Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGException.cpp - Emit LLVM Code for C++ exceptions --------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code dealing with C++ exception related code generation.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenFunction.h"
     15 #include "CGCleanup.h"
     16 #include "CGObjCRuntime.h"
     17 #include "TargetInfo.h"
     18 #include "clang/AST/StmtCXX.h"
     19 #include "clang/AST/StmtObjC.h"
     20 #include "llvm/IR/Intrinsics.h"
     21 #include "llvm/Support/CallSite.h"
     22 
     23 using namespace clang;
     24 using namespace CodeGen;
     25 
     26 static llvm::Constant *getAllocateExceptionFn(CodeGenModule &CGM) {
     27   // void *__cxa_allocate_exception(size_t thrown_size);
     28 
     29   llvm::FunctionType *FTy =
     30     llvm::FunctionType::get(CGM.Int8PtrTy, CGM.SizeTy, /*IsVarArgs=*/false);
     31 
     32   return CGM.CreateRuntimeFunction(FTy, "__cxa_allocate_exception");
     33 }
     34 
     35 static llvm::Constant *getFreeExceptionFn(CodeGenModule &CGM) {
     36   // void __cxa_free_exception(void *thrown_exception);
     37 
     38   llvm::FunctionType *FTy =
     39     llvm::FunctionType::get(CGM.VoidTy, CGM.Int8PtrTy, /*IsVarArgs=*/false);
     40 
     41   return CGM.CreateRuntimeFunction(FTy, "__cxa_free_exception");
     42 }
     43 
     44 static llvm::Constant *getThrowFn(CodeGenModule &CGM) {
     45   // void __cxa_throw(void *thrown_exception, std::type_info *tinfo,
     46   //                  void (*dest) (void *));
     47 
     48   llvm::Type *Args[3] = { CGM.Int8PtrTy, CGM.Int8PtrTy, CGM.Int8PtrTy };
     49   llvm::FunctionType *FTy =
     50     llvm::FunctionType::get(CGM.VoidTy, Args, /*IsVarArgs=*/false);
     51 
     52   return CGM.CreateRuntimeFunction(FTy, "__cxa_throw");
     53 }
     54 
     55 static llvm::Constant *getReThrowFn(CodeGenModule &CGM) {
     56   // void __cxa_rethrow();
     57 
     58   llvm::FunctionType *FTy =
     59     llvm::FunctionType::get(CGM.VoidTy, /*IsVarArgs=*/false);
     60 
     61   return CGM.CreateRuntimeFunction(FTy, "__cxa_rethrow");
     62 }
     63 
     64 static llvm::Constant *getGetExceptionPtrFn(CodeGenModule &CGM) {
     65   // void *__cxa_get_exception_ptr(void*);
     66 
     67   llvm::FunctionType *FTy =
     68     llvm::FunctionType::get(CGM.Int8PtrTy, CGM.Int8PtrTy, /*IsVarArgs=*/false);
     69 
     70   return CGM.CreateRuntimeFunction(FTy, "__cxa_get_exception_ptr");
     71 }
     72 
     73 static llvm::Constant *getBeginCatchFn(CodeGenModule &CGM) {
     74   // void *__cxa_begin_catch(void*);
     75 
     76   llvm::FunctionType *FTy =
     77     llvm::FunctionType::get(CGM.Int8PtrTy, CGM.Int8PtrTy, /*IsVarArgs=*/false);
     78 
     79   return CGM.CreateRuntimeFunction(FTy, "__cxa_begin_catch");
     80 }
     81 
     82 static llvm::Constant *getEndCatchFn(CodeGenModule &CGM) {
     83   // void __cxa_end_catch();
     84 
     85   llvm::FunctionType *FTy =
     86     llvm::FunctionType::get(CGM.VoidTy, /*IsVarArgs=*/false);
     87 
     88   return CGM.CreateRuntimeFunction(FTy, "__cxa_end_catch");
     89 }
     90 
     91 static llvm::Constant *getUnexpectedFn(CodeGenModule &CGM) {
     92   // void __cxa_call_unexepcted(void *thrown_exception);
     93 
     94   llvm::FunctionType *FTy =
     95     llvm::FunctionType::get(CGM.VoidTy, CGM.Int8PtrTy, /*IsVarArgs=*/false);
     96 
     97   return CGM.CreateRuntimeFunction(FTy, "__cxa_call_unexpected");
     98 }
     99 
    100 llvm::Constant *CodeGenFunction::getUnwindResumeFn() {
    101   llvm::FunctionType *FTy =
    102     llvm::FunctionType::get(VoidTy, Int8PtrTy, /*IsVarArgs=*/false);
    103 
    104   if (CGM.getLangOpts().SjLjExceptions)
    105     return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume");
    106   return CGM.CreateRuntimeFunction(FTy, "_Unwind_Resume");
    107 }
    108 
    109 llvm::Constant *CodeGenFunction::getUnwindResumeOrRethrowFn() {
    110   llvm::FunctionType *FTy =
    111     llvm::FunctionType::get(VoidTy, Int8PtrTy, /*IsVarArgs=*/false);
    112 
    113   if (CGM.getLangOpts().SjLjExceptions)
    114     return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume_or_Rethrow");
    115   return CGM.CreateRuntimeFunction(FTy, "_Unwind_Resume_or_Rethrow");
    116 }
    117 
    118 static llvm::Constant *getTerminateFn(CodeGenModule &CGM) {
    119   // void __terminate();
    120 
    121   llvm::FunctionType *FTy =
    122     llvm::FunctionType::get(CGM.VoidTy, /*IsVarArgs=*/false);
    123 
    124   StringRef name;
    125 
    126   // In C++, use std::terminate().
    127   if (CGM.getLangOpts().CPlusPlus)
    128     name = "_ZSt9terminatev"; // FIXME: mangling!
    129   else if (CGM.getLangOpts().ObjC1 &&
    130            CGM.getLangOpts().ObjCRuntime.hasTerminate())
    131     name = "objc_terminate";
    132   else
    133     name = "abort";
    134   return CGM.CreateRuntimeFunction(FTy, name);
    135 }
    136 
    137 static llvm::Constant *getCatchallRethrowFn(CodeGenModule &CGM,
    138                                             StringRef Name) {
    139   llvm::FunctionType *FTy =
    140     llvm::FunctionType::get(CGM.VoidTy, CGM.Int8PtrTy, /*IsVarArgs=*/false);
    141 
    142   return CGM.CreateRuntimeFunction(FTy, Name);
    143 }
    144 
    145 namespace {
    146   /// The exceptions personality for a function.
    147   struct EHPersonality {
    148     const char *PersonalityFn;
    149 
    150     // If this is non-null, this personality requires a non-standard
    151     // function for rethrowing an exception after a catchall cleanup.
    152     // This function must have prototype void(void*).
