_AndAssign:
   4187       return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
   4188                             GetExprRange(C, BO->getRHS(), MaxWidth));
   4189 
   4190     // Left shift gets black-listed based on a judgement call.
   4191     case BO_Shl:
   4192       // ...except that we want to treat '1 << (blah)' as logically
   4193       // positive.  It's an important idiom.
   4194       if (IntegerLiteral *I
   4195             = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
   4196         if (I->getValue() == 1) {
   4197           IntRange R = IntRange::forValueOfType(C, E->getType());
   4198           return IntRange(R.Width, /*NonNegative*/ true);
   4199         }
   4200       }
   4201       // fallthrough
   4202 
   4203     case BO_ShlAssign:
   4204       return IntRange::forValueOfType(C, E->getType());
   4205 
   4206     // Right shift by a constant can narrow its left argument.
   4207     case BO_Shr:
   4208     case BO_ShrAssign: {
   4209       IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
   4210 
   4211       // If the shift amount is a positive constant, drop the width by
   4212       // that much.
   4213       llvm::APSInt shift;
   4214       if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
   4215           shift.isNonNegative()) {
   4216         unsigned zext = shift.getZExtValue();
   4217         if (zext >= L.Width)
   4218           L.Width = (L.NonNegative ? 0 : 1);
   4219         else
   4220           L.Width -= zext;
   4221       }
   4222 
   4223       return L;
   4224     }
   4225 
   4226     // Comma acts as its right operand.
   4227     case BO_Comma:
   4228       return GetExprRange(C, BO->getRHS(), MaxWidth);
   4229 
   4230     // Black-list pointer subtractions.
   4231     case BO_Sub:
   4232       if (BO->getLHS()->getType()->isPointerType())
   4233         return IntRange::forValueOfType(C, E->getType());
   4234       break;
   4235 
   4236     // The width of a division result is mostly determined by the size
   4237     // of the LHS.
   4238     case BO_Div: {
   4239       // Don't 'pre-truncate' the operands.
   4240       unsigned opWidth = C.getIntWidth(E->getType());
   4241       IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
   4242 
   4243       // If the divisor is constant, use that.
   4244       llvm::APSInt divisor;
   4245       if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
   4246         unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
   4247         if (log2 >= L.Width)
   4248           L.Width = (L.NonNegative ? 0 : 1);
   4249         else
   4250           L.Width = std::min(L.Width - log2, MaxWidth);
   4251         return L;
   4252       }
   4253 
   4254       // Otherwise, just use the LHS's width.
   4255       IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
   4256       return IntRange(L.Width, L.NonNegative && R.NonNegative);
   4257     }
   4258 
   4259     // The result of a remainder can't be larger than the result of
   4260     // either side.
   4261     case BO_Rem: {
   4262       // Don't 'pre-truncate' the operands.
   4263       unsigned opWidth = C.getIntWidth(E->getType());
   4264       IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
   4265       IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
   4266 
   4267       IntRange meet = IntRange::meet(L, R);
   4268       meet.Width = std::min(meet.Width, MaxWidth);
   4269       return meet;
   4270     }
   4271 
   4272     // The default behavior is okay for these.
   4273     case BO_Mul:
   4274     case BO_Add:
   4275     case BO_Xor:
   4276     case BO_Or:
   4277       break;
   4278     }
   4279 
   4280     // The default case is to treat the operation as if it were closed
   4281     // on the narrowest type that encompasses both operands.
   4282     IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
   4283     IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
   4284     return IntRange::join(L, R);
   4285   }
   4286 
   4287   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
   4288     switch (UO->getOpcode()) {
   4289     // Boolean-valued operations are white-listed.
   4290     case UO_LNot:
   4291       return IntRange::forBoolType();
   4292 
   4293     // Operations with opaque sources are black-listed.
   4294     case UO_Deref:
   4295     case UO_AddrOf: // should be impossible
   4296       return IntRange::forValueOfType(C, E->getType());
   4297 
   4298     default:
   4299       return GetExprRange(C, UO->getSubExpr(), MaxWidth);
   4300     }
   4301   }
   4302 
   4303   if (dyn_cast<OffsetOfExpr>(E)) {
   4304     IntRange::forValueOfType(C, E->getType());
   4305   }
   4306 
   4307   if (FieldDecl *BitField = E->getBitField())
   4308     return IntRange(BitField->getBitWidthValue(C),
   4309                     BitField->getType()->isUnsignedIntegerOrEnumerationType());
   4310 
   4311   return IntRange::forValueOfType(C, E->getType());
   4312 }
   4313 
   4314 static IntRange GetExprRange(ASTContext &C, Expr *E) {
   4315   return GetExprRange(C, E, C.getIntWidth(E->getType()));
   4316 }
   4317 
   4318 /// Checks whether the given value, which currently has the given
   4319 /// source semantics, has the same value when coerced through the
   4320 /// target semantics.
   4321 static bool IsSameFloatAfterCast(const llvm::APFloat &value,
   4322                                  const llvm::fltSemantics &Src,
   4323                                  const llvm::fltSemantics &Tgt) {
   4324   llvm::APFloat truncated = value;
   4325 
   4326   bool ignored;
   4327   truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
   4328   truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
   4329 
   4330   return truncated.bitwiseIsEqual(value);
   4331 }
   4332 
   4333 /// Checks whether the given value, which currently has the given
   4334 /// source semantics, has the same value when coerced through the
   4335 /// target semantics.
   4336 ///
   4337 /// The value might be a vector of floats (or a complex number).
   4338 static bool IsSameFloatAfterCast(const APValue &value,
   4339                                  const llvm::fltSemantics &Src,
   4340                                  const llvm::fltSemantics &Tgt) {
   4341   if (value.isFloat())
   4342     return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
   4343 
   4344   if (value.isVector()) {
   4345     for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
   4346       if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
   4347         return false;
   4348     return true;
   4349   }
   4350 
   4351   assert(value.isComplexFloat());
   4352   return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
   4353           IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
   4354 }
   4355 
   4356 static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
   4357 
   4358 static bool IsZero(Sema &S, Expr *E) {
   4359   // Suppress cases where we are comparing against an enum constant.
   4360   if (const DeclRefExpr *DR =
   4361       dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
   4362     if (isa<EnumConstantDecl>(DR->getDecl()))
   4363       return false;
   4364 
   4365   // Suppress cases where the '0' value is expanded from a macro.
   4366   if (E->getLocStart().isMacroID())
   4367     return false;
   4368 
   4369   llvm::APSInt Value;
   4370   return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
   4371 }
   4372 
   4373 static bool HasEnumType(Expr *E) {
   4374   // Strip off implicit integral promotions.
   4375   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
   4376     if (ICE->getCastKind() != CK_IntegralCast &&
   4377         ICE->getCastKind() != CK_NoOp)
   4378       break;
   4379     E = ICE->getSubExpr();
   4380   }
   4381 
   4382   return E->getType()->isEnumeralType();
   4383 }
   4384 
   4385 static void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
   4386   BinaryOperatorKind op = E->getOpcode();
   4387   if (E->isValueDependent())
   4388     return;
   4389 
   4390   if (op == BO_LT && IsZero(S, E->getRHS())) {
   4391     S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
   4392       << "< 0" << "false" << HasEnumType(E->getLHS())
   4393       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
   4394   } else if (op == BO_GE && IsZero(S, E->getRHS())) {
   4395     S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
   4396       << ">= 0" << "true" << HasEnumType(E->getLHS())
   4397       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
   4398   } else if (op == BO_GT && IsZero(S, E->getLHS())) {
   4399     S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
   4400       << "0 >" << "false" << HasEnumType(E->getRHS())
   4401       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
   4402   } else if (op == BO_LE && IsZero(S, E->getLHS())) {
   4403     S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
   4404       << "0 <=" << "true" << HasEnumType(E->getRHS())
   4405       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
   4406   }
   4407 }
   4408 
   4409 static void DiagnoseOutOfRangeComparison(Sema &S, BinaryOperator *E,
   4410                                          Expr *Constant, Expr *Other,
   4411                                          llvm::APSInt Value,
   4412                                          bool RhsConstant) {
   4413   // 0 values are handled later by CheckTrivialUnsignedComparison().
   4414   if (Value == 0)
   4415     return;
   4416 
   4417   BinaryOperatorKind op = E->getOpcode();
   4418   QualType OtherT = Other->getType();
   4419   QualType ConstantT = Constant->getType();
   4420   QualType CommonT = E->getLHS()->getType();
   4421   if (S.Context.hasSameUnqualifiedType(OtherT, ConstantT))
   4422     return;
   4423   assert((OtherT->isIntegerType() && ConstantT->isIntegerType())
   4424          && "comparison with non-integer type");
   4425 
   4426   bool ConstantSigned = ConstantT->isSignedIntegerType();
   4427   bool CommonSigned = CommonT->isSignedIntegerType();
   4428 
   4429   bool EqualityOnly = false;
   4430 
   4431   // TODO: Investigate using GetExprRange() to get tighter bounds on
   4432   // on the bit ranges.
   4433   IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT);
   4434   unsigned OtherWidth = OtherRange.Width;
   4435 
   4436   if (CommonSigned) {
   4437     // The common type is signed, therefore no signed to unsigned conversion.
   4438     if (!OtherRange.NonNegative) {
   4439       // Check that the constant is representable in type OtherT.
   4440       if (ConstantSigned) {
   4441         if (OtherWidth >= Value.getMinSignedBits())
   4442           return;
   4443       } else { // !ConstantSigned
   4444         if (OtherWidth >= Value.getActiveBits() + 1)
   4445           return;
   4446       }
   4447     } else { // !OtherSigned
   4448       // Check that the constant is representable in type OtherT.
   4449       // Negative values are out of range.
   4450       if (ConstantSigned) {
   4451         if (Value.isNonNegative() && OtherWidth >= Value.getActiveBits())
   4452           return;
   4453       } else { // !ConstantSigned
   4454         if (OtherWidth >= Value.getActiveBits())
   4455           return;
   4456       }
   4457     }
   4458   } else {  // !CommonSigned
   4459     if (OtherRange.NonNegative) {
   4460       if (OtherWidth >= Value.getActiveBits())
   4461         return;
   4462     } else if (!OtherRange.NonNegative && !ConstantSigned) {
   4463       // Check to see if the constant is representable in OtherT.
   4464       if (OtherWidth > Value.getActiveBits())
   4465         return;
   4466       // Check to see if the constant is equivalent to a negative value
   4467       // cast to CommonT.
   4468       if (S.Context.getIntWidth(ConstantT) == S.Context.getIntWidth(CommonT) &&
   4469           Value.isNegative() && Value.getMinSignedBits() <= OtherWidth)
   4470         return;
   4471       // The constant value rests between values that OtherT can represent after
   4472       // conversion.  Relational comparison still works, but equality
   4473       // comparisons will be tautological.
   4474       EqualityOnly = true;
   4475     } else { // OtherSigned && ConstantSigned
   4476       assert(0 && "Two signed types converted to unsigned types.");
   4477     }
   4478   }
   4479 
   4480   bool PositiveConstant = !ConstantSigned || Value.isNonNegative();
   4481 
   4482   bool IsTrue = true;
   4483   if (op == BO_EQ || op == BO_NE) {
   4484     IsTrue = op == BO_NE;
   4485   } else if (EqualityOnly) {
   4486     return;
   4487   } else if (RhsConstant) {
   4488     if (op == BO_GT || op == BO_GE)
   4489       IsTrue = !PositiveConstant;
   4490     else // op == BO_LT || op == BO_LE
   4491       IsTrue = PositiveConstant;
   4492   } else {
   4493     if (op == BO_LT || op == BO_LE)
   4494       IsTrue = !PositiveConstant;
   4495     else // op == BO_GT || op == BO_GE
   4496       IsTrue = PositiveConstant;
   4497   }
   4498 
   4499   // If this is a comparison to an enum constant, include that
   4500   // constant in the diagnostic.
   4501   const EnumConstantDecl *ED = 0;
   4502   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
   4503     ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
   4504 
   4505   SmallString<64> PrettySourceValue;
   4506   llvm::raw_svector_ostream OS(PrettySourceValue);
   4507   if (ED)
   4508     OS << '\'' << *ED << "' (" << Value << ")";
   4509   else
   4510     OS << Value;
   4511 
   4512   S.Diag(E->getOperatorLoc(), diag::warn_out_of_range_compare)
   4513       << OS.str() << OtherT << IsTrue
   4514       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
   4515 }
   4516 
   4517 /// Analyze the operands of the given comparison.  Implements the
   4518 /// fallback case from AnalyzeComparison.
   4519 static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
   4520   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
   4521   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
   4522 }
   4523 
   4524 /// \brief Implements -Wsign-compare.
   4525 ///
   4526 /// \param E the binary operator to check for warnings
   4527 static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
   4528   // The type the comparison is being performed in.
