Home | History | Annotate | Download | only in AST
      1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Expr class and subclasses.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/AST/APValue.h"
     15 #include "clang/AST/ASTContext.h"
     16 #include "clang/AST/Attr.h"
     17 #include "clang/AST/DeclCXX.h"
     18 #include "clang/AST/DeclObjC.h"
     19 #include "clang/AST/DeclTemplate.h"
     20 #include "clang/AST/EvaluatedExprVisitor.h"
     21 #include "clang/AST/Expr.h"
     22 #include "clang/AST/ExprCXX.h"
     23 #include "clang/AST/RecordLayout.h"
     24 #include "clang/AST/StmtVisitor.h"
     25 #include "clang/Basic/Builtins.h"
     26 #include "clang/Basic/CharInfo.h"
     27 #include "clang/Basic/SourceManager.h"
     28 #include "clang/Basic/TargetInfo.h"
     29 #include "clang/Lex/Lexer.h"
     30 #include "clang/Lex/LiteralSupport.h"
     31 #include "clang/Sema/SemaDiagnostic.h"
     32 #include "llvm/Support/ErrorHandling.h"
     33 #include "llvm/Support/raw_ostream.h"
     34 #include <algorithm>
     35 #include <cstring>
     36 using namespace clang;
     37 
     38 const CXXRecordDecl *Expr::getBestDynamicClassType() const {
     39   const Expr *E = ignoreParenBaseCasts();
     40 
     41   QualType DerivedType = E->getType();
     42   if (const PointerType *PTy = DerivedType->getAs<PointerType>())
     43     DerivedType = PTy->getPointeeType();
     44 
     45   if (DerivedType->isDependentType())
     46     return NULL;
     47 
     48   const RecordType *Ty = DerivedType->castAs<RecordType>();
     49   Decl *D = Ty->getDecl();
     50   return cast<CXXRecordDecl>(D);
     51 }
     52 
     53 const Expr *
     54 Expr::skipRValueSubobjectAdjustments(
     55                      SmallVectorImpl<SubobjectAdjustment> &Adjustments) const  {
     56   const Expr *E = this;
     57   while (true) {
     58     E = E->IgnoreParens();
     59 
     60     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
     61       if ((CE->getCastKind() == CK_DerivedToBase ||
     62            CE->getCastKind() == CK_UncheckedDerivedToBase) &&
     63           E->getType()->isRecordType()) {
     64         E = CE->getSubExpr();
     65         CXXRecordDecl *Derived
     66           = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
     67         Adjustments.push_back(SubobjectAdjustment(CE, Derived));
     68         continue;
     69       }
     70 
     71       if (CE->getCastKind() == CK_NoOp) {
     72         E = CE->getSubExpr();
     73         continue;
     74       }
     75     } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
     76       if (!ME->isArrow() && ME->getBase()->isRValue()) {
     77         assert(ME->getBase()->getType()->isRecordType());
     78         if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
     79           E = ME->getBase();
     80           Adjustments.push_back(SubobjectAdjustment(Field));
     81           continue;
     82         }
     83       }
     84     } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
     85       if (BO->isPtrMemOp()) {
     86         assert(BO->getRHS()->isRValue());
     87         E = BO->getLHS();
     88         const MemberPointerType *MPT =
     89           BO->getRHS()->getType()->getAs<MemberPointerType>();
     90         Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
     91       }
     92     }
     93 
     94     // Nothing changed.
     95     break;
     96   }
     97   return E;
     98 }
     99 
    100 const Expr *
    101 Expr::findMaterializedTemporary(const MaterializeTemporaryExpr *&MTE) const {
    102   const Expr *E = this;
    103   // Look through single-element init lists that claim to be lvalues. They're
    104   // just syntactic wrappers in this case.
    105   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) {
    106     if (ILE->getNumInits() == 1 && ILE->isGLValue())
    107       E = ILE->getInit(0);
    108   }
    109 
    110   // Look through expressions for materialized temporaries (for now).
    111   if (const MaterializeTemporaryExpr *M
    112       = dyn_cast<MaterializeTemporaryExpr>(E)) {
    113     MTE = M;
    114     E = M->GetTemporaryExpr();
    115   }
    116 
    117   if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E))
    118     E = DAE->getExpr();
    119   return E;
    120 }
    121 
    122 /// isKnownToHaveBooleanValue - Return true if this is an integer expression
    123 /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
    124 /// but also int expressions which are produced by things like comparisons in
    125 /// C.
    126 bool Expr::isKnownToHaveBooleanValue() const {
    127   const Expr *E = IgnoreParens();
    128 
    129   // If this value has _Bool type, it is obvious 0/1.
    130   if (E->getType()->isBooleanType()) return true;
    131   // If this is a non-scalar-integer type, we don't care enough to try.
    132   if (!E->getType()->isIntegralOrEnumerationType()) return false;
    133 
    134   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
    135     switch (UO->getOpcode()) {
    136     case UO_Plus:
    137       return UO->getSubExpr()->isKnownToHaveBooleanValue();
    138     default:
    139       return false;
    140     }
    141   }
    142 
    143   // Only look through implicit casts.  If the user writes
    144   // '(int) (a && b)' treat it as an arbitrary int.
    145   if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
    146     return CE->getSubExpr()->isKnownToHaveBooleanValue();
    147 
    148   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
    149     switch (BO->getOpcode()) {
    150     default: return false;
    151     case BO_LT:   // Relational operators.
    152     case BO_GT:
    153     case BO_LE:
    154     case BO_GE:
    155     case BO_EQ:   // Equality operators.
    156     case BO_NE:
    157     case BO_LAnd: // AND operator.
    158     case BO_LOr:  // Logical OR operator.
    159       return true;
    160 
    161     case BO_And:  // Bitwise AND operator.
    162     case BO_Xor:  // Bitwise XOR operator.
    163     case BO_Or:   // Bitwise OR operator.
    164       // Handle things like (x==2)|(y==12).
    165       return BO->getLHS()->isKnownToHaveBooleanValue() &&
    166              BO->getRHS()->isKnownToHaveBooleanValue();
    167 
    168     case BO_Comma:
    169     case BO_Assign:
    170       return BO->getRHS()->isKnownToHaveBooleanValue();
    171     }
    172   }
    173 
    174   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
    175     return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
    176            CO->getFalseExpr()->isKnownToHaveBooleanValue();
    177 
    178   return false;
    179 }
    180 
    181 // Amusing macro metaprogramming hack: check whether a class provides
    182 // a more specific implementation of getExprLoc().
    183 //
    184 // See also Stmt.cpp:{getLocStart(),getLocEnd()}.
    185 namespace {
    186   /// This implementation is used when a class provides a custom
    187   /// implementation of getExprLoc.
    188   template <class E, class T>
    189   SourceLocation getExprLocImpl(const Expr *expr,
    190                                 SourceLocation (T::*v)() const) {
    191     return static_cast<const E*>(expr)->getExprLoc();
    192   }
    193 
    194   /// This implementation is used when a class doesn't provide
    195   /// a custom implementation of getExprLoc.  Overload resolution
    196   /// should pick it over the implementation above because it's
    197   /// more specialized according to function template partial ordering.
    198   template <class E>
    199   SourceLocation getExprLocImpl(const Expr *expr,
    200                                 SourceLocation (Expr::*v)() const) {
    201     return static_cast<const E*>(expr)->getLocStart();
    202   }
    203 }
    204 
    205 SourceLocation Expr::getExprLoc() const {
    206   switch (getStmtClass()) {
    207   case Stmt::NoStmtClass: llvm_unreachable("statement without class");
    208 #define ABSTRACT_STMT(type)
    209 #define STMT(type, base) \
    210   case Stmt::type##Class: llvm_unreachable(#type " is not an Expr"); break;
    211 #define EXPR(type, base) \
    212   case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
    213 #include "clang/AST/StmtNodes.inc"
    214   }
    215   llvm_unreachable("unknown statement kind");
    216 }
    217 
    218 //===----------------------------------------------------------------------===//
    219 // Primary Expressions.
    220 //===----------------------------------------------------------------------===//
    221 
    222 /// \brief Compute the type-, value-, and instantiation-dependence of a
    223 /// declaration reference
    224 /// based on the declaration being referenced.
    225 static void computeDeclRefDependence(ASTContext &Ctx, NamedDecl *D, QualType T,
    226                                      bool &TypeDependent,
    227                                      bool &ValueDependent,
    228                                      bool &InstantiationDependent) {
    229   TypeDependent = false;
    230   ValueDependent = false;
    231   InstantiationDependent = false;
    232 
    233   // (TD) C++ [temp.dep.expr]p3:
    234   //   An id-expression is type-dependent if it contains:
    235   //
    236   // and
    237   //
    238   // (VD) C++ [temp.dep.constexpr]p2:
    239   //  An identifier is value-dependent if it is:
    240 
    241   //  (TD)  - an identifier that was declared with dependent type
    242   //  (VD)  - a name declared with a dependent type,
    243   if (T->isDependentType()) {
    244     TypeDependent = true;
    245     ValueDependent = true;
    246     InstantiationDependent = true;
    247     return;
    248   } else if (T->isInstantiationDependentType()) {
    249     InstantiationDependent = true;
    250   }
    251 
    252   //  (TD)  - a conversion-function-id that specifies a dependent type
    253   if (D->getDeclName().getNameKind()
    254                                 == DeclarationName::CXXConversionFunctionName) {
    255     QualType T = D->getDeclName().getCXXNameType();
    256     if (T->isDependentType()) {
    257       TypeDependent = true;
    258       ValueDependent = true;
    259       InstantiationDependent = true;
    260       return;
    261     }
    262 
    263     if (T->isInstantiationDependentType())
    264       InstantiationDependent = true;
    265   }
    266 
    267   //  (VD)  - the name of a non-type template parameter,
    268   if (isa<NonTypeTemplateParmDecl>(D)) {
    269     ValueDependent = true;
    270     InstantiationDependent = true;
    271     return;
    272   }
    273 
    274   //  (VD) - a constant with integral or enumeration type and is
    275   //         initialized with an expression that is value-dependent.
    276   //  (VD) - a constant with literal type and is initialized with an
    277   //         expression that is value-dependent [C++11].
    278   //  (VD) - FIXME: Missing from the standard:
    279   //       -  an entity with reference type and is initialized with an
    280   //          expression that is value-dependent [C++11]
    281   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
    282     if ((Ctx.getLangOpts().CPlusPlus11 ?
    283            Var->getType()->isLiteralType() :
    284            Var->getType()->isIntegralOrEnumerationType()) &&
    285         (Var->getType().isConstQualified() ||
    286          Var->getType()->isReferenceType())) {
    287       if (const Expr *Init = Var->getAnyInitializer())
    288         if (Init->isValueDependent()) {
    289           ValueDependent = true;
    290           InstantiationDependent = true;
    291         }
    292     }
    293 
    294     // (VD) - FIXME: Missing from the standard:
    295     //      -  a member function or a static data member of the current
    296     //         instantiation
    297     if (Var->isStaticDataMember() &&
    298         Var->getDeclContext()->isDependentContext()) {
    299       ValueDependent = true;
    300       InstantiationDependent = true;
    301     }
    302 
    303     return;
    304   }
    305 
    306   // (VD) - FIXME: Missing from the standard:
    307   //      -  a member function or a static data member of the current
    308   //         instantiation
    309   if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
    310     ValueDependent = true;
    311     InstantiationDependent = true;
    312   }
    313 }
    314 
    315 void DeclRefExpr::computeDependence(ASTContext &Ctx) {
    316   bool TypeDependent = false;
    317   bool ValueDependent = false;
    318   bool InstantiationDependent = false;
    319   computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
    320                            ValueDependent, InstantiationDependent);
    321 
    322   // (TD) C++ [temp.dep.expr]p3:
    323   //   An id-expression is type-dependent if it contains:
    324   //
    325   // and
    326   //
    327   // (VD) C++ [temp.dep.constexpr]p2:
    328   //  An identifier is value-dependent if it is:
    329   if (!TypeDependent && !ValueDependent &&
    330       hasExplicitTemplateArgs() &&
    331       TemplateSpecializationType::anyDependentTemplateArguments(
    332                                                             getTemplateArgs(),
    333                                                        getNumTemplateArgs(),
    334                                                       InstantiationDependent)) {
    335     TypeDependent = true;
    336     ValueDependent = true;
    337     InstantiationDependent = true;
    338   }
    339 
    340   ExprBits.TypeDependent = TypeDependent;
    341   ExprBits.ValueDependent = ValueDependent;
    342   ExprBits.InstantiationDependent = InstantiationDependent;
    343 
    344   // Is the declaration a parameter pack?
    345   if (getDecl()->isParameterPack())
    346     ExprBits.ContainsUnexpandedParameterPack = true;
    347 }
    348 
    349 DeclRefExpr::DeclRefExpr(ASTContext &Ctx,
    350                          NestedNameSpecifierLoc QualifierLoc,
    351                          SourceLocation TemplateKWLoc,
    352                          ValueDecl *D, bool RefersToEnclosingLocal,
    353                          const DeclarationNameInfo &NameInfo,
    354                          NamedDecl *FoundD,
    355                          const TemplateArgumentListInfo *TemplateArgs,
    356                          QualType T, ExprValueKind VK)
    357   : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
    358     D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
    359   DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
    360   if (QualifierLoc)
    361     getInternalQualifierLoc() = QualifierLoc;
    362   DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
    363   if (FoundD)
    364     getInternalFoundDecl() = FoundD;
    365   DeclRefExprBits.HasTemplateKWAndArgsInfo
    366     = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
    367   DeclRefExprBits.RefersToEnclosingLocal = RefersToEnclosingLocal;
    368   if (TemplateArgs) {
    369     bool Dependent = false;
    370     bool InstantiationDependent = false;
    371     bool ContainsUnexpandedParameterPack = false;
    372     getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs,
    373                                                Dependent,
    374                                                InstantiationDependent,
    375                                                ContainsUnexpandedParameterPack);
    376     if (InstantiationDependent)
    377       setInstantiationDependent(true);
    378   } else if (TemplateKWLoc.isValid()) {
    379     getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
    380   }
    381   DeclRefExprBits.HadMultipleCandidates = 0;
    382 
    383   computeDependence(Ctx);
    384 }
    385 
    386 DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
    387                                  NestedNameSpecifierLoc QualifierLoc,
    388                                  SourceLocation TemplateKWLoc,
    389                                  ValueDecl *D,
    390                                  bool RefersToEnclosingLocal,
    391                                  SourceLocation NameLoc,
    392                                  QualType T,
    393                                  ExprValueKind VK,
    394                                  NamedDecl *FoundD,
    395                                  const TemplateArgumentListInfo *TemplateArgs) {
    396   return Create(Context, QualifierLoc, TemplateKWLoc, D,
    397                 RefersToEnclosingLocal,
    398                 DeclarationNameInfo(D->getDeclName(), NameLoc),
    399                 T, VK, FoundD, TemplateArgs);
    400 }
    401 
    402 DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
    403                                  NestedNameSpecifierLoc QualifierLoc,
    404                                  SourceLocation TemplateKWLoc,
    405                                  ValueDecl *D,
    406                                  bool RefersToEnclosingLocal,
    407                                  const DeclarationNameInfo &NameInfo,
    408                                  QualType T,
    409                                  ExprValueKind VK,
    410                                  NamedDecl *FoundD,
    411                                  const TemplateArgumentListInfo *TemplateArgs) {
    412   // Filter out cases where the found Decl is the same as the value refenenced.
    413   if (D == FoundD)
    414     FoundD = 0;
    415 
    416   std::size_t Size = sizeof(DeclRefExpr);
    417   if (QualifierLoc != 0)
    418     Size += sizeof(NestedNameSpecifierLoc);
    419   if (FoundD)
    420     Size += sizeof(NamedDecl *);
    421   if (TemplateArgs)
    422     Size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size());
    423   else if (TemplateKWLoc.isValid())
    424     Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
    425 
    426   void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
    427   return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
    428                                RefersToEnclosingLocal,
    429                                NameInfo, FoundD, TemplateArgs, T, VK);
    430 }
    431 
    432 DeclRefExpr *DeclRefExpr::CreateEmpty(ASTContext &Context,
    433                                       bool HasQualifier,
    434                                       bool HasFoundDecl,
    435                                       bool HasTemplateKWAndArgsInfo,
    436                                       unsigned NumTemplateArgs) {
    437   std::size_t Size = sizeof(DeclRefExpr);
    438   if (HasQualifier)
    439     Size += sizeof(NestedNameSpecifierLoc);
    440   if (HasFoundDecl)
    441     Size += sizeof(NamedDecl *);
    442   if (HasTemplateKWAndArgsInfo)
    443     Size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
    444 
    445   void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
    446   return new (Mem) DeclRefExpr(EmptyShell());
    447 }
    448 
    449 SourceLocation DeclRefExpr::getLocStart() const {
    450   if (hasQualifier())
    451     return getQualifierLoc().getBeginLoc();
    452   return getNameInfo().getLocStart();
    453 }
    454 SourceLocation DeclRefExpr::getLocEnd() const {
    455   if (hasExplicitTemplateArgs())
    456     return getRAngleLoc();
    457   return getNameInfo().getLocEnd();
    458 }
    459 
    460 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
    461 // expr" policy instead.
    462 std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
    463   ASTContext &Context = CurrentDecl->getASTContext();
    464 
    465   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
    466     if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
    467       return FD->getNameAsString();
    468 
    469     SmallString<256> Name;
    470     llvm::raw_svector_ostream Out(Name);
    471 
    472     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
    473       if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
    474         Out << "virtual ";
    475       if (MD->isStatic())
    476         Out << "static ";
    477     }
    478 
    479     PrintingPolicy Policy(Context.getLangOpts());
    480     std::string Proto;
    481     llvm::raw_string_ostream POut(Proto);
    482     FD->printQualifiedName(POut, Policy);
    483 
    484     const FunctionDecl *Decl = FD;
    485     if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
    486       Decl = Pattern;
    487     const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
    488     const FunctionProtoType *FT = 0;
    489     if (FD->hasWrittenPrototype())
    490       FT = dyn_cast<FunctionProtoType>(AFT);
    491 
    492     POut << "(";
    493     if (FT) {
    494       for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
    495         if (i) POut << ", ";
    496         POut << Decl->getParamDecl(i)->getType().stream(Policy);
    497       }
    498 
    499       if (FT->isVariadic()) {
    500         if (FD->getNumParams()) POut << ", ";
    501         POut << "...";
    502       }
    503     }
    504     POut << ")";
    505 
    506     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
    507       const FunctionType *FT = MD->getType()->castAs<FunctionType>();
    508       if (FT->isConst())
    509         POut << " const";
    510       if (FT->isVolatile())
    511         POut << " volatile";
    512       RefQualifierKind Ref = MD->getRefQualifier();
    513       if (Ref == RQ_LValue)
    514         POut << " &";
    515       else if (Ref == RQ_RValue)
    516         POut << " &&";
    517     }
    518 
    519     typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
    520     SpecsTy Specs;
    521     const DeclContext *Ctx = FD->getDeclContext();
    522     while (Ctx && isa<NamedDecl>(Ctx)) {
    523       const ClassTemplateSpecializationDecl *Spec
    524                                = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
    525       if (Spec && !Spec->isExplicitSpecialization())
    526         Specs.push_back(Spec);
    527       Ctx = Ctx->getParent();
    528     }
    529 
    530     std::string TemplateParams;
    531     llvm::raw_string_ostream TOut(TemplateParams);
    532     for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
    533          I != E; ++I) {
    534       const TemplateParameterList *Params
    535                   = (*I)->getSpecializedTemplate()->getTemplateParameters();
    536       const TemplateArgumentList &Args = (*I)->getTemplateArgs();
    537       assert(Params->size() == Args.size());
    538       for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
    539         StringRef Param = Params->getParam(i)->getName();
    540         if (Param.empty()) continue;
    541         TOut << Param << " = ";
    542         Args.get(i).print(Policy, TOut);
    543         TOut << ", ";
    544       }
    545     }
    546 
    547     FunctionTemplateSpecializationInfo *FSI
    548                                           = FD->getTemplateSpecializationInfo();
    549     if (FSI && !FSI->isExplicitSpecialization()) {
    550       const TemplateParameterList* Params
    551                                   = FSI->getTemplate()->getTemplateParameters();
    552       const TemplateArgumentList* Args = FSI->TemplateArguments;
    553       assert(Params->size() == Args->size());
    554       for (unsigned i = 0, e = Params->size(); i != e; ++i) {
    555         StringRef Param = Params->getParam(i)->getName();
    556         if (Param.empty()) continue;
    557         TOut << Param << " = ";
    558         Args->get(i).print(Policy, TOut);
    559         TOut << ", ";
    560       }
    561     }
    562 
    563     TOut.flush();
    564     if (!TemplateParams.empty()) {
    565       // remove the trailing comma and space
    566       TemplateParams.resize(TemplateParams.size() - 2);
    567       POut << " [" << TemplateParams << "]";
    568     }
    569 
    570     POut.flush();
    571 
    572     if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
    573       AFT->getResultType().getAsStringInternal(Proto, Policy);
    574 
    575     Out << Proto;
    576 
    577     Out.flush();
    578     return Name.str().str();
    579   }
    580   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
    581     SmallString<256> Name;
    582     llvm::raw_svector_ostream Out(Name);
    583     Out << (MD->isInstanceMethod() ? '-' : '+');
    584     Out << '[';
    585 
    586     // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
    587     // a null check to avoid a crash.