    153     const char *CatchallRethrowFn;
    154 
    155     static const EHPersonality &get(const LangOptions &Lang);
    156     static const EHPersonality GNU_C;
    157     static const EHPersonality GNU_C_SJLJ;
    158     static const EHPersonality GNU_ObjC;
    159     static const EHPersonality GNUstep_ObjC;
    160     static const EHPersonality GNU_ObjCXX;
    161     static const EHPersonality NeXT_ObjC;
    162     static const EHPersonality GNU_CPlusPlus;
    163     static const EHPersonality GNU_CPlusPlus_SJLJ;
    164   };
    165 }
    166 
    167 const EHPersonality EHPersonality::GNU_C = { "__gcc_personality_v0", 0 };
    168 const EHPersonality EHPersonality::GNU_C_SJLJ = { "__gcc_personality_sj0", 0 };
    169 const EHPersonality EHPersonality::NeXT_ObjC = { "__objc_personality_v0", 0 };
    170 const EHPersonality EHPersonality::GNU_CPlusPlus = { "__gxx_personality_v0", 0};
    171 const EHPersonality
    172 EHPersonality::GNU_CPlusPlus_SJLJ = { "__gxx_personality_sj0", 0 };
    173 const EHPersonality
    174 EHPersonality::GNU_ObjC = {"__gnu_objc_personality_v0", "objc_exception_throw"};
    175 const EHPersonality
    176 EHPersonality::GNU_ObjCXX = { "__gnustep_objcxx_personality_v0", 0 };
    177 const EHPersonality
    178 EHPersonality::GNUstep_ObjC = { "__gnustep_objc_personality_v0", 0 };
    179 
    180 static const EHPersonality &getCPersonality(const LangOptions &L) {
    181   if (L.SjLjExceptions)
    182     return EHPersonality::GNU_C_SJLJ;
    183   return EHPersonality::GNU_C;
    184 }
    185 
    186 static const EHPersonality &getObjCPersonality(const LangOptions &L) {
    187   switch (L.ObjCRuntime.getKind()) {
    188   case ObjCRuntime::FragileMacOSX:
    189     return getCPersonality(L);
    190   case ObjCRuntime::MacOSX:
    191   case ObjCRuntime::iOS:
    192     return EHPersonality::NeXT_ObjC;
    193   case ObjCRuntime::GNUstep:
    194     if (L.ObjCRuntime.getVersion() >= VersionTuple(1, 7))
    195       return EHPersonality::GNUstep_ObjC;
    196     // fallthrough
    197   case ObjCRuntime::GCC:
    198   case ObjCRuntime::ObjFW:
    199     return EHPersonality::GNU_ObjC;
    200   }
    201   llvm_unreachable("bad runtime kind");
    202 }
    203 
    204 static const EHPersonality &getCXXPersonality(const LangOptions &L) {
    205   if (L.SjLjExceptions)
    206     return EHPersonality::GNU_CPlusPlus_SJLJ;
    207   else
    208     return EHPersonality::GNU_CPlusPlus;
    209 }
    210 
    211 /// Determines the personality function to use when both C++
    212 /// and Objective-C exceptions are being caught.
    213 static const EHPersonality &getObjCXXPersonality(const LangOptions &L) {
    214   switch (L.ObjCRuntime.getKind()) {
    215   // The ObjC personality defers to the C++ personality for non-ObjC
    216   // handlers.  Unlike the C++ case, we use the same personality
    217   // function on targets using (backend-driven) SJLJ EH.
    218   case ObjCRuntime::MacOSX:
    219   case ObjCRuntime::iOS:
    220     return EHPersonality::NeXT_ObjC;
    221 
    222   // In the fragile ABI, just use C++ exception handling and hope
    223   // they're not doing crazy exception mixing.
    224   case ObjCRuntime::FragileMacOSX:
    225     return getCXXPersonality(L);
    226 
    227   // The GCC runtime's personality function inherently doesn't support
    228   // mixed EH.  Use the C++ personality just to avoid returning null.
    229   case ObjCRuntime::GCC:
    230   case ObjCRuntime::ObjFW: // XXX: this will change soon
    231     return EHPersonality::GNU_ObjC;
    232   case ObjCRuntime::GNUstep:
    233     return EHPersonality::GNU_ObjCXX;
    234   }
    235   llvm_unreachable("bad runtime kind");
    236 }
    237 
    238 const EHPersonality &EHPersonality::get(const LangOptions &L) {
    239   if (L.CPlusPlus && L.ObjC1)
    240     return getObjCXXPersonality(L);
    241   else if (L.CPlusPlus)
    242     return getCXXPersonality(L);
    243   else if (L.ObjC1)
    244     return getObjCPersonality(L);
    245   else
    246     return getCPersonality(L);
    247 }
    248 
    249 static llvm::Constant *getPersonalityFn(CodeGenModule &CGM,
    250                                         const EHPersonality &Personality) {
    251   llvm::Constant *Fn =
    252     CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.Int32Ty, true),
    253                               Personality.PersonalityFn);
    254   return Fn;
    255 }
    256 
    257 static llvm::Constant *getOpaquePersonalityFn(CodeGenModule &CGM,
    258                                         const EHPersonality &Personality) {
    259   llvm::Constant *Fn = getPersonalityFn(CGM, Personality);
    260   return llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy);
    261 }
    262 
    263 /// Check whether a personality function could reasonably be swapped
    264 /// for a C++ personality function.
    265 static bool PersonalityHasOnlyCXXUses(llvm::Constant *Fn) {
    266   for (llvm::Constant::use_iterator
    267          I = Fn->use_begin(), E = Fn->use_end(); I != E; ++I) {
    268     llvm::User *User = *I;
    269 
    270     // Conditionally white-list bitcasts.
    271     if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(User)) {
    272       if (CE->getOpcode() != llvm::Instruction::BitCast) return false;
    273       if (!PersonalityHasOnlyCXXUses(CE))
    274         return false;
    275       continue;
    276     }
    277 
    278     // Otherwise, it has to be a landingpad instruction.
    279     llvm::LandingPadInst *LPI = dyn_cast<llvm::LandingPadInst>(User);
    280     if (!LPI) return false;
    281 
    282     for (unsigned I = 0, E = LPI->getNumClauses(); I != E; ++I) {
    283       // Look for something that would've been returned by the ObjC
    284       // runtime's GetEHType() method.
    285       llvm::Value *Val = LPI->getClause(I)->stripPointerCasts();
    286       if (LPI->isCatch(I)) {
    287         // Check if the catch value has the ObjC prefix.
    288         if (llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Val))
    289           // ObjC EH selector entries are always global variables with
    290           // names starting like this.
    291           if (GV->getName().startswith("OBJC_EHTYPE"))
    292             return false;
    293       } else {
    294         // Check if any of the filter values have the ObjC prefix.
    295         llvm::Constant *CVal = cast<llvm::Constant>(Val);
    296         for (llvm::User::op_iterator
    297                II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II) {
    298           if (llvm::GlobalVariable *GV =
    299               cast<llvm::GlobalVariable>((*II)->stripPointerCasts()))
    300             // ObjC EH selector entries are always global variables with
    301             // names starting like this.
    302             if (GV->getName().startswith("OBJC_EHTYPE"))
    303               return false;
    304         }
    305       }
    306     }
    307   }
    308 
    309   return true;
    310 }
    311 
    312 /// Try to use the C++ personality function in ObjC++.  Not doing this
    313 /// can cause some incompatibilities with gcc, which is more
    314 /// aggressive about only using the ObjC++ personality in a function
    315 /// when it really needs it.
    316 void CodeGenModule::SimplifyPersonality() {
    317   // If we're not in ObjC++ -fexceptions, there's nothing to do.
    318   if (!LangOpts.CPlusPlus || !LangOpts.ObjC1 || !LangOpts.Exceptions)
    319     return;
    320 
    321   // Both the problem this endeavors to fix and the way the logic
    322   // above works is specific to the NeXT runtime.
    323   if (!LangOpts.ObjCRuntime.isNeXTFamily())
    324     return;
    325 
    326   const EHPersonality &ObjCXX = EHPersonality::get(LangOpts);
    327   const EHPersonality &CXX = getCXXPersonality(LangOpts);
    328   if (&ObjCXX == &CXX)
    329     return;
    330 
    331   assert(std::strcmp(ObjCXX.PersonalityFn, CXX.PersonalityFn) != 0 &&
    332          "Different EHPersonalities using the same personality function.");
    333 
    334   llvm::Function *Fn = getModule().getFunction(ObjCXX.PersonalityFn);
    335 
    336   // Nothing to do if it's unused.