   4529   QualType T = E->getLHS()->getType();
   4530   assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
   4531          && "comparison with mismatched types");
   4532   if (E->isValueDependent())
   4533     return AnalyzeImpConvsInComparison(S, E);
   4534 
   4535   Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
   4536   Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
   4537 
   4538   bool IsComparisonConstant = false;
   4539 
   4540   // Check whether an integer constant comparison results in a value
   4541   // of 'true' or 'false'.
   4542   if (T->isIntegralType(S.Context)) {
   4543     llvm::APSInt RHSValue;
   4544     bool IsRHSIntegralLiteral =
   4545       RHS->isIntegerConstantExpr(RHSValue, S.Context);
   4546     llvm::APSInt LHSValue;
   4547     bool IsLHSIntegralLiteral =
   4548       LHS->isIntegerConstantExpr(LHSValue, S.Context);
   4549     if (IsRHSIntegralLiteral && !IsLHSIntegralLiteral)
   4550         DiagnoseOutOfRangeComparison(S, E, RHS, LHS, RHSValue, true);
   4551     else if (!IsRHSIntegralLiteral && IsLHSIntegralLiteral)
   4552       DiagnoseOutOfRangeComparison(S, E, LHS, RHS, LHSValue, false);
   4553     else
   4554       IsComparisonConstant =
   4555         (IsRHSIntegralLiteral && IsLHSIntegralLiteral);
   4556   } else if (!T->hasUnsignedIntegerRepresentation())
   4557       IsComparisonConstant = E->isIntegerConstantExpr(S.Context);
   4558 
   4559   // We don't do anything special if this isn't an unsigned integral
   4560   // comparison:  we're only interested in integral comparisons, and
   4561   // signed comparisons only happen in cases we don't care to warn about.
   4562   //
   4563   // We also don't care about value-dependent expressions or expressions
   4564   // whose result is a constant.
   4565   if (!T->hasUnsignedIntegerRepresentation() || IsComparisonConstant)
   4566     return AnalyzeImpConvsInComparison(S, E);
   4567 
   4568   // Check to see if one of the (unmodified) operands is of different
   4569   // signedness.
   4570   Expr *signedOperand, *unsignedOperand;
   4571   if (LHS->getType()->hasSignedIntegerRepresentation()) {
   4572     assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
   4573            "unsigned comparison between two signed integer expressions?");
   4574     signedOperand = LHS;
   4575     unsignedOperand = RHS;
   4576   } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
   4577     signedOperand = RHS;
   4578     unsignedOperand = LHS;
   4579   } else {
   4580     CheckTrivialUnsignedComparison(S, E);
   4581     return AnalyzeImpConvsInComparison(S, E);
   4582   }
   4583 
   4584   // Otherwise, calculate the effective range of the signed operand.
   4585   IntRange signedRange = GetExprRange(S.Context, signedOperand);
   4586 
   4587   // Go ahead and analyze implicit conversions in the operands.  Note
   4588   // that we skip the implicit conversions on both sides.
   4589   AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
   4590   AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
   4591 
   4592   // If the signed range is non-negative, -Wsign-compare won't fire,
   4593   // but we should still check for comparisons which are always true
   4594   // or false.
   4595   if (signedRange.NonNegative)
   4596     return CheckTrivialUnsignedComparison(S, E);
   4597 
   4598   // For (in)equality comparisons, if the unsigned operand is a
   4599   // constant which cannot collide with a overflowed signed operand,
   4600   // then reinterpreting the signed operand as unsigned will not
   4601   // change the result of the comparison.
   4602   if (E->isEqualityOp()) {
   4603     unsigned comparisonWidth = S.Context.getIntWidth(T);
   4604     IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
   4605 
   4606     // We should never be unable to prove that the unsigned operand is
   4607     // non-negative.
   4608     assert(unsignedRange.NonNegative && "unsigned range includes negative?");
   4609 
   4610     if (unsignedRange.Width < comparisonWidth)
   4611       return;
   4612   }
   4613 
   4614   S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
   4615     S.PDiag(diag::warn_mixed_sign_comparison)
   4616       << LHS->getType() << RHS->getType()
   4617       << LHS->getSourceRange() << RHS->getSourceRange());
   4618 }
   4619 
   4620 /// Analyzes an attempt to assign the given value to a bitfield.
   4621 ///
   4622 /// Returns true if there was something fishy about the attempt.
   4623 static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
   4624                                       SourceLocation InitLoc) {
   4625   assert(Bitfield->isBitField());
   4626   if (Bitfield->isInvalidDecl())
   4627     return false;
   4628 
   4629   // White-list bool bitfields.
   4630   if (Bitfield->getType()->isBooleanType())
   4631     return false;
   4632 
   4633   // Ignore value- or type-dependent expressions.
   4634   if (Bitfield->getBitWidth()->isValueDependent() ||
   4635       Bitfield->getBitWidth()->isTypeDependent() ||
   4636       Init->isValueDependent() ||
   4637       Init->isTypeDependent())
   4638     return false;
   4639 
   4640   Expr *OriginalInit = Init->IgnoreParenImpCasts();
   4641 
   4642   llvm::APSInt Value;
   4643   if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
   4644     return false;
   4645 
   4646   unsigned OriginalWidth = Value.getBitWidth();
   4647   unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
   4648 
   4649   if (OriginalWidth <= FieldWidth)
   4650     return false;
   4651 
   4652   // Compute the value which the bitfield will contain.
   4653   llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
   4654   TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
   4655 
   4656   // Check whether the stored value is equal to the original value.
   4657   TruncatedValue = TruncatedValue.extend(OriginalWidth);
   4658   if (llvm::APSInt::isSameValue(Value, TruncatedValue))
   4659     return false;
   4660 
   4661   // Special-case bitfields of width 1: booleans are naturally 0/1, and
   4662   // therefore don't strictly fit into a signed bitfield of width 1.
   4663   if (FieldWidth == 1 && Value == 1)
   4664     return false;
   4665 
   4666   std::string PrettyValue = Value.toString(10);
   4667   std::string PrettyTrunc = TruncatedValue.toString(10);
   4668 
   4669   S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
   4670     << PrettyValue << PrettyTrunc << OriginalInit->getType()
   4671     << Init->getSourceRange();
   4672 
   4673   return true;
   4674 }
   4675 
   4676 /// Analyze the given simple or compound assignment for warning-worthy
   4677 /// operations.
   4678 static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
   4679   // Just recurse on the LHS.
   4680   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
   4681 
   4682   // We want to recurse on the RHS as normal unless we're assigning to
   4683   // a bitfield.
   4684   if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
   4685     if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
   4686                                   E->getOperatorLoc())) {
   4687       // Recurse, ignoring any implicit conversions on the RHS.
   4688       return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
   4689                                         E->getOperatorLoc());
   4690     }
   4691   }
   4692 
   4693   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
   4694 }
   4695 
   4696 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
   4697 static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
   4698                             SourceLocation CContext, unsigned diag,
   4699                             bool pruneControlFlow = false) {
   4700   if (pruneControlFlow) {
   4701     S.DiagRuntimeBehavior(E->getExprLoc(), E,
   4702                           S.PDiag(diag)
   4703                             << SourceType << T << E->getSourceRange()
   4704                             << SourceRange(CContext));
   4705     return;
   4706   }
   4707   S.Diag(E->getExprLoc(), diag)
   4708     << SourceType << T << E->getSourceRange() << SourceRange(CContext);
   4709 }
   4710 
   4711 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
   4712 static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
   4713                             SourceLocation CContext, unsigned diag,
   4714                             bool pruneControlFlow = false) {
   4715   DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
   4716 }
   4717 
   4718 /// Diagnose an implicit cast from a literal expression. Does not warn when the
   4719 /// cast wouldn't lose information.
   4720 void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
   4721                                     SourceLocation CContext) {
   4722   // Try to convert the literal exactly to an integer. If we can, don't warn.
   4723   bool isExact = false;
   4724   const llvm::APFloat &Value = FL->getValue();
   4725   llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
   4726                             T->hasUnsignedIntegerRepresentation());
   4727   if (Value.convertToInteger(IntegerValue,
   4728                              llvm::APFloat::rmTowardZero, &isExact)
   4729       == llvm::APFloat::opOK && isExact)
   4730     return;
   4731 
   4732   SmallString<16> PrettySourceValue;
   4733   Value.toString(PrettySourceValue);
   4734   SmallString<16> PrettyTargetValue;
   4735   if (T->isSpecificBuiltinType(BuiltinType::Bool))
   4736     PrettyTargetValue = IntegerValue == 0 ? "false" : "true";
   4737   else
   4738     IntegerValue.toString(PrettyTargetValue);
   4739 
   4740   S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
   4741     << FL->getType() << T.getUnqualifiedType() << PrettySourceValue
   4742     << PrettyTargetValue << FL->getSourceRange() << SourceRange(CContext);
   4743 }
   4744 
   4745 std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
   4746   if (!Range.Width) return "0";
   4747 
   4748   llvm::APSInt ValueInRange = Value;
   4749   ValueInRange.setIsSigned(!Range.NonNegative);
   4750   ValueInRange = ValueInRange.trunc(Range.Width);
   4751   return ValueInRange.toString(10);
   4752 }
   4753 
   4754 static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
   4755   if (!isa<ImplicitCastExpr>(Ex))
   4756     return false;
   4757 
   4758   Expr *InnerE = Ex->IgnoreParenImpCasts();
   4759   const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
   4760   const Type *Source =
   4761     S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
   4762   if (Target->isDependentType())
   4763     return false;
   4764 
   4765   const BuiltinType *FloatCandidateBT =
   4766     dyn_cast<BuiltinType>(ToBool ? Source : Target);
   4767   const Type *BoolCandidateType = ToBool ? Target : Source;
   4768 
   4769   return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
   4770           FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
   4771 }
   4772 
   4773 void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
   4774                                       SourceLocation CC) {
   4775   unsigned NumArgs = TheCall->getNumArgs();
   4776   for (unsigned i = 0; i < NumArgs; ++i) {
   4777     Expr *CurrA = TheCall->getArg(i);
   4778     if (!IsImplicitBoolFloatConversion(S, CurrA, true))
   4779       continue;
   4780 
   4781     bool IsSwapped = ((i > 0) &&
   4782         IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
   4783     IsSwapped |= ((i < (NumArgs - 1)) &&
   4784         IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
   4785     if (IsSwapped) {
   4786       // Warn on this floating-point to bool conversion.
   4787       DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
   4788                       CurrA->getType(), CC,
   4789                       diag::warn_impcast_floating_point_to_bool);
   4790     }
   4791   }
   4792 }
   4793 
   4794 void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
   4795                              SourceLocation CC, bool *ICContext = 0) {
   4796   if (E->isTypeDependent() || E->isValueDependent()) return;
   4797 
   4798   const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
   4799   const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
   4800   if (Source == Target) return;
   4801   if (Target->isDependentType()) return;
   4802 
   4803   // If the conversion context location is invalid don't complain. We also
   4804   // don't want to emit a warning if the issue occurs from the expansion of
   4805   // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
   4806   // delay this check as long as possible. Once we detect we are in that
   4807   // scenario, we just return.
   4808   if (CC.isInvalid())
   4809     return;
   4810 
   4811   // Diagnose implicit casts to bool.
   4812   if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
   4813     if (isa<StringLiteral>(E))
   4814       // Warn on string literal to bool.  Checks for string literals in logical
   4815       // expressions, for instances, assert(0 && "error here"), is prevented
   4816       // by a check in AnalyzeImplicitConversions().
   4817       return DiagnoseImpCast(S, E, T, CC,
   4818                              diag::warn_impcast_string_literal_to_bool);
   4819     if (Source->isFunctionType()) {
   4820       // Warn on function to bool. Checks free functions and static member
   4821       // functions. Weakly imported functions are excluded from the check,
   4822       // since it's common to test their value to check whether the linker
   4823       // found a definition for them.
   4824       ValueDecl *D = 0;
   4825       if (DeclRefExpr* R = dyn_cast<DeclRefExpr>(E)) {
   4826         D = R->getDecl();
   4827       } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
   4828         D = M->getMemberDecl();
   4829       }
   4830 
   4831       if (D && !D->isWeak()) {
   4832         if (FunctionDecl* F = dyn_cast<FunctionDecl>(D)) {
   4833           S.Diag(E->getExprLoc(), diag::warn_impcast_function_to_bool)
   4834             << F << E->getSourceRange() << SourceRange(CC);
   4835           S.Diag(E->getExprLoc(), diag::note_function_to_bool_silence)
   4836             << FixItHint::CreateInsertion(E->getExprLoc(), "&");
   4837           QualType ReturnType;
   4838           UnresolvedSet<4> NonTemplateOverloads;
   4839           S.isExprCallable(*E, ReturnType, NonTemplateOverloads);
   4840           if (!ReturnType.isNull()
   4841               && ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
   4842             S.Diag(E->getExprLoc(), diag::note_function_to_bool_call)
   4843               << FixItHint::CreateInsertion(
   4844                  S.getPreprocessor().getLocForEndOfToken(E->getLocEnd()), "()");
   4845           return;
   4846         }
   4847       }
   4848     }
   4849   }
   4850 
   4851   // Strip vector types.