    588     if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
    589       Out << *ID;
    590 
    591     if (const ObjCCategoryImplDecl *CID =
    592         dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
    593       Out << '(' << *CID << ')';
    594 
    595     Out <<  ' ';
    596     Out << MD->getSelector().getAsString();
    597     Out <<  ']';
    598 
    599     Out.flush();
    600     return Name.str().str();
    601   }
    602   if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
    603     // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
    604     return "top level";
    605   }
    606   return "";
    607 }
    608 
    609 void APNumericStorage::setIntValue(ASTContext &C, const llvm::APInt &Val) {
    610   if (hasAllocation())
    611     C.Deallocate(pVal);
    612 
    613   BitWidth = Val.getBitWidth();
    614   unsigned NumWords = Val.getNumWords();
    615   const uint64_t* Words = Val.getRawData();
    616   if (NumWords > 1) {
    617     pVal = new (C) uint64_t[NumWords];
    618     std::copy(Words, Words + NumWords, pVal);
    619   } else if (NumWords == 1)
    620     VAL = Words[0];
    621   else
    622     VAL = 0;
    623 }
    624 
    625 IntegerLiteral::IntegerLiteral(ASTContext &C, const llvm::APInt &V,
    626                                QualType type, SourceLocation l)
    627   : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
    628          false, false),
    629     Loc(l) {
    630   assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
    631   assert(V.getBitWidth() == C.getIntWidth(type) &&
    632          "Integer type is not the correct size for constant.");
    633   setValue(C, V);
    634 }
    635 
    636 IntegerLiteral *
    637 IntegerLiteral::Create(ASTContext &C, const llvm::APInt &V,
    638                        QualType type, SourceLocation l) {
    639   return new (C) IntegerLiteral(C, V, type, l);
    640 }
    641 
    642 IntegerLiteral *
    643 IntegerLiteral::Create(ASTContext &C, EmptyShell Empty) {
    644   return new (C) IntegerLiteral(Empty);
    645 }
    646 
    647 FloatingLiteral::FloatingLiteral(ASTContext &C, const llvm::APFloat &V,
    648                                  bool isexact, QualType Type, SourceLocation L)
    649   : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
    650          false, false), Loc(L) {
    651   setSemantics(V.getSemantics());
    652   FloatingLiteralBits.IsExact = isexact;
    653   setValue(C, V);
    654 }
    655 
    656 FloatingLiteral::FloatingLiteral(ASTContext &C, EmptyShell Empty)
    657   : Expr(FloatingLiteralClass, Empty) {
    658   setRawSemantics(IEEEhalf);
    659   FloatingLiteralBits.IsExact = false;
    660 }
    661 
    662 FloatingLiteral *
    663 FloatingLiteral::Create(ASTContext &C, const llvm::APFloat &V,
    664                         bool isexact, QualType Type, SourceLocation L) {
    665   return new (C) FloatingLiteral(C, V, isexact, Type, L);
    666 }
    667 
    668 FloatingLiteral *
    669 FloatingLiteral::Create(ASTContext &C, EmptyShell Empty) {
    670   return new (C) FloatingLiteral(C, Empty);
    671 }
    672 
    673 const llvm::fltSemantics &FloatingLiteral::getSemantics() const {
    674   switch(FloatingLiteralBits.Semantics) {
    675   case IEEEhalf:
    676     return llvm::APFloat::IEEEhalf;
    677   case IEEEsingle:
    678     return llvm::APFloat::IEEEsingle;
    679   case IEEEdouble:
    680     return llvm::APFloat::IEEEdouble;
    681   case x87DoubleExtended:
    682     return llvm::APFloat::x87DoubleExtended;
    683   case IEEEquad:
    684     return llvm::APFloat::IEEEquad;
    685   case PPCDoubleDouble:
    686     return llvm::APFloat::PPCDoubleDouble;
    687   }
    688   llvm_unreachable("Unrecognised floating semantics");
    689 }
    690 
    691 void FloatingLiteral::setSemantics(const llvm::fltSemantics &Sem) {
    692   if (&Sem == &llvm::APFloat::IEEEhalf)
    693     FloatingLiteralBits.Semantics = IEEEhalf;
    694   else if (&Sem == &llvm::APFloat::IEEEsingle)
    695     FloatingLiteralBits.Semantics = IEEEsingle;
    696   else if (&Sem == &llvm::APFloat::IEEEdouble)
    697     FloatingLiteralBits.Semantics = IEEEdouble;
    698   else if (&Sem == &llvm::APFloat::x87DoubleExtended)
    699     FloatingLiteralBits.Semantics = x87DoubleExtended;
    700   else if (&Sem == &llvm::APFloat::IEEEquad)
    701     FloatingLiteralBits.Semantics = IEEEquad;
    702   else if (&Sem == &llvm::APFloat::PPCDoubleDouble)
    703     FloatingLiteralBits.Semantics = PPCDoubleDouble;
    704   else
    705     llvm_unreachable("Unknown floating semantics");
    706 }
    707 
    708 /// getValueAsApproximateDouble - This returns the value as an inaccurate
    709 /// double.  Note that this may cause loss of precision, but is useful for
    710 /// debugging dumps, etc.
    711 double FloatingLiteral::getValueAsApproximateDouble() const {
    712   llvm::APFloat V = getValue();
    713   bool ignored;
    714   V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
    715             &ignored);
    716   return V.convertToDouble();
    717 }
    718 
    719 int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) {
    720   int CharByteWidth = 0;
    721   switch(k) {
    722     case Ascii:
    723     case UTF8:
    724       CharByteWidth = target.getCharWidth();
    725       break;
    726     case Wide:
    727       CharByteWidth = target.getWCharWidth();
    728       break;
    729     case UTF16:
    730       CharByteWidth = target.getChar16Width();
    731       break;
    732     case UTF32:
    733       CharByteWidth = target.getChar32Width();
    734       break;
    735   }
    736   assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
    737   CharByteWidth /= 8;
    738   assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
    739          && "character byte widths supported are 1, 2, and 4 only");
    740   return CharByteWidth;
    741 }
    742 
    743 StringLiteral *StringLiteral::Create(ASTContext &C, StringRef Str,
    744                                      StringKind Kind, bool Pascal, QualType Ty,
    745                                      const SourceLocation *Loc,
    746                                      unsigned NumStrs) {
    747   // Allocate enough space for the StringLiteral plus an array of locations for
    748   // any concatenated string tokens.
    749   void *Mem = C.Allocate(sizeof(StringLiteral)+
    750                          sizeof(SourceLocation)*(NumStrs-1),
    751                          llvm::alignOf<StringLiteral>());
    752   StringLiteral *SL = new (Mem) StringLiteral(Ty);
    753 
    754   // OPTIMIZE: could allocate this appended to the StringLiteral.
    755   SL->setString(C,Str,Kind,Pascal);
    756 
    757   SL->TokLocs[0] = Loc[0];
    758   SL->NumConcatenated = NumStrs;
    759 
    760   if (NumStrs != 1)
    761     memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
    762   return SL;
    763 }
    764 
    765 StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
    766   void *Mem = C.Allocate(sizeof(StringLiteral)+
    767                          sizeof(SourceLocation)*(NumStrs-1),
    768                          llvm::alignOf<StringLiteral>());
    769   StringLiteral *SL = new (Mem) StringLiteral(QualType());
    770   SL->CharByteWidth = 0;
    771   SL->Length = 0;
    772   SL->NumConcatenated = NumStrs;
    773   return SL;
    774 }
    775 
    776 void StringLiteral::outputString(raw_ostream &OS) const {
    777   switch (getKind()) {
    778   case Ascii: break; // no prefix.
    779   case Wide:  OS << 'L'; break;
    780   case UTF8:  OS << "u8"; break;
    781   case UTF16: OS << 'u'; break;
    782   case UTF32: OS << 'U'; break;
    783   }
    784   OS << '"';
    785   static const char Hex[] = "0123456789ABCDEF";
    786 
    787   unsigned LastSlashX = getLength();
    788   for (unsigned I = 0, N = getLength(); I != N; ++I) {
    789     switch (uint32_t Char = getCodeUnit(I)) {
    790     default:
    791       // FIXME: Convert UTF-8 back to codepoints before rendering.
    792 
    793       // Convert UTF-16 surrogate pairs back to codepoints before rendering.
    794       // Leave invalid surrogates alone; we'll use \x for those.
    795       if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
    796           Char <= 0xdbff) {
    797         uint32_t Trail = getCodeUnit(I + 1);
    798         if (Trail >= 0xdc00 && Trail <= 0xdfff) {
    799           Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
    800           ++I;
    801         }
    802       }
    803 
    804       if (Char > 0xff) {
    805         // If this is a wide string, output characters over 0xff using \x
    806         // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
    807         // codepoint: use \x escapes for invalid codepoints.
    808         if (getKind() == Wide ||
    809             (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
    810           // FIXME: Is this the best way to print wchar_t?
    811           OS << "\\x";
    812           int Shift = 28;
    813           while ((Char >> Shift) == 0)
    814             Shift -= 4;
    815           for (/**/; Shift >= 0; Shift -= 4)
    816             OS << Hex[(Char >> Shift) & 15];
    817           LastSlashX = I;
    818           break;
    819         }
    820 
    821         if (Char > 0xffff)
    822           OS << "\\U00"
    823              << Hex[(Char >> 20) & 15]
    824              << Hex[(Char >> 16) & 15];
    825         else
    826           OS << "\\u";
    827         OS << Hex[(Char >> 12) & 15]
    828            << Hex[(Char >>  8) & 15]
    829            << Hex[(Char >>  4) & 15]
    830            << Hex[(Char >>  0) & 15];
    831         break;
    832       }
    833 
    834       // If we used \x... for the previous character, and this character is a
    835       // hexadecimal digit, prevent it being slurped as part of the \x.
    836       if (LastSlashX + 1 == I) {
    837         switch (Char) {
    838           case '0': case '1': case '2': case '3': case '4':
    839           case '5': case '6': case '7': case '8': case '9':
    840           case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
    841           case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
    842             OS << "\"\"";
    843         }
    844       }
    845 
    846       assert(Char <= 0xff &&
    847              "Characters above 0xff should already have been handled.");
    848 
    849       if (isPrintable(Char))
    850         OS << (char)Char;
    851       else  // Output anything hard as an octal escape.
    852         OS << '\\'
    853            << (char)('0' + ((Char >> 6) & 7))
    854            << (char)('0' + ((Char >> 3) & 7))
    855            << (char)('0' + ((Char >> 0) & 7));
    856       break;
    857     // Handle some common non-printable cases to make dumps prettier.
    858     case '\\': OS << "\\\\"; break;
    859     case '"': OS << "\\\""; break;
    860     case '\n': OS << "\\n"; break;
    861     case '\t': OS << "\\t"; break;
    862     case '\a': OS << "\\a"; break;
    863     case '\b': OS << "\\b"; break;
    864     }
    865   }
    866   OS << '"';
    867 }
    868 
    869 void StringLiteral::setString(ASTContext &C, StringRef Str,
    870                               StringKind Kind, bool IsPascal) {
    871   //FIXME: we assume that the string data comes from a target that uses the same
    872   // code unit size and endianess for the type of string.
    873   this->Kind = Kind;
    874   this->IsPascal = IsPascal;
    875 
    876   CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind);
    877   assert((Str.size()%CharByteWidth == 0)
    878          && "size of data must be multiple of CharByteWidth");
    879   Length = Str.size()/CharByteWidth;
    880 
    881   switch(CharByteWidth) {
    882     case 1: {
    883       char *AStrData = new (C) char[Length];
    884       std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
    885       StrData.asChar = AStrData;
    886       break;
    887     }
    888     case 2: {
    889       uint16_t *AStrData = new (C) uint16_t[Length];
    890       std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
    891       StrData.asUInt16 = AStrData;
    892       break;
    893     }
    894     case 4: {
    895       uint32_t *AStrData = new (C) uint32_t[Length];
    896       std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
    897       StrData.asUInt32 = AStrData;
    898       break;
    899     }
    900     default:
    901       assert(false && "unsupported CharByteWidth");
    902   }
    903 }
    904 
    905 /// getLocationOfByte - Return a source location that points to the specified
    906 /// byte of this string literal.
    907 ///
    908 /// Strings are amazingly complex.  They can be formed from multiple tokens and
    909 /// can have escape sequences in them in addition to the usual trigraph and
    910 /// escaped newline business.  This routine handles this complexity.
    911 ///
    912 SourceLocation StringLiteral::
    913 getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
    914                   const LangOptions &Features, const TargetInfo &Target) const {
    915   assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) &&
    916          "Only narrow string literals are currently supported");
    917 
    918   // Loop over all of the tokens in this string until we find the one that
    919   // contains the byte we're looking for.
    920   unsigned TokNo = 0;
    921   while (1) {
    922     assert(TokNo < getNumConcatenated() && "Invalid byte number!");
    923     SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
    924 
    925     // Get the spelling of the string so that we can get the data that makes up
    926     // the string literal, not the identifier for the macro it is potentially
    927     // expanded through.
    928     SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
    929 
    930     // Re-lex the token to get its length and original spelling.
    931     std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
    932     bool Invalid = false;
    933     StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
    934     if (Invalid)
    935       return StrTokSpellingLoc;
    936 
    937     const char *StrData = Buffer.data()+LocInfo.second;
    938 
    939     // Create a lexer starting at the beginning of this token.
    940     Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
    941                    Buffer.begin(), StrData, Buffer.end());
    942     Token TheTok;
    943     TheLexer.LexFromRawLexer(TheTok);
    944 
    945     // Use the StringLiteralParser to compute the length of the string in bytes.
    946     StringLiteralParser SLP(&TheTok, 1, SM, Features, Target);
    947     unsigned TokNumBytes = SLP.GetStringLength();
    948 
    949     // If the byte is in this token, return the location of the byte.
    950     if (ByteNo < TokNumBytes ||
    951         (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
    952       unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
    953 
    954       // Now that we know the offset of the token in the spelling, use the
    955       // preprocessor to get the offset in the original source.
    956       return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
    957     }
    958 
    959     // Move to the next string token.
    960     ++TokNo;
    961     ByteNo -= TokNumBytes;
    962   }
    963 }
    964 
    965 
    966 
    967 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
    968 /// corresponds to, e.g. "sizeof" or "[pre]++".
    969 StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
    970   switch (Op) {
    971   case UO_PostInc: return "++";
    972   case UO_PostDec: return "--";
    973   case UO_PreInc:  return "++";
    974   case UO_PreDec:  return "--";
    975   case UO_AddrOf:  return "&";
    976   case UO_Deref:   return "*";
    977   case UO_Plus:    return "+";
    978   case UO_Minus:   return "-";
    979   case UO_Not:     return "~";
    980   case UO_LNot:    return "!";
    981   case UO_Real:    return "__real";
    982   case UO_Imag:    return "__imag";
    983   case UO_Extension: return "__extension__";
    984   }
    985   llvm_unreachable("Unknown unary operator");
    986 }
    987 
    988 UnaryOperatorKind
    989 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
    990   switch (OO) {
    991   default: llvm_unreachable("No unary operator for overloaded function");
    992   case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
    993   case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
    994   case OO_Amp:        return UO_AddrOf;
    995   case OO_Star:       return UO_Deref;
    996   case OO_Plus:       return UO_Plus;
    997   case OO_Minus:      return UO_Minus;
    998   case OO_Tilde:      return UO_Not;
    999   case OO_Exclaim:    return UO_LNot;
   1000   }
   1001 }
   1002 
   1003 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
   1004   switch (Opc) {
   1005   case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
   1006   case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
   1007   case UO_AddrOf: return OO_Amp;
   1008   case UO_Deref: return OO_Star;
   1009   case UO_Plus: return OO_Plus;
   1010   case UO_Minus: return OO_Minus;
   1011   case UO_Not: return OO_Tilde;
   1012   case UO_LNot: return OO_Exclaim;
   1013   default: return OO_None;
   1014   }
   1015 }
   1016 
   1017 
   1018 //===----------------------------------------------------------------------===//
   1019 // Postfix Operators.
   1020 //===----------------------------------------------------------------------===//
   1021 
   1022 CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
   1023                    ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
   1024                    SourceLocation rparenloc)
   1025   : Expr(SC, t, VK, OK_Ordinary,
   1026          fn->isTypeDependent(),
   1027          fn->isValueDependent(),
   1028          fn->isInstantiationDependent(),
   1029          fn->containsUnexpandedParameterPack()),
   1030     NumArgs(args.size()) {
   1031 
   1032   SubExprs = new (C) Stmt*[args.size()+PREARGS_START+NumPreArgs];
   1033   SubExprs[FN] = fn;
   1034   for (unsigned i = 0; i != args.size(); ++i) {
   1035     if (args[i]->isTypeDependent())
   1036       ExprBits.TypeDependent = true;
   1037     if (args[i]->isValueDependent())
   1038       ExprBits.ValueDependent = true;
   1039     if (args[i]->isInstantiationDependent())
   1040       ExprBits.InstantiationDependent = true;
   1041     if (args[i]->containsUnexpandedParameterPack())
   1042       ExprBits.ContainsUnexpandedParameterPack = true;
   1043 
   1044     SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
   1045   }
   1046 
   1047   CallExprBits.NumPreArgs = NumPreArgs;
   1048   RParenLoc = rparenloc;
   1049 }
   1050 
   1051 CallExpr::CallExpr(ASTContext& C, Expr *fn, ArrayRef<Expr*> args,
   1052                    QualType t, ExprValueKind VK, SourceLocation rparenloc)
   1053   : Expr(CallExprClass, t, VK, OK_Ordinary,
   1054          fn->isTypeDependent(),
   1055          fn->isValueDependent(),
   1056          fn->isInstantiationDependent(),
   1057          fn->containsUnexpandedParameterPack()),
   1058     NumArgs(args.size()) {
   1059 
   1060   SubExprs = new (C) Stmt*[args.size()+PREARGS_START];
   1061   SubExprs[FN] = fn;
   1062   for (unsigned i = 0; i != args.size(); ++i) {
   1063     if (args[i]->isTypeDependent())
   1064       ExprBits.TypeDependent = true;
   1065     if (args[i]->isValueDependent())
   1066       ExprBits.ValueDependent = true;
   1067     if (args[i]->isInstantiationDependent())
   1068       ExprBits.InstantiationDependent = true;
   1069     if (args[i]->containsUnexpandedParameterPack())
   1070       ExprBits.ContainsUnexpandedParameterPack = true;
   1071 
   1072     SubExprs[i+PREARGS_START] = args[i];
   1073   }
   1074 
   1075   CallExprBits.NumPreArgs = 0;
   1076   RParenLoc = rparenloc;
   1077 }
   1078 
   1079 CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
   1080   : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
   1081   // FIXME: Why do we allocate this?