    337   if (!Fn || Fn->use_empty()) return;
    338 
    339   // Can't do the optimization if it has non-C++ uses.
    340   if (!PersonalityHasOnlyCXXUses(Fn)) return;
    341 
    342   // Create the C++ personality function and kill off the old
    343   // function.
    344   llvm::Constant *CXXFn = getPersonalityFn(*this, CXX);
    345 
    346   // This can happen if the user is screwing with us.
    347   if (Fn->getType() != CXXFn->getType()) return;
    348 
    349   Fn->replaceAllUsesWith(CXXFn);
    350   Fn->eraseFromParent();
    351 }
    352 
    353 /// Returns the value to inject into a selector to indicate the
    354 /// presence of a catch-all.
    355 static llvm::Constant *getCatchAllValue(CodeGenFunction &CGF) {
    356   // Possibly we should use @llvm.eh.catch.all.value here.
    357   return llvm::ConstantPointerNull::get(CGF.Int8PtrTy);
    358 }
    359 
    360 namespace {
    361   /// A cleanup to free the exception object if its initialization
    362   /// throws.
    363   struct FreeException : EHScopeStack::Cleanup {
    364     llvm::Value *exn;
    365     FreeException(llvm::Value *exn) : exn(exn) {}
    366     void Emit(CodeGenFunction &CGF, Flags flags) {
    367       CGF.EmitNounwindRuntimeCall(getFreeExceptionFn(CGF.CGM), exn);
    368     }
    369   };
    370 }
    371 
    372 // Emits an exception expression into the given location.  This
    373 // differs from EmitAnyExprToMem only in that, if a final copy-ctor
    374 // call is required, an exception within that copy ctor causes
    375 // std::terminate to be invoked.
    376 static void EmitAnyExprToExn(CodeGenFunction &CGF, const Expr *e,
    377                              llvm::Value *addr) {
    378   // Make sure the exception object is cleaned up if there's an
    379   // exception during initialization.
    380   CGF.pushFullExprCleanup<FreeException>(EHCleanup, addr);
    381   EHScopeStack::stable_iterator cleanup = CGF.EHStack.stable_begin();
    382 
    383   // __cxa_allocate_exception returns a void*;  we need to cast this
    384   // to the appropriate type for the object.
    385   llvm::Type *ty = CGF.ConvertTypeForMem(e->getType())->getPointerTo();
    386   llvm::Value *typedAddr = CGF.Builder.CreateBitCast(addr, ty);
    387 
    388   // FIXME: this isn't quite right!  If there's a final unelided call
    389   // to a copy constructor, then according to [except.terminate]p1 we
    390   // must call std::terminate() if that constructor throws, because
    391   // technically that copy occurs after the exception expression is
    392   // evaluated but before the exception is caught.  But the best way
    393   // to handle that is to teach EmitAggExpr to do the final copy
    394   // differently if it can't be elided.
    395   CGF.EmitAnyExprToMem(e, typedAddr, e->getType().getQualifiers(),
    396                        /*IsInit*/ true);
    397 
    398   // Deactivate the cleanup block.
    399   CGF.DeactivateCleanupBlock(cleanup, cast<llvm::Instruction>(typedAddr));
    400 }
    401 
    402 llvm::Value *CodeGenFunction::getExceptionSlot() {
    403   if (!ExceptionSlot)
    404     ExceptionSlot = CreateTempAlloca(Int8PtrTy, "exn.slot");
    405   return ExceptionSlot;
    406 }
    407 
    408 llvm::Value *CodeGenFunction::getEHSelectorSlot() {
    409   if (!EHSelectorSlot)
    410     EHSelectorSlot = CreateTempAlloca(Int32Ty, "ehselector.slot");
    411   return EHSelectorSlot;
    412 }
    413 
    414 llvm::Value *CodeGenFunction::getExceptionFromSlot() {
    415   return Builder.CreateLoad(getExceptionSlot(), "exn");
    416 }
    417 
    418 llvm::Value *CodeGenFunction::getSelectorFromSlot() {
    419   return Builder.CreateLoad(getEHSelectorSlot(), "sel");
    420 }
    421 
    422 void CodeGenFunction::EmitCXXThrowExpr(const CXXThrowExpr *E) {
    423   if (!E->getSubExpr()) {
    424     EmitNoreturnRuntimeCallOrInvoke(getReThrowFn(CGM),
    425                                     ArrayRef<llvm::Value*>());
    426 
    427     // throw is an expression, and the expression emitters expect us
    428     // to leave ourselves at a valid insertion point.
    429     EmitBlock(createBasicBlock("throw.cont"));
    430 
    431     return;
    432   }
    433 
    434   QualType ThrowType = E->getSubExpr()->getType();
    435 
    436   if (ThrowType->isObjCObjectPointerType()) {
    437     const Stmt *ThrowStmt = E->getSubExpr();
    438     const ObjCAtThrowStmt S(E->getExprLoc(),
    439                             const_cast<Stmt *>(ThrowStmt));
    440     CGM.getObjCRuntime().EmitThrowStmt(*this, S, false);
    441     // This will clear insertion point which was not cleared in
    442     // call to EmitThrowStmt.
    443     EmitBlock(createBasicBlock("throw.cont"));
    444     return;
    445   }
    446 
    447   // Now allocate the exception object.
    448   llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
    449   uint64_t TypeSize = getContext().getTypeSizeInChars(ThrowType).getQuantity();
    450 
    451   llvm::Constant *AllocExceptionFn = getAllocateExceptionFn(CGM);
    452   llvm::CallInst *ExceptionPtr =
    453     EmitNounwindRuntimeCall(AllocExceptionFn,
    454                             llvm::ConstantInt::get(SizeTy, TypeSize),
    455                             "exception");
    456 
    457   EmitAnyExprToExn(*this, E->getSubExpr(), ExceptionPtr);
    458 
    459   // Now throw the exception.
    460   llvm::Constant *TypeInfo = CGM.GetAddrOfRTTIDescriptor(ThrowType,
    461                                                          /*ForEH=*/true);
    462 
    463   // The address of the destructor.  If the exception type has a
    464   // trivial destructor (or isn't a record), we just pass null.
    465   llvm::Constant *Dtor = 0;
    466   if (const RecordType *RecordTy = ThrowType->getAs<RecordType>()) {
    467     CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
    468     if (!Record->hasTrivialDestructor()) {
    469       CXXDestructorDecl *DtorD = Record->getDestructor();
    470       Dtor = CGM.GetAddrOfCXXDestructor(DtorD, Dtor_Complete);
    471       Dtor = llvm::ConstantExpr::getBitCast(Dtor, Int8PtrTy);
    472     }
    473   }
    474   if (!Dtor) Dtor = llvm::Constant::getNullValue(Int8PtrTy);
    475 
    476   llvm::Value *args[] = { ExceptionPtr, TypeInfo, Dtor };
    477   EmitNoreturnRuntimeCallOrInvoke(getThrowFn(CGM), args);
    478 
    479   // throw is an expression, and the expression emitters expect us
    480   // to leave ourselves at a valid insertion point.
    481   EmitBlock(createBasicBlock("throw.cont"));
    482 }
    483 
    484 void CodeGenFunction::EmitStartEHSpec(const Decl *D) {
    485   if (!CGM.getLangOpts().CXXExceptions)
    486     return;
    487 
    488   const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D);
    489   if (FD == 0)
    490     return;
    491   const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>();
    492   if (Proto == 0)
    493     return;
    494 
    495   ExceptionSpecificationType EST = Proto->getExceptionSpecType();
    496   if (isNoexceptExceptionSpec(EST)) {
    497     if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) {
    498       // noexcept functions are simple terminate scopes.