   4852   if (isa<VectorType>(Source)) {
   4853     if (!isa<VectorType>(Target)) {
   4854       if (S.SourceMgr.isInSystemMacro(CC))
   4855         return;
   4856       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
   4857     }
   4858 
   4859     // If the vector cast is cast between two vectors of the same size, it is
   4860     // a bitcast, not a conversion.
   4861     if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
   4862       return;
   4863 
   4864     Source = cast<VectorType>(Source)->getElementType().getTypePtr();
   4865     Target = cast<VectorType>(Target)->getElementType().getTypePtr();
   4866   }
   4867 
   4868   // Strip complex types.
   4869   if (isa<ComplexType>(Source)) {
   4870     if (!isa<ComplexType>(Target)) {
   4871       if (S.SourceMgr.isInSystemMacro(CC))
   4872         return;
   4873 
   4874       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
   4875     }
   4876 
   4877     Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
   4878     Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
   4879   }
   4880 
   4881   const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
   4882   const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
   4883 
   4884   // If the source is floating point...
   4885   if (SourceBT && SourceBT->isFloatingPoint()) {
   4886     // ...and the target is floating point...
   4887     if (TargetBT && TargetBT->isFloatingPoint()) {
   4888       // ...then warn if we're dropping FP rank.
   4889 
   4890       // Builtin FP kinds are ordered by increasing FP rank.
   4891       if (SourceBT->getKind() > TargetBT->getKind()) {
   4892         // Don't warn about float constants that are precisely
   4893         // representable in the target type.
   4894         Expr::EvalResult result;
   4895         if (E->EvaluateAsRValue(result, S.Context)) {
   4896           // Value might be a float, a float vector, or a float complex.
   4897           if (IsSameFloatAfterCast(result.Val,
   4898                    S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
   4899                    S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
   4900             return;
   4901         }
   4902 
   4903         if (S.SourceMgr.isInSystemMacro(CC))
   4904           return;
   4905 
   4906         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
   4907       }
   4908       return;
   4909     }
   4910 
   4911     // If the target is integral, always warn.
   4912     if (TargetBT && TargetBT->isInteger()) {
   4913       if (S.SourceMgr.isInSystemMacro(CC))
   4914         return;
   4915 
   4916       Expr *InnerE = E->IgnoreParenImpCasts();
   4917       // We also want to warn on, e.g., "int i = -1.234"
   4918       if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
   4919         if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
   4920           InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
   4921 
   4922       if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
   4923         DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
   4924       } else {
   4925         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
   4926       }
   4927     }
   4928 
   4929     // If the target is bool, warn if expr is a function or method call.
   4930     if (Target->isSpecificBuiltinType(BuiltinType::Bool) &&
   4931         isa<CallExpr>(E)) {
   4932       // Check last argument of function call to see if it is an
   4933       // implicit cast from a type matching the type the result
   4934       // is being cast to.
   4935       CallExpr *CEx = cast<CallExpr>(E);
   4936       unsigned NumArgs = CEx->getNumArgs();
   4937       if (NumArgs > 0) {
   4938         Expr *LastA = CEx->getArg(NumArgs - 1);
   4939         Expr *InnerE = LastA->IgnoreParenImpCasts();
   4940         const Type *InnerType =
   4941           S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
   4942         if (isa<ImplicitCastExpr>(LastA) && (InnerType == Target)) {
   4943           // Warn on this floating-point to bool conversion
   4944           DiagnoseImpCast(S, E, T, CC,
   4945                           diag::warn_impcast_floating_point_to_bool);
   4946         }
   4947       }
   4948     }
   4949     return;
   4950   }
   4951 
   4952   if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
   4953            == Expr::NPCK_GNUNull) && !Target->isAnyPointerType()
   4954       && !Target->isBlockPointerType() && !Target->isMemberPointerType()
   4955       && Target->isScalarType() && !Target->isNullPtrType()) {
   4956     SourceLocation Loc = E->getSourceRange().getBegin();
   4957     if (Loc.isMacroID())
   4958       Loc = S.SourceMgr.getImmediateExpansionRange(Loc).first;
   4959     if (!Loc.isMacroID() || CC.isMacroID())
   4960       S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
   4961           << T << clang::SourceRange(CC)
   4962           << FixItHint::CreateReplacement(Loc, S.getFixItZeroLiteralForType(T));
   4963   }
   4964 
   4965   if (!Source->isIntegerType() || !Target->isIntegerType())
   4966     return;
   4967 
   4968   // TODO: remove this early return once the false positives for constant->bool
   4969   // in templates, macros, etc, are reduced or removed.
   4970   if (Target->isSpecificBuiltinType(BuiltinType::Bool))
   4971     return;
   4972 
   4973   IntRange SourceRange = GetExprRange(S.Context, E);
   4974   IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
   4975 
   4976   if (SourceRange.Width > TargetRange.Width) {
   4977     // If the source is a constant, use a default-on diagnostic.
   4978     // TODO: this should happen for bitfield stores, too.
   4979     llvm::APSInt Value(32);
   4980     if (E->isIntegerConstantExpr(Value, S.Context)) {
   4981       if (S.SourceMgr.isInSystemMacro(CC))
   4982         return;
   4983 
   4984       std::string PrettySourceValue = Value.toString(10);
   4985       std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
   4986 
   4987       S.DiagRuntimeBehavior(E->getExprLoc(), E,
   4988         S.PDiag(diag::warn_impcast_integer_precision_constant)
   4989             << PrettySourceValue << PrettyTargetValue
   4990             << E->getType() << T << E->getSourceRange()
   4991             << clang::SourceRange(CC));
   4992       return;
   4993     }
   4994 
   4995     // People want to build with -Wshorten-64-to-32 and not -Wconversion.
   4996     if (S.SourceMgr.isInSystemMacro(CC))
   4997       return;
   4998 
   4999     if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
   5000       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
   5001                              /* pruneControlFlow */ true);
   5002     return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
   5003   }
   5004 
   5005   if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
   5006       (!TargetRange.NonNegative && SourceRange.NonNegative &&
   5007        SourceRange.Width == TargetRange.Width)) {
   5008 
   5009     if (S.SourceMgr.isInSystemMacro(CC))
   5010       return;
   5011 
   5012     unsigned DiagID = diag::warn_impcast_integer_sign;
   5013 
   5014     // Traditionally, gcc has warned about this under -Wsign-compare.
   5015     // We also want to warn about it in -Wconversion.
   5016     // So if -Wconversion is off, use a completely identical diagnostic
   5017     // in the sign-compare group.
   5018     // The conditional-checking code will
   5019     if (ICContext) {
   5020       DiagID = diag::warn_impcast_integer_sign_conditional;
   5021       *ICContext = true;
   5022     }
   5023 
   5024     return DiagnoseImpCast(S, E, T, CC, DiagID);
   5025   }
   5026 
   5027   // Diagnose conversions between different enumeration types.
   5028   // In C, we pretend that the type of an EnumConstantDecl is its enumeration
   5029   // type, to give us better diagnostics.
   5030   QualType SourceType = E->getType();
   5031   if (!S.getLangOpts().CPlusPlus) {
   5032     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
   5033       if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
   5034         EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
   5035         SourceType = S.Context.getTypeDeclType(Enum);
   5036         Source = S.Context.getCanonicalType(SourceType).getTypePtr();
   5037       }
   5038   }
   5039 
   5040   if (const EnumType *SourceEnum = Source->getAs<EnumType>())
   5041     if (const EnumType *TargetEnum = Target->getAs<EnumType>())
   5042       if (SourceEnum->getDecl()->hasNameForLinkage() &&
   5043           TargetEnum->getDecl()->hasNameForLinkage() &&
   5044           SourceEnum != TargetEnum) {
   5045         if (S.SourceMgr.isInSystemMacro(CC))
   5046           return;
   5047 
   5048         return DiagnoseImpCast(S, E, SourceType, T, CC,
   5049                                diag::warn_impcast_different_enum_types);
   5050       }
   5051 
   5052   return;
   5053 }
   5054 
   5055 void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
   5056                               SourceLocation CC, QualType T);
   5057 
   5058 void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
   5059                              SourceLocation CC, bool &ICContext) {
   5060   E = E->IgnoreParenImpCasts();
   5061 
   5062   if (isa<ConditionalOperator>(E))
   5063     return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
   5064 
   5065   AnalyzeImplicitConversions(S, E, CC);
   5066   if (E->getType() != T)
   5067     return CheckImplicitConversion(S, E, T, CC, &ICContext);
   5068   return;
   5069 }
   5070 
   5071 void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
   5072                               SourceLocation CC, QualType T) {
   5073   AnalyzeImplicitConversions(S, E->getCond(), CC);
   5074 
   5075   bool Suspicious = false;
   5076   CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
   5077   CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
   5078 
   5079   // If -Wconversion would have warned about either of the candidates
   5080   // for a signedness conversion to the context type...
   5081   if (!Suspicious) return;
   5082 
   5083   // ...but it's currently ignored...
   5084   if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
   5085                                  CC))
   5086     return;
   5087 
   5088   // ...then check whether it would have warned about either of the
   5089   // candidates for a signedness conversion to the condition type.
   5090   if (E->getType() == T) return;
   5091 
   5092   Suspicious = false;
   5093   CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
   5094                           E->getType(), CC, &Suspicious);
   5095   if (!Suspicious)
   5096     CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
   5097                             E->getType(), CC, &Suspicious);
   5098 }
   5099 
   5100 /// AnalyzeImplicitConversions - Find and report any interesting
   5101 /// implicit conversions in the given expression.  There are a couple
   5102 /// of competing diagnostics here, -Wconversion and -Wsign-compare.
   5103 void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
   5104   QualType T = OrigE->getType();
   5105   Expr *E = OrigE->IgnoreParenImpCasts();
   5106 
   5107   if (E->isTypeDependent() || E->isValueDependent())
   5108     return;
   5109 
   5110   // For conditional operators, we analyze the arguments as if they
   5111   // were being fed directly into the output.
   5112   if (isa<ConditionalOperator>(E)) {
   5113     ConditionalOperator *CO = cast<ConditionalOperator>(E);
   5114     CheckConditionalOperator(S, CO, CC, T);
   5115     return;
   5116   }
   5117 
   5118   // Check implicit argument conversions for function calls.
   5119   if (CallExpr *Call = dyn_cast<CallExpr>(E))
   5120     CheckImplicitArgumentConversions(S, Call, CC);
   5121 
   5122   // Go ahead and check any implicit conversions we might have skipped.
   5123   // The non-canonical typecheck is just an optimization;
   5124   // CheckImplicitConversion will filter out dead implicit conversions.
   5125   if (E->getType() != T)
   5126     CheckImplicitConversion(S, E, T, CC);
   5127 
   5128   // Now continue drilling into this expression.
   5129 
   5130   // Skip past explicit casts.
   5131   if (isa<ExplicitCastExpr>(E)) {
   5132     E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
   5133     return AnalyzeImplicitConversions(S, E, CC);
   5134   }
   5135 
   5136   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
   5137     // Do a somewhat different check with comparison operators.
   5138     if (BO->isComparisonOp())
   5139       return AnalyzeComparison(S, BO);
   5140 
   5141     // And with simple assignments.
   5142     if (BO->getOpcode() == BO_Assign)
   5143       return AnalyzeAssignment(S, BO);
   5144   }
   5145 
   5146   // These break the otherwise-useful invariant below.  Fortunately,
   5147   // we don't really need to recurse into them, because any internal
   5148   // expressions should have been analyzed already when they were
   5149   // built into statements.
   5150   if (isa<StmtExpr>(E)) return;
   5151 
   5152   // Don't descend into unevaluated contexts.
   5153   if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
   5154 
   5155   // Now just recurse over the expression's children.
   5156   CC = E->getExprLoc();
   5157   BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
   5158   bool IsLogicalOperator = BO && BO->isLogicalOp();
   5159   for (Stmt::child_range I = E->children(); I; ++I) {
   5160     Expr *ChildExpr = dyn_cast_or_null<Expr>(*I);
   5161     if (!ChildExpr)
   5162       continue;
   5163 
   5164     if (IsLogicalOperator &&
   5165         isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
   5166       // Ignore checking string literals that are in logical operators.
   5167       continue;
   5168     AnalyzeImplicitConversions(S, ChildExpr, CC);
   5169   }
   5170 }
   5171 
   5172 } // end anonymous namespace
   5173 
   5174 /// Diagnoses "dangerous" implicit conversions within the given
   5175 /// expression (which is a full expression).  Implements -Wconversion
   5176 /// and -Wsign-compare.
   5177 ///
   5178 /// \param CC the "context" location of the implicit conversion, i.e.
   5179 ///   the most location of the syntactic entity requiring the implicit
   5180 ///   conversion
   5181 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
   5182   // Don't diagnose in unevaluated contexts.