   1082   SubExprs = new (C) Stmt*[PREARGS_START];
   1083   CallExprBits.NumPreArgs = 0;
   1084 }
   1085 
   1086 CallExpr::CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs,
   1087                    EmptyShell Empty)
   1088   : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
   1089   // FIXME: Why do we allocate this?
   1090   SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
   1091   CallExprBits.NumPreArgs = NumPreArgs;
   1092 }
   1093 
   1094 Decl *CallExpr::getCalleeDecl() {
   1095   Expr *CEE = getCallee()->IgnoreParenImpCasts();
   1096 
   1097   while (SubstNonTypeTemplateParmExpr *NTTP
   1098                                 = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
   1099     CEE = NTTP->getReplacement()->IgnoreParenCasts();
   1100   }
   1101 
   1102   // If we're calling a dereference, look at the pointer instead.
   1103   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
   1104     if (BO->isPtrMemOp())
   1105       CEE = BO->getRHS()->IgnoreParenCasts();
   1106   } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
   1107     if (UO->getOpcode() == UO_Deref)
   1108       CEE = UO->getSubExpr()->IgnoreParenCasts();
   1109   }
   1110   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
   1111     return DRE->getDecl();
   1112   if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
   1113     return ME->getMemberDecl();
   1114 
   1115   return 0;
   1116 }
   1117 
   1118 FunctionDecl *CallExpr::getDirectCallee() {
   1119   return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
   1120 }
   1121 
   1122 /// setNumArgs - This changes the number of arguments present in this call.
   1123 /// Any orphaned expressions are deleted by this, and any new operands are set
   1124 /// to null.
   1125 void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
   1126   // No change, just return.
   1127   if (NumArgs == getNumArgs()) return;
   1128 
   1129   // If shrinking # arguments, just delete the extras and forgot them.
   1130   if (NumArgs < getNumArgs()) {
   1131     this->NumArgs = NumArgs;
   1132     return;
   1133   }
   1134 
   1135   // Otherwise, we are growing the # arguments.  New an bigger argument array.
   1136   unsigned NumPreArgs = getNumPreArgs();
   1137   Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
   1138   // Copy over args.
   1139   for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
   1140     NewSubExprs[i] = SubExprs[i];
   1141   // Null out new args.
   1142   for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
   1143        i != NumArgs+PREARGS_START+NumPreArgs; ++i)
   1144     NewSubExprs[i] = 0;
   1145 
   1146   if (SubExprs) C.Deallocate(SubExprs);
   1147   SubExprs = NewSubExprs;
   1148   this->NumArgs = NumArgs;
   1149 }
   1150 
   1151 /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
   1152 /// not, return 0.
   1153 unsigned CallExpr::isBuiltinCall() const {
   1154   // All simple function calls (e.g. func()) are implicitly cast to pointer to
   1155   // function. As a result, we try and obtain the DeclRefExpr from the
   1156   // ImplicitCastExpr.
   1157   const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
   1158   if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
   1159     return 0;
   1160 
   1161   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
   1162   if (!DRE)
   1163     return 0;
   1164 
   1165   const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
   1166   if (!FDecl)
   1167     return 0;
   1168 
   1169   if (!FDecl->getIdentifier())
   1170     return 0;
   1171 
   1172   return FDecl->getBuiltinID();
   1173 }
   1174 
   1175 bool CallExpr::isUnevaluatedBuiltinCall(ASTContext &Ctx) const {
   1176   if (unsigned BI = isBuiltinCall())
   1177     return Ctx.BuiltinInfo.isUnevaluated(BI);
   1178   return false;
   1179 }
   1180 
   1181 QualType CallExpr::getCallReturnType() const {
   1182   QualType CalleeType = getCallee()->getType();
   1183   if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
   1184     CalleeType = FnTypePtr->getPointeeType();
   1185   else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
   1186     CalleeType = BPT->getPointeeType();
   1187   else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember))
   1188     // This should never be overloaded and so should never return null.
   1189     CalleeType = Expr::findBoundMemberType(getCallee());
   1190 
   1191   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
   1192   return FnType->getResultType();
   1193 }
   1194 
   1195 SourceLocation CallExpr::getLocStart() const {
   1196   if (isa<CXXOperatorCallExpr>(this))
   1197     return cast<CXXOperatorCallExpr>(this)->getLocStart();
   1198 
   1199   SourceLocation begin = getCallee()->getLocStart();
   1200   if (begin.isInvalid() && getNumArgs() > 0)
   1201     begin = getArg(0)->getLocStart();
   1202   return begin;
   1203 }
   1204 SourceLocation CallExpr::getLocEnd() const {
   1205   if (isa<CXXOperatorCallExpr>(this))
   1206     return cast<CXXOperatorCallExpr>(this)->getLocEnd();
   1207 
   1208   SourceLocation end = getRParenLoc();
   1209   if (end.isInvalid() && getNumArgs() > 0)
   1210     end = getArg(getNumArgs() - 1)->getLocEnd();
   1211   return end;
   1212 }
   1213 
   1214 OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type,
   1215                                    SourceLocation OperatorLoc,
   1216                                    TypeSourceInfo *tsi,
   1217                                    ArrayRef<OffsetOfNode> comps,
   1218                                    ArrayRef<Expr*> exprs,
   1219                                    SourceLocation RParenLoc) {
   1220   void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
   1221                          sizeof(OffsetOfNode) * comps.size() +
   1222                          sizeof(Expr*) * exprs.size());
   1223 
   1224   return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
   1225                                 RParenLoc);
   1226 }
   1227 
   1228 OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C,
   1229                                         unsigned numComps, unsigned numExprs) {
   1230   void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
   1231                          sizeof(OffsetOfNode) * numComps +
   1232                          sizeof(Expr*) * numExprs);
   1233   return new (Mem) OffsetOfExpr(numComps, numExprs);
   1234 }
   1235 
   1236 OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type,
   1237                            SourceLocation OperatorLoc, TypeSourceInfo *tsi,
   1238                            ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
   1239                            SourceLocation RParenLoc)
   1240   : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
   1241          /*TypeDependent=*/false,
   1242          /*ValueDependent=*/tsi->getType()->isDependentType(),
   1243          tsi->getType()->isInstantiationDependentType(),
   1244          tsi->getType()->containsUnexpandedParameterPack()),
   1245     OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
   1246     NumComps(comps.size()), NumExprs(exprs.size())
   1247 {
   1248   for (unsigned i = 0; i != comps.size(); ++i) {
   1249     setComponent(i, comps[i]);
   1250   }
   1251 
   1252   for (unsigned i = 0; i != exprs.size(); ++i) {
   1253     if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
   1254       ExprBits.ValueDependent = true;
   1255     if (exprs[i]->containsUnexpandedParameterPack())
   1256       ExprBits.ContainsUnexpandedParameterPack = true;
   1257 
   1258     setIndexExpr(i, exprs[i]);
   1259   }
   1260 }
   1261 
   1262 IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
   1263   assert(getKind() == Field || getKind() == Identifier);
   1264   if (getKind() == Field)
   1265     return getField()->getIdentifier();
   1266 
   1267   return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
   1268 }
   1269 
   1270 MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
   1271                                NestedNameSpecifierLoc QualifierLoc,
   1272                                SourceLocation TemplateKWLoc,
   1273                                ValueDecl *memberdecl,
   1274                                DeclAccessPair founddecl,
   1275                                DeclarationNameInfo nameinfo,
   1276                                const TemplateArgumentListInfo *targs,
   1277                                QualType ty,
   1278                                ExprValueKind vk,
   1279                                ExprObjectKind ok) {
   1280   std::size_t Size = sizeof(MemberExpr);
   1281 
   1282   bool hasQualOrFound = (QualifierLoc ||
   1283                          founddecl.getDecl() != memberdecl ||
   1284                          founddecl.getAccess() != memberdecl->getAccess());
   1285   if (hasQualOrFound)
   1286     Size += sizeof(MemberNameQualifier);
   1287 
   1288   if (targs)
   1289     Size += ASTTemplateKWAndArgsInfo::sizeFor(targs->size());
   1290   else if (TemplateKWLoc.isValid())
   1291     Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
   1292 
   1293   void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
   1294   MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo,
   1295                                        ty, vk, ok);
   1296 
   1297   if (hasQualOrFound) {
   1298     // FIXME: Wrong. We should be looking at the member declaration we found.
   1299     if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
   1300       E->setValueDependent(true);
   1301       E->setTypeDependent(true);
   1302       E->setInstantiationDependent(true);
   1303     }
   1304     else if (QualifierLoc &&
   1305              QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
   1306       E->setInstantiationDependent(true);
   1307 
   1308     E->HasQualifierOrFoundDecl = true;
   1309 
   1310     MemberNameQualifier *NQ = E->getMemberQualifier();
   1311     NQ->QualifierLoc = QualifierLoc;
   1312     NQ->FoundDecl = founddecl;
   1313   }
   1314 
   1315   E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid());
   1316 
   1317   if (targs) {
   1318     bool Dependent = false;
   1319     bool InstantiationDependent = false;
   1320     bool ContainsUnexpandedParameterPack = false;
   1321     E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *targs,
   1322                                                   Dependent,
   1323                                                   InstantiationDependent,
   1324                                              ContainsUnexpandedParameterPack);
   1325     if (InstantiationDependent)
   1326       E->setInstantiationDependent(true);
   1327   } else if (TemplateKWLoc.isValid()) {
   1328     E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
   1329   }
   1330 
   1331   return E;
   1332 }
   1333 
   1334 SourceLocation MemberExpr::getLocStart() const {
   1335   if (isImplicitAccess()) {
   1336     if (hasQualifier())
   1337       return getQualifierLoc().getBeginLoc();
   1338     return MemberLoc;
   1339   }
   1340 
   1341   // FIXME: We don't want this to happen. Rather, we should be able to
   1342   // detect all kinds of implicit accesses more cleanly.
   1343   SourceLocation BaseStartLoc = getBase()->getLocStart();
   1344   if (BaseStartLoc.isValid())
   1345     return BaseStartLoc;
   1346   return MemberLoc;
   1347 }
   1348 SourceLocation MemberExpr::getLocEnd() const {
   1349   SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
   1350   if (hasExplicitTemplateArgs())
   1351     EndLoc = getRAngleLoc();
   1352   else if (EndLoc.isInvalid())
   1353     EndLoc = getBase()->getLocEnd();
   1354   return EndLoc;
   1355 }
   1356 
   1357 void CastExpr::CheckCastConsistency() const {
   1358   switch (getCastKind()) {
   1359   case CK_DerivedToBase:
   1360   case CK_UncheckedDerivedToBase:
   1361   case CK_DerivedToBaseMemberPointer:
   1362   case CK_BaseToDerived:
   1363   case CK_BaseToDerivedMemberPointer:
   1364     assert(!path_empty() && "Cast kind should have a base path!");
   1365     break;
   1366 
   1367   case CK_CPointerToObjCPointerCast:
   1368     assert(getType()->isObjCObjectPointerType());
   1369     assert(getSubExpr()->getType()->isPointerType());
   1370     goto CheckNoBasePath;
   1371 
   1372   case CK_BlockPointerToObjCPointerCast:
   1373     assert(getType()->isObjCObjectPointerType());
   1374     assert(getSubExpr()->getType()->isBlockPointerType());
   1375     goto CheckNoBasePath;
   1376 
   1377   case CK_ReinterpretMemberPointer:
   1378     assert(getType()->isMemberPointerType());
   1379     assert(getSubExpr()->getType()->isMemberPointerType());
   1380     goto CheckNoBasePath;
   1381 
   1382   case CK_BitCast:
   1383     // Arbitrary casts to C pointer types count as bitcasts.
   1384     // Otherwise, we should only have block and ObjC pointer casts
   1385     // here if they stay within the type kind.
   1386     if (!getType()->isPointerType()) {
   1387       assert(getType()->isObjCObjectPointerType() ==
   1388              getSubExpr()->getType()->isObjCObjectPointerType());
   1389       assert(getType()->isBlockPointerType() ==
   1390              getSubExpr()->getType()->isBlockPointerType());
   1391     }
   1392     goto CheckNoBasePath;
   1393 
   1394   case CK_AnyPointerToBlockPointerCast:
   1395     assert(getType()->isBlockPointerType());
   1396     assert(getSubExpr()->getType()->isAnyPointerType() &&
   1397            !getSubExpr()->getType()->isBlockPointerType());
   1398     goto CheckNoBasePath;
   1399 
   1400   case CK_CopyAndAutoreleaseBlockObject:
   1401     assert(getType()->isBlockPointerType());
   1402     assert(getSubExpr()->getType()->isBlockPointerType());
   1403     goto CheckNoBasePath;
   1404 
   1405   case CK_FunctionToPointerDecay:
   1406     assert(getType()->isPointerType());
   1407     assert(getSubExpr()->getType()->isFunctionType());
   1408     goto CheckNoBasePath;
   1409 
   1410   // These should not have an inheritance path.
   1411   case CK_Dynamic:
   1412   case CK_ToUnion:
   1413   case CK_ArrayToPointerDecay:
   1414   case CK_NullToMemberPointer:
   1415   case CK_NullToPointer:
   1416   case CK_ConstructorConversion:
   1417   case CK_IntegralToPointer:
   1418   case CK_PointerToIntegral:
   1419   case CK_ToVoid:
   1420   case CK_VectorSplat:
   1421   case CK_IntegralCast:
   1422   case CK_IntegralToFloating:
   1423   case CK_FloatingToIntegral:
   1424   case CK_FloatingCast:
   1425   case CK_ObjCObjectLValueCast:
   1426   case CK_FloatingRealToComplex:
   1427   case CK_FloatingComplexToReal:
   1428   case CK_FloatingComplexCast:
   1429   case CK_FloatingComplexToIntegralComplex:
   1430   case CK_IntegralRealToComplex:
   1431   case CK_IntegralComplexToReal:
   1432   case CK_IntegralComplexCast:
   1433   case CK_IntegralComplexToFloatingComplex:
   1434   case CK_ARCProduceObject:
   1435   case CK_ARCConsumeObject:
   1436   case CK_ARCReclaimReturnedObject:
   1437   case CK_ARCExtendBlockObject:
   1438   case CK_ZeroToOCLEvent:
   1439     assert(!getType()->isBooleanType() && "unheralded conversion to bool");
   1440     goto CheckNoBasePath;
   1441 
   1442   case CK_Dependent:
   1443   case CK_LValueToRValue:
   1444   case CK_NoOp:
   1445   case CK_AtomicToNonAtomic:
   1446   case CK_NonAtomicToAtomic:
   1447   case CK_PointerToBoolean:
   1448   case CK_IntegralToBoolean:
   1449   case CK_FloatingToBoolean:
   1450   case CK_MemberPointerToBoolean:
   1451   case CK_FloatingComplexToBoolean:
   1452   case CK_IntegralComplexToBoolean:
   1453   case CK_LValueBitCast:            // -> bool&
   1454   case CK_UserDefinedConversion:    // operator bool()
   1455   case CK_BuiltinFnToFnPtr:
   1456   CheckNoBasePath:
   1457     assert(path_empty() && "Cast kind should not have a base path!");
   1458     break;
   1459   }
   1460 }
   1461 
   1462 const char *CastExpr::getCastKindName() const {
   1463   switch (getCastKind()) {
   1464   case CK_Dependent:
   1465     return "Dependent";
   1466   case CK_BitCast:
   1467     return "BitCast";
   1468   case CK_LValueBitCast:
   1469     return "LValueBitCast";
   1470   case CK_LValueToRValue:
   1471     return "LValueToRValue";
   1472   case CK_NoOp:
   1473     return "NoOp";
   1474   case CK_BaseToDerived:
   1475     return "BaseToDerived";
   1476   case CK_DerivedToBase:
   1477     return "DerivedToBase";
   1478   case CK_UncheckedDerivedToBase:
   1479     return "UncheckedDerivedToBase";
   1480   case CK_Dynamic:
   1481     return "Dynamic";
   1482   case CK_ToUnion:
   1483     return "ToUnion";
   1484   case CK_ArrayToPointerDecay:
   1485     return "ArrayToPointerDecay";
   1486   case CK_FunctionToPointerDecay:
   1487     return "FunctionToPointerDecay";
   1488   case CK_NullToMemberPointer:
   1489     return "NullToMemberPointer";
   1490   case CK_NullToPointer:
   1491     return "NullToPointer";
   1492   case CK_BaseToDerivedMemberPointer:
   1493     return "BaseToDerivedMemberPointer";
   1494   case CK_DerivedToBaseMemberPointer:
   1495     return "DerivedToBaseMemberPointer";
   1496   case CK_ReinterpretMemberPointer:
   1497     return "ReinterpretMemberPointer";
   1498   case CK_UserDefinedConversion:
   1499     return "UserDefinedConversion";
   1500   case CK_ConstructorConversion:
   1501     return "ConstructorConversion";
   1502   case CK_IntegralToPointer:
   1503     return "IntegralToPointer";
   1504   case CK_PointerToIntegral:
   1505     return "PointerToIntegral";
   1506   case CK_PointerToBoolean:
   1507     return "PointerToBoolean";
   1508   case CK_ToVoid:
   1509     return "ToVoid";
   1510   case CK_VectorSplat:
   1511     return "VectorSplat";
   1512   case CK_IntegralCast:
   1513     return "IntegralCast";
   1514   case CK_IntegralToBoolean:
   1515     return "IntegralToBoolean";
   1516   case CK_IntegralToFloating:
   1517     return "IntegralToFloating";
   1518   case CK_FloatingToIntegral:
   1519     return "FloatingToIntegral";
   1520   case CK_FloatingCast:
   1521     return "FloatingCast";
   1522   case CK_FloatingToBoolean:
   1523     return "FloatingToBoolean";
   1524   case CK_MemberPointerToBoolean:
   1525     return "MemberPointerToBoolean";
   1526   case CK_CPointerToObjCPointerCast:
   1527     return "CPointerToObjCPointerCast";
   1528   case CK_BlockPointerToObjCPointerCast:
   1529     return "BlockPointerToObjCPointerCast";
   1530   case CK_AnyPointerToBlockPointerCast:
   1531     return "AnyPointerToBlockPointerCast";
   1532   case CK_ObjCObjectLValueCast:
   1533     return "ObjCObjectLValueCast";
   1534   case CK_FloatingRealToComplex:
   1535     return "FloatingRealToComplex";
   1536   case CK_FloatingComplexToReal:
   1537     return "FloatingComplexToReal";
   1538   case CK_FloatingComplexToBoolean:
   1539     return "FloatingComplexToBoolean";
   1540   case CK_FloatingComplexCast:
   1541     return "FloatingComplexCast";
   1542   case CK_FloatingComplexToIntegralComplex:
   1543     return "FloatingComplexToIntegralComplex";
   1544   case CK_IntegralRealToComplex:
   1545     return "IntegralRealToComplex";
   1546   case CK_IntegralComplexToReal:
   1547     return "IntegralComplexToReal";
   1548   case CK_IntegralComplexToBoolean:
   1549     return "IntegralComplexToBoolean";
   1550   case CK_IntegralComplexCast:
   1551     return "IntegralComplexCast";
   1552   case CK_IntegralComplexToFloatingComplex:
   1553     return "IntegralComplexToFloatingComplex";
   1554   case CK_ARCConsumeObject:
   1555     return "ARCConsumeObject";
   1556   case CK_ARCProduceObject:
   1557     return "ARCProduceObject";
   1558   case CK_ARCReclaimReturnedObject:
   1559     return "ARCReclaimReturnedObject";
   1560   case CK_ARCExtendBlockObject:
   1561     return "ARCCExtendBlockObject";
   1562   case CK_AtomicToNonAtomic:
   1563     return "AtomicToNonAtomic";
   1564   case CK_NonAtomicToAtomic:
   1565     return "NonAtomicToAtomic";
   1566   case CK_CopyAndAutoreleaseBlockObject:
   1567     return "CopyAndAutoreleaseBlockObject";
   1568   case CK_BuiltinFnToFnPtr:
   1569     return "BuiltinFnToFnPtr";
   1570   case CK_ZeroToOCLEvent:
   1571     return "ZeroToOCLEvent";
   1572   }
   1573 
   1574   llvm_unreachable("Unhandled cast kind!");
   1575 }
   1576 
   1577 Expr *CastExpr::getSubExprAsWritten() {
   1578   Expr *SubExpr = 0;
   1579   CastExpr *E = this;
   1580   do {
   1581     SubExpr = E->getSubExpr();
   1582 
   1583     // Skip through reference binding to temporary.