    499       EHStack.pushTerminate();
    500     }
    501   } else if (EST == EST_Dynamic || EST == EST_DynamicNone) {
    502     unsigned NumExceptions = Proto->getNumExceptions();
    503     EHFilterScope *Filter = EHStack.pushFilter(NumExceptions);
    504 
    505     for (unsigned I = 0; I != NumExceptions; ++I) {
    506       QualType Ty = Proto->getExceptionType(I);
    507       QualType ExceptType = Ty.getNonReferenceType().getUnqualifiedType();
    508       llvm::Value *EHType = CGM.GetAddrOfRTTIDescriptor(ExceptType,
    509                                                         /*ForEH=*/true);
    510       Filter->setFilter(I, EHType);
    511     }
    512   }
    513 }
    514 
    515 /// Emit the dispatch block for a filter scope if necessary.
    516 static void emitFilterDispatchBlock(CodeGenFunction &CGF,
    517                                     EHFilterScope &filterScope) {
    518   llvm::BasicBlock *dispatchBlock = filterScope.getCachedEHDispatchBlock();
    519   if (!dispatchBlock) return;
    520   if (dispatchBlock->use_empty()) {
    521     delete dispatchBlock;
    522     return;
    523   }
    524 
    525   CGF.EmitBlockAfterUses(dispatchBlock);
    526 
    527   // If this isn't a catch-all filter, we need to check whether we got
    528   // here because the filter triggered.
    529   if (filterScope.getNumFilters()) {
    530     // Load the selector value.
    531     llvm::Value *selector = CGF.getSelectorFromSlot();
    532     llvm::BasicBlock *unexpectedBB = CGF.createBasicBlock("ehspec.unexpected");
    533 
    534     llvm::Value *zero = CGF.Builder.getInt32(0);
    535     llvm::Value *failsFilter =
    536       CGF.Builder.CreateICmpSLT(selector, zero, "ehspec.fails");
    537     CGF.Builder.CreateCondBr(failsFilter, unexpectedBB, CGF.getEHResumeBlock(false));
    538 
    539     CGF.EmitBlock(unexpectedBB);
    540   }
    541 
    542   // Call __cxa_call_unexpected.  This doesn't need to be an invoke
    543   // because __cxa_call_unexpected magically filters exceptions
    544   // according to the last landing pad the exception was thrown
    545   // into.  Seriously.
    546   llvm::Value *exn = CGF.getExceptionFromSlot();
    547   CGF.EmitRuntimeCall(getUnexpectedFn(CGF.CGM), exn)
    548     ->setDoesNotReturn();
    549   CGF.Builder.CreateUnreachable();
    550 }
    551 
    552 void CodeGenFunction::EmitEndEHSpec(const Decl *D) {
    553   if (!CGM.getLangOpts().CXXExceptions)
    554     return;
    555 
    556   const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D);
    557   if (FD == 0)
    558     return;
    559   const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>();
    560   if (Proto == 0)
    561     return;
    562 
    563   ExceptionSpecificationType EST = Proto->getExceptionSpecType();
    564   if (isNoexceptExceptionSpec(EST)) {
    565     if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) {
    566       EHStack.popTerminate();
    567     }
    568   } else if (EST == EST_Dynamic || EST == EST_DynamicNone) {
    569     EHFilterScope &filterScope = cast<EHFilterScope>(*EHStack.begin());
    570     emitFilterDispatchBlock(*this, filterScope);
    571     EHStack.popFilter();
    572   }
    573 }
    574 
    575 void CodeGenFunction::EmitCXXTryStmt(const CXXTryStmt &S) {
    576   EnterCXXTryStmt(S);
    577   EmitStmt(S.getTryBlock());
    578   ExitCXXTryStmt(S);
    579 }
    580 
    581 void CodeGenFunction::EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) {
    582   unsigned NumHandlers = S.getNumHandlers();
    583   EHCatchScope *CatchScope = EHStack.pushCatch(NumHandlers);
    584 
    585   for (unsigned I = 0; I != NumHandlers; ++I) {
    586     const CXXCatchStmt *C = S.getHandler(I);
    587 
    588     llvm::BasicBlock *Handler = createBasicBlock("catch");
    589     if (C->getExceptionDecl()) {
    590       // FIXME: Dropping the reference type on the type into makes it
    591       // impossible to correctly implement catch-by-reference
    592       // semantics for pointers.  Unfortunately, this is what all
    593       // existing compilers do, and it's not clear that the standard
    594       // personality routine is capable of doing this right.  See C++ DR 388:
    595       //   http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#388
    596       QualType CaughtType = C->getCaughtType();
    597       CaughtType = CaughtType.getNonReferenceType().getUnqualifiedType();
    598 
    599       llvm::Value *TypeInfo = 0;
    600       if (CaughtType->isObjCObjectPointerType())
    601         TypeInfo = CGM.getObjCRuntime().GetEHType(CaughtType);
    602       else
    603         TypeInfo = CGM.GetAddrOfRTTIDescriptor(CaughtType, /*ForEH=*/true);
    604       CatchScope->setHandler(I, TypeInfo, Handler);
    605     } else {
    606       // No exception decl indicates '...', a catch-all.
    607       CatchScope->setCatchAllHandler(I, Handler);
    608     }
    609   }
    610 }
    611 
    612 llvm::BasicBlock *
    613 CodeGenFunction::getEHDispatchBlock(EHScopeStack::stable_iterator si) {
    614   // The dispatch block for the end of the scope chain is a block that
    615   // just resumes unwinding.
    616   if (si == EHStack.stable_end())
    617     return getEHResumeBlock(true);
    618 
    619   // Otherwise, we should look at the actual scope.
    620   EHScope &scope = *EHStack.find(si);
    621 
    622   llvm::BasicBlock *dispatchBlock = scope.getCachedEHDispatchBlock();
    623   if (!dispatchBlock) {
    624     switch (scope.getKind()) {
    625     case EHScope::Catch: {
    626       // Apply a special case to a single catch-all.
    627       EHCatchScope &catchScope = cast<EHCatchScope>(scope);
    628       if (catchScope.getNumHandlers() == 1 &&
    629           catchScope.getHandler(0).isCatchAll()) {
    630         dispatchBlock = catchScope.getHandler(0).Block;
    631 
    632       // Otherwise, make a dispatch block.
    633       } else {
    634         dispatchBlock = createBasicBlock("catch.dispatch");
    635       }
    636       break;
    637     }
    638 
    639     case EHScope::Cleanup:
    640       dispatchBlock = createBasicBlock("ehcleanup");
    641       break;
    642 
    643     case EHScope::Filter:
    644       dispatchBlock = createBasicBlock("filter.dispatch");
    645       break;
    646 
    647     case EHScope::Terminate:
    648       dispatchBlock = getTerminateHandler();
    649       break;
    650     }
    651     scope.setCachedEHDispatchBlock(dispatchBlock);
    652   }
    653   return dispatchBlock;
    654 }
    655 
    656 /// Check whether this is a non-EH scope, i.e. a scope which doesn't
    657 /// affect exception handling.  Currently, the only non-EH scopes are
    658 /// normal-only cleanup scopes.