   5183   if (isUnevaluatedContext())
   5184     return;
   5185 
   5186   // Don't diagnose for value- or type-dependent expressions.
   5187   if (E->isTypeDependent() || E->isValueDependent())
   5188     return;
   5189 
   5190   // Check for array bounds violations in cases where the check isn't triggered
   5191   // elsewhere for other Expr types (like BinaryOperators), e.g. when an
   5192   // ArraySubscriptExpr is on the RHS of a variable initialization.
   5193   CheckArrayAccess(E);
   5194 
   5195   // This is not the right CC for (e.g.) a variable initialization.
   5196   AnalyzeImplicitConversions(*this, E, CC);
   5197 }
   5198 
   5199 /// Diagnose when expression is an integer constant expression and its evaluation
   5200 /// results in integer overflow
   5201 void Sema::CheckForIntOverflow (Expr *E) {
   5202   if (isa<BinaryOperator>(E->IgnoreParens())) {
   5203     llvm::SmallVector<PartialDiagnosticAt, 4> Diags;
   5204     E->EvaluateForOverflow(Context, &Diags);
   5205   }
   5206 }
   5207 
   5208 namespace {
   5209 /// \brief Visitor for expressions which looks for unsequenced operations on the
   5210 /// same object.
   5211 class SequenceChecker : public EvaluatedExprVisitor<SequenceChecker> {
   5212   /// \brief A tree of sequenced regions within an expression. Two regions are
   5213   /// unsequenced if one is an ancestor or a descendent of the other. When we
   5214   /// finish processing an expression with sequencing, such as a comma
   5215   /// expression, we fold its tree nodes into its parent, since they are
   5216   /// unsequenced with respect to nodes we will visit later.
   5217   class SequenceTree {
   5218     struct Value {
   5219       explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
   5220       unsigned Parent : 31;
   5221       bool Merged : 1;
   5222     };
   5223     llvm::SmallVector<Value, 8> Values;
   5224 
   5225   public:
   5226     /// \brief A region within an expression which may be sequenced with respect
   5227     /// to some other region.
   5228     class Seq {
   5229       explicit Seq(unsigned N) : Index(N) {}
   5230       unsigned Index;
   5231       friend class SequenceTree;
   5232     public:
   5233       Seq() : Index(0) {}
   5234     };
   5235 
   5236     SequenceTree() { Values.push_back(Value(0)); }
   5237     Seq root() const { return Seq(0); }
   5238 
   5239     /// \brief Create a new sequence of operations, which is an unsequenced
   5240     /// subset of \p Parent. This sequence of operations is sequenced with
   5241     /// respect to other children of \p Parent.
   5242     Seq allocate(Seq Parent) {
   5243       Values.push_back(Value(Parent.Index));
   5244       return Seq(Values.size() - 1);
   5245     }
   5246 
   5247     /// \brief Merge a sequence of operations into its parent.
   5248     void merge(Seq S) {
   5249       Values[S.Index].Merged = true;
   5250     }
   5251 
   5252     /// \brief Determine whether two operations are unsequenced. This operation
   5253     /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
   5254     /// should have been merged into its parent as appropriate.
   5255     bool isUnsequenced(Seq Cur, Seq Old) {
   5256       unsigned C = representative(Cur.Index);
   5257       unsigned Target = representative(Old.Index);
   5258       while (C >= Target) {
   5259         if (C == Target)
   5260           return true;
   5261         C = Values[C].Parent;
   5262       }
   5263       return false;
   5264     }
   5265 
   5266   private:
   5267     /// \brief Pick a representative for a sequence.
   5268     unsigned representative(unsigned K) {
   5269       if (Values[K].Merged)
   5270         // Perform path compression as we go.
   5271         return Values[K].Parent = representative(Values[K].Parent);
   5272       return K;
   5273     }
   5274   };
   5275 
   5276   /// An object for which we can track unsequenced uses.
   5277   typedef NamedDecl *Object;
   5278 
   5279   /// Different flavors of object usage which we track. We only track the
   5280   /// least-sequenced usage of each kind.
   5281   enum UsageKind {
   5282     /// A read of an object. Multiple unsequenced reads are OK.
   5283     UK_Use,
   5284     /// A modification of an object which is sequenced before the value
   5285     /// computation of the expression, such as ++n.
   5286     UK_ModAsValue,
   5287     /// A modification of an object which is not sequenced before the value
   5288     /// computation of the expression, such as n++.
   5289     UK_ModAsSideEffect,
   5290 
   5291     UK_Count = UK_ModAsSideEffect + 1
   5292   };
   5293 
   5294   struct Usage {
   5295     Usage() : Use(0), Seq() {}
   5296     Expr *Use;
   5297     SequenceTree::Seq Seq;
   5298   };
   5299 
   5300   struct UsageInfo {
   5301     UsageInfo() : Diagnosed(false) {}
   5302     Usage Uses[UK_Count];
   5303     /// Have we issued a diagnostic for this variable already?
   5304     bool Diagnosed;
   5305   };
   5306   typedef llvm::SmallDenseMap<Object, UsageInfo, 16> UsageInfoMap;
   5307 
   5308   Sema &SemaRef;
   5309   /// Sequenced regions within the expression.
   5310   SequenceTree Tree;
   5311   /// Declaration modifications and references which we have seen.
   5312   UsageInfoMap UsageMap;
   5313   /// The region we are currently within.
   5314   SequenceTree::Seq Region;
   5315   /// Filled in with declarations which were modified as a side-effect
   5316   /// (that is, post-increment operations).
   5317   llvm::SmallVectorImpl<std::pair<Object, Usage> > *ModAsSideEffect;
   5318   /// Expressions to check later. We defer checking these to reduce
   5319   /// stack usage.
   5320   llvm::SmallVectorImpl<Expr*> &WorkList;
   5321 
   5322   /// RAII object wrapping the visitation of a sequenced subexpression of an
   5323   /// expression. At the end of this process, the side-effects of the evaluation
   5324   /// become sequenced with respect to the value computation of the result, so
   5325   /// we downgrade any UK_ModAsSideEffect within the evaluation to
   5326   /// UK_ModAsValue.
   5327   struct SequencedSubexpression {
   5328     SequencedSubexpression(SequenceChecker &Self)
   5329       : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
   5330       Self.ModAsSideEffect = &ModAsSideEffect;
   5331     }
   5332     ~SequencedSubexpression() {
   5333       for (unsigned I = 0, E = ModAsSideEffect.size(); I != E; ++I) {
   5334         UsageInfo &U = Self.UsageMap[ModAsSideEffect[I].first];
   5335         U.Uses[UK_ModAsSideEffect] = ModAsSideEffect[I].second;
   5336         Self.addUsage(U, ModAsSideEffect[I].first,
   5337                       ModAsSideEffect[I].second.Use, UK_ModAsValue);
   5338       }
   5339       Self.ModAsSideEffect = OldModAsSideEffect;
   5340     }
   5341 
   5342     SequenceChecker &Self;
   5343     llvm::SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
   5344     llvm::SmallVectorImpl<std::pair<Object, Usage> > *OldModAsSideEffect;
   5345   };
   5346 
   5347   /// \brief Find the object which is produced by the specified expression,
   5348   /// if any.
   5349   Object getObject(Expr *E, bool Mod) const {
   5350     E = E->IgnoreParenCasts();
   5351     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
   5352       if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
   5353         return getObject(UO->getSubExpr(), Mod);
   5354     } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
   5355       if (BO->getOpcode() == BO_Comma)
   5356         return getObject(BO->getRHS(), Mod);
   5357       if (Mod && BO->isAssignmentOp())
   5358         return getObject(BO->getLHS(), Mod);
   5359     } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
   5360       // FIXME: Check for more interesting cases, like "x.n = ++x.n".
   5361       if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
   5362         return ME->getMemberDecl();
   5363     } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
   5364       // FIXME: If this is a reference, map through to its value.
   5365       return DRE->getDecl();
   5366     return 0;
   5367   }
   5368 
   5369   /// \brief Note that an object was modified or used by an expression.
   5370   void addUsage(UsageInfo &UI, Object O, Expr *Ref, UsageKind UK) {
   5371     Usage &U = UI.Uses[UK];
   5372     if (!U.Use || !Tree.isUnsequenced(Region, U.Seq)) {
   5373       if (UK == UK_ModAsSideEffect && ModAsSideEffect)
   5374         ModAsSideEffect->push_back(std::make_pair(O, U));
   5375       U.Use = Ref;
   5376       U.Seq = Region;
   5377     }
   5378   }
   5379   /// \brief Check whether a modification or use conflicts with a prior usage.
   5380   void checkUsage(Object O, UsageInfo &UI, Expr *Ref, UsageKind OtherKind,
   5381                   bool IsModMod) {
   5382     if (UI.Diagnosed)
   5383       return;
   5384 
   5385     const Usage &U = UI.Uses[OtherKind];
   5386     if (!U.Use || !Tree.isUnsequenced(Region, U.Seq))
   5387       return;
   5388 
   5389     Expr *Mod = U.Use;
   5390     Expr *ModOrUse = Ref;
   5391     if (OtherKind == UK_Use)
   5392       std::swap(Mod, ModOrUse);
   5393 
   5394     SemaRef.Diag(Mod->getExprLoc(),
   5395                  IsModMod ? diag::warn_unsequenced_mod_mod
   5396                           : diag::warn_unsequenced_mod_use)
   5397       << O << SourceRange(ModOrUse->getExprLoc());
   5398     UI.Diagnosed = true;
   5399   }
   5400 
   5401   void notePreUse(Object O, Expr *Use) {
   5402     UsageInfo &U = UsageMap[O];
   5403     // Uses conflict with other modifications.
   5404     checkUsage(O, U, Use, UK_ModAsValue, false);
   5405   }
   5406   void notePostUse(Object O, Expr *Use) {
   5407     UsageInfo &U = UsageMap[O];
   5408     checkUsage(O, U, Use, UK_ModAsSideEffect, false);
   5409     addUsage(U, O, Use, UK_Use);
   5410   }
   5411 
   5412   void notePreMod(Object O, Expr *Mod) {
   5413     UsageInfo &U = UsageMap[O];
   5414     // Modifications conflict with other modifications and with uses.
   5415     checkUsage(O, U, Mod, UK_ModAsValue, true);
   5416     checkUsage(O, U, Mod, UK_Use, false);
   5417   }
   5418   void notePostMod(Object O, Expr *Use, UsageKind UK) {
   5419     UsageInfo &U = UsageMap[O];
   5420     checkUsage(O, U, Use, UK_ModAsSideEffect, true);
   5421     addUsage(U, O, Use, UK);
   5422   }
   5423 
   5424 public:
   5425   SequenceChecker(Sema &S, Expr *E,
   5426                   llvm::SmallVectorImpl<Expr*> &WorkList)
   5427     : EvaluatedExprVisitor<SequenceChecker>(S.Context), SemaRef(S),
   5428       Region(Tree.root()), ModAsSideEffect(0), WorkList(WorkList) {
   5429     Visit(E);
   5430   }
   5431 
   5432   void VisitStmt(Stmt *S) {
   5433     // Skip all statements which aren't expressions for now.
   5434   }
   5435 
   5436   void VisitExpr(Expr *E) {
   5437     // By default, just recurse to evaluated subexpressions.
   5438     EvaluatedExprVisitor<SequenceChecker>::VisitStmt(E);
   5439   }
   5440 
   5441   void VisitCastExpr(CastExpr *E) {
   5442     Object O = Object();
   5443     if (E->getCastKind() == CK_LValueToRValue)
   5444       O = getObject(E->getSubExpr(), false);
   5445 
   5446     if (O)
   5447       notePreUse(O, E);
   5448     VisitExpr(E);
   5449     if (O)
   5450       notePostUse(O, E);
   5451   }
   5452 
   5453   void VisitBinComma(BinaryOperator *BO) {
   5454     // C++11 [expr.comma]p1:
   5455     //   Every value computation and side effect associated with the left
   5456     //   expression is sequenced before every value computation and side
   5457     //   effect associated with the right expression.
   5458     SequenceTree::Seq LHS = Tree.allocate(Region);
   5459     SequenceTree::Seq RHS = Tree.allocate(Region);
   5460     SequenceTree::Seq OldRegion = Region;
   5461 
   5462     {
   5463       SequencedSubexpression SeqLHS(*this);
   5464       Region = LHS;
   5465       Visit(BO->getLHS());
   5466     }
   5467 
   5468     Region = RHS;
   5469     Visit(BO->getRHS());
   5470 
   5471     Region = OldRegion;
   5472 
   5473     // Forget that LHS and RHS are sequenced. They are both unsequenced
   5474     // with respect to other stuff.
   5475     Tree.merge(LHS);
   5476     Tree.merge(RHS);
   5477   }
   5478 
   5479   void VisitBinAssign(BinaryOperator *BO) {
   5480     // The modification is sequenced after the value computation of the LHS
   5481     // and RHS, so check it before inspecting the operands and update the
   5482     // map afterwards.