   1584     if (MaterializeTemporaryExpr *Materialize
   1585                                   = dyn_cast<MaterializeTemporaryExpr>(SubExpr))
   1586       SubExpr = Materialize->GetTemporaryExpr();
   1587 
   1588     // Skip any temporary bindings; they're implicit.
   1589     if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
   1590       SubExpr = Binder->getSubExpr();
   1591 
   1592     // Conversions by constructor and conversion functions have a
   1593     // subexpression describing the call; strip it off.
   1594     if (E->getCastKind() == CK_ConstructorConversion)
   1595       SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
   1596     else if (E->getCastKind() == CK_UserDefinedConversion)
   1597       SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
   1598 
   1599     // If the subexpression we're left with is an implicit cast, look
   1600     // through that, too.
   1601   } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
   1602 
   1603   return SubExpr;
   1604 }
   1605 
   1606 CXXBaseSpecifier **CastExpr::path_buffer() {
   1607   switch (getStmtClass()) {
   1608 #define ABSTRACT_STMT(x)
   1609 #define CASTEXPR(Type, Base) \
   1610   case Stmt::Type##Class: \
   1611     return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
   1612 #define STMT(Type, Base)
   1613 #include "clang/AST/StmtNodes.inc"
   1614   default:
   1615     llvm_unreachable("non-cast expressions not possible here");
   1616   }
   1617 }
   1618 
   1619 void CastExpr::setCastPath(const CXXCastPath &Path) {
   1620   assert(Path.size() == path_size());
   1621   memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
   1622 }
   1623 
   1624 ImplicitCastExpr *ImplicitCastExpr::Create(ASTContext &C, QualType T,
   1625                                            CastKind Kind, Expr *Operand,
   1626                                            const CXXCastPath *BasePath,
   1627                                            ExprValueKind VK) {
   1628   unsigned PathSize = (BasePath ? BasePath->size() : 0);
   1629   void *Buffer =
   1630     C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
   1631   ImplicitCastExpr *E =
   1632     new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
   1633   if (PathSize) E->setCastPath(*BasePath);
   1634   return E;
   1635 }
   1636 
   1637 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(ASTContext &C,
   1638                                                 unsigned PathSize) {
   1639   void *Buffer =
   1640     C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
   1641   return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
   1642 }
   1643 
   1644 
   1645 CStyleCastExpr *CStyleCastExpr::Create(ASTContext &C, QualType T,
   1646                                        ExprValueKind VK, CastKind K, Expr *Op,
   1647                                        const CXXCastPath *BasePath,
   1648                                        TypeSourceInfo *WrittenTy,
   1649                                        SourceLocation L, SourceLocation R) {
   1650   unsigned PathSize = (BasePath ? BasePath->size() : 0);
   1651   void *Buffer =
   1652     C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
   1653   CStyleCastExpr *E =
   1654     new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
   1655   if (PathSize) E->setCastPath(*BasePath);
   1656   return E;
   1657 }
   1658 
   1659 CStyleCastExpr *CStyleCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) {
   1660   void *Buffer =
   1661     C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
   1662   return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
   1663 }
   1664 
   1665 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
   1666 /// corresponds to, e.g. "<<=".
   1667 StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
   1668   switch (Op) {
   1669   case BO_PtrMemD:   return ".*";
   1670   case BO_PtrMemI:   return "->*";
   1671   case BO_Mul:       return "*";
   1672   case BO_Div:       return "/";
   1673   case BO_Rem:       return "%";
   1674   case BO_Add:       return "+";
   1675   case BO_Sub:       return "-";
   1676   case BO_Shl:       return "<<";
   1677   case BO_Shr:       return ">>";
   1678   case BO_LT:        return "<";
   1679   case BO_GT:        return ">";
   1680   case BO_LE:        return "<=";
   1681   case BO_GE:        return ">=";
   1682   case BO_EQ:        return "==";
   1683   case BO_NE:        return "!=";
   1684   case BO_And:       return "&";
   1685   case BO_Xor:       return "^";
   1686   case BO_Or:        return "|";
   1687   case BO_LAnd:      return "&&";
   1688   case BO_LOr:       return "||";
   1689   case BO_Assign:    return "=";
   1690   case BO_MulAssign: return "*=";
   1691   case BO_DivAssign: return "/=";
   1692   case BO_RemAssign: return "%=";
   1693   case BO_AddAssign: return "+=";
   1694   case BO_SubAssign: return "-=";
   1695   case BO_ShlAssign: return "<<=";
   1696   case BO_ShrAssign: return ">>=";
   1697   case BO_AndAssign: return "&=";
   1698   case BO_XorAssign: return "^=";
   1699   case BO_OrAssign:  return "|=";
   1700   case BO_Comma:     return ",";
   1701   }
   1702 
   1703   llvm_unreachable("Invalid OpCode!");
   1704 }
   1705 
   1706 BinaryOperatorKind
   1707 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
   1708   switch (OO) {
   1709   default: llvm_unreachable("Not an overloadable binary operator");
   1710   case OO_Plus: return BO_Add;
   1711   case OO_Minus: return BO_Sub;
   1712   case OO_Star: return BO_Mul;
   1713   case OO_Slash: return BO_Div;
   1714   case OO_Percent: return BO_Rem;
   1715   case OO_Caret: return BO_Xor;
   1716   case OO_Amp: return BO_And;
   1717   case OO_Pipe: return BO_Or;
   1718   case OO_Equal: return BO_Assign;
   1719   case OO_Less: return BO_LT;
   1720   case OO_Greater: return BO_GT;
   1721   case OO_PlusEqual: return BO_AddAssign;
   1722   case OO_MinusEqual: return BO_SubAssign;
   1723   case OO_StarEqual: return BO_MulAssign;
   1724   case OO_SlashEqual: return BO_DivAssign;
   1725   case OO_PercentEqual: return BO_RemAssign;
   1726   case OO_CaretEqual: return BO_XorAssign;
   1727   case OO_AmpEqual: return BO_AndAssign;
   1728   case OO_PipeEqual: return BO_OrAssign;
   1729   case OO_LessLess: return BO_Shl;
   1730   case OO_GreaterGreater: return BO_Shr;
   1731   case OO_LessLessEqual: return BO_ShlAssign;
   1732   case OO_GreaterGreaterEqual: return BO_ShrAssign;
   1733   case OO_EqualEqual: return BO_EQ;
   1734   case OO_ExclaimEqual: return BO_NE;
   1735   case OO_LessEqual: return BO_LE;
   1736   case OO_GreaterEqual: return BO_GE;
   1737   case OO_AmpAmp: return BO_LAnd;
   1738   case OO_PipePipe: return BO_LOr;
   1739   case OO_Comma: return BO_Comma;
   1740   case OO_ArrowStar: return BO_PtrMemI;
   1741   }
   1742 }
   1743 
   1744 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
   1745   static const OverloadedOperatorKind OverOps[] = {
   1746     /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
   1747     OO_Star, OO_Slash, OO_Percent,
   1748     OO_Plus, OO_Minus,
   1749     OO_LessLess, OO_GreaterGreater,
   1750     OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
   1751     OO_EqualEqual, OO_ExclaimEqual,
   1752     OO_Amp,
   1753     OO_Caret,
   1754     OO_Pipe,
   1755     OO_AmpAmp,
   1756     OO_PipePipe,
   1757     OO_Equal, OO_StarEqual,
   1758     OO_SlashEqual, OO_PercentEqual,
   1759     OO_PlusEqual, OO_MinusEqual,
   1760     OO_LessLessEqual, OO_GreaterGreaterEqual,
   1761     OO_AmpEqual, OO_CaretEqual,
   1762     OO_PipeEqual,
   1763     OO_Comma
   1764   };
   1765   return OverOps[Opc];
   1766 }
   1767 
   1768 InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc,
   1769                            ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
   1770   : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
   1771          false, false),
   1772     InitExprs(C, initExprs.size()),
   1773     LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(0, true)
   1774 {
   1775   sawArrayRangeDesignator(false);
   1776   setInitializesStdInitializerList(false);
   1777   for (unsigned I = 0; I != initExprs.size(); ++I) {
   1778     if (initExprs[I]->isTypeDependent())
   1779       ExprBits.TypeDependent = true;
   1780     if (initExprs[I]->isValueDependent())
   1781       ExprBits.ValueDependent = true;
   1782     if (initExprs[I]->isInstantiationDependent())
   1783       ExprBits.InstantiationDependent = true;
   1784     if (initExprs[I]->containsUnexpandedParameterPack())
   1785       ExprBits.ContainsUnexpandedParameterPack = true;
   1786   }
   1787 
   1788   InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
   1789 }
   1790 
   1791 void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) {
   1792   if (NumInits > InitExprs.size())
   1793     InitExprs.reserve(C, NumInits);
   1794 }
   1795 
   1796 void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) {
   1797   InitExprs.resize(C, NumInits, 0);
   1798 }
   1799 
   1800 Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) {
   1801   if (Init >= InitExprs.size()) {
   1802     InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0);
   1803     InitExprs.back() = expr;
   1804     return 0;
   1805   }
   1806 
   1807   Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
   1808   InitExprs[Init] = expr;
   1809   return Result;
   1810 }
   1811 
   1812 void InitListExpr::setArrayFiller(Expr *filler) {
   1813   assert(!hasArrayFiller() && "Filler already set!");
   1814   ArrayFillerOrUnionFieldInit = filler;
   1815   // Fill out any "holes" in the array due to designated initializers.
   1816   Expr **inits = getInits();
   1817   for (unsigned i = 0, e = getNumInits(); i != e; ++i)
   1818     if (inits[i] == 0)
   1819       inits[i] = filler;
   1820 }
   1821 
   1822 bool InitListExpr::isStringLiteralInit() const {
   1823   if (getNumInits() != 1)
   1824     return false;
   1825   const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
   1826   if (!AT || !AT->getElementType()->isIntegerType())
   1827     return false;
   1828   const Expr *Init = getInit(0)->IgnoreParens();
   1829   return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
   1830 }
   1831 
   1832 SourceLocation InitListExpr::getLocStart() const {
   1833   if (InitListExpr *SyntacticForm = getSyntacticForm())
   1834     return SyntacticForm->getLocStart();
   1835   SourceLocation Beg = LBraceLoc;
   1836   if (Beg.isInvalid()) {
   1837     // Find the first non-null initializer.
   1838     for (InitExprsTy::const_iterator I = InitExprs.begin(),
   1839                                      E = InitExprs.end();
   1840       I != E; ++I) {
   1841       if (Stmt *S = *I) {
   1842         Beg = S->getLocStart();
   1843         break;
   1844       }
   1845     }
   1846   }
   1847   return Beg;
   1848 }
   1849 
   1850 SourceLocation InitListExpr::getLocEnd() const {
   1851   if (InitListExpr *SyntacticForm = getSyntacticForm())
   1852     return SyntacticForm->getLocEnd();
   1853   SourceLocation End = RBraceLoc;
   1854   if (End.isInvalid()) {
   1855     // Find the first non-null initializer from the end.
   1856     for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
   1857          E = InitExprs.rend();
   1858          I != E; ++I) {
   1859       if (Stmt *S = *I) {
   1860         End = S->getLocEnd();
   1861         break;
   1862       }
   1863     }
   1864   }
   1865   return End;
   1866 }
   1867 
   1868 /// getFunctionType - Return the underlying function type for this block.
   1869 ///
   1870 const FunctionProtoType *BlockExpr::getFunctionType() const {
   1871   // The block pointer is never sugared, but the function type might be.
   1872   return cast<BlockPointerType>(getType())
   1873            ->getPointeeType()->castAs<FunctionProtoType>();
   1874 }
   1875 
   1876 SourceLocation BlockExpr::getCaretLocation() const {
   1877   return TheBlock->getCaretLocation();
   1878 }
   1879 const Stmt *BlockExpr::getBody() const {
   1880   return TheBlock->getBody();
   1881 }
   1882 Stmt *BlockExpr::getBody() {
   1883   return TheBlock->getBody();
   1884 }
   1885 
   1886 
   1887 //===----------------------------------------------------------------------===//
   1888 // Generic Expression Routines
   1889 //===----------------------------------------------------------------------===//
   1890 
   1891 /// isUnusedResultAWarning - Return true if this immediate expression should
   1892 /// be warned about if the result is unused.  If so, fill in Loc and Ranges
   1893 /// with location to warn on and the source range[s] to report with the
   1894 /// warning.
   1895 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
   1896                                   SourceRange &R1, SourceRange &R2,
   1897                                   ASTContext &Ctx) const {
   1898   // Don't warn if the expr is type dependent. The type could end up
   1899   // instantiating to void.
   1900   if (isTypeDependent())
   1901     return false;
   1902 
   1903   switch (getStmtClass()) {
   1904   default:
   1905     if (getType()->isVoidType())
   1906       return false;
   1907     WarnE = this;
   1908     Loc = getExprLoc();
   1909     R1 = getSourceRange();
   1910     return true;
   1911   case ParenExprClass:
   1912     return cast<ParenExpr>(this)->getSubExpr()->
   1913       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
   1914   case GenericSelectionExprClass:
   1915     return cast<GenericSelectionExpr>(this)->getResultExpr()->
   1916       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
   1917   case UnaryOperatorClass: {
   1918     const UnaryOperator *UO = cast<UnaryOperator>(this);
   1919 
   1920     switch (UO->getOpcode()) {
   1921     case UO_Plus:
   1922     case UO_Minus:
   1923     case UO_AddrOf:
   1924     case UO_Not:
   1925     case UO_LNot:
   1926     case UO_Deref:
   1927       break;
   1928     case UO_PostInc:
   1929     case UO_PostDec:
   1930     case UO_PreInc:
   1931     case UO_PreDec:                 // ++/--
   1932       return false;  // Not a warning.
   1933     case UO_Real:
   1934     case UO_Imag:
   1935       // accessing a piece of a volatile complex is a side-effect.
   1936       if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
   1937           .isVolatileQualified())
   1938         return false;
   1939       break;
   1940     case UO_Extension:
   1941       return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
   1942     }
   1943     WarnE = this;
   1944     Loc = UO->getOperatorLoc();
   1945     R1 = UO->getSubExpr()->getSourceRange();
   1946     return true;
   1947   }
   1948   case BinaryOperatorClass: {
   1949     const BinaryOperator *BO = cast<BinaryOperator>(this);
   1950     switch (BO->getOpcode()) {
   1951       default:
   1952         break;
   1953       // Consider the RHS of comma for side effects. LHS was checked by
   1954       // Sema::CheckCommaOperands.
   1955       case BO_Comma:
   1956         // ((foo = <blah>), 0) is an idiom for hiding the result (and
   1957         // lvalue-ness) of an assignment written in a macro.
   1958         if (IntegerLiteral *IE =
   1959               dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
   1960           if (IE->getValue() == 0)
   1961             return false;
   1962         return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
   1963       // Consider '||', '&&' to have side effects if the LHS or RHS does.
   1964       case BO_LAnd:
   1965       case BO_LOr:
   1966         if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
   1967             !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
   1968           return false;
   1969         break;
   1970     }
   1971     if (BO->isAssignmentOp())
   1972       return false;
   1973     WarnE = this;
   1974     Loc = BO->getOperatorLoc();
   1975     R1 = BO->getLHS()->getSourceRange();
   1976     R2 = BO->getRHS()->getSourceRange();
   1977     return true;
   1978   }
   1979   case CompoundAssignOperatorClass:
   1980   case VAArgExprClass:
   1981   case AtomicExprClass:
   1982     return false;
   1983 
   1984   case ConditionalOperatorClass: {
   1985     // If only one of the LHS or RHS is a warning, the operator might
   1986     // be being used for control flow. Only warn if both the LHS and
   1987     // RHS are warnings.
   1988     const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
   1989     if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
   1990       return false;
   1991     if (!Exp->getLHS())
   1992       return true;
   1993     return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
   1994   }
   1995 
   1996   case MemberExprClass:
   1997     WarnE = this;
   1998     Loc = cast<MemberExpr>(this)->getMemberLoc();
   1999     R1 = SourceRange(Loc, Loc);
   2000     R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
   2001     return true;
   2002 
   2003   case ArraySubscriptExprClass:
   2004     WarnE = this;
   2005     Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
   2006     R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
   2007     R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
   2008     return true;
   2009 
   2010   case CXXOperatorCallExprClass: {
   2011     // We warn about operator== and operator!= even when user-defined operator
   2012     // overloads as there is no reasonable way to define these such that they
   2013     // have non-trivial, desirable side-effects. See the -Wunused-comparison
   2014     // warning: these operators are commonly typo'ed, and so warning on them
   2015     // provides additional value as well. If this list is updated,
   2016     // DiagnoseUnusedComparison should be as well.
   2017     const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
   2018     if (Op->getOperator() == OO_EqualEqual ||
   2019         Op->getOperator() == OO_ExclaimEqual) {
   2020       WarnE = this;
   2021       Loc = Op->getOperatorLoc();
   2022       R1 = Op->getSourceRange();
   2023       return true;
   2024     }
   2025 
   2026     // Fallthrough for generic call handling.
   2027   }
   2028   case CallExprClass:
   2029   case CXXMemberCallExprClass:
   2030   case UserDefinedLiteralClass: {
   2031     // If this is a direct call, get the callee.
   2032     const CallExpr *CE = cast<CallExpr>(this);
   2033     if (const Decl *FD = CE->getCalleeDecl()) {
   2034       // If the callee has attribute pure, const, or warn_unused_result, warn
   2035       // about it. void foo() { strlen("bar"); } should warn.
   2036       //
   2037       // Note: If new cases are added here, DiagnoseUnusedExprResult should be
   2038       // updated to match for QoI.