    659 static bool isNonEHScope(const EHScope &S) {
    660   switch (S.getKind()) {
    661   case EHScope::Cleanup:
    662     return !cast<EHCleanupScope>(S).isEHCleanup();
    663   case EHScope::Filter:
    664   case EHScope::Catch:
    665   case EHScope::Terminate:
    666     return false;
    667   }
    668 
    669   llvm_unreachable("Invalid EHScope Kind!");
    670 }
    671 
    672 llvm::BasicBlock *CodeGenFunction::getInvokeDestImpl() {
    673   assert(EHStack.requiresLandingPad());
    674   assert(!EHStack.empty());
    675 
    676   if (!CGM.getLangOpts().Exceptions)
    677     return 0;
    678 
    679   // Check the innermost scope for a cached landing pad.  If this is
    680   // a non-EH cleanup, we'll check enclosing scopes in EmitLandingPad.
    681   llvm::BasicBlock *LP = EHStack.begin()->getCachedLandingPad();
    682   if (LP) return LP;
    683 
    684   // Build the landing pad for this scope.
    685   LP = EmitLandingPad();
    686   assert(LP);
    687 
    688   // Cache the landing pad on the innermost scope.  If this is a
    689   // non-EH scope, cache the landing pad on the enclosing scope, too.
    690   for (EHScopeStack::iterator ir = EHStack.begin(); true; ++ir) {
    691     ir->setCachedLandingPad(LP);
    692     if (!isNonEHScope(*ir)) break;
    693   }
    694 
    695   return LP;
    696 }
    697 
    698 // This code contains a hack to work around a design flaw in
    699 // LLVM's EH IR which breaks semantics after inlining.  This same
    700 // hack is implemented in llvm-gcc.
    701 //
    702 // The LLVM EH abstraction is basically a thin veneer over the
    703 // traditional GCC zero-cost design: for each range of instructions
    704 // in the function, there is (at most) one "landing pad" with an
    705 // associated chain of EH actions.  A language-specific personality
    706 // function interprets this chain of actions and (1) decides whether
    707 // or not to resume execution at the landing pad and (2) if so,
    708 // provides an integer indicating why it's stopping.  In LLVM IR,
    709 // the association of a landing pad with a range of instructions is
    710 // achieved via an invoke instruction, the chain of actions becomes
    711 // the arguments to the @llvm.eh.selector call, and the selector
    712 // call returns the integer indicator.  Other than the required
    713 // presence of two intrinsic function calls in the landing pad,
    714 // the IR exactly describes the layout of the output code.
    715 //
    716 // A principal advantage of this design is that it is completely
    717 // language-agnostic; in theory, the LLVM optimizers can treat
    718 // landing pads neutrally, and targets need only know how to lower
    719 // the intrinsics to have a functioning exceptions system (assuming
    720 // that platform exceptions follow something approximately like the
    721 // GCC design).  Unfortunately, landing pads cannot be combined in a
    722 // language-agnostic way: given selectors A and B, there is no way
    723 // to make a single landing pad which faithfully represents the
    724 // semantics of propagating an exception first through A, then
    725 // through B, without knowing how the personality will interpret the
    726 // (lowered form of the) selectors.  This means that inlining has no
    727 // choice but to crudely chain invokes (i.e., to ignore invokes in
    728 // the inlined function, but to turn all unwindable calls into
    729 // invokes), which is only semantically valid if every unwind stops
    730 // at every landing pad.
    731 //
    732 // Therefore, the invoke-inline hack is to guarantee that every
    733 // landing pad has a catch-all.
    734 enum CleanupHackLevel_t {
    735   /// A level of hack that requires that all landing pads have
    736   /// catch-alls.
    737   CHL_MandatoryCatchall,
    738 
    739   /// A level of hack that requires that all landing pads handle
    740   /// cleanups.
    741   CHL_MandatoryCleanup,
    742 
    743   /// No hacks at all;  ideal IR generation.
    744   CHL_Ideal
    745 };
    746 const CleanupHackLevel_t CleanupHackLevel = CHL_MandatoryCleanup;
    747 
    748 llvm::BasicBlock *CodeGenFunction::EmitLandingPad() {
    749   assert(EHStack.requiresLandingPad());
    750 
    751   EHScope &innermostEHScope = *EHStack.find(EHStack.getInnermostEHScope());
    752   switch (innermostEHScope.getKind()) {
    753   case EHScope::Terminate:
    754     return getTerminateLandingPad();
    755 
    756   case EHScope::Catch:
    757   case EHScope::Cleanup:
    758   case EHScope::Filter:
    759     if (llvm::BasicBlock *lpad = innermostEHScope.getCachedLandingPad())
    760       return lpad;
    761   }
    762 
    763   // Save the current IR generation state.
    764   CGBuilderTy::InsertPoint savedIP = Builder.saveAndClearIP();
    765 
    766   const EHPersonality &personality = EHPersonality::get(getLangOpts());
    767 
    768   // Create and configure the landing pad.
    769   llvm::BasicBlock *lpad = createBasicBlock("lpad");
    770   EmitBlock(lpad);
    771 
    772   llvm::LandingPadInst *LPadInst =
    773     Builder.CreateLandingPad(llvm::StructType::get(Int8PtrTy, Int32Ty, NULL),
    774                              getOpaquePersonalityFn(CGM, personality), 0);
    775 
    776   llvm::Value *LPadExn = Builder.CreateExtractValue(LPadInst, 0);
    777   Builder.CreateStore(LPadExn, getExceptionSlot());
    778   llvm::Value *LPadSel = Builder.CreateExtractValue(LPadInst, 1);
    779   Builder.CreateStore(LPadSel, getEHSelectorSlot());
    780 
    781   // Save the exception pointer.  It's safe to use a single exception
    782   // pointer per function because EH cleanups can never have nested
    783   // try/catches.
    784   // Build the landingpad instruction.
    785 
    786   // Accumulate all the handlers in scope.
    787   bool hasCatchAll = false;
    788   bool hasCleanup = false;
    789   bool hasFilter = false;
    790   SmallVector<llvm::Value*, 4> filterTypes;
    791   llvm::SmallPtrSet<llvm::Value*, 4> catchTypes;
    792   for (EHScopeStack::iterator I = EHStack.begin(), E = EHStack.end();
    793          I != E; ++I) {
    794 
    795     switch (I->getKind()) {
    796     case EHScope::Cleanup:
    797       // If we have a cleanup, remember that.
    798       hasCleanup = (hasCleanup || cast<EHCleanupScope>(*I).isEHCleanup());
    799       continue;
    800 
    801     case EHScope::Filter: {
    802       assert(I.next() == EHStack.end() && "EH filter is not end of EH stack");
    803       assert(!hasCatchAll && "EH filter reached after catch-all");
    804 
    805       // Filter scopes get added to the landingpad in weird ways.
    806       EHFilterScope &filter = cast<EHFilterScope>(*I);
    807       hasFilter = true;
    808 
    809       // Add all the filter values.
    810       for (unsigned i = 0, e = filter.getNumFilters(); i != e; ++i)
    811         filterTypes.push_back(filter.getFilter(i));
    812       goto done;
    813     }
    814 
    815     case EHScope::Terminate:
    816       // Terminate scopes are basically catch-alls.
    817       assert(!hasCatchAll);
    818       hasCatchAll = true;
    819       goto done;
    820 
    821     case EHScope::Catch:
    822       break;
    823     }
    824 
    825     EHCatchScope &catchScope = cast<EHCatchScope>(*I);
    826     for (unsigned hi = 0, he = catchScope.getNumHandlers(); hi != he; ++hi) {
    827       EHCatchScope::Handler handler = catchScope.getHandler(hi);
    828 
    829       // If this is a catch-all, register that and abort.