   5483     Object O = getObject(BO->getLHS(), true);
   5484     if (!O)
   5485       return VisitExpr(BO);
   5486 
   5487     notePreMod(O, BO);
   5488 
   5489     // C++11 [expr.ass]p7:
   5490     //   E1 op= E2 is equivalent to E1 = E1 op E2, except that E1 is evaluated
   5491     //   only once.
   5492     //
   5493     // Therefore, for a compound assignment operator, O is considered used
   5494     // everywhere except within the evaluation of E1 itself.
   5495     if (isa<CompoundAssignOperator>(BO))
   5496       notePreUse(O, BO);
   5497 
   5498     Visit(BO->getLHS());
   5499 
   5500     if (isa<CompoundAssignOperator>(BO))
   5501       notePostUse(O, BO);
   5502 
   5503     Visit(BO->getRHS());
   5504 
   5505     notePostMod(O, BO, UK_ModAsValue);
   5506   }
   5507   void VisitCompoundAssignOperator(CompoundAssignOperator *CAO) {
   5508     VisitBinAssign(CAO);
   5509   }
   5510 
   5511   void VisitUnaryPreInc(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
   5512   void VisitUnaryPreDec(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
   5513   void VisitUnaryPreIncDec(UnaryOperator *UO) {
   5514     Object O = getObject(UO->getSubExpr(), true);
   5515     if (!O)
   5516       return VisitExpr(UO);
   5517 
   5518     notePreMod(O, UO);
   5519     Visit(UO->getSubExpr());
   5520     notePostMod(O, UO, UK_ModAsValue);
   5521   }
   5522 
   5523   void VisitUnaryPostInc(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
   5524   void VisitUnaryPostDec(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
   5525   void VisitUnaryPostIncDec(UnaryOperator *UO) {
   5526     Object O = getObject(UO->getSubExpr(), true);
   5527     if (!O)
   5528       return VisitExpr(UO);
   5529 
   5530     notePreMod(O, UO);
   5531     Visit(UO->getSubExpr());
   5532     notePostMod(O, UO, UK_ModAsSideEffect);
   5533   }
   5534 
   5535   /// Don't visit the RHS of '&&' or '||' if it might not be evaluated.
   5536   void VisitBinLOr(BinaryOperator *BO) {
   5537     // The side-effects of the LHS of an '&&' are sequenced before the
   5538     // value computation of the RHS, and hence before the value computation
   5539     // of the '&&' itself, unless the LHS evaluates to zero. We treat them
   5540     // as if they were unconditionally sequenced.
   5541     {
   5542       SequencedSubexpression Sequenced(*this);
   5543       Visit(BO->getLHS());
   5544     }
   5545 
   5546     bool Result;
   5547     if (!BO->getLHS()->isValueDependent() &&
   5548         BO->getLHS()->EvaluateAsBooleanCondition(Result, SemaRef.Context)) {
   5549       if (!Result)
   5550         Visit(BO->getRHS());
   5551     } else {
   5552       // Check for unsequenced operations in the RHS, treating it as an
   5553       // entirely separate evaluation.
   5554       //
   5555       // FIXME: If there are operations in the RHS which are unsequenced
   5556       // with respect to operations outside the RHS, and those operations
   5557       // are unconditionally evaluated, diagnose them.
   5558       WorkList.push_back(BO->getRHS());
   5559     }
   5560   }
   5561   void VisitBinLAnd(BinaryOperator *BO) {
   5562     {
   5563       SequencedSubexpression Sequenced(*this);
   5564       Visit(BO->getLHS());
   5565     }
   5566 
   5567     bool Result;
   5568     if (!BO->getLHS()->isValueDependent() &&
   5569         BO->getLHS()->EvaluateAsBooleanCondition(Result, SemaRef.Context)) {
   5570       if (Result)
   5571         Visit(BO->getRHS());
   5572     } else {
   5573       WorkList.push_back(BO->getRHS());
   5574     }
   5575   }
   5576 
   5577   // Only visit the condition, unless we can be sure which subexpression will
   5578   // be chosen.
   5579   void VisitAbstractConditionalOperator(AbstractConditionalOperator *CO) {
   5580     SequencedSubexpression Sequenced(*this);
   5581     Visit(CO->getCond());
   5582 
   5583     bool Result;
   5584     if (!CO->getCond()->isValueDependent() &&
   5585         CO->getCond()->EvaluateAsBooleanCondition(Result, SemaRef.Context))
   5586       Visit(Result ? CO->getTrueExpr() : CO->getFalseExpr());
   5587     else {
   5588       WorkList.push_back(CO->getTrueExpr());
   5589       WorkList.push_back(CO->getFalseExpr());
   5590     }
   5591   }
   5592 
   5593   void VisitCXXConstructExpr(CXXConstructExpr *CCE) {
   5594     if (!CCE->isListInitialization())
   5595       return VisitExpr(CCE);
   5596 
   5597     // In C++11, list initializations are sequenced.
   5598     llvm::SmallVector<SequenceTree::Seq, 32> Elts;
   5599     SequenceTree::Seq Parent = Region;
   5600     for (CXXConstructExpr::arg_iterator I = CCE->arg_begin(),
   5601                                         E = CCE->arg_end();
   5602          I != E; ++I) {
   5603       Region = Tree.allocate(Parent);
   5604       Elts.push_back(Region);
   5605       Visit(*I);
   5606     }
   5607 
   5608     // Forget that the initializers are sequenced.
   5609     Region = Parent;
   5610     for (unsigned I = 0; I < Elts.size(); ++I)
   5611       Tree.merge(Elts[I]);
   5612   }
   5613 
   5614   void VisitInitListExpr(InitListExpr *ILE) {
   5615     if (!SemaRef.getLangOpts().CPlusPlus11)
   5616       return VisitExpr(ILE);
   5617 
   5618     // In C++11, list initializations are sequenced.
   5619     llvm::SmallVector<SequenceTree::Seq, 32> Elts;
   5620     SequenceTree::Seq Parent = Region;
   5621     for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
   5622       Expr *E = ILE->getInit(I);
   5623       if (!E) continue;
   5624       Region = Tree.allocate(Parent);
   5625       Elts.push_back(Region);
   5626       Visit(E);
   5627     }
   5628 
   5629     // Forget that the initializers are sequenced.
   5630     Region = Parent;
   5631     for (unsigned I = 0; I < Elts.size(); ++I)
   5632       Tree.merge(Elts[I]);
   5633   }
   5634 };
   5635 }
   5636 
   5637 void Sema::CheckUnsequencedOperations(Expr *E) {
   5638   llvm::SmallVector<Expr*, 8> WorkList;
   5639   WorkList.push_back(E);
   5640   while (!WorkList.empty()) {
   5641     Expr *Item = WorkList.back();
   5642     WorkList.pop_back();
   5643     SequenceChecker(*this, Item, WorkList);
   5644   }
   5645 }
   5646 
   5647 void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
   5648                               bool IsConstexpr) {
   5649   CheckImplicitConversions(E, CheckLoc);
   5650   CheckUnsequencedOperations(E);
   5651   if (!IsConstexpr && !E->isValueDependent())
   5652     CheckForIntOverflow(E);
   5653 }
   5654 
   5655 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
   5656                                        FieldDecl *BitField,
   5657                                        Expr *Init) {
   5658   (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
   5659 }
   5660 
   5661 /// CheckParmsForFunctionDef - Check that the parameters of the given
   5662 /// function are appropriate for the definition of a function. This
   5663 /// takes care of any checks that cannot be performed on the
   5664 /// declaration itself, e.g., that the types of each of the function
   5665 /// parameters are complete.
   5666 bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
   5667                                     bool CheckParameterNames) {
   5668   bool HasInvalidParm = false;
   5669   for (; P != PEnd; ++P) {
   5670     ParmVarDecl *Param = *P;
   5671 
   5672     // C99 6.7.5.3p4: the parameters in a parameter type list in a
   5673     // function declarator that is part of a function definition of
   5674     // that function shall not have incomplete type.
   5675     //
   5676     // This is also C++ [dcl.fct]p6.
   5677     if (!Param->isInvalidDecl() &&
   5678         RequireCompleteType(Param->getLocation(), Param->getType(),
   5679                             diag::err_typecheck_decl_incomplete_type)) {
   5680       Param->setInvalidDecl();
   5681       HasInvalidParm = true;
   5682     }
   5683 
   5684     // C99 6.9.1p5: If the declarator includes a parameter type list, the
   5685     // declaration of each parameter shall include an identifier.
   5686     if (CheckParameterNames &&
   5687         Param->getIdentifier() == 0 &&
   5688         !Param->isImplicit() &&
   5689         !getLangOpts().CPlusPlus)
   5690       Diag(Param->getLocation(), diag::err_parameter_name_omitted);
   5691 
   5692     // C99 6.7.5.3p12:
   5693     //   If the function declarator is not part of a definition of that
   5694     //   function, parameters may have incomplete type and may use the [*]
   5695     //   notation in their sequences of declarator specifiers to specify
   5696     //   variable length array types.
   5697     QualType PType = Param->getOriginalType();
   5698     if (const ArrayType *AT = Context.getAsArrayType(PType)) {
   5699       if (AT->getSizeModifier() == ArrayType::Star) {
   5700         // FIXME: This diagnostic should point the '[*]' if source-location
   5701         // information is added for it.
   5702         Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
   5703       }
   5704     }
   5705   }
   5706 
   5707   return HasInvalidParm;
   5708 }
   5709 
   5710 /// CheckCastAlign - Implements -Wcast-align, which warns when a
   5711 /// pointer cast increases the alignment requirements.
   5712 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
   5713   // This is actually a lot of work to potentially be doing on every
   5714   // cast; don't do it if we're ignoring -Wcast_align (as is the default).
   5715   if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
   5716                                           TRange.getBegin())
   5717         == DiagnosticsEngine::Ignored)
   5718     return;
   5719 
   5720   // Ignore dependent types.
   5721   if (T->isDependentType() || Op->getType()->isDependentType())
   5722     return;
   5723 
   5724   // Require that the destination be a pointer type.
   5725   const PointerType *DestPtr = T->getAs<PointerType>();
   5726   if (!DestPtr) return;
   5727 
   5728   // If the destination has alignment 1, we're done.
   5729   QualType DestPointee = DestPtr->getPointeeType();
   5730   if (DestPointee->isIncompleteType()) return;
   5731   CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
   5732   if (DestAlign.isOne()) return;
   5733 
   5734   // Require that the source be a pointer type.
   5735   const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
   5736   if (!SrcPtr) return;
   5737   QualType SrcPointee = SrcPtr->getPointeeType();
   5738 
   5739   // Whitelist casts from cv void*.  We already implicitly
   5740   // whitelisted casts to cv void*, since they have alignment 1.
   5741   // Also whitelist casts involving incomplete types, which implicitly
   5742   // includes 'void'.
   5743   if (SrcPointee->isIncompleteType()) return;
   5744 
   5745   CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
   5746   if (SrcAlign >= DestAlign) return;
   5747 
   5748   Diag(TRange.getBegin(), diag::warn_cast_align)
   5749     << Op->getType() << T
   5750     << static_cast<unsigned>(SrcAlign.getQuantity())
   5751     << static_cast<unsigned>(DestAlign.getQuantity())
   5752     << TRange << Op->getSourceRange();
   5753 }
   5754 
   5755 static const Type* getElementType(const Expr *BaseExpr) {
   5756   const Type* EltType = BaseExpr->getType().getTypePtr();
   5757   if (EltType->isAnyPointerType())
   5758     return EltType->getPointeeType().getTypePtr();
   5759   else if (EltType->isArrayType())
   5760     return EltType->getBaseElementTypeUnsafe();
   5761   return EltType;
   5762 }
   5763 
   5764 /// \brief Check whether this array fits the idiom of a size-one tail padded
   5765 /// array member of a struct.
   5766 ///
   5767 /// We avoid emitting out-of-bounds access warnings for such arrays as they are
   5768 /// commonly used to emulate flexible arrays in C89 code.
   5769 static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
   5770                                     const NamedDecl *ND) {
   5771   if (Size != 1 || !ND) return false;
   5772 
   5773   const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
   5774   if (!FD) return false;
   5775 
   5776   // Don't consider sizes resulting from macro expansions or template argument
   5777   // substitution to form C89 tail-padded arrays.
   5778 
   5779   TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
   5780   while (TInfo) {
   5781     TypeLoc TL = TInfo->getTypeLoc();
   5782     // Look through typedefs.
   5783     if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
   5784       const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
   5785       TInfo = TDL->getTypeSourceInfo();
   5786       continue;
   5787     }
   5788     if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
   5789       const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
   5790       if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
   5791         return false;
   5792     }
   5793     break;
   5794   }
   5795 
   5796   const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
   5797   if (!RD) return false;
   5798   if (RD->isUnion()) return false;
   5799   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
   5800     if (!CRD->isStandardLayout()) return false;
   5801   }
   5802 
   5803   // See if this is the last field decl in the record.