   2039       if (FD->getAttr<WarnUnusedResultAttr>() ||
   2040           FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
   2041         WarnE = this;
   2042         Loc = CE->getCallee()->getLocStart();
   2043         R1 = CE->getCallee()->getSourceRange();
   2044 
   2045         if (unsigned NumArgs = CE->getNumArgs())
   2046           R2 = SourceRange(CE->getArg(0)->getLocStart(),
   2047                            CE->getArg(NumArgs-1)->getLocEnd());
   2048         return true;
   2049       }
   2050     }
   2051     return false;
   2052   }
   2053 
   2054   // If we don't know precisely what we're looking at, let's not warn.
   2055   case UnresolvedLookupExprClass:
   2056   case CXXUnresolvedConstructExprClass:
   2057     return false;
   2058 
   2059   case CXXTemporaryObjectExprClass:
   2060   case CXXConstructExprClass:
   2061     return false;
   2062 
   2063   case ObjCMessageExprClass: {
   2064     const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
   2065     if (Ctx.getLangOpts().ObjCAutoRefCount &&
   2066         ME->isInstanceMessage() &&
   2067         !ME->getType()->isVoidType() &&
   2068         ME->getSelector().getIdentifierInfoForSlot(0) &&
   2069         ME->getSelector().getIdentifierInfoForSlot(0)
   2070                                                ->getName().startswith("init")) {
   2071       WarnE = this;
   2072       Loc = getExprLoc();
   2073       R1 = ME->getSourceRange();
   2074       return true;
   2075     }
   2076 
   2077     const ObjCMethodDecl *MD = ME->getMethodDecl();
   2078     if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
   2079       WarnE = this;
   2080       Loc = getExprLoc();
   2081       return true;
   2082     }
   2083     return false;
   2084   }
   2085 
   2086   case ObjCPropertyRefExprClass:
   2087     WarnE = this;
   2088     Loc = getExprLoc();
   2089     R1 = getSourceRange();
   2090     return true;
   2091 
   2092   case PseudoObjectExprClass: {
   2093     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
   2094 
   2095     // Only complain about things that have the form of a getter.
   2096     if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
   2097         isa<BinaryOperator>(PO->getSyntacticForm()))
   2098       return false;
   2099 
   2100     WarnE = this;
   2101     Loc = getExprLoc();
   2102     R1 = getSourceRange();
   2103     return true;
   2104   }
   2105 
   2106   case StmtExprClass: {
   2107     // Statement exprs don't logically have side effects themselves, but are
   2108     // sometimes used in macros in ways that give them a type that is unused.
   2109     // For example ({ blah; foo(); }) will end up with a type if foo has a type.
   2110     // however, if the result of the stmt expr is dead, we don't want to emit a
   2111     // warning.
   2112     const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
   2113     if (!CS->body_empty()) {
   2114       if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
   2115         return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
   2116       if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
   2117         if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
   2118           return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
   2119     }
   2120 
   2121     if (getType()->isVoidType())
   2122       return false;
   2123     WarnE = this;
   2124     Loc = cast<StmtExpr>(this)->getLParenLoc();
   2125     R1 = getSourceRange();
   2126     return true;
   2127   }
   2128   case CXXFunctionalCastExprClass:
   2129   case CStyleCastExprClass: {
   2130     // Ignore an explicit cast to void unless the operand is a non-trivial
   2131     // volatile lvalue.
   2132     const CastExpr *CE = cast<CastExpr>(this);
   2133     if (CE->getCastKind() == CK_ToVoid) {
   2134       if (CE->getSubExpr()->isGLValue() &&
   2135           CE->getSubExpr()->getType().isVolatileQualified()) {
   2136         const DeclRefExpr *DRE =
   2137             dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
   2138         if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
   2139               cast<VarDecl>(DRE->getDecl())->hasLocalStorage())) {
   2140           return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
   2141                                                           R1, R2, Ctx);
   2142         }
   2143       }
   2144       return false;
   2145     }
   2146 
   2147     // If this is a cast to a constructor conversion, check the operand.
   2148     // Otherwise, the result of the cast is unused.
   2149     if (CE->getCastKind() == CK_ConstructorConversion)
   2150       return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
   2151 
   2152     WarnE = this;
   2153     if (const CXXFunctionalCastExpr *CXXCE =
   2154             dyn_cast<CXXFunctionalCastExpr>(this)) {
   2155       Loc = CXXCE->getTypeBeginLoc();
   2156       R1 = CXXCE->getSubExpr()->getSourceRange();
   2157     } else {
   2158       const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
   2159       Loc = CStyleCE->getLParenLoc();
   2160       R1 = CStyleCE->getSubExpr()->getSourceRange();
   2161     }
   2162     return true;
   2163   }
   2164   case ImplicitCastExprClass: {
   2165     const CastExpr *ICE = cast<ImplicitCastExpr>(this);
   2166 
   2167     // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
   2168     if (ICE->getCastKind() == CK_LValueToRValue &&
   2169         ICE->getSubExpr()->getType().isVolatileQualified())
   2170       return false;
   2171 
   2172     return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
   2173   }
   2174   case CXXDefaultArgExprClass:
   2175     return (cast<CXXDefaultArgExpr>(this)
   2176             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
   2177 
   2178   case CXXNewExprClass:
   2179     // FIXME: In theory, there might be new expressions that don't have side
   2180     // effects (e.g. a placement new with an uninitialized POD).
   2181   case CXXDeleteExprClass:
   2182     return false;
   2183   case CXXBindTemporaryExprClass:
   2184     return (cast<CXXBindTemporaryExpr>(this)
   2185             ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
   2186   case ExprWithCleanupsClass:
   2187     return (cast<ExprWithCleanups>(this)
   2188             ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
   2189   }
   2190 }
   2191 
   2192 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
   2193 /// returns true, if it is; false otherwise.
   2194 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
   2195   const Expr *E = IgnoreParens();
   2196   switch (E->getStmtClass()) {
   2197   default:
   2198     return false;
   2199   case ObjCIvarRefExprClass:
   2200     return true;
   2201   case Expr::UnaryOperatorClass:
   2202     return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
   2203   case ImplicitCastExprClass:
   2204     return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
   2205   case MaterializeTemporaryExprClass:
   2206     return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
   2207                                                       ->isOBJCGCCandidate(Ctx);
   2208   case CStyleCastExprClass:
   2209     return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
   2210   case DeclRefExprClass: {
   2211     const Decl *D = cast<DeclRefExpr>(E)->getDecl();
   2212 
   2213     if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   2214       if (VD->hasGlobalStorage())
   2215         return true;
   2216       QualType T = VD->getType();
   2217       // dereferencing to a  pointer is always a gc'able candidate,
   2218       // unless it is __weak.
   2219       return T->isPointerType() &&
   2220              (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
   2221     }
   2222     return false;
   2223   }
   2224   case MemberExprClass: {
   2225     const MemberExpr *M = cast<MemberExpr>(E);
   2226     return M->getBase()->isOBJCGCCandidate(Ctx);
   2227   }
   2228   case ArraySubscriptExprClass:
   2229     return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
   2230   }
   2231 }
   2232 
   2233 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
   2234   if (isTypeDependent())
   2235     return false;
   2236   return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
   2237 }
   2238 
   2239 QualType Expr::findBoundMemberType(const Expr *expr) {
   2240   assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
   2241 
   2242   // Bound member expressions are always one of these possibilities:
   2243   //   x->m      x.m      x->*y      x.*y
   2244   // (possibly parenthesized)
   2245 
   2246   expr = expr->IgnoreParens();
   2247   if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
   2248     assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
   2249     return mem->getMemberDecl()->getType();
   2250   }
   2251 
   2252   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
   2253     QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
   2254                       ->getPointeeType();
   2255     assert(type->isFunctionType());
   2256     return type;
   2257   }
   2258 
   2259   assert(isa<UnresolvedMemberExpr>(expr));
   2260   return QualType();
   2261 }
   2262 
   2263 Expr* Expr::IgnoreParens() {
   2264   Expr* E = this;
   2265   while (true) {
   2266     if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
   2267       E = P->getSubExpr();
   2268       continue;
   2269     }
   2270     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
   2271       if (P->getOpcode() == UO_Extension) {
   2272         E = P->getSubExpr();
   2273         continue;
   2274       }
   2275     }
   2276     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
   2277       if (!P->isResultDependent()) {
   2278         E = P->getResultExpr();
   2279         continue;
   2280       }
   2281     }
   2282     return E;
   2283   }
   2284 }
   2285 
   2286 /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
   2287 /// or CastExprs or ImplicitCastExprs, returning their operand.
   2288 Expr *Expr::IgnoreParenCasts() {
   2289   Expr *E = this;
   2290   while (true) {
   2291     if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
   2292       E = P->getSubExpr();
   2293       continue;
   2294     }
   2295     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
   2296       E = P->getSubExpr();
   2297       continue;
   2298     }
   2299     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
   2300       if (P->getOpcode() == UO_Extension) {
   2301         E = P->getSubExpr();
   2302         continue;
   2303       }
   2304     }
   2305     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
   2306       if (!P->isResultDependent()) {
   2307         E = P->getResultExpr();
   2308         continue;
   2309       }
   2310     }
   2311     if (MaterializeTemporaryExpr *Materialize
   2312                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
   2313       E = Materialize->GetTemporaryExpr();
   2314       continue;
   2315     }
   2316     if (SubstNonTypeTemplateParmExpr *NTTP
   2317                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
   2318       E = NTTP->getReplacement();
   2319       continue;
   2320     }
   2321     return E;
   2322   }
   2323 }
   2324 
   2325 /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
   2326 /// casts.  This is intended purely as a temporary workaround for code
   2327 /// that hasn't yet been rewritten to do the right thing about those
   2328 /// casts, and may disappear along with the last internal use.
   2329 Expr *Expr::IgnoreParenLValueCasts() {
   2330   Expr *E = this;
   2331   while (true) {
   2332     if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
   2333       E = P->getSubExpr();
   2334       continue;
   2335     } else if (CastExpr *P = dyn_cast<CastExpr>(E)) {
   2336       if (P->getCastKind() == CK_LValueToRValue) {
   2337         E = P->getSubExpr();
   2338         continue;
   2339       }
   2340     } else if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
   2341       if (P->getOpcode() == UO_Extension) {
   2342         E = P->getSubExpr();
   2343         continue;
   2344       }
   2345     } else if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
   2346       if (!P->isResultDependent()) {
   2347         E = P->getResultExpr();
   2348         continue;
   2349       }
   2350     } else if (MaterializeTemporaryExpr *Materialize
   2351                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
   2352       E = Materialize->GetTemporaryExpr();
   2353       continue;
   2354     } else if (SubstNonTypeTemplateParmExpr *NTTP
   2355                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
   2356       E = NTTP->getReplacement();
   2357       continue;
   2358     }
   2359     break;
   2360   }
   2361   return E;
   2362 }
   2363 
   2364 Expr *Expr::ignoreParenBaseCasts() {
   2365   Expr *E = this;
   2366   while (true) {
   2367     if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
   2368       E = P->getSubExpr();
   2369       continue;
   2370     }
   2371     if (CastExpr *CE = dyn_cast<CastExpr>(E)) {
   2372       if (CE->getCastKind() == CK_DerivedToBase ||
   2373           CE->getCastKind() == CK_UncheckedDerivedToBase ||
   2374           CE->getCastKind() == CK_NoOp) {
   2375         E = CE->getSubExpr();
   2376         continue;
   2377       }
   2378     }
   2379 
   2380     return E;
   2381   }
   2382 }
   2383 
   2384 Expr *Expr::IgnoreParenImpCasts() {
   2385   Expr *E = this;
   2386   while (true) {
   2387     if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
   2388       E = P->getSubExpr();
   2389       continue;
   2390     }
   2391     if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
   2392       E = P->getSubExpr();
   2393       continue;
   2394     }
   2395     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
   2396       if (P->getOpcode() == UO_Extension) {
   2397         E = P->getSubExpr();
   2398         continue;
   2399       }
   2400     }
   2401     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
   2402       if (!P->isResultDependent()) {
   2403         E = P->getResultExpr();
   2404         continue;
   2405       }
   2406     }
   2407     if (MaterializeTemporaryExpr *Materialize
   2408                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
   2409       E = Materialize->GetTemporaryExpr();
   2410       continue;
   2411     }
   2412     if (SubstNonTypeTemplateParmExpr *NTTP
   2413                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
   2414       E = NTTP->getReplacement();
   2415       continue;
   2416     }
   2417     return E;
   2418   }
   2419 }
   2420 
   2421 Expr *Expr::IgnoreConversionOperator() {
   2422   if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
   2423     if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
   2424       return MCE->getImplicitObjectArgument();
   2425   }
   2426   return this;
   2427 }
   2428 
   2429 /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
   2430 /// value (including ptr->int casts of the same size).  Strip off any
   2431 /// ParenExpr or CastExprs, returning their operand.
   2432 Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
   2433   Expr *E = this;
   2434   while (true) {
   2435     if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
   2436       E = P->getSubExpr();
   2437       continue;
   2438     }
   2439 
   2440     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
   2441       // We ignore integer <-> casts that are of the same width, ptr<->ptr and
   2442       // ptr<->int casts of the same width.  We also ignore all identity casts.
   2443       Expr *SE = P->getSubExpr();
   2444 
   2445       if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
   2446         E = SE;
   2447         continue;
   2448       }
   2449 
   2450       if ((E->getType()->isPointerType() ||
   2451            E->getType()->isIntegralType(Ctx)) &&
   2452           (SE->getType()->isPointerType() ||
   2453            SE->getType()->isIntegralType(Ctx)) &&
   2454           Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
   2455         E = SE;
   2456         continue;
   2457       }
   2458     }
   2459 
   2460     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
   2461       if (P->getOpcode() == UO_Extension) {
   2462         E = P->getSubExpr();
   2463         continue;
   2464       }
   2465     }
   2466 
   2467     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
   2468       if (!P->isResultDependent()) {
   2469         E = P->getResultExpr();
   2470         continue;
   2471       }
   2472     }
   2473 
   2474     if (SubstNonTypeTemplateParmExpr *NTTP
   2475                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
   2476       E = NTTP->getReplacement();
   2477       continue;
   2478     }
   2479 
   2480     return E;
   2481   }
   2482 }
   2483 
   2484 bool Expr::isDefaultArgument() const {
   2485   const Expr *E = this;
   2486   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
   2487     E = M->GetTemporaryExpr();
   2488 
   2489   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
   2490     E = ICE->getSubExprAsWritten();
   2491 
   2492   return isa<CXXDefaultArgExpr>(E);
   2493 }
   2494 
   2495 /// \brief Skip over any no-op casts and any temporary-binding
   2496 /// expressions.
   2497 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
   2498   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
   2499     E = M->GetTemporaryExpr();
   2500 
   2501   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
   2502     if (ICE->getCastKind() == CK_NoOp)
   2503       E = ICE->getSubExpr();
   2504     else
   2505       break;
   2506   }
   2507 
   2508   while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
   2509     E = BE->getSubExpr();
   2510 
   2511   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
   2512     if (ICE->getCastKind() == CK_NoOp)
   2513       E = ICE->getSubExpr();
   2514     else
   2515       break;
   2516   }
   2517 
   2518   return E->IgnoreParens();
   2519 }
   2520 
   2521 /// isTemporaryObject - Determines if this expression produces a
   2522 /// temporary of the given class type.
   2523 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
   2524   if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
   2525     return false;
   2526 
   2527   const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
   2528 
   2529   // Temporaries are by definition pr-values of class type.
   2530   if (!E->Classify(C).isPRValue()) {
   2531     // In this context, property reference is a message call and is pr-value.
   2532     if (!isa<ObjCPropertyRefExpr>(E))
   2533       return false;
   2534   }
   2535 
   2536   // Black-list a few cases which yield pr-values of class type that don't
   2537   // refer to temporaries of that type:
   2538 
   2539   // - implicit derived-to-base conversions
   2540   if (isa<ImplicitCastExpr>(E)) {
   2541     switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
   2542     case CK_DerivedToBase:
   2543     case CK_UncheckedDerivedToBase:
   2544       return false;
   2545     default:
   2546       break;
   2547     }
   2548   }
   2549 
   2550   // - member expressions (all)
   2551   if (isa<MemberExpr>(E))
   2552     return false;
   2553 
   2554   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
   2555     if (BO->isPtrMemOp())
   2556       return false;
   2557 
   2558   // - opaque values (all)
   2559   if (isa<OpaqueValueExpr>(E))
   2560     return false;
   2561 
   2562   return true;
   2563 }
   2564 
   2565 bool Expr::isImplicitCXXThis() const {
   2566   const Expr *E = this;
   2567 
   2568   // Strip away parentheses and casts we don't care about.
   2569   while (true) {
   2570     if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
   2571       E = Paren->getSubExpr();
   2572       continue;
   2573     }
   2574 
   2575     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
   2576       if (ICE->getCastKind() == CK_NoOp ||
   2577           ICE->getCastKind() == CK_LValueToRValue ||
   2578           ICE->getCastKind() == CK_DerivedToBase ||
   2579           ICE->getCastKind() == CK_UncheckedDerivedToBase) {
   2580         E = ICE->getSubExpr();
   2581         continue;
   2582       }
   2583     }
   2584 
   2585     if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
   2586       if (UnOp->getOpcode() == UO_Extension) {
   2587         E = UnOp->getSubExpr();
   2588         continue;
   2589       }
   2590     }
   2591 
   2592     if (const MaterializeTemporaryExpr *M
   2593                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
   2594       E = M->GetTemporaryExpr();
   2595       continue;
   2596     }
   2597 
   2598     break;
   2599   }
   2600 
   2601   if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
   2602     return This->isImplicit();
   2603 
   2604   return false;
   2605 }
   2606 
   2607 /// hasAnyTypeDependentArguments - Determines if any of the expressions
   2608 /// in Exprs is type-dependent.
   2609 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
   2610   for (unsigned I = 0; I < Exprs.size(); ++I)
   2611     if (Exprs[I]->isTypeDependent())
   2612       return true;
   2613 
   2614   return false;
   2615 }
   2616 
   2617 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef) const {
   2618   // This function is attempting whether an expression is an initializer
   2619   // which can be evaluated at compile-time.  isEvaluatable handles most
   2620   // of the cases, but it can't deal with some initializer-specific
   2621   // expressions, and it can't deal with aggregates; we deal with those here,
   2622   // and fall back to isEvaluatable for the other cases.
   2623 
   2624   // If we ever capture reference-binding directly in the AST, we can
   2625   // kill the second parameter.
   2626 
   2627   if (IsForRef) {
   2628     EvalResult Result;
   2629     return EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects;
   2630   }
   2631 
   2632   switch (getStmtClass()) {
   2633   default: break;
   2634   case IntegerLiteralClass:
   2635   case FloatingLiteralClass:
   2636   case StringLiteralClass:
   2637   case ObjCStringLiteralClass:
   2638   case ObjCEncodeExprClass:
   2639     return true;
   2640   case CXXTemporaryObjectExprClass:
   2641   case CXXConstructExprClass: {
   2642     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
   2643 
   2644     // Only if it's
   2645     if (CE->getConstructor()->isTrivial()) {
   2646       // 1) an application of the trivial default constructor or
   2647       if (!CE->getNumArgs()) return true;
   2648 
   2649       // 2) an elidable trivial copy construction of an operand which is
   2650       //    itself a constant initializer.  Note that we consider the
   2651       //    operand on its own, *not* as a reference binding.
   2652       if (CE->isElidable() &&
   2653           CE->getArg(0)->isConstantInitializer(Ctx, false))
   2654         return true;
   2655     }
   2656 
   2657     // 3) a foldable constexpr constructor.
   2658     break;
   2659   }
   2660   case CompoundLiteralExprClass: {
   2661     // This handles gcc's extension that allows global initializers like
   2662     // "struct x {int x;} x = (struct x) {};".