    830       if (!handler.Type) {
    831         assert(!hasCatchAll);
    832         hasCatchAll = true;
    833         goto done;
    834       }
    835 
    836       // Check whether we already have a handler for this type.
    837       if (catchTypes.insert(handler.Type))
    838         // If not, add it directly to the landingpad.
    839         LPadInst->addClause(handler.Type);
    840     }
    841   }
    842 
    843  done:
    844   // If we have a catch-all, add null to the landingpad.
    845   assert(!(hasCatchAll && hasFilter));
    846   if (hasCatchAll) {
    847     LPadInst->addClause(getCatchAllValue(*this));
    848 
    849   // If we have an EH filter, we need to add those handlers in the
    850   // right place in the landingpad, which is to say, at the end.
    851   } else if (hasFilter) {
    852     // Create a filter expression: a constant array indicating which filter
    853     // types there are. The personality routine only lands here if the filter
    854     // doesn't match.
    855     SmallVector<llvm::Constant*, 8> Filters;
    856     llvm::ArrayType *AType =
    857       llvm::ArrayType::get(!filterTypes.empty() ?
    858                              filterTypes[0]->getType() : Int8PtrTy,
    859                            filterTypes.size());
    860 
    861     for (unsigned i = 0, e = filterTypes.size(); i != e; ++i)
    862       Filters.push_back(cast<llvm::Constant>(filterTypes[i]));
    863     llvm::Constant *FilterArray = llvm::ConstantArray::get(AType, Filters);
    864     LPadInst->addClause(FilterArray);
    865 
    866     // Also check whether we need a cleanup.
    867     if (hasCleanup)
    868       LPadInst->setCleanup(true);
    869 
    870   // Otherwise, signal that we at least have cleanups.
    871   } else if (CleanupHackLevel == CHL_MandatoryCatchall || hasCleanup) {
    872     if (CleanupHackLevel == CHL_MandatoryCatchall)
    873       LPadInst->addClause(getCatchAllValue(*this));
    874     else
    875       LPadInst->setCleanup(true);
    876   }
    877 
    878   assert((LPadInst->getNumClauses() > 0 || LPadInst->isCleanup()) &&
    879          "landingpad instruction has no clauses!");
    880 
    881   // Tell the backend how to generate the landing pad.
    882   Builder.CreateBr(getEHDispatchBlock(EHStack.getInnermostEHScope()));
    883 
    884   // Restore the old IR generation state.
    885   Builder.restoreIP(savedIP);
    886 
    887   return lpad;
    888 }
    889 
    890 namespace {
    891   /// A cleanup to call __cxa_end_catch.  In many cases, the caught
    892   /// exception type lets us state definitively that the thrown exception
    893   /// type does not have a destructor.  In particular:
    894   ///   - Catch-alls tell us nothing, so we have to conservatively
    895   ///     assume that the thrown exception might have a destructor.
    896   ///   - Catches by reference behave according to their base types.
    897   ///   - Catches of non-record types will only trigger for exceptions
    898   ///     of non-record types, which never have destructors.
    899   ///   - Catches of record types can trigger for arbitrary subclasses
    900   ///     of the caught type, so we have to assume the actual thrown
    901   ///     exception type might have a throwing destructor, even if the
    902   ///     caught type's destructor is trivial or nothrow.
    903   struct CallEndCatch : EHScopeStack::Cleanup {
    904     CallEndCatch(bool MightThrow) : MightThrow(MightThrow) {}
    905     bool MightThrow;
    906 
    907     void Emit(CodeGenFunction &CGF, Flags flags) {
    908       if (!MightThrow) {
    909         CGF.EmitNounwindRuntimeCall(getEndCatchFn(CGF.CGM));
    910         return;
    911       }
    912 
    913       CGF.EmitRuntimeCallOrInvoke(getEndCatchFn(CGF.CGM));
    914     }
    915   };
    916 }
    917 
    918 /// Emits a call to __cxa_begin_catch and enters a cleanup to call
    919 /// __cxa_end_catch.
    920 ///
    921 /// \param EndMightThrow - true if __cxa_end_catch might throw
    922 static llvm::Value *CallBeginCatch(CodeGenFunction &CGF,
    923                                    llvm::Value *Exn,
    924                                    bool EndMightThrow) {
    925   llvm::CallInst *call =
    926     CGF.EmitNounwindRuntimeCall(getBeginCatchFn(CGF.CGM), Exn);
    927 
    928   CGF.EHStack.pushCleanup<CallEndCatch>(NormalAndEHCleanup, EndMightThrow);
    929 
    930   return call;
    931 }
    932 
    933 /// A "special initializer" callback for initializing a catch
    934 /// parameter during catch initialization.
    935 static void InitCatchParam(CodeGenFunction &CGF,
    936                            const VarDecl &CatchParam,
    937                            llvm::Value *ParamAddr) {
    938   // Load the exception from where the landing pad saved it.
    939   llvm::Value *Exn = CGF.getExceptionFromSlot();
    940 
    941   CanQualType CatchType =
    942     CGF.CGM.getContext().getCanonicalType(CatchParam.getType());
    943   llvm::Type *LLVMCatchTy = CGF.ConvertTypeForMem(CatchType);
    944 
    945   // If we're catching by reference, we can just cast the object
    946   // pointer to the appropriate pointer.
    947   if (isa<ReferenceType>(CatchType)) {
    948     QualType CaughtType = cast<ReferenceType>(CatchType)->getPointeeType();
    949     bool EndCatchMightThrow = CaughtType->isRecordType();
    950 
    951     // __cxa_begin_catch returns the adjusted object pointer.
    952     llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, EndCatchMightThrow);
    953 
    954     // We have no way to tell the personality function that we're
    955     // catching by reference, so if we're catching a pointer,
    956     // __cxa_begin_catch will actually return that pointer by value.
    957     if (const PointerType *PT = dyn_cast<PointerType>(CaughtType)) {
    958       QualType PointeeType = PT->getPointeeType();
    959 
    960       // When catching by reference, generally we should just ignore
    961       // this by-value pointer and use the exception object instead.
    962       if (!PointeeType->isRecordType()) {
    963 
    964         // Exn points to the struct _Unwind_Exception header, which
    965         // we have to skip past in order to reach the exception data.
    966         unsigned HeaderSize =
    967           CGF.CGM.getTargetCodeGenInfo().getSizeOfUnwindException();
    968         AdjustedExn = CGF.Builder.CreateConstGEP1_32(Exn, HeaderSize);
    969 
    970       // However, if we're catching a pointer-to-record type that won't
    971       // work, because the personality function might have adjusted
    972       // the pointer.  There's actually no way for us to fully satisfy
    973       // the language/ABI contract here:  we can't use Exn because it
    974       // might have the wrong adjustment, but we can't use the by-value
    975       // pointer because it's off by a level of abstraction.
    976       //
    977       // The current solution is to dump the adjusted pointer into an
    978       // alloca, which breaks language semantics (because changing the
    979       // pointer doesn't change the exception) but at least works.
    980       // The better solution would be to filter out non-exact matches
    981       // and rethrow them, but this is tricky because the rethrow
    982       // really needs to be catchable by other sites at this landing
    983       // pad.  The best solution is to fix the personality function.
    984       } else {
    985         // Pull the pointer for the reference type off.
    986         llvm::Type *PtrTy =
    987           cast<llvm::PointerType>(LLVMCatchTy)->getElementType();
    988 
    989         // Create the temporary and write the adjusted pointer into it.
    990         llvm::Value *ExnPtrTmp = CGF.CreateTempAlloca(PtrTy, "exn.byref.tmp");
    991         llvm::Value *Casted = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy);
    992         CGF.Builder.CreateStore(Casted, ExnPtrTmp);
    993 
    994         // Bind the reference to the temporary.