   5804   const Decl *D = FD;
   5805   while ((D = D->getNextDeclInContext()))
   5806     if (isa<FieldDecl>(D))
   5807       return false;
   5808   return true;
   5809 }
   5810 
   5811 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
   5812                             const ArraySubscriptExpr *ASE,
   5813                             bool AllowOnePastEnd, bool IndexNegated) {
   5814   IndexExpr = IndexExpr->IgnoreParenImpCasts();
   5815   if (IndexExpr->isValueDependent())
   5816     return;
   5817 
   5818   const Type *EffectiveType = getElementType(BaseExpr);
   5819   BaseExpr = BaseExpr->IgnoreParenCasts();
   5820   const ConstantArrayType *ArrayTy =
   5821     Context.getAsConstantArrayType(BaseExpr->getType());
   5822   if (!ArrayTy)
   5823     return;
   5824 
   5825   llvm::APSInt index;
   5826   if (!IndexExpr->EvaluateAsInt(index, Context))
   5827     return;
   5828   if (IndexNegated)
   5829     index = -index;
   5830 
   5831   const NamedDecl *ND = NULL;
   5832   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
   5833     ND = dyn_cast<NamedDecl>(DRE->getDecl());
   5834   if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
   5835     ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
   5836 
   5837   if (index.isUnsigned() || !index.isNegative()) {
   5838     llvm::APInt size = ArrayTy->getSize();
   5839     if (!size.isStrictlyPositive())
   5840       return;
   5841 
   5842     const Type* BaseType = getElementType(BaseExpr);
   5843     if (BaseType != EffectiveType) {
   5844       // Make sure we're comparing apples to apples when comparing index to size
   5845       uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
   5846       uint64_t array_typesize = Context.getTypeSize(BaseType);
   5847       // Handle ptrarith_typesize being zero, such as when casting to void*
   5848       if (!ptrarith_typesize) ptrarith_typesize = 1;
   5849       if (ptrarith_typesize != array_typesize) {
   5850         // There's a cast to a different size type involved
   5851         uint64_t ratio = array_typesize / ptrarith_typesize;
   5852         // TODO: Be smarter about handling cases where array_typesize is not a
   5853         // multiple of ptrarith_typesize
   5854         if (ptrarith_typesize * ratio == array_typesize)
   5855           size *= llvm::APInt(size.getBitWidth(), ratio);
   5856       }
   5857     }
   5858 
   5859     if (size.getBitWidth() > index.getBitWidth())
   5860       index = index.zext(size.getBitWidth());
   5861     else if (size.getBitWidth() < index.getBitWidth())
   5862       size = size.zext(index.getBitWidth());
   5863 
   5864     // For array subscripting the index must be less than size, but for pointer
   5865     // arithmetic also allow the index (offset) to be equal to size since
   5866     // computing the next address after the end of the array is legal and
   5867     // commonly done e.g. in C++ iterators and range-based for loops.
   5868     if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
   5869       return;
   5870 
   5871     // Also don't warn for arrays of size 1 which are members of some
   5872     // structure. These are often used to approximate flexible arrays in C89
   5873     // code.
   5874     if (IsTailPaddedMemberArray(*this, size, ND))
   5875       return;
   5876 
   5877     // Suppress the warning if the subscript expression (as identified by the
   5878     // ']' location) and the index expression are both from macro expansions
   5879     // within a system header.
   5880     if (ASE) {
   5881       SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
   5882           ASE->getRBracketLoc());
   5883       if (SourceMgr.isInSystemHeader(RBracketLoc)) {
   5884         SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
   5885             IndexExpr->getLocStart());
   5886         if (SourceMgr.isFromSameFile(RBracketLoc, IndexLoc))
   5887           return;
   5888       }
   5889     }
   5890 
   5891     unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
   5892     if (ASE)
   5893       DiagID = diag::warn_array_index_exceeds_bounds;
   5894 
   5895     DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
   5896                         PDiag(DiagID) << index.toString(10, true)
   5897                           << size.toString(10, true)
   5898                           << (unsigned)size.getLimitedValue(~0U)
   5899                           << IndexExpr->getSourceRange());
   5900   } else {
   5901     unsigned DiagID = diag::warn_array_index_precedes_bounds;
   5902     if (!ASE) {
   5903       DiagID = diag::warn_ptr_arith_precedes_bounds;
   5904       if (index.isNegative()) index = -index;
   5905     }
   5906 
   5907     DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
   5908                         PDiag(DiagID) << index.toString(10, true)
   5909                           << IndexExpr->getSourceRange());
   5910   }
   5911 
   5912   if (!ND) {
   5913     // Try harder to find a NamedDecl to point at in the note.
   5914     while (const ArraySubscriptExpr *ASE =
   5915            dyn_cast<ArraySubscriptExpr>(BaseExpr))
   5916       BaseExpr = ASE->getBase()->IgnoreParenCasts();
   5917     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
   5918       ND = dyn_cast<NamedDecl>(DRE->getDecl());
   5919     if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
   5920       ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
   5921   }
   5922 
   5923   if (ND)
   5924     DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
   5925                         PDiag(diag::note_array_index_out_of_bounds)
   5926                           << ND->getDeclName());
   5927 }
   5928 
   5929 void Sema::CheckArrayAccess(const Expr *expr) {
   5930   int AllowOnePastEnd = 0;
   5931   while (expr) {
   5932     expr = expr->IgnoreParenImpCasts();
   5933     switch (expr->getStmtClass()) {
   5934       case Stmt::ArraySubscriptExprClass: {
   5935         const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
   5936         CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
   5937                          AllowOnePastEnd > 0);
   5938         return;
   5939       }
   5940       case Stmt::UnaryOperatorClass: {
   5941         // Only unwrap the * and & unary operators
   5942         const UnaryOperator *UO = cast<UnaryOperator>(expr);
   5943         expr = UO->getSubExpr();
   5944         switch (UO->getOpcode()) {
   5945           case UO_AddrOf:
   5946             AllowOnePastEnd++;
   5947             break;
   5948           case UO_Deref:
   5949             AllowOnePastEnd--;
   5950             break;
   5951           default:
   5952             return;
   5953         }
   5954         break;
   5955       }
   5956       case Stmt::ConditionalOperatorClass: {
   5957         const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
   5958         if (const Expr *lhs = cond->getLHS())
   5959           CheckArrayAccess(lhs);
   5960         if (const Expr *rhs = cond->getRHS())
   5961           CheckArrayAccess(rhs);
   5962         return;
   5963       }
   5964       default:
   5965         return;
   5966     }
   5967   }
   5968 }
   5969 
   5970 //===--- CHECK: Objective-C retain cycles ----------------------------------//
   5971 
   5972 namespace {
   5973   struct RetainCycleOwner {
   5974     RetainCycleOwner() : Variable(0), Indirect(false) {}
   5975     VarDecl *Variable;
   5976     SourceRange Range;
   5977     SourceLocation Loc;
   5978     bool Indirect;
   5979 
   5980     void setLocsFrom(Expr *e) {
   5981       Loc = e->getExprLoc();
   5982       Range = e->getSourceRange();
   5983     }
   5984   };
   5985 }
   5986 
   5987 /// Consider whether capturing the given variable can possibly lead to
   5988 /// a retain cycle.
   5989 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
   5990   // In ARC, it's captured strongly iff the variable has __strong
   5991   // lifetime.  In MRR, it's captured strongly if the variable is
   5992   // __block and has an appropriate type.
   5993   if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
   5994     return false;
   5995 
   5996   owner.Variable = var;
   5997   if (ref)
   5998     owner.setLocsFrom(ref);
   5999   return true;
   6000 }
   6001 
   6002 static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
   6003   while (true) {
   6004     e = e->IgnoreParens();
   6005     if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
   6006       switch (cast->getCastKind()) {
   6007       case CK_BitCast:
   6008       case CK_LValueBitCast:
   6009       case CK_LValueToRValue:
   6010       case CK_ARCReclaimReturnedObject:
   6011         e = cast->getSubExpr();
   6012         continue;
   6013 
   6014       default:
   6015         return false;
   6016       }
   6017     }
   6018 
   6019     if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
   6020       ObjCIvarDecl *ivar = ref->getDecl();
   6021       if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
   6022         return false;
   6023 
   6024       // Try to find a retain cycle in the base.
   6025       if (!findRetainCycleOwner(S, ref->getBase(), owner))
   6026         return false;
   6027 
   6028       if (ref->isFreeIvar()) owner.setLocsFrom(ref);
   6029       owner.Indirect = true;
   6030       return true;
   6031     }
   6032 
   6033     if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
   6034       VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
   6035       if (!var) return false;
   6036       return considerVariable(var, ref, owner);
   6037     }
   6038 
   6039     if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
   6040       if (member->isArrow()) return false;
   6041 
   6042       // Don't count this as an indirect ownership.
   6043       e = member->getBase();
   6044       continue;
   6045     }
   6046 
   6047     if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
   6048       // Only pay attention to pseudo-objects on property references.
   6049       ObjCPropertyRefExpr *pre
   6050         = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
   6051                                               ->IgnoreParens());
   6052       if (!pre) return false;
   6053       if (pre->isImplicitProperty()) return false;
   6054       ObjCPropertyDecl *property = pre->getExplicitProperty();
   6055       if (!property->isRetaining() &&
   6056           !(property->getPropertyIvarDecl() &&
   6057             property->getPropertyIvarDecl()->getType()
   6058               .getObjCLifetime() == Qualifiers::OCL_Strong))
   6059           return false;
   6060 
   6061       owner.Indirect = true;
   6062       if (pre->isSuperReceiver()) {
   6063         owner.Variable = S.getCurMethodDecl()->getSelfDecl();
   6064         if (!owner.Variable)
   6065           return false;
   6066         owner.Loc = pre->getLocation();
   6067         owner.Range = pre->getSourceRange();
   6068         return true;
   6069       }
   6070       e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
   6071                               ->getSourceExpr());
   6072       continue;
   6073     }
   6074 
   6075     // Array ivars?
   6076 
   6077     return false;
   6078   }
   6079 }
   6080 
   6081 namespace {
   6082   struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
   6083     FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
   6084       : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
   6085         Variable(variable), Capturer(0) {}
   6086 
   6087     VarDecl *Variable;
   6088     Expr *Capturer;
   6089 
   6090     void VisitDeclRefExpr(DeclRefExpr *ref) {
   6091       if (ref->getDecl() == Variable && !Capturer)
   6092         Capturer = ref;
   6093     }
   6094 
   6095     void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
   6096       if (Capturer) return;
   6097       Visit(ref->getBase());
   6098       if (Capturer && ref->isFreeIvar())
   6099         Capturer = ref;
   6100     }
   6101 
   6102     void VisitBlockExpr(BlockExpr *block) {
   6103       // Look inside nested blocks
   6104       if (block->getBlockDecl()->capturesVariable(Variable))
   6105         Visit(block->getBlockDecl()->getBody());
   6106     }
   6107 
   6108     void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
   6109       if (Capturer) return;
   6110       if (OVE->getSourceExpr())
   6111         Visit(OVE->getSourceExpr());
   6112     }
   6113   };
   6114 }
   6115 
   6116 /// Check whether the given argument is a block which captures a
   6117 /// variable.
   6118 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
   6119   assert(owner.Variable && owner.Loc.isValid());
   6120 
   6121   e = e->IgnoreParenCasts();
   6122 
   6123   // Look through [^{...} copy] and Block_copy(^{...}).
   6124   if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
   6125     Selector Cmd = ME->getSelector();
   6126     if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
   6127       e = ME->getInstanceReceiver();
   6128       if (!e)
   6129         return 0;
   6130       e = e->IgnoreParenCasts();
   6131     }
   6132   } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
   6133     if (CE->getNumArgs() == 1) {
   6134       FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
   6135       if (Fn) {
   6136         const IdentifierInfo *FnI = Fn->getIdentifier();
   6137         if (FnI && FnI->isStr("_Block_copy")) {
   6138           e = CE->getArg(0)->IgnoreParenCasts();
   6139         }
   6140       }
   6141     }
   6142   }
   6143 
   6144   BlockExpr *block = dyn_cast<BlockExpr>(e);
   6145   if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
   6146     return 0;
   6147 
   6148   FindCaptureVisitor visitor(S.Context, owner.Variable);
   6149   visitor.Visit(block->getBlockDecl()->getBody());
   6150   return visitor.Capturer;
   6151 }
   6152 
   6153 static void diagnoseRetainCycle(Sema &S, Expr *capturer,
   6154                                 RetainCycleOwner &owner) {
   6155   assert(capturer);
   6156   assert(owner.Variable && owner.Loc.isValid());
   6157 
   6158   S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
   6159     << owner.Variable << capturer->getSourceRange();
   6160   S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
   6161     << owner.Indirect << owner.Range;
   6162 }
   6163 
   6164 /// Check for a keyword selector that starts with the word 'add' or
   6165 /// 'set'.