   2663     // FIXME: This accepts other cases it shouldn't!
   2664     const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
   2665     return Exp->isConstantInitializer(Ctx, false);
   2666   }
   2667   case InitListExprClass: {
   2668     // FIXME: This doesn't deal with fields with reference types correctly.
   2669     // FIXME: This incorrectly allows pointers cast to integers to be assigned
   2670     // to bitfields.
   2671     const InitListExpr *Exp = cast<InitListExpr>(this);
   2672     unsigned numInits = Exp->getNumInits();
   2673     for (unsigned i = 0; i < numInits; i++) {
   2674       if (!Exp->getInit(i)->isConstantInitializer(Ctx, false))
   2675         return false;
   2676     }
   2677     return true;
   2678   }
   2679   case ImplicitValueInitExprClass:
   2680     return true;
   2681   case ParenExprClass:
   2682     return cast<ParenExpr>(this)->getSubExpr()
   2683       ->isConstantInitializer(Ctx, IsForRef);
   2684   case GenericSelectionExprClass:
   2685     if (cast<GenericSelectionExpr>(this)->isResultDependent())
   2686       return false;
   2687     return cast<GenericSelectionExpr>(this)->getResultExpr()
   2688       ->isConstantInitializer(Ctx, IsForRef);
   2689   case ChooseExprClass:
   2690     return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)
   2691       ->isConstantInitializer(Ctx, IsForRef);
   2692   case UnaryOperatorClass: {
   2693     const UnaryOperator* Exp = cast<UnaryOperator>(this);
   2694     if (Exp->getOpcode() == UO_Extension)
   2695       return Exp->getSubExpr()->isConstantInitializer(Ctx, false);
   2696     break;
   2697   }
   2698   case CXXFunctionalCastExprClass:
   2699   case CXXStaticCastExprClass:
   2700   case ImplicitCastExprClass:
   2701   case CStyleCastExprClass: {
   2702     const CastExpr *CE = cast<CastExpr>(this);
   2703 
   2704     // If we're promoting an integer to an _Atomic type then this is constant
   2705     // if the integer is constant.  We also need to check the converse in case
   2706     // someone does something like:
   2707     //
   2708     // int a = (_Atomic(int))42;
   2709     //
   2710     // I doubt anyone would write code like this directly, but it's quite
   2711     // possible as the result of macro expansions.
   2712     if (CE->getCastKind() == CK_NonAtomicToAtomic ||
   2713         CE->getCastKind() == CK_AtomicToNonAtomic)
   2714       return CE->getSubExpr()->isConstantInitializer(Ctx, false);
   2715 
   2716     // Handle bitcasts of vector constants.
   2717     if (getType()->isVectorType() && CE->getCastKind() == CK_BitCast)
   2718       return CE->getSubExpr()->isConstantInitializer(Ctx, false);
   2719 
   2720     // Handle misc casts we want to ignore.
   2721     // FIXME: Is it really safe to ignore all these?
   2722     if (CE->getCastKind() == CK_NoOp ||
   2723         CE->getCastKind() == CK_LValueToRValue ||
   2724         CE->getCastKind() == CK_ToUnion ||
   2725         CE->getCastKind() == CK_ConstructorConversion)
   2726       return CE->getSubExpr()->isConstantInitializer(Ctx, false);
   2727 
   2728     break;
   2729   }
   2730   case MaterializeTemporaryExprClass:
   2731     return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
   2732                                             ->isConstantInitializer(Ctx, false);
   2733   }
   2734   return isEvaluatable(Ctx);
   2735 }
   2736 
   2737 bool Expr::HasSideEffects(const ASTContext &Ctx) const {
   2738   if (isInstantiationDependent())
   2739     return true;
   2740 
   2741   switch (getStmtClass()) {
   2742   case NoStmtClass:
   2743   #define ABSTRACT_STMT(Type)
   2744   #define STMT(Type, Base) case Type##Class:
   2745   #define EXPR(Type, Base)
   2746   #include "clang/AST/StmtNodes.inc"
   2747     llvm_unreachable("unexpected Expr kind");
   2748 
   2749   case DependentScopeDeclRefExprClass:
   2750   case CXXUnresolvedConstructExprClass:
   2751   case CXXDependentScopeMemberExprClass:
   2752   case UnresolvedLookupExprClass:
   2753   case UnresolvedMemberExprClass:
   2754   case PackExpansionExprClass:
   2755   case SubstNonTypeTemplateParmPackExprClass:
   2756   case FunctionParmPackExprClass:
   2757     llvm_unreachable("shouldn't see dependent / unresolved nodes here");
   2758 
   2759   case DeclRefExprClass:
   2760   case ObjCIvarRefExprClass:
   2761   case PredefinedExprClass:
   2762   case IntegerLiteralClass:
   2763   case FloatingLiteralClass:
   2764   case ImaginaryLiteralClass:
   2765   case StringLiteralClass:
   2766   case CharacterLiteralClass:
   2767   case OffsetOfExprClass:
   2768   case ImplicitValueInitExprClass:
   2769   case UnaryExprOrTypeTraitExprClass:
   2770   case AddrLabelExprClass:
   2771   case GNUNullExprClass:
   2772   case CXXBoolLiteralExprClass:
   2773   case CXXNullPtrLiteralExprClass:
   2774   case CXXThisExprClass:
   2775   case CXXScalarValueInitExprClass:
   2776   case TypeTraitExprClass:
   2777   case UnaryTypeTraitExprClass:
   2778   case BinaryTypeTraitExprClass:
   2779   case ArrayTypeTraitExprClass:
   2780   case ExpressionTraitExprClass:
   2781   case CXXNoexceptExprClass:
   2782   case SizeOfPackExprClass:
   2783   case ObjCStringLiteralClass:
   2784   case ObjCEncodeExprClass:
   2785   case ObjCBoolLiteralExprClass:
   2786   case CXXUuidofExprClass:
   2787   case OpaqueValueExprClass:
   2788     // These never have a side-effect.
   2789     return false;
   2790 
   2791   case CallExprClass:
   2792   case CompoundAssignOperatorClass:
   2793   case VAArgExprClass:
   2794   case AtomicExprClass:
   2795   case StmtExprClass:
   2796   case CXXOperatorCallExprClass:
   2797   case CXXMemberCallExprClass:
   2798   case UserDefinedLiteralClass:
   2799   case CXXThrowExprClass:
   2800   case CXXNewExprClass:
   2801   case CXXDeleteExprClass:
   2802   case ExprWithCleanupsClass:
   2803   case CXXBindTemporaryExprClass:
   2804   case BlockExprClass:
   2805   case CUDAKernelCallExprClass:
   2806     // These always have a side-effect.
   2807     return true;
   2808 
   2809   case ParenExprClass:
   2810   case ArraySubscriptExprClass:
   2811   case MemberExprClass:
   2812   case ConditionalOperatorClass:
   2813   case BinaryConditionalOperatorClass:
   2814   case CompoundLiteralExprClass:
   2815   case ExtVectorElementExprClass:
   2816   case DesignatedInitExprClass:
   2817   case ParenListExprClass:
   2818   case CXXPseudoDestructorExprClass:
   2819   case SubstNonTypeTemplateParmExprClass:
   2820   case MaterializeTemporaryExprClass:
   2821   case ShuffleVectorExprClass:
   2822   case AsTypeExprClass:
   2823     // These have a side-effect if any subexpression does.
   2824     break;
   2825 
   2826   case UnaryOperatorClass:
   2827     if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
   2828       return true;
   2829     break;
   2830 
   2831   case BinaryOperatorClass:
   2832     if (cast<BinaryOperator>(this)->isAssignmentOp())
   2833       return true;
   2834     break;
   2835 
   2836   case InitListExprClass:
   2837     // FIXME: The children for an InitListExpr doesn't include the array filler.
   2838     if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
   2839       if (E->HasSideEffects(Ctx))
   2840         return true;
   2841     break;
   2842 
   2843   case GenericSelectionExprClass:
   2844     return cast<GenericSelectionExpr>(this)->getResultExpr()->
   2845         HasSideEffects(Ctx);
   2846 
   2847   case ChooseExprClass:
   2848     return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)->HasSideEffects(Ctx);
   2849 
   2850   case CXXDefaultArgExprClass:
   2851     return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(Ctx);
   2852 
   2853   case CXXDynamicCastExprClass: {
   2854     // A dynamic_cast expression has side-effects if it can throw.
   2855     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
   2856     if (DCE->getTypeAsWritten()->isReferenceType() &&
   2857         DCE->getCastKind() == CK_Dynamic)
   2858       return true;
   2859   } // Fall through.
   2860   case ImplicitCastExprClass:
   2861   case CStyleCastExprClass:
   2862   case CXXStaticCastExprClass:
   2863   case CXXReinterpretCastExprClass:
   2864   case CXXConstCastExprClass:
   2865   case CXXFunctionalCastExprClass: {
   2866     const CastExpr *CE = cast<CastExpr>(this);
   2867     if (CE->getCastKind() == CK_LValueToRValue &&
   2868         CE->getSubExpr()->getType().isVolatileQualified())
   2869       return true;
   2870     break;
   2871   }
   2872 
   2873   case CXXTypeidExprClass:
   2874     // typeid might throw if its subexpression is potentially-evaluated, so has
   2875     // side-effects in that case whether or not its subexpression does.
   2876     return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
   2877 
   2878   case CXXConstructExprClass:
   2879   case CXXTemporaryObjectExprClass: {
   2880     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
   2881     if (!CE->getConstructor()->isTrivial())
   2882       return true;
   2883     // A trivial constructor does not add any side-effects of its own. Just look
   2884     // at its arguments.
   2885     break;
   2886   }
   2887 
   2888   case LambdaExprClass: {
   2889     const LambdaExpr *LE = cast<LambdaExpr>(this);
   2890     for (LambdaExpr::capture_iterator I = LE->capture_begin(),
   2891                                       E = LE->capture_end(); I != E; ++I)
   2892       if (I->getCaptureKind() == LCK_ByCopy)
   2893         // FIXME: Only has a side-effect if the variable is volatile or if
   2894         // the copy would invoke a non-trivial copy constructor.
   2895         return true;
   2896     return false;
   2897   }
   2898 
   2899   case PseudoObjectExprClass: {
   2900     // Only look for side-effects in the semantic form, and look past
   2901     // OpaqueValueExpr bindings in that form.
   2902     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
   2903     for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
   2904                                                     E = PO->semantics_end();
   2905          I != E; ++I) {
   2906       const Expr *Subexpr = *I;
   2907       if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
   2908         Subexpr = OVE->getSourceExpr();
   2909       if (Subexpr->HasSideEffects(Ctx))
   2910         return true;
   2911     }
   2912     return false;
   2913   }
   2914 
   2915   case ObjCBoxedExprClass:
   2916   case ObjCArrayLiteralClass:
   2917   case ObjCDictionaryLiteralClass:
   2918   case ObjCMessageExprClass:
   2919   case ObjCSelectorExprClass:
   2920   case ObjCProtocolExprClass:
   2921   case ObjCPropertyRefExprClass:
   2922   case ObjCIsaExprClass:
   2923   case ObjCIndirectCopyRestoreExprClass:
   2924   case ObjCSubscriptRefExprClass:
   2925   case ObjCBridgedCastExprClass:
   2926     // FIXME: Classify these cases better.
   2927     return true;
   2928   }
   2929 
   2930   // Recurse to children.
   2931   for (const_child_range SubStmts = children(); SubStmts; ++SubStmts)
   2932     if (const Stmt *S = *SubStmts)
   2933       if (cast<Expr>(S)->HasSideEffects(Ctx))
   2934         return true;
   2935 
   2936   return false;
   2937 }
   2938 
   2939 namespace {
   2940   /// \brief Look for a call to a non-trivial function within an expression.
   2941   class NonTrivialCallFinder : public EvaluatedExprVisitor<NonTrivialCallFinder>
   2942   {
   2943     typedef EvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
   2944 
   2945     bool NonTrivial;
   2946 
   2947   public:
   2948     explicit NonTrivialCallFinder(ASTContext &Context)
   2949       : Inherited(Context), NonTrivial(false) { }
   2950 
   2951     bool hasNonTrivialCall() const { return NonTrivial; }
   2952 
   2953     void VisitCallExpr(CallExpr *E) {
   2954       if (CXXMethodDecl *Method
   2955           = dyn_cast_or_null<CXXMethodDecl>(E->getCalleeDecl())) {
   2956         if (Method->isTrivial()) {
   2957           // Recurse to children of the call.
   2958           Inherited::VisitStmt(E);
   2959           return;
   2960         }
   2961       }
   2962 
   2963       NonTrivial = true;
   2964     }
   2965 
   2966     void VisitCXXConstructExpr(CXXConstructExpr *E) {
   2967       if (E->getConstructor()->isTrivial()) {
   2968         // Recurse to children of the call.
   2969         Inherited::VisitStmt(E);
   2970         return;
   2971       }
   2972 
   2973       NonTrivial = true;
   2974     }
   2975 
   2976     void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
   2977       if (E->getTemporary()->getDestructor()->isTrivial()) {
   2978         Inherited::VisitStmt(E);
   2979         return;
   2980       }
   2981 
   2982       NonTrivial = true;
   2983     }
   2984   };
   2985 }
   2986 
   2987 bool Expr::hasNonTrivialCall(ASTContext &Ctx) {
   2988   NonTrivialCallFinder Finder(Ctx);
   2989   Finder.Visit(this);
   2990   return Finder.hasNonTrivialCall();
   2991 }
   2992 
   2993 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
   2994 /// pointer constant or not, as well as the specific kind of constant detected.
   2995 /// Null pointer constants can be integer constant expressions with the
   2996 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
   2997 /// (a GNU extension).
   2998 Expr::NullPointerConstantKind
   2999 Expr::isNullPointerConstant(ASTContext &Ctx,
   3000                             NullPointerConstantValueDependence NPC) const {
   3001   if (isValueDependent()) {
   3002     switch (NPC) {
   3003     case NPC_NeverValueDependent:
   3004       llvm_unreachable("Unexpected value dependent expression!");
   3005     case NPC_ValueDependentIsNull:
   3006       if (isTypeDependent() || getType()->isIntegralType(Ctx))
   3007         return NPCK_ZeroExpression;
   3008       else
   3009         return NPCK_NotNull;
   3010 
   3011     case NPC_ValueDependentIsNotNull:
   3012       return NPCK_NotNull;
   3013     }
   3014   }
   3015 
   3016   // Strip off a cast to void*, if it exists. Except in C++.
   3017   if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
   3018     if (!Ctx.getLangOpts().CPlusPlus) {
   3019       // Check that it is a cast to void*.
   3020       if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
   3021         QualType Pointee = PT->getPointeeType();
   3022         if (!Pointee.hasQualifiers() &&
   3023             Pointee->isVoidType() &&                              // to void*
   3024             CE->getSubExpr()->getType()->isIntegerType())         // from int.
   3025           return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
   3026       }
   3027     }
   3028   } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
   3029     // Ignore the ImplicitCastExpr type entirely.
   3030     return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
   3031   } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
   3032     // Accept ((void*)0) as a null pointer constant, as many other
   3033     // implementations do.
   3034     return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
   3035   } else if (const GenericSelectionExpr *GE =
   3036                dyn_cast<GenericSelectionExpr>(this)) {
   3037     return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
   3038   } else if (const CXXDefaultArgExpr *DefaultArg
   3039                = dyn_cast<CXXDefaultArgExpr>(this)) {
   3040     // See through default argument expressions
   3041     return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
   3042   } else if (isa<GNUNullExpr>(this)) {
   3043     // The GNU __null extension is always a null pointer constant.
   3044     return NPCK_GNUNull;
   3045   } else if (const MaterializeTemporaryExpr *M
   3046                                    = dyn_cast<MaterializeTemporaryExpr>(this)) {
   3047     return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
   3048   } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
   3049     if (const Expr *Source = OVE->getSourceExpr())
   3050       return Source->isNullPointerConstant(Ctx, NPC);
   3051   }
   3052 
   3053   // C++11 nullptr_t is always a null pointer constant.
   3054   if (getType()->isNullPtrType())
   3055     return NPCK_CXX11_nullptr;
   3056 
   3057   if (const RecordType *UT = getType()->getAsUnionType())
   3058     if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
   3059       if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
   3060         const Expr *InitExpr = CLE->getInitializer();
   3061         if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
   3062           return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
   3063       }
   3064   // This expression must be an integer type.
   3065   if (!getType()->isIntegerType() ||
   3066       (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
   3067     return NPCK_NotNull;
   3068 
   3069   // If we have an integer constant expression, we need to *evaluate* it and
   3070   // test for the value 0. Don't use the C++11 constant expression semantics
   3071   // for this, for now; once the dust settles on core issue 903, we might only
   3072   // allow a literal 0 here in C++11 mode.
   3073   if (Ctx.getLangOpts().CPlusPlus11) {
   3074     if (!isCXX98IntegralConstantExpr(Ctx))
   3075       return NPCK_NotNull;
   3076   } else {
   3077     if (!isIntegerConstantExpr(Ctx))
   3078       return NPCK_NotNull;
   3079   }
   3080 
   3081   if (EvaluateKnownConstInt(Ctx) != 0)
   3082     return NPCK_NotNull;
   3083 
   3084   if (isa<IntegerLiteral>(this))
   3085     return NPCK_ZeroLiteral;
   3086   return NPCK_ZeroExpression;
   3087 }
   3088 
   3089 /// \brief If this expression is an l-value for an Objective C
   3090 /// property, find the underlying property reference expression.
   3091 const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
   3092   const Expr *E = this;
   3093   while (true) {
   3094     assert((E->getValueKind() == VK_LValue &&
   3095             E->getObjectKind() == OK_ObjCProperty) &&
   3096            "expression is not a property reference");
   3097     E = E->IgnoreParenCasts();
   3098     if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
   3099       if (BO->getOpcode() == BO_Comma) {
   3100         E = BO->getRHS();
   3101         continue;
   3102       }
   3103     }
   3104 
   3105     break;
   3106   }
   3107 
   3108   return cast<ObjCPropertyRefExpr>(E);
   3109 }
   3110 
   3111 bool Expr::isObjCSelfExpr() const {
   3112   const Expr *E = IgnoreParenImpCasts();
   3113 
   3114   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
   3115   if (!DRE)
   3116     return false;
   3117 
   3118   const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
   3119   if (!Param)
   3120     return false;
   3121 
   3122   const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
   3123   if (!M)
   3124     return false;
   3125 
   3126   return M->getSelfDecl() == Param;
   3127 }
   3128 
   3129 FieldDecl *Expr::getBitField() {
   3130   Expr *E = this->IgnoreParens();
   3131 
   3132   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
   3133     if (ICE->getCastKind() == CK_LValueToRValue ||
   3134         (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
   3135       E = ICE->getSubExpr()->IgnoreParens();
   3136     else
   3137       break;
   3138   }
   3139 
   3140   if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
   3141     if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
   3142       if (Field->isBitField())
   3143         return Field;
   3144 
   3145   if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
   3146     if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
   3147       if (Field->isBitField())
   3148         return Field;
   3149 
   3150   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
   3151     if (BinOp->isAssignmentOp() && BinOp->getLHS())
   3152       return BinOp->getLHS()->getBitField();
   3153 
   3154     if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
   3155       return BinOp->getRHS()->getBitField();
   3156   }
   3157 
   3158   return 0;
   3159 }
   3160 
   3161 bool Expr::refersToVectorElement() const {
   3162   const Expr *E = this->IgnoreParens();
   3163 
   3164   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
   3165     if (ICE->getValueKind() != VK_RValue &&
   3166         ICE->getCastKind() == CK_NoOp)
   3167       E = ICE->getSubExpr()->IgnoreParens();
   3168     else
   3169       break;
   3170   }
   3171 
   3172   if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
   3173     return ASE->getBase()->getType()->isVectorType();
   3174 
   3175   if (isa<ExtVectorElementExpr>(E))
   3176     return true;
   3177 
   3178   return false;
   3179 }
   3180 
   3181 /// isArrow - Return true if the base expression is a pointer to vector,
   3182 /// return false if the base expression is a vector.