    995         AdjustedExn = ExnPtrTmp;
    996       }
    997     }
    998 
    999     llvm::Value *ExnCast =
   1000       CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.byref");
   1001     CGF.Builder.CreateStore(ExnCast, ParamAddr);
   1002     return;
   1003   }
   1004 
   1005   // Scalars and complexes.
   1006   TypeEvaluationKind TEK = CGF.getEvaluationKind(CatchType);
   1007   if (TEK != TEK_Aggregate) {
   1008     llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, false);
   1009 
   1010     // If the catch type is a pointer type, __cxa_begin_catch returns
   1011     // the pointer by value.
   1012     if (CatchType->hasPointerRepresentation()) {
   1013       llvm::Value *CastExn =
   1014         CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.casted");
   1015 
   1016       switch (CatchType.getQualifiers().getObjCLifetime()) {
   1017       case Qualifiers::OCL_Strong:
   1018         CastExn = CGF.EmitARCRetainNonBlock(CastExn);
   1019         // fallthrough
   1020 
   1021       case Qualifiers::OCL_None:
   1022       case Qualifiers::OCL_ExplicitNone:
   1023       case Qualifiers::OCL_Autoreleasing:
   1024         CGF.Builder.CreateStore(CastExn, ParamAddr);
   1025         return;
   1026 
   1027       case Qualifiers::OCL_Weak:
   1028         CGF.EmitARCInitWeak(ParamAddr, CastExn);
   1029         return;
   1030       }
   1031       llvm_unreachable("bad ownership qualifier!");
   1032     }
   1033 
   1034     // Otherwise, it returns a pointer into the exception object.
   1035 
   1036     llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok
   1037     llvm::Value *Cast = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy);
   1038 
   1039     LValue srcLV = CGF.MakeNaturalAlignAddrLValue(Cast, CatchType);
   1040     LValue destLV = CGF.MakeAddrLValue(ParamAddr, CatchType,
   1041                                   CGF.getContext().getDeclAlign(&CatchParam));
   1042     switch (TEK) {
   1043     case TEK_Complex:
   1044       CGF.EmitStoreOfComplex(CGF.EmitLoadOfComplex(srcLV), destLV,
   1045                              /*init*/ true);
   1046       return;
   1047     case TEK_Scalar: {
   1048       llvm::Value *ExnLoad = CGF.EmitLoadOfScalar(srcLV);
   1049       CGF.EmitStoreOfScalar(ExnLoad, destLV, /*init*/ true);
   1050       return;
   1051     }
   1052     case TEK_Aggregate:
   1053       llvm_unreachable("evaluation kind filtered out!");
   1054     }
   1055     llvm_unreachable("bad evaluation kind");
   1056   }
   1057 
   1058   assert(isa<RecordType>(CatchType) && "unexpected catch type!");
   1059 
   1060   llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok
   1061 
   1062   // Check for a copy expression.  If we don't have a copy expression,
   1063   // that means a trivial copy is okay.
   1064   const Expr *copyExpr = CatchParam.getInit();
   1065   if (!copyExpr) {
   1066     llvm::Value *rawAdjustedExn = CallBeginCatch(CGF, Exn, true);
   1067     llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy);
   1068     CGF.EmitAggregateCopy(ParamAddr, adjustedExn, CatchType);
   1069     return;
   1070   }
   1071 
   1072   // We have to call __cxa_get_exception_ptr to get the adjusted
   1073   // pointer before copying.
   1074   llvm::CallInst *rawAdjustedExn =
   1075     CGF.EmitNounwindRuntimeCall(getGetExceptionPtrFn(CGF.CGM), Exn);
   1076 
   1077   // Cast that to the appropriate type.
   1078   llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy);
   1079 
   1080   // The copy expression is defined in terms of an OpaqueValueExpr.
   1081   // Find it and map it to the adjusted expression.
   1082   CodeGenFunction::OpaqueValueMapping
   1083     opaque(CGF, OpaqueValueExpr::findInCopyConstruct(copyExpr),
   1084            CGF.MakeAddrLValue(adjustedExn, CatchParam.getType()));
   1085 
   1086   // Call the copy ctor in a terminate scope.
   1087   CGF.EHStack.pushTerminate();
   1088 
   1089   // Perform the copy construction.
   1090   CharUnits Alignment = CGF.getContext().getDeclAlign(&CatchParam);
   1091   CGF.EmitAggExpr(copyExpr,
   1092                   AggValueSlot::forAddr(ParamAddr, Alignment, Qualifiers(),
   1093                                         AggValueSlot::IsNotDestructed,
   1094                                         AggValueSlot::DoesNotNeedGCBarriers,
   1095                                         AggValueSlot::IsNotAliased));
   1096 
   1097   // Leave the terminate scope.
   1098   CGF.EHStack.popTerminate();
   1099 
   1100   // Undo the opaque value mapping.
   1101   opaque.pop();
   1102 
   1103   // Finally we can call __cxa_begin_catch.
   1104   CallBeginCatch(CGF, Exn, true);
   1105 }
   1106 
   1107 /// Begins a catch statement by initializing the catch variable and
   1108 /// calling __cxa_begin_catch.
   1109 static void BeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *S) {
   1110   // We have to be very careful with the ordering of cleanups here:
   1111   //   C++ [except.throw]p4:
   1112   //     The destruction [of the exception temporary] occurs
   1113   //     immediately after the destruction of the object declared in
   1114   //     the exception-declaration in the handler.
   1115   //
   1116   // So the precise ordering is:
   1117   //   1.  Construct catch variable.
   1118   //   2.  __cxa_begin_catch
   1119   //   3.  Enter __cxa_end_catch cleanup
   1120   //   4.  Enter dtor cleanup
   1121   //
   1122   // We do this by using a slightly abnormal initialization process.
   1123   // Delegation sequence:
   1124   //   - ExitCXXTryStmt opens a RunCleanupsScope
   1125   //     - EmitAutoVarAlloca creates the variable and debug info
   1126   //       - InitCatchParam initializes the variable from the exception
   1127   //       - CallBeginCatch calls __cxa_begin_catch
   1128   //       - CallBeginCatch enters the __cxa_end_catch cleanup
   1129   //     - EmitAutoVarCleanups enters the variable destructor cleanup
   1130   //   - EmitCXXTryStmt emits the code for the catch body
   1131   //   - EmitCXXTryStmt close the RunCleanupsScope
   1132 
   1133   VarDecl *CatchParam = S->getExceptionDecl();
   1134   if (!CatchParam) {
   1135     llvm::Value *Exn = CGF.getExceptionFromSlot();
   1136     CallBeginCatch(CGF, Exn, true);
   1137     return;
   1138   }
   1139 
   1140   // Emit the local.
   1141   CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam);
   1142   InitCatchParam(CGF, *CatchParam, var.getObjectAddress(CGF));
   1143   CGF.EmitAutoVarCleanups(var);
   1144 }
   1145 
   1146 /// Emit the structure of the dispatch block for the given catch scope.
   1147 /// It is an invariant that the dispatch block already exists.
   1148 static void emitCatchDispatchBlock(CodeGenFunction &CGF,
   1149                                    EHCatchScope &catchScope) {
   1150   llvm::BasicBlock *dispatchBlock = catchScope.getCachedEHDispatchBlock();
   1151   assert(dispatchBlock);
   1152 
   1153   // If there's only a single catch-all, getEHDispatchBlock returned
   1154   // that catch-all as the dispatch block.