   6166 static bool isSetterLikeSelector(Selector sel) {
   6167   if (sel.isUnarySelector()) return false;
   6168 
   6169   StringRef str = sel.getNameForSlot(0);
   6170   while (!str.empty() && str.front() == '_') str = str.substr(1);
   6171   if (str.startswith("set"))
   6172     str = str.substr(3);
   6173   else if (str.startswith("add")) {
   6174     // Specially whitelist 'addOperationWithBlock:'.
   6175     if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
   6176       return false;
   6177     str = str.substr(3);
   6178   }
   6179   else
   6180     return false;
   6181 
   6182   if (str.empty()) return true;
   6183   return !isLowercase(str.front());
   6184 }
   6185 
   6186 /// Check a message send to see if it's likely to cause a retain cycle.
   6187 void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
   6188   // Only check instance methods whose selector looks like a setter.
   6189   if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
   6190     return;
   6191 
   6192   // Try to find a variable that the receiver is strongly owned by.
   6193   RetainCycleOwner owner;
   6194   if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
   6195     if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
   6196       return;
   6197   } else {
   6198     assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
   6199     owner.Variable = getCurMethodDecl()->getSelfDecl();
   6200     owner.Loc = msg->getSuperLoc();
   6201     owner.Range = msg->getSuperLoc();
   6202   }
   6203 
   6204   // Check whether the receiver is captured by any of the arguments.
   6205   for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
   6206     if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
   6207       return diagnoseRetainCycle(*this, capturer, owner);
   6208 }
   6209 
   6210 /// Check a property assign to see if it's likely to cause a retain cycle.
   6211 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
   6212   RetainCycleOwner owner;
   6213   if (!findRetainCycleOwner(*this, receiver, owner))
   6214     return;
   6215 
   6216   if (Expr *capturer = findCapturingExpr(*this, argument, owner))
   6217     diagnoseRetainCycle(*this, capturer, owner);
   6218 }
   6219 
   6220 void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
   6221   RetainCycleOwner Owner;
   6222   if (!considerVariable(Var, /*DeclRefExpr=*/0, Owner))
   6223     return;
   6224 
   6225   // Because we don't have an expression for the variable, we have to set the
   6226   // location explicitly here.
   6227   Owner.Loc = Var->getLocation();
   6228   Owner.Range = Var->getSourceRange();
   6229 
   6230   if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
   6231     diagnoseRetainCycle(*this, Capturer, Owner);
   6232 }
   6233 
   6234 static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
   6235                                      Expr *RHS, bool isProperty) {
   6236   // Check if RHS is an Objective-C object literal, which also can get
   6237   // immediately zapped in a weak reference.  Note that we explicitly
   6238   // allow ObjCStringLiterals, since those are designed to never really die.
   6239   RHS = RHS->IgnoreParenImpCasts();
   6240 
   6241   // This enum needs to match with the 'select' in
   6242   // warn_objc_arc_literal_assign (off-by-1).
   6243   Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
   6244   if (Kind == Sema::LK_String || Kind == Sema::LK_None)
   6245     return false;
   6246 
   6247   S.Diag(Loc, diag::warn_arc_literal_assign)
   6248     << (unsigned) Kind
   6249     << (isProperty ? 0 : 1)
   6250     << RHS->getSourceRange();
   6251 
   6252   return true;
   6253 }
   6254 
   6255 static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
   6256                                     Qualifiers::ObjCLifetime LT,
   6257                                     Expr *RHS, bool isProperty) {
   6258   // Strip off any implicit cast added to get to the one ARC-specific.
   6259   while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
   6260     if (cast->getCastKind() == CK_ARCConsumeObject) {
   6261       S.Diag(Loc, diag::warn_arc_retained_assign)
   6262         << (LT == Qualifiers::OCL_ExplicitNone)
   6263         << (isProperty ? 0 : 1)
   6264         << RHS->getSourceRange();
   6265       return true;
   6266     }
   6267     RHS = cast->getSubExpr();
   6268   }
   6269 
   6270   if (LT == Qualifiers::OCL_Weak &&
   6271       checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
   6272     return true;
   6273 
   6274   return false;
   6275 }
   6276 
   6277 bool Sema::checkUnsafeAssigns(SourceLocation Loc,
   6278                               QualType LHS, Expr *RHS) {
   6279   Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
   6280 
   6281   if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
   6282     return false;
   6283 
   6284   if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
   6285     return true;
   6286 
   6287   return false;
   6288 }
   6289 
   6290 void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
   6291                               Expr *LHS, Expr *RHS) {
   6292   QualType LHSType;
   6293   // PropertyRef on LHS type need be directly obtained from
   6294   // its declaration as it has a PsuedoType.
   6295   ObjCPropertyRefExpr *PRE
   6296     = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
   6297   if (PRE && !PRE->isImplicitProperty()) {
   6298     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
   6299     if (PD)
   6300       LHSType = PD->getType();
   6301   }
   6302 
   6303   if (LHSType.isNull())
   6304     LHSType = LHS->getType();
   6305 
   6306   Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
   6307 
   6308   if (LT == Qualifiers::OCL_Weak) {
   6309     DiagnosticsEngine::Level Level =
   6310       Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak, Loc);
   6311     if (Level != DiagnosticsEngine::Ignored)
   6312       getCurFunction()->markSafeWeakUse(LHS);
   6313   }
   6314 
   6315   if (checkUnsafeAssigns(Loc, LHSType, RHS))
   6316     return;
   6317 
   6318   // FIXME. Check for other life times.
   6319   if (LT != Qualifiers::OCL_None)
   6320     return;
   6321 
   6322   if (PRE) {
   6323     if (PRE->isImplicitProperty())
   6324       return;
   6325     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
   6326     if (!PD)
   6327       return;
   6328 
   6329     unsigned Attributes = PD->getPropertyAttributes();
   6330     if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
   6331       // when 'assign' attribute was not explicitly specified
   6332       // by user, ignore it and rely on property type itself
   6333       // for lifetime info.
   6334       unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
   6335       if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
   6336           LHSType->isObjCRetainableType())
   6337         return;
   6338 
   6339       while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
   6340         if (cast->getCastKind() == CK_ARCConsumeObject) {
   6341           Diag(Loc, diag::warn_arc_retained_property_assign)
   6342           << RHS->getSourceRange();
   6343           return;
   6344         }
   6345         RHS = cast->getSubExpr();
   6346       }
   6347     }
   6348     else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) {
   6349       if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
   6350         return;
   6351     }
   6352   }
   6353 }
   6354 
   6355 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
   6356 
   6357 namespace {
   6358 bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
   6359                                  SourceLocation StmtLoc,
   6360                                  const NullStmt *Body) {
   6361   // Do not warn if the body is a macro that expands to nothing, e.g:
   6362   //
   6363   // #define CALL(x)
   6364   // if (condition)
   6365   //   CALL(0);
   6366   //
   6367   if (Body->hasLeadingEmptyMacro())
   6368     return false;
   6369 
   6370   // Get line numbers of statement and body.
   6371   bool StmtLineInvalid;
   6372   unsigned StmtLine = SourceMgr.getSpellingLineNumber(StmtLoc,
   6373                                                       &StmtLineInvalid);
   6374   if (StmtLineInvalid)
   6375     return false;
   6376 
   6377   bool BodyLineInvalid;
   6378   unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
   6379                                                       &BodyLineInvalid);
   6380   if (BodyLineInvalid)
   6381     return false;
   6382 
   6383   // Warn if null statement and body are on the same line.
   6384   if (StmtLine != BodyLine)
   6385     return false;
   6386 
   6387   return true;
   6388 }
   6389 } // Unnamed namespace
   6390 
   6391 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
   6392                                  const Stmt *Body,
   6393                                  unsigned DiagID) {
   6394   // Since this is a syntactic check, don't emit diagnostic for template
   6395   // instantiations, this just adds noise.
   6396   if (CurrentInstantiationScope)
   6397     return;
   6398 
   6399   // The body should be a null statement.
   6400   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
   6401   if (!NBody)
   6402     return;
   6403 
   6404   // Do the usual checks.
   6405   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
   6406     return;
   6407 
   6408   Diag(NBody->getSemiLoc(), DiagID);
   6409   Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
   6410 }
   6411 
   6412 void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
   6413                                  const Stmt *PossibleBody) {
   6414   assert(!CurrentInstantiationScope); // Ensured by caller
   6415 
   6416   SourceLocation StmtLoc;
   6417   const Stmt *Body;
   6418   unsigned DiagID;
   6419   if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
   6420     StmtLoc = FS->getRParenLoc();
   6421     Body = FS->getBody();
   6422     DiagID = diag::warn_empty_for_body;
   6423   } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
   6424     StmtLoc = WS->getCond()->getSourceRange().getEnd();
   6425     Body = WS->getBody();
   6426     DiagID = diag::warn_empty_while_body;
   6427   } else
   6428     return; // Neither `for' nor `while'.
   6429 
   6430   // The body should be a null statement.
   6431   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
   6432   if (!NBody)
   6433     return;
   6434 
   6435   // Skip expensive checks if diagnostic is disabled.
   6436   if (Diags.getDiagnosticLevel(DiagID, NBody->getSemiLoc()) ==
   6437           DiagnosticsEngine::Ignored)
   6438     return;
   6439 
   6440   // Do the usual checks.
   6441   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
   6442     return;
   6443 
   6444   // `for(...);' and `while(...);' are popular idioms, so in order to keep
   6445   // noise level low, emit diagnostics only if for/while is followed by a
   6446   // CompoundStmt, e.g.:
   6447   //    for (int i = 0; i < n; i++);
   6448   //    {
   6449   //      a(i);
   6450   //    }
   6451   // or if for/while is followed by a statement with more indentation
   6452   // than for/while itself:
   6453   //    for (int i = 0; i < n; i++);
   6454   //      a(i);
   6455   bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
   6456   if (!ProbableTypo) {
   6457     bool BodyColInvalid;
   6458     unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
   6459                              PossibleBody->getLocStart(),
   6460                              &BodyColInvalid);
   6461     if (BodyColInvalid)
   6462       return;
   6463 
   6464     bool StmtColInvalid;
   6465     unsigned StmtCol = SourceMgr.getPresumedColumnNumber(
   6466                              S->getLocStart(),
   6467                              &StmtColInvalid);
   6468     if (StmtColInvalid)
   6469       return;
   6470 
   6471     if (BodyCol > StmtCol)
   6472       ProbableTypo = true;
   6473   }
   6474 
   6475   if (ProbableTypo) {
   6476     Diag(NBody->getSemiLoc(), DiagID);
   6477     Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
   6478   }
   6479 }
   6480 
   6481 //===--- Layout compatibility ----------------------------------------------//
   6482 
   6483 namespace {
   6484 
   6485 bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
   6486 
   6487 /// \brief Check if two enumeration types are layout-compatible.
   6488 bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
   6489   // C++11 [dcl.enum] p8:
   6490   // Two enumeration types are layout-compatible if they have the same
   6491   // underlying type.
   6492   return ED1->isComplete() && ED2->isComplete() &&
   6493          C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
   6494 }
   6495 
   6496 /// \brief Check if two fields are layout-compatible.
   6497 bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, FieldDecl *Field2) {
   6498   if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
   6499     return false;
   6500 
   6501   if (Field1->isBitField() != Field2->isBitField())
   6502     return false;
   6503 
   6504   if (Field1->isBitField()) {
   6505     // Make sure that the bit-fields are the same length.
   6506     unsigned Bits1 = Field1->getBitWidthValue(C);
   6507     unsigned Bits2 = Field2->getBitWidthValue(C);
   6508 
   6509     if (Bits1 != Bits2)
   6510       return false;
   6511   }
   6512 
   6513   return true;
   6514 }
   6515 
   6516 /// \brief Check if two standard-layout structs are layout-compatible.
   6517 /// (C++11 [class.mem] p17)
   6518 bool isLayoutCompatibleStruct(ASTContext &C,
   6519                               RecordDecl *RD1,
   6520                               RecordDecl *RD2) {
   6521   // If both records are C++ classes, check that base classes match.
   6522   if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
   6523     // If one of records is a CXXRecordDecl we are in C++ mode,
   6524     // thus the other one is a CXXRecordDecl, too.
   6525     const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
   6526     // Check number of base classes.
   6527     if (D1CXX->getNumBases() != D2CXX->getNumBases())
   6528       return false;
   6529 
   6530     // Check the base classes.
   6531     for (CXXRecordDecl::base_class_const_iterator
   6532                Base1 = D1CXX->bases_begin(),
   6533            BaseEnd1 = D1CXX->bases_end(),
   6534               Base2 = D2CXX->bases_begin();
   6535          Base1 != BaseEnd1;
   6536          ++Base1, ++Base2) {
   6537       if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
   6538         return false;
   6539     }
   6540   } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
   6541     // If only RD2 is a C++ class, it should have zero base classes.