   3183 bool ExtVectorElementExpr::isArrow() const {
   3184   return getBase()->getType()->isPointerType();
   3185 }
   3186 
   3187 unsigned ExtVectorElementExpr::getNumElements() const {
   3188   if (const VectorType *VT = getType()->getAs<VectorType>())
   3189     return VT->getNumElements();
   3190   return 1;
   3191 }
   3192 
   3193 /// containsDuplicateElements - Return true if any element access is repeated.
   3194 bool ExtVectorElementExpr::containsDuplicateElements() const {
   3195   // FIXME: Refactor this code to an accessor on the AST node which returns the
   3196   // "type" of component access, and share with code below and in Sema.
   3197   StringRef Comp = Accessor->getName();
   3198 
   3199   // Halving swizzles do not contain duplicate elements.
   3200   if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
   3201     return false;
   3202 
   3203   // Advance past s-char prefix on hex swizzles.
   3204   if (Comp[0] == 's' || Comp[0] == 'S')
   3205     Comp = Comp.substr(1);
   3206 
   3207   for (unsigned i = 0, e = Comp.size(); i != e; ++i)
   3208     if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
   3209         return true;
   3210 
   3211   return false;
   3212 }
   3213 
   3214 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
   3215 void ExtVectorElementExpr::getEncodedElementAccess(
   3216                                   SmallVectorImpl<unsigned> &Elts) const {
   3217   StringRef Comp = Accessor->getName();
   3218   if (Comp[0] == 's' || Comp[0] == 'S')
   3219     Comp = Comp.substr(1);
   3220 
   3221   bool isHi =   Comp == "hi";
   3222   bool isLo =   Comp == "lo";
   3223   bool isEven = Comp == "even";
   3224   bool isOdd  = Comp == "odd";
   3225 
   3226   for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
   3227     uint64_t Index;
   3228 
   3229     if (isHi)
   3230       Index = e + i;
   3231     else if (isLo)
   3232       Index = i;
   3233     else if (isEven)
   3234       Index = 2 * i;
   3235     else if (isOdd)
   3236       Index = 2 * i + 1;
   3237     else
   3238       Index = ExtVectorType::getAccessorIdx(Comp[i]);
   3239 
   3240     Elts.push_back(Index);
   3241   }
   3242 }
   3243 
   3244 ObjCMessageExpr::ObjCMessageExpr(QualType T,
   3245                                  ExprValueKind VK,
   3246                                  SourceLocation LBracLoc,
   3247                                  SourceLocation SuperLoc,
   3248                                  bool IsInstanceSuper,
   3249                                  QualType SuperType,
   3250                                  Selector Sel,
   3251                                  ArrayRef<SourceLocation> SelLocs,
   3252                                  SelectorLocationsKind SelLocsK,
   3253                                  ObjCMethodDecl *Method,
   3254                                  ArrayRef<Expr *> Args,
   3255                                  SourceLocation RBracLoc,
   3256                                  bool isImplicit)
   3257   : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
   3258          /*TypeDependent=*/false, /*ValueDependent=*/false,
   3259          /*InstantiationDependent=*/false,
   3260          /*ContainsUnexpandedParameterPack=*/false),
   3261     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
   3262                                                        : Sel.getAsOpaquePtr())),
   3263     Kind(IsInstanceSuper? SuperInstance : SuperClass),
   3264     HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
   3265     SuperLoc(SuperLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
   3266 {
   3267   initArgsAndSelLocs(Args, SelLocs, SelLocsK);
   3268   setReceiverPointer(SuperType.getAsOpaquePtr());
   3269 }
   3270 
   3271 ObjCMessageExpr::ObjCMessageExpr(QualType T,
   3272                                  ExprValueKind VK,
   3273                                  SourceLocation LBracLoc,
   3274                                  TypeSourceInfo *Receiver,
   3275                                  Selector Sel,
   3276                                  ArrayRef<SourceLocation> SelLocs,
   3277                                  SelectorLocationsKind SelLocsK,
   3278                                  ObjCMethodDecl *Method,
   3279                                  ArrayRef<Expr *> Args,
   3280                                  SourceLocation RBracLoc,
   3281                                  bool isImplicit)
   3282   : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
   3283          T->isDependentType(), T->isInstantiationDependentType(),
   3284          T->containsUnexpandedParameterPack()),
   3285     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
   3286                                                        : Sel.getAsOpaquePtr())),
   3287     Kind(Class),
   3288     HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
   3289     LBracLoc(LBracLoc), RBracLoc(RBracLoc)
   3290 {
   3291   initArgsAndSelLocs(Args, SelLocs, SelLocsK);
   3292   setReceiverPointer(Receiver);
   3293 }
   3294 
   3295 ObjCMessageExpr::ObjCMessageExpr(QualType T,
   3296                                  ExprValueKind VK,
   3297                                  SourceLocation LBracLoc,
   3298                                  Expr *Receiver,
   3299                                  Selector Sel,
   3300                                  ArrayRef<SourceLocation> SelLocs,
   3301                                  SelectorLocationsKind SelLocsK,
   3302                                  ObjCMethodDecl *Method,
   3303                                  ArrayRef<Expr *> Args,
   3304                                  SourceLocation RBracLoc,
   3305                                  bool isImplicit)
   3306   : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
   3307          Receiver->isTypeDependent(),
   3308          Receiver->isInstantiationDependent(),
   3309          Receiver->containsUnexpandedParameterPack()),
   3310     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
   3311                                                        : Sel.getAsOpaquePtr())),
   3312     Kind(Instance),
   3313     HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
   3314     LBracLoc(LBracLoc), RBracLoc(RBracLoc)
   3315 {
   3316   initArgsAndSelLocs(Args, SelLocs, SelLocsK);
   3317   setReceiverPointer(Receiver);
   3318 }
   3319 
   3320 void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef<Expr *> Args,
   3321                                          ArrayRef<SourceLocation> SelLocs,
   3322                                          SelectorLocationsKind SelLocsK) {
   3323   setNumArgs(Args.size());
   3324   Expr **MyArgs = getArgs();
   3325   for (unsigned I = 0; I != Args.size(); ++I) {
   3326     if (Args[I]->isTypeDependent())
   3327       ExprBits.TypeDependent = true;
   3328     if (Args[I]->isValueDependent())
   3329       ExprBits.ValueDependent = true;
   3330     if (Args[I]->isInstantiationDependent())
   3331       ExprBits.InstantiationDependent = true;
   3332     if (Args[I]->containsUnexpandedParameterPack())
   3333       ExprBits.ContainsUnexpandedParameterPack = true;
   3334 
   3335     MyArgs[I] = Args[I];
   3336   }
   3337 
   3338   SelLocsKind = SelLocsK;
   3339   if (!isImplicit()) {
   3340     if (SelLocsK == SelLoc_NonStandard)
   3341       std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs());
   3342   }
   3343 }
   3344 
   3345 ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
   3346                                          ExprValueKind VK,
   3347                                          SourceLocation LBracLoc,
   3348                                          SourceLocation SuperLoc,
   3349                                          bool IsInstanceSuper,
   3350                                          QualType SuperType,
   3351                                          Selector Sel,
   3352                                          ArrayRef<SourceLocation> SelLocs,
   3353                                          ObjCMethodDecl *Method,
   3354                                          ArrayRef<Expr *> Args,
   3355                                          SourceLocation RBracLoc,
   3356                                          bool isImplicit) {
   3357   assert((!SelLocs.empty() || isImplicit) &&
   3358          "No selector locs for non-implicit message");
   3359   ObjCMessageExpr *Mem;
   3360   SelectorLocationsKind SelLocsK = SelectorLocationsKind();
   3361   if (isImplicit)
   3362     Mem = alloc(Context, Args.size(), 0);
   3363   else
   3364     Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
   3365   return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
   3366                                    SuperType, Sel, SelLocs, SelLocsK,
   3367                                    Method, Args, RBracLoc, isImplicit);
   3368 }
   3369 
   3370 ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
   3371                                          ExprValueKind VK,
   3372                                          SourceLocation LBracLoc,
   3373                                          TypeSourceInfo *Receiver,
   3374                                          Selector Sel,
   3375                                          ArrayRef<SourceLocation> SelLocs,
   3376                                          ObjCMethodDecl *Method,
   3377                                          ArrayRef<Expr *> Args,
   3378                                          SourceLocation RBracLoc,
   3379                                          bool isImplicit) {
   3380   assert((!SelLocs.empty() || isImplicit) &&
   3381          "No selector locs for non-implicit message");
   3382   ObjCMessageExpr *Mem;
   3383   SelectorLocationsKind SelLocsK = SelectorLocationsKind();
   3384   if (isImplicit)
   3385     Mem = alloc(Context, Args.size(), 0);
   3386   else
   3387     Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
   3388   return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
   3389                                    SelLocs, SelLocsK, Method, Args, RBracLoc,
   3390                                    isImplicit);
   3391 }
   3392 
   3393 ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
   3394                                          ExprValueKind VK,
   3395                                          SourceLocation LBracLoc,
   3396                                          Expr *Receiver,
   3397                                          Selector Sel,
   3398                                          ArrayRef<SourceLocation> SelLocs,
   3399                                          ObjCMethodDecl *Method,
   3400                                          ArrayRef<Expr *> Args,
   3401                                          SourceLocation RBracLoc,
   3402                                          bool isImplicit) {
   3403   assert((!SelLocs.empty() || isImplicit) &&
   3404          "No selector locs for non-implicit message");
   3405   ObjCMessageExpr *Mem;
   3406   SelectorLocationsKind SelLocsK = SelectorLocationsKind();
   3407   if (isImplicit)
   3408     Mem = alloc(Context, Args.size(), 0);
   3409   else
   3410     Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
   3411   return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
   3412                                    SelLocs, SelLocsK, Method, Args, RBracLoc,
   3413                                    isImplicit);
   3414 }
   3415 
   3416 ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context,
   3417                                               unsigned NumArgs,
   3418                                               unsigned NumStoredSelLocs) {
   3419   ObjCMessageExpr *Mem = alloc(Context, NumArgs, NumStoredSelLocs);
   3420   return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
   3421 }
   3422 
   3423 ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C,
   3424                                         ArrayRef<Expr *> Args,
   3425                                         SourceLocation RBraceLoc,
   3426                                         ArrayRef<SourceLocation> SelLocs,
   3427                                         Selector Sel,
   3428                                         SelectorLocationsKind &SelLocsK) {
   3429   SelLocsK = hasStandardSelectorLocs(Sel, SelLocs, Args, RBraceLoc);
   3430   unsigned NumStoredSelLocs = (SelLocsK == SelLoc_NonStandard) ? SelLocs.size()
   3431                                                                : 0;
   3432   return alloc(C, Args.size(), NumStoredSelLocs);
   3433 }
   3434 
   3435 ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C,
   3436                                         unsigned NumArgs,
   3437                                         unsigned NumStoredSelLocs) {
   3438   unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
   3439     NumArgs * sizeof(Expr *) + NumStoredSelLocs * sizeof(SourceLocation);
   3440   return (ObjCMessageExpr *)C.Allocate(Size,
   3441                                      llvm::AlignOf<ObjCMessageExpr>::Alignment);
   3442 }
   3443 
   3444 void ObjCMessageExpr::getSelectorLocs(
   3445                                SmallVectorImpl<SourceLocation> &SelLocs) const {
   3446   for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i)
   3447     SelLocs.push_back(getSelectorLoc(i));
   3448 }
   3449 
   3450 SourceRange ObjCMessageExpr::getReceiverRange() const {
   3451   switch (getReceiverKind()) {
   3452   case Instance:
   3453     return getInstanceReceiver()->getSourceRange();
   3454 
   3455   case Class:
   3456     return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
   3457 
   3458   case SuperInstance:
   3459   case SuperClass:
   3460     return getSuperLoc();
   3461   }
   3462 
   3463   llvm_unreachable("Invalid ReceiverKind!");
   3464 }
   3465 
   3466 Selector ObjCMessageExpr::getSelector() const {
   3467   if (HasMethod)
   3468     return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
   3469                                                                ->getSelector();
   3470   return Selector(SelectorOrMethod);
   3471 }
   3472 
   3473 QualType ObjCMessageExpr::getReceiverType() const {
   3474   switch (getReceiverKind()) {
   3475   case Instance:
   3476     return getInstanceReceiver()->getType();
   3477   case Class:
   3478     return getClassReceiver();
   3479   case SuperInstance:
   3480   case SuperClass:
   3481     return getSuperType();
   3482   }
   3483 
   3484   llvm_unreachable("unexpected receiver kind");
   3485 }
   3486 
   3487 ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
   3488   QualType T = getReceiverType();
   3489 
   3490   if (const ObjCObjectPointerType *Ptr = T->getAs<ObjCObjectPointerType>())
   3491     return Ptr->getInterfaceDecl();
   3492 
   3493   if (const ObjCObjectType *Ty = T->getAs<ObjCObjectType>())
   3494     return Ty->getInterface();
   3495 
   3496   return 0;
   3497 }
   3498 
   3499 StringRef ObjCBridgedCastExpr::getBridgeKindName() const {
   3500   switch (getBridgeKind()) {
   3501   case OBC_Bridge:
   3502     return "__bridge";
   3503   case OBC_BridgeTransfer:
   3504     return "__bridge_transfer";
   3505   case OBC_BridgeRetained:
   3506     return "__bridge_retained";
   3507   }
   3508 
   3509   llvm_unreachable("Invalid BridgeKind!");
   3510 }
   3511 
   3512 bool ChooseExpr::isConditionTrue(const ASTContext &C) const {
   3513   return getCond()->EvaluateKnownConstInt(C) != 0;
   3514 }
   3515 
   3516 ShuffleVectorExpr::ShuffleVectorExpr(ASTContext &C, ArrayRef<Expr*> args,
   3517                                      QualType Type, SourceLocation BLoc,
   3518                                      SourceLocation RP)
   3519    : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
   3520           Type->isDependentType(), Type->isDependentType(),
   3521           Type->isInstantiationDependentType(),
   3522           Type->containsUnexpandedParameterPack()),
   3523      BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
   3524 {
   3525   SubExprs = new (C) Stmt*[args.size()];
   3526   for (unsigned i = 0; i != args.size(); i++) {
   3527     if (args[i]->isTypeDependent())
   3528       ExprBits.TypeDependent = true;
   3529     if (args[i]->isValueDependent())
   3530       ExprBits.ValueDependent = true;
   3531     if (args[i]->isInstantiationDependent())
   3532       ExprBits.InstantiationDependent = true;
   3533     if (args[i]->containsUnexpandedParameterPack())
   3534       ExprBits.ContainsUnexpandedParameterPack = true;
   3535 
   3536     SubExprs[i] = args[i];
   3537   }
   3538 }
   3539 
   3540 void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
   3541                                  unsigned NumExprs) {
   3542   if (SubExprs) C.Deallocate(SubExprs);
   3543 
   3544   SubExprs = new (C) Stmt* [NumExprs];
   3545   this->NumExprs = NumExprs;
   3546   memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
   3547 }
   3548 
   3549 GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
   3550                                SourceLocation GenericLoc, Expr *ControllingExpr,
   3551                                ArrayRef<TypeSourceInfo*> AssocTypes,
   3552                                ArrayRef<Expr*> AssocExprs,
   3553                                SourceLocation DefaultLoc,
   3554                                SourceLocation RParenLoc,
   3555                                bool ContainsUnexpandedParameterPack,
   3556                                unsigned ResultIndex)
   3557   : Expr(GenericSelectionExprClass,
   3558          AssocExprs[ResultIndex]->getType(),
   3559          AssocExprs[ResultIndex]->getValueKind(),
   3560          AssocExprs[ResultIndex]->getObjectKind(),
   3561          AssocExprs[ResultIndex]->isTypeDependent(),
   3562          AssocExprs[ResultIndex]->isValueDependent(),
   3563          AssocExprs[ResultIndex]->isInstantiationDependent(),
   3564          ContainsUnexpandedParameterPack),
   3565     AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
   3566     SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
   3567     NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
   3568     GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
   3569   SubExprs[CONTROLLING] = ControllingExpr;
   3570   assert(AssocTypes.size() == AssocExprs.size());
   3571   std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
   3572   std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
   3573 }
   3574 
   3575 GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
   3576                                SourceLocation GenericLoc, Expr *ControllingExpr,
   3577                                ArrayRef<TypeSourceInfo*> AssocTypes,
   3578                                ArrayRef<Expr*> AssocExprs,
   3579                                SourceLocation DefaultLoc,
   3580                                SourceLocation RParenLoc,
   3581                                bool ContainsUnexpandedParameterPack)
   3582   : Expr(GenericSelectionExprClass,
   3583          Context.DependentTy,
   3584          VK_RValue,
   3585          OK_Ordinary,
   3586          /*isTypeDependent=*/true,
   3587          /*isValueDependent=*/true,
   3588          /*isInstantiationDependent=*/true,
   3589          ContainsUnexpandedParameterPack),
   3590     AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
   3591     SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
   3592     NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc),
   3593     DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
   3594   SubExprs[CONTROLLING] = ControllingExpr;
   3595   assert(AssocTypes.size() == AssocExprs.size());
   3596   std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
   3597   std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
   3598 }
   3599 
   3600 //===----------------------------------------------------------------------===//
   3601 //  DesignatedInitExpr
   3602 //===----------------------------------------------------------------------===//
   3603 
   3604 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
   3605   assert(Kind == FieldDesignator && "Only valid on a field designator");
   3606   if (Field.NameOrField & 0x01)
   3607     return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
   3608   else
   3609     return getField()->getIdentifier();
   3610 }
   3611 
   3612 DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
   3613                                        unsigned NumDesignators,
   3614                                        const Designator *Designators,
   3615                                        SourceLocation EqualOrColonLoc,
   3616                                        bool GNUSyntax,
   3617                                        ArrayRef<Expr*> IndexExprs,
   3618                                        Expr *Init)
   3619   : Expr(DesignatedInitExprClass, Ty,
   3620          Init->getValueKind(), Init->getObjectKind(),
   3621          Init->isTypeDependent(), Init->isValueDependent(),
   3622          Init->isInstantiationDependent(),
   3623          Init->containsUnexpandedParameterPack()),
   3624     EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
   3625     NumDesignators(NumDesignators), NumSubExprs(IndexExprs.size() + 1) {
   3626   this->Designators = new (C) Designator[NumDesignators];
   3627 
   3628   // Record the initializer itself.
   3629   child_range Child = children();
   3630   *Child++ = Init;
   3631 
   3632   // Copy the designators and their subexpressions, computing
   3633   // value-dependence along the way.
   3634   unsigned IndexIdx = 0;
   3635   for (unsigned I = 0; I != NumDesignators; ++I) {
   3636     this->Designators[I] = Designators[I];
   3637 
   3638     if (this->Designators[I].isArrayDesignator()) {
   3639       // Compute type- and value-dependence.
   3640       Expr *Index = IndexExprs[IndexIdx];
   3641       if (Index->isTypeDependent() || Index->isValueDependent())
   3642         ExprBits.ValueDependent = true;
   3643       if (Index->isInstantiationDependent())
   3644         ExprBits.InstantiationDependent = true;
   3645       // Propagate unexpanded parameter packs.
   3646       if (Index->containsUnexpandedParameterPack())
   3647         ExprBits.ContainsUnexpandedParameterPack = true;
   3648 
   3649       // Copy the index expressions into permanent storage.
   3650       *Child++ = IndexExprs[IndexIdx++];
   3651     } else if (this->Designators[I].isArrayRangeDesignator()) {
   3652       // Compute type- and value-dependence.
   3653       Expr *Start = IndexExprs[IndexIdx];
   3654       Expr *End = IndexExprs[IndexIdx + 1];
   3655       if (Start->isTypeDependent() || Start->isValueDependent() ||
   3656           End->isTypeDependent() || End->isValueDependent()) {
   3657         ExprBits.ValueDependent = true;
   3658         ExprBits.InstantiationDependent = true;
   3659       } else if (Start->isInstantiationDependent() ||
   3660                  End->isInstantiationDependent()) {
   3661         ExprBits.InstantiationDependent = true;
   3662       }
   3663 
   3664       // Propagate unexpanded parameter packs.
   3665       if (Start->containsUnexpandedParameterPack() ||
   3666           End->containsUnexpandedParameterPack())
   3667         ExprBits.ContainsUnexpandedParameterPack = true;
   3668 
   3669       // Copy the start/end expressions into permanent storage.
   3670       *Child++ = IndexExprs[IndexIdx++];
   3671       *Child++ = IndexExprs[IndexIdx++];
   3672     }
   3673   }
   3674 
   3675   assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
   3676 }
   3677 
   3678 DesignatedInitExpr *
   3679 DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
   3680                            unsigned NumDesignators,
   3681                            ArrayRef<Expr*> IndexExprs,
   3682                            SourceLocation ColonOrEqualLoc,
   3683                            bool UsesColonSyntax, Expr *Init) {
   3684   void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
   3685                          sizeof(Stmt *) * (IndexExprs.size() + 1), 8);
   3686   return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
   3687                                       ColonOrEqualLoc, UsesColonSyntax,
   3688                                       IndexExprs, Init);
   3689 }
   3690 
   3691 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
   3692                                                     unsigned NumIndexExprs) {
   3693   void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
   3694                          sizeof(Stmt *) * (NumIndexExprs + 1), 8);
   3695   return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
   3696 }
   3697 
   3698 void DesignatedInitExpr::setDesignators(ASTContext &C,
   3699                                         const Designator *Desigs,
   3700                                         unsigned NumDesigs) {
   3701   Designators = new (C) Designator[NumDesigs];
   3702   NumDesignators = NumDesigs;
   3703   for (unsigned I = 0; I != NumDesigs; ++I)
   3704     Designators[I] = Desigs[I];
   3705 }
   3706 
   3707 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
   3708   DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
   3709   if (size() == 1)
   3710     return DIE->getDesignator(0)->getSourceRange();
   3711   return SourceRange(DIE->getDesignator(0)->getLocStart(),
   3712                      DIE->getDesignator(size()-1)->getLocEnd());
   3713 }
   3714 
   3715 SourceLocation DesignatedInitExpr::getLocStart() const {
   3716   SourceLocation StartLoc;
   3717   Designator &First =
   3718     *const_cast<DesignatedInitExpr*>(this)->designators_begin();
   3719   if (First.isFieldDesignator()) {
   3720     if (GNUSyntax)
   3721       StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
   3722     else
   3723       StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
   3724   } else
   3725     StartLoc =
   3726       SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
   3727   return StartLoc;
   3728 }
   3729 
   3730 SourceLocation DesignatedInitExpr::getLocEnd() const {
   3731   return getInit()->getLocEnd();
   3732 }
   3733 
   3734 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
   3735   assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
   3736   char *Ptr = static_cast<char *>(
   3737                   const_cast<void *>(static_cast<const void *>(this)));
   3738   Ptr += sizeof(DesignatedInitExpr);
   3739   Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
   3740   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
   3741 }
   3742 
   3743 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
   3744   assert(D.Kind == Designator::ArrayRangeDesignator &&
   3745          "Requires array range designator");
   3746   char *Ptr = static_cast<char *>(
   3747                   const_cast<void *>(static_cast<const void *>(this)));
   3748   Ptr += sizeof(DesignatedInitExpr);
   3749   Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
   3750   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
   3751 }
   3752 
   3753 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
   3754   assert(D.Kind == Designator::ArrayRangeDesignator &&
   3755          "Requires array range designator");
   3756   char *Ptr = static_cast<char *>(
   3757                   const_cast<void *>(static_cast<const void *>(this)));
   3758   Ptr += sizeof(DesignatedInitExpr);
   3759   Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
   3760   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
   3761 }
   3762 
   3763 /// \brief Replaces the designator at index @p Idx with the series
   3764 /// of designators in [First, Last).
   3765 void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
   3766                                           const Designator *First,
   3767                                           const Designator *Last) {
   3768   unsigned NumNewDesignators = Last - First;
   3769   if (NumNewDesignators == 0) {
   3770     std::copy_backward(Designators + Idx + 1,
   3771                        Designators + NumDesignators,
   3772                        Designators + Idx);
   3773     --NumNewDesignators;
   3774     return;
   3775   } else if (NumNewDesignators == 1) {
   3776     Designators[Idx] = *First;
   3777     return;
   3778   }
   3779 
   3780   Designator *NewDesignators
   3781     = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
   3782   std::copy(Designators, Designators + Idx, NewDesignators);
   3783   std::copy(First, Last, NewDesignators + Idx);
   3784   std::copy(Designators + Idx + 1, Designators + NumDesignators,
   3785             NewDesignators + Idx + NumNewDesignators);
   3786   Designators = NewDesignators;
   3787   NumDesignators = NumDesignators - 1 + NumNewDesignators;
   3788 }
   3789 
   3790 ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
   3791                              ArrayRef<Expr*> exprs,
   3792                              SourceLocation rparenloc)
   3793   : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
   3794          false, false, false, false),
   3795     NumExprs(exprs.size()), LParenLoc(lparenloc), RParenLoc(rparenloc) {
   3796   Exprs = new (C) Stmt*[exprs.size()];
   3797   for (unsigned i = 0; i != exprs.size(); ++i) {
   3798     if (exprs[i]->isTypeDependent())
   3799       ExprBits.TypeDependent = true;
   3800     if (exprs[i]->isValueDependent())
   3801       ExprBits.ValueDependent = true;
   3802     if (exprs[i]->isInstantiationDependent())
   3803       ExprBits.InstantiationDependent = true;
   3804     if (exprs[i]->containsUnexpandedParameterPack())
   3805       ExprBits.ContainsUnexpandedParameterPack = true;
   3806 
   3807     Exprs[i] = exprs[i];
   3808   }
   3809 }
   3810 
   3811 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
   3812   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
   3813     e = ewc->getSubExpr();
   3814   if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
   3815     e = m->GetTemporaryExpr();
   3816   e = cast<CXXConstructExpr>(e)->getArg(0);
   3817   while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
   3818     e = ice->getSubExpr();
   3819   return cast<OpaqueValueExpr>(e);
   3820 }
   3821 
   3822 PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &Context, EmptyShell sh,
   3823                                            unsigned numSemanticExprs) {
   3824   void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) +
   3825                                     (1 + numSemanticExprs) * sizeof(Expr*),
   3826                                   llvm::alignOf<PseudoObjectExpr>());
   3827   return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
   3828 }
   3829 
   3830 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
   3831   : Expr(PseudoObjectExprClass, shell) {
   3832   PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
   3833 }
   3834 
   3835 PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &C, Expr *syntax,
   3836                                            ArrayRef<Expr*> semantics,
   3837                                            unsigned resultIndex) {
   3838   assert(syntax && "no syntactic expression!");
   3839   assert(semantics.size() && "no semantic expressions!");
   3840 
   3841   QualType type;
   3842   ExprValueKind VK;
   3843   if (resultIndex == NoResult) {
   3844     type = C.VoidTy;
   3845     VK = VK_RValue;
   3846   } else {
   3847     assert(resultIndex < semantics.size());
   3848     type = semantics[resultIndex]->getType();
   3849     VK = semantics[resultIndex]->getValueKind();
   3850     assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
   3851   }
   3852 
   3853   void *buffer = C.Allocate(sizeof(PseudoObjectExpr) +
   3854                               (1 + semantics.size()) * sizeof(Expr*),
   3855                             llvm::alignOf<PseudoObjectExpr>());
   3856   return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
   3857                                       resultIndex);
   3858 }
   3859 
   3860 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
   3861                                    Expr *syntax, ArrayRef<Expr*> semantics,
   3862                                    unsigned resultIndex)
   3863   : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
   3864          /*filled in at end of ctor*/ false, false, false, false) {
   3865   PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
   3866   PseudoObjectExprBits.ResultIndex = resultIndex + 1;
   3867 
   3868   for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
   3869     Expr *E = (i == 0 ? syntax : semantics[i-1]);
   3870     getSubExprsBuffer()[i] = E;
   3871 
   3872     if (E->isTypeDependent())
   3873       ExprBits.TypeDependent = true;
   3874     if (E->isValueDependent())
   3875       ExprBits.ValueDependent = true;
   3876     if (E->isInstantiationDependent())
   3877       ExprBits.InstantiationDependent = true;
   3878     if (E->containsUnexpandedParameterPack())
   3879       ExprBits.ContainsUnexpandedParameterPack = true;
   3880 
   3881     if (isa<OpaqueValueExpr>(E))
   3882       assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != 0 &&
   3883              "opaque-value semantic expressions for pseudo-object "
   3884              "operations must have sources");
   3885   }
   3886 }
   3887 
   3888 //===----------------------------------------------------------------------===//
   3889 //  ExprIterator.
   3890 //===----------------------------------------------------------------------===//
   3891 
   3892 Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
   3893 Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
   3894 Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
   3895 const Expr* ConstExprIterator::operator[](size_t idx) const {
   3896   return cast<Expr>(I[idx]);
   3897 }
   3898 const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
   3899 const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
   3900 
   3901 //===----------------------------------------------------------------------===//
   3902 //  Child Iterators for iterating over subexpressions/substatements
   3903 //===----------------------------------------------------------------------===//
   3904 
   3905 // UnaryExprOrTypeTraitExpr
   3906 Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
   3907   // If this is of a type and the type is a VLA type (and not a typedef), the
   3908   // size expression of the VLA needs to be treated as an executable expression.
   3909   // Why isn't this weirdness documented better in StmtIterator?
   3910   if (isArgumentType()) {
   3911     if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
   3912                                    getArgumentType().getTypePtr()))
   3913       return child_range(child_iterator(T), child_iterator());
   3914     return child_range();
   3915   }
   3916   return child_range(&Argument.Ex, &Argument.Ex + 1);
   3917 }
   3918 
   3919 // ObjCMessageExpr
   3920 Stmt::child_range ObjCMessageExpr::children() {
   3921   Stmt **begin;
   3922   if (getReceiverKind() == Instance)
   3923     begin = reinterpret_cast<Stmt **>(this + 1);
   3924   else
   3925     begin = reinterpret_cast<Stmt **>(getArgs());
   3926   return child_range(begin,
   3927                      reinterpret_cast<Stmt **>(getArgs() + getNumArgs()));
   3928 }
   3929 
   3930 ObjCArrayLiteral::ObjCArrayLiteral(ArrayRef<Expr *> Elements,
   3931                                    QualType T, ObjCMethodDecl *Method,
   3932                                    SourceRange SR)
   3933   : Expr(ObjCArrayLiteralClass, T, VK_RValue, OK_Ordinary,
   3934          false, false, false, false),
   3935     NumElements(Elements.size()), Range(SR), ArrayWithObjectsMethod(Method)
   3936 {
   3937   Expr **SaveElements = getElements();
   3938   for (unsigned I = 0, N = Elements.size(); I != N; ++I) {
   3939     if (Elements[I]->isTypeDependent() || Elements[I]->isValueDependent())
   3940       ExprBits.ValueDependent = true;
   3941     if (Elements[I]->isInstantiationDependent())
   3942       ExprBits.InstantiationDependent = true;
   3943     if (Elements[I]->containsUnexpandedParameterPack())
   3944       ExprBits.ContainsUnexpandedParameterPack = true;
   3945 
   3946     SaveElements[I] = Elements[I];
   3947   }
   3948 }
   3949 
   3950 ObjCArrayLiteral *ObjCArrayLiteral::Create(ASTContext &C,
   3951                                            ArrayRef<Expr *> Elements,
   3952                                            QualType T, ObjCMethodDecl * Method,
   3953                                            SourceRange SR) {
   3954   void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
   3955                          + Elements.size() * sizeof(Expr *));
   3956   return new (Mem) ObjCArrayLiteral(Elements, T, Method, SR);
   3957 }
   3958 
   3959 ObjCArrayLiteral *ObjCArrayLiteral::CreateEmpty(ASTContext &C,
   3960                                                 unsigned NumElements) {
   3961 
   3962   void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
   3963                          + NumElements * sizeof(Expr *));
   3964   return new (Mem) ObjCArrayLiteral(EmptyShell(), NumElements);
   3965 }
   3966 
   3967 ObjCDictionaryLiteral::ObjCDictionaryLiteral(
   3968                                              ArrayRef<ObjCDictionaryElement> VK,
   3969                                              bool HasPackExpansions,
   3970                                              QualType T, ObjCMethodDecl *method,
   3971                                              SourceRange SR)
   3972   : Expr(ObjCDictionaryLiteralClass, T, VK_RValue, OK_Ordinary, false, false,
   3973          false, false),
   3974     NumElements(VK.size()), HasPackExpansions(HasPackExpansions), Range(SR),
   3975     DictWithObjectsMethod(method)
   3976 {
   3977   KeyValuePair *KeyValues = getKeyValues();
   3978   ExpansionData *Expansions = getExpansionData();
   3979   for (unsigned I = 0; I < NumElements; I++) {
   3980     if (VK[I].Key->isTypeDependent() || VK[I].Key->isValueDependent() ||
   3981         VK[I].Value->isTypeDependent() || VK[I].Value->isValueDependent())
   3982       ExprBits.ValueDependent = true;
   3983     if (VK[I].Key->isInstantiationDependent() ||
   3984         VK[I].Value->isInstantiationDependent())
   3985       ExprBits.InstantiationDependent = true;
   3986     if (VK[I].EllipsisLoc.isInvalid() &&
   3987         (VK[I].Key->containsUnexpandedParameterPack() ||
   3988          VK[I].Value->containsUnexpandedParameterPack()))
   3989       ExprBits.ContainsUnexpandedParameterPack = true;
   3990 
   3991     KeyValues[I].Key = VK[I].Key;
   3992     KeyValues[I].Value = VK[I].Value;
   3993     if (Expansions) {
   3994       Expansions[I].EllipsisLoc = VK[I].EllipsisLoc;
   3995       if (VK[I].NumExpansions)
   3996         Expansions[I].NumExpansionsPlusOne = *VK[I].NumExpansions + 1;
   3997       else
   3998         Expansions[I].NumExpansionsPlusOne = 0;
   3999     }
   4000   }
   4001 }
   4002 
   4003 ObjCDictionaryLiteral *
   4004 ObjCDictionaryLiteral::Create(ASTContext &C,
   4005                               ArrayRef<ObjCDictionaryElement> VK,
   4006                               bool HasPackExpansions,
   4007                               QualType T, ObjCMethodDecl *method,
   4008                               SourceRange SR) {
   4009   unsigned ExpansionsSize = 0;
   4010   if (HasPackExpansions)
   4011     ExpansionsSize = sizeof(ExpansionData) * VK.size();
   4012 
   4013   void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
   4014                          sizeof(KeyValuePair) * VK.size() + ExpansionsSize);
   4015   return new (Mem) ObjCDictionaryLiteral(VK, HasPackExpansions, T, method, SR);
   4016 }
   4017 
   4018 ObjCDictionaryLiteral *
   4019 ObjCDictionaryLiteral::CreateEmpty(ASTContext &C, unsigned NumElements,
   4020                                    bool HasPackExpansions) {
   4021   unsigned ExpansionsSize = 0;
   4022   if (HasPackExpansions)
   4023     ExpansionsSize = sizeof(ExpansionData) * NumElements;
   4024   void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
   4025                          sizeof(KeyValuePair) * NumElements + ExpansionsSize);
   4026   return new (Mem) ObjCDictionaryLiteral(EmptyShell(), NumElements,
   4027                                          HasPackExpansions);
   4028 }
   4029 
   4030 ObjCSubscriptRefExpr *ObjCSubscriptRefExpr::Create(ASTContext &C,
   4031                                                    Expr *base,
   4032                                                    Expr *key, QualType T,
   4033                                                    ObjCMethodDecl *getMethod,
   4034                                                    ObjCMethodDecl *setMethod,
   4035                                                    SourceLocation RB) {
   4036   void *Mem = C.Allocate(sizeof(ObjCSubscriptRefExpr));
   4037   return new (Mem) ObjCSubscriptRefExpr(base, key, T, VK_LValue,
   4038                                         OK_ObjCSubscript,
   4039                                         getMethod, setMethod, RB);
   4040 }
   4041 
   4042 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args,
   4043                        QualType t, AtomicOp op, SourceLocation RP)
   4044   : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
   4045          false, false, false, false),
   4046     NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
   4047 {
   4048   assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
   4049   for (unsigned i = 0; i != args.size(); i++) {
   4050     if (args[i]->isTypeDependent())
   4051       ExprBits.TypeDependent = true;
   4052     if (args[i]->isValueDependent())
   4053       ExprBits.ValueDependent = true;
   4054     if (args[i]->isInstantiationDependent())
   4055       ExprBits.InstantiationDependent = true;
   4056     if (args[i]->containsUnexpandedParameterPack())
   4057       ExprBits.ContainsUnexpandedParameterPack = true;
   4058 
   4059     SubExprs[i] = args[i];
   4060   }
   4061 }
   4062 
   4063 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
   4064   switch (Op) {
   4065   case AO__c11_atomic_init:
   4066   case AO__c11_atomic_load:
   4067   case AO__atomic_load_n:
   4068     return 2;
   4069 
   4070   case AO__c11_atomic_store:
   4071   case AO__c11_atomic_exchange:
   4072   case AO__atomic_load:
   4073   case AO__atomic_store:
   4074   case AO__atomic_store_n:
   4075   case AO__atomic_exchange_n:
   4076   case AO__c11_atomic_fetch_add:
   4077   case AO__c11_atomic_fetch_sub:
   4078   case AO__c11_atomic_fetch_and:
   4079   case AO__c11_atomic_fetch_or:
   4080   case AO__c11_atomic_fetch_xor:
   4081   case AO__atomic_fetch_add:
   4082   case AO__atomic_fetch_sub:
   4083   case AO__atomic_fetch_and:
   4084   case AO__atomic_fetch_or:
   4085   case AO__atomic_fetch_xor:
   4086   case AO__atomic_fetch_nand:
   4087   case AO__atomic_add_fetch:
   4088   case AO__atomic_sub_fetch:
   4089   case AO__atomic_and_fetch:
   4090   case AO__atomic_or_fetch:
   4091   case AO__atomic_xor_fetch:
   4092   case AO__atomic_nand_fetch:
   4093     return 3;
   4094 
   4095   case AO__atomic_exchange:
   4096     return 4;
   4097 
   4098   case AO__c11_atomic_compare_exchange_strong:
   4099   case AO__c11_atomic_compare_exchange_weak:
   4100     return 5;
   4101 
   4102   case AO__atomic_compare_exchange:
   4103   case AO__atomic_compare_exchange_n:
   4104     return 6;
   4105   }
   4106   llvm_unreachable("unknown atomic op");
   4107 }
   4108