   6542     if (D2CXX->getNumBases() > 0)
   6543       return false;
   6544   }
   6545 
   6546   // Check the fields.
   6547   RecordDecl::field_iterator Field2 = RD2->field_begin(),
   6548                              Field2End = RD2->field_end(),
   6549                              Field1 = RD1->field_begin(),
   6550                              Field1End = RD1->field_end();
   6551   for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
   6552     if (!isLayoutCompatible(C, *Field1, *Field2))
   6553       return false;
   6554   }
   6555   if (Field1 != Field1End || Field2 != Field2End)
   6556     return false;
   6557 
   6558   return true;
   6559 }
   6560 
   6561 /// \brief Check if two standard-layout unions are layout-compatible.
   6562 /// (C++11 [class.mem] p18)
   6563 bool isLayoutCompatibleUnion(ASTContext &C,
   6564                              RecordDecl *RD1,
   6565                              RecordDecl *RD2) {
   6566   llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
   6567   for (RecordDecl::field_iterator Field2 = RD2->field_begin(),
   6568                                   Field2End = RD2->field_end();
   6569        Field2 != Field2End; ++Field2) {
   6570     UnmatchedFields.insert(*Field2);
   6571   }
   6572 
   6573   for (RecordDecl::field_iterator Field1 = RD1->field_begin(),
   6574                                   Field1End = RD1->field_end();
   6575        Field1 != Field1End; ++Field1) {
   6576     llvm::SmallPtrSet<FieldDecl *, 8>::iterator
   6577         I = UnmatchedFields.begin(),
   6578         E = UnmatchedFields.end();
   6579 
   6580     for ( ; I != E; ++I) {
   6581       if (isLayoutCompatible(C, *Field1, *I)) {
   6582         bool Result = UnmatchedFields.erase(*I);
   6583         (void) Result;
   6584         assert(Result);
   6585         break;
   6586       }
   6587     }
   6588     if (I == E)
   6589       return false;
   6590   }
   6591 
   6592   return UnmatchedFields.empty();
   6593 }
   6594 
   6595 bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, RecordDecl *RD2) {
   6596   if (RD1->isUnion() != RD2->isUnion())
   6597     return false;
   6598 
   6599   if (RD1->isUnion())
   6600     return isLayoutCompatibleUnion(C, RD1, RD2);
   6601   else
   6602     return isLayoutCompatibleStruct(C, RD1, RD2);
   6603 }
   6604 
   6605 /// \brief Check if two types are layout-compatible in C++11 sense.
   6606 bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
   6607   if (T1.isNull() || T2.isNull())
   6608     return false;
   6609 
   6610   // C++11 [basic.types] p11:
   6611   // If two types T1 and T2 are the same type, then T1 and T2 are
   6612   // layout-compatible types.
   6613   if (C.hasSameType(T1, T2))
   6614     return true;
   6615 
   6616   T1 = T1.getCanonicalType().getUnqualifiedType();
   6617   T2 = T2.getCanonicalType().getUnqualifiedType();
   6618 
   6619   const Type::TypeClass TC1 = T1->getTypeClass();
   6620   const Type::TypeClass TC2 = T2->getTypeClass();
   6621 
   6622   if (TC1 != TC2)
   6623     return false;
   6624 
   6625   if (TC1 == Type::Enum) {
   6626     return isLayoutCompatible(C,
   6627                               cast<EnumType>(T1)->getDecl(),
   6628                               cast<EnumType>(T2)->getDecl());
   6629   } else if (TC1 == Type::Record) {
   6630     if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
   6631       return false;
   6632 
   6633     return isLayoutCompatible(C,
   6634                               cast<RecordType>(T1)->getDecl(),
   6635                               cast<RecordType>(T2)->getDecl());
   6636   }
   6637 
   6638   return false;
   6639 }
   6640 }
   6641 
   6642 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
   6643 
   6644 namespace {
   6645 /// \brief Given a type tag expression find the type tag itself.
   6646 ///
   6647 /// \param TypeExpr Type tag expression, as it appears in user's code.
   6648 ///
   6649 /// \param VD Declaration of an identifier that appears in a type tag.
   6650 ///
   6651 /// \param MagicValue Type tag magic value.
   6652 bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
   6653                      const ValueDecl **VD, uint64_t *MagicValue) {
   6654   while(true) {
   6655     if (!TypeExpr)
   6656       return false;
   6657 
   6658     TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
   6659 
   6660     switch (TypeExpr->getStmtClass()) {
   6661     case Stmt::UnaryOperatorClass: {
   6662       const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
   6663       if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
   6664         TypeExpr = UO->getSubExpr();
   6665         continue;
   6666       }
   6667       return false;
   6668     }
   6669 
   6670     case Stmt::DeclRefExprClass: {
   6671       const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
   6672       *VD = DRE->getDecl();
   6673       return true;
   6674     }
   6675 
   6676     case Stmt::IntegerLiteralClass: {
   6677       const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
   6678       llvm::APInt MagicValueAPInt = IL->getValue();
   6679       if (MagicValueAPInt.getActiveBits() <= 64) {
   6680         *MagicValue = MagicValueAPInt.getZExtValue();
   6681         return true;
   6682       } else
   6683         return false;
   6684     }
   6685 
   6686     case Stmt::BinaryConditionalOperatorClass:
   6687     case Stmt::ConditionalOperatorClass: {
   6688       const AbstractConditionalOperator *ACO =
   6689           cast<AbstractConditionalOperator>(TypeExpr);
   6690       bool Result;
   6691       if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx)) {
   6692         if (Result)
   6693           TypeExpr = ACO->getTrueExpr();
   6694         else
   6695           TypeExpr = ACO->getFalseExpr();
   6696         continue;
   6697       }
   6698       return false;
   6699     }
   6700 
   6701     case Stmt::BinaryOperatorClass: {
   6702       const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
   6703       if (BO->getOpcode() == BO_Comma) {
   6704         TypeExpr = BO->getRHS();
   6705         continue;
   6706       }
   6707       return false;
   6708     }
   6709 
   6710     default:
   6711       return false;
   6712     }
   6713   }
   6714 }
   6715 
   6716 /// \brief Retrieve the C type corresponding to type tag TypeExpr.
   6717 ///
   6718 /// \param TypeExpr Expression that specifies a type tag.
   6719 ///
   6720 /// \param MagicValues Registered magic values.
   6721 ///
   6722 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
   6723 ///        kind.
   6724 ///
   6725 /// \param TypeInfo Information about the corresponding C type.
   6726 ///
   6727 /// \returns true if the corresponding C type was found.
   6728 bool GetMatchingCType(
   6729         const IdentifierInfo *ArgumentKind,
   6730         const Expr *TypeExpr, const ASTContext &Ctx,
   6731         const llvm::DenseMap<Sema::TypeTagMagicValue,
   6732                              Sema::TypeTagData> *MagicValues,
   6733         bool &FoundWrongKind,
   6734         Sema::TypeTagData &TypeInfo) {
   6735   FoundWrongKind = false;
   6736 
   6737   // Variable declaration that has type_tag_for_datatype attribute.
   6738   const ValueDecl *VD = NULL;
   6739 
   6740   uint64_t MagicValue;
   6741 
   6742   if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue))
   6743     return false;
   6744 
   6745   if (VD) {
   6746     for (specific_attr_iterator<TypeTagForDatatypeAttr>
   6747              I = VD->specific_attr_begin<TypeTagForDatatypeAttr>(),
   6748              E = VD->specific_attr_end<TypeTagForDatatypeAttr>();
   6749          I != E; ++I) {
   6750       if (I->getArgumentKind() != ArgumentKind) {
   6751         FoundWrongKind = true;
   6752         return false;
   6753       }
   6754       TypeInfo.Type = I->getMatchingCType();
   6755       TypeInfo.LayoutCompatible = I->getLayoutCompatible();
   6756       TypeInfo.MustBeNull = I->getMustBeNull();
   6757       return true;
   6758     }
   6759     return false;
   6760   }
   6761 
   6762   if (!MagicValues)
   6763     return false;
   6764 
   6765   llvm::DenseMap<Sema::TypeTagMagicValue,
   6766                  Sema::TypeTagData>::const_iterator I =
   6767       MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
   6768   if (I == MagicValues->end())
   6769     return false;
   6770 
   6771   TypeInfo = I->second;
   6772   return true;
   6773 }
   6774 } // unnamed namespace
   6775 
   6776 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
   6777                                       uint64_t MagicValue, QualType Type,
   6778                                       bool LayoutCompatible,
   6779                                       bool MustBeNull) {
   6780   if (!TypeTagForDatatypeMagicValues)
   6781     TypeTagForDatatypeMagicValues.reset(
   6782         new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
   6783 
   6784   TypeTagMagicValue Magic(ArgumentKind, MagicValue);
   6785   (*TypeTagForDatatypeMagicValues)[Magic] =
   6786       TypeTagData(Type, LayoutCompatible, MustBeNull);
   6787 }
   6788 
   6789 namespace {
   6790 bool IsSameCharType(QualType T1, QualType T2) {
   6791   const BuiltinType *BT1 = T1->getAs<BuiltinType>();
   6792   if (!BT1)
   6793     return false;
   6794 
   6795   const BuiltinType *BT2 = T2->getAs<BuiltinType>();
   6796   if (!BT2)
   6797     return false;
   6798 
   6799   BuiltinType::Kind T1Kind = BT1->getKind();
   6800   BuiltinType::Kind T2Kind = BT2->getKind();
   6801 
   6802   return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
   6803          (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
   6804          (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
   6805          (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
   6806 }
   6807 } // unnamed namespace
   6808 
   6809 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
   6810                                     const Expr * const *ExprArgs) {
   6811   const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
   6812   bool IsPointerAttr = Attr->getIsPointer();
   6813 
   6814   const Expr *TypeTagExpr = ExprArgs[Attr->getTypeTagIdx()];
   6815   bool FoundWrongKind;
   6816   TypeTagData TypeInfo;
   6817   if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
   6818                         TypeTagForDatatypeMagicValues.get(),
   6819                         FoundWrongKind, TypeInfo)) {
   6820     if (FoundWrongKind)
   6821       Diag(TypeTagExpr->getExprLoc(),
   6822            diag::warn_type_tag_for_datatype_wrong_kind)
   6823         << TypeTagExpr->getSourceRange();
   6824     return;
   6825   }
   6826 
   6827   const Expr *ArgumentExpr = ExprArgs[Attr->getArgumentIdx()];
   6828   if (IsPointerAttr) {
   6829     // Skip implicit cast of pointer to `void *' (as a function argument).
   6830     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
   6831       if (ICE->getType()->isVoidPointerType() &&
   6832           ICE->getCastKind() == CK_BitCast)
   6833         ArgumentExpr = ICE->getSubExpr();
   6834   }
   6835   QualType ArgumentType = ArgumentExpr->getType();
   6836 
   6837   // Passing a `void*' pointer shouldn't trigger a warning.
   6838   if (IsPointerAttr && ArgumentType->isVoidPointerType())
   6839     return;
   6840 
   6841   if (TypeInfo.MustBeNull) {
   6842     // Type tag with matching void type requires a null pointer.
   6843     if (!ArgumentExpr->isNullPointerConstant(Context,
   6844                                              Expr::NPC_ValueDependentIsNotNull)) {
   6845       Diag(ArgumentExpr->getExprLoc(),
   6846            diag::warn_type_safety_null_pointer_required)
   6847           << ArgumentKind->getName()
   6848           << ArgumentExpr->getSourceRange()
   6849           << TypeTagExpr->getSourceRange();
   6850     }
   6851     return;
   6852   }
   6853 
   6854   QualType RequiredType = TypeInfo.Type;
   6855   if (IsPointerAttr)
   6856     RequiredType = Context.getPointerType(RequiredType);
   6857 
   6858   bool mismatch = false;
   6859   if (!TypeInfo.LayoutCompatible) {
   6860     mismatch = !Context.hasSameType(ArgumentType, RequiredType);
   6861 
   6862     // C++11 [basic.fundamental] p1:
   6863     // Plain char, signed char, and unsigned char are three distinct types.
   6864     //
   6865     // But we treat plain `char' as equivalent to `signed char' or `unsigned
   6866     // char' depending on the current char signedness mode.
   6867     if (mismatch)
   6868       if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
   6869                                            RequiredType->getPointeeType())) ||
   6870           (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
   6871         mismatch = false;
   6872   } else
   6873     if (IsPointerAttr)
   6874       mismatch = !isLayoutCompatible(Context,
   6875                                      ArgumentType->getPointeeType(),
   6876                                      RequiredType->getPointeeType());
   6877     else
   6878       mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
   6879 
   6880   if (mismatch)
   6881     Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
   6882         << ArgumentType << ArgumentKind->getName()
   6883         << TypeInfo.LayoutCompatible << RequiredType
   6884         << ArgumentExpr->getSourceRange()
   6885         << TypeTagExpr->getSourceRange();
   6886 }
   6887