   1155   if (catchScope.getNumHandlers() == 1 &&
   1156       catchScope.getHandler(0).isCatchAll()) {
   1157     assert(dispatchBlock == catchScope.getHandler(0).Block);
   1158     return;
   1159   }
   1160 
   1161   CGBuilderTy::InsertPoint savedIP = CGF.Builder.saveIP();
   1162   CGF.EmitBlockAfterUses(dispatchBlock);
   1163 
   1164   // Select the right handler.
   1165   llvm::Value *llvm_eh_typeid_for =
   1166     CGF.CGM.getIntrinsic(llvm::Intrinsic::eh_typeid_for);
   1167 
   1168   // Load the selector value.
   1169   llvm::Value *selector = CGF.getSelectorFromSlot();
   1170 
   1171   // Test against each of the exception types we claim to catch.
   1172   for (unsigned i = 0, e = catchScope.getNumHandlers(); ; ++i) {
   1173     assert(i < e && "ran off end of handlers!");
   1174     const EHCatchScope::Handler &handler = catchScope.getHandler(i);
   1175 
   1176     llvm::Value *typeValue = handler.Type;
   1177     assert(typeValue && "fell into catch-all case!");
   1178     typeValue = CGF.Builder.CreateBitCast(typeValue, CGF.Int8PtrTy);
   1179 
   1180     // Figure out the next block.
   1181     bool nextIsEnd;
   1182     llvm::BasicBlock *nextBlock;
   1183 
   1184     // If this is the last handler, we're at the end, and the next
   1185     // block is the block for the enclosing EH scope.
   1186     if (i + 1 == e) {
   1187       nextBlock = CGF.getEHDispatchBlock(catchScope.getEnclosingEHScope());
   1188       nextIsEnd = true;
   1189 
   1190     // If the next handler is a catch-all, we're at the end, and the
   1191     // next block is that handler.
   1192     } else if (catchScope.getHandler(i+1).isCatchAll()) {
   1193       nextBlock = catchScope.getHandler(i+1).Block;
   1194       nextIsEnd = true;
   1195 
   1196     // Otherwise, we're not at the end and we need a new block.
   1197     } else {
   1198       nextBlock = CGF.createBasicBlock("catch.fallthrough");
   1199       nextIsEnd = false;
   1200     }
   1201 
   1202     // Figure out the catch type's index in the LSDA's type table.
   1203     llvm::CallInst *typeIndex =
   1204       CGF.Builder.CreateCall(llvm_eh_typeid_for, typeValue);
   1205     typeIndex->setDoesNotThrow();
   1206 
   1207     llvm::Value *matchesTypeIndex =
   1208       CGF.Builder.CreateICmpEQ(selector, typeIndex, "matches");
   1209     CGF.Builder.CreateCondBr(matchesTypeIndex, handler.Block, nextBlock);
   1210 
   1211     // If the next handler is a catch-all, we're completely done.
   1212     if (nextIsEnd) {
   1213       CGF.Builder.restoreIP(savedIP);
   1214       return;
   1215     }
   1216     // Otherwise we need to emit and continue at that block.
   1217     CGF.EmitBlock(nextBlock);
   1218   }
   1219 }
   1220 
   1221 void CodeGenFunction::popCatchScope() {
   1222   EHCatchScope &catchScope = cast<EHCatchScope>(*EHStack.begin());
   1223   if (catchScope.hasEHBranches())
   1224     emitCatchDispatchBlock(*this, catchScope);
   1225   EHStack.popCatch();
   1226 }
   1227 
   1228 void CodeGenFunction::ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) {
   1229   unsigned NumHandlers = S.getNumHandlers();
   1230   EHCatchScope &CatchScope = cast<EHCatchScope>(*EHStack.begin());
   1231   assert(CatchScope.getNumHandlers() == NumHandlers);
   1232 
   1233   // If the catch was not required, bail out now.
   1234   if (!CatchScope.hasEHBranches()) {
   1235     EHStack.popCatch();
   1236     return;
   1237   }
   1238 
   1239   // Emit the structure of the EH dispatch for this catch.
   1240   emitCatchDispatchBlock(*this, CatchScope);
   1241 
   1242   // Copy the handler blocks off before we pop the EH stack.  Emitting
   1243   // the handlers might scribble on this memory.
   1244   SmallVector<EHCatchScope::Handler, 8> Handlers(NumHandlers);
   1245   memcpy(Handlers.data(), CatchScope.begin(),
   1246          NumHandlers * sizeof(EHCatchScope::Handler));
   1247 
   1248   EHStack.popCatch();
   1249 
   1250   // The fall-through block.
   1251   llvm::BasicBlock *ContBB = createBasicBlock("try.cont");
   1252 
   1253   // We just emitted the body of the try; jump to the continue block.
   1254   if (HaveInsertPoint())
   1255     Builder.CreateBr(ContBB);
   1256 
   1257   // Determine if we need an implicit rethrow for all these catch handlers;
   1258   // see the comment below.
   1259   bool doImplicitRethrow = false;
   1260   if (IsFnTryBlock)
   1261     doImplicitRethrow = isa<CXXDestructorDecl>(CurCodeDecl) ||
   1262                         isa<CXXConstructorDecl>(CurCodeDecl);
   1263 
   1264   // Perversely, we emit the handlers backwards precisely because we
   1265   // want them to appear in source order.  In all of these cases, the
   1266   // catch block will have exactly one predecessor, which will be a
   1267   // particular block in the catch dispatch.  However, in the case of
   1268   // a catch-all, one of the dispatch blocks will branch to two
   1269   // different handlers, and EmitBlockAfterUses will cause the second
   1270   // handler to be moved before the first.
   1271   for (unsigned I = NumHandlers; I != 0; --I) {
   1272     llvm::BasicBlock *CatchBlock = Handlers[I-1].Block;
   1273     EmitBlockAfterUses(CatchBlock);
   1274 
   1275     // Catch the exception if this isn't a catch-all.
   1276     const CXXCatchStmt *C = S.getHandler(I-1);
   1277 
   1278     // Enter a cleanup scope, including the catch variable and the
   1279     // end-catch.
   1280     RunCleanupsScope CatchScope(*this);
   1281 
   1282     // Initialize the catch variable and set up the cleanups.
   1283     BeginCatch(*this, C);
   1284 
   1285     // Perform the body of the catch.
   1286     EmitStmt(C->getHandlerBlock());
   1287 
   1288     // [except.handle]p11:
   1289     //   The currently handled exception is rethrown if control
   1290     //   reaches the end of a handler of the function-try-block of a
   1291     //   constructor or destructor.
   1292 
   1293     // It is important that we only do this on fallthrough and not on
   1294     // return.  Note that it's illegal to put a return in a
   1295     // constructor function-try-block's catch handler (p14), so this
   1296     // really only applies to destructors.
   1297     if (doImplicitRethrow && HaveInsertPoint()) {
   1298       EmitRuntimeCallOrInvoke(getReThrowFn(CGM));
   1299       Builder.CreateUnreachable();
   1300       Builder.ClearInsertionPoint();
   1301     }
   1302 
   1303     // Fall out through the catch cleanups.
   1304     CatchScope.ForceCleanup();
   1305 
   1306     // Branch out of the try.
   1307     if (HaveInsertPoint())
   1308       Builder.CreateBr(ContBB);
   1309   }
   1310 
   1311   EmitBlock(ContBB);
   1312 }
   1313 
   1314 namespace {
   1315   struct CallEndCatchForFinally : EHScopeStack::Cleanup {
   1316     llvm::Value *ForEHVar;
   1317     llvm::Value *EndCatchFn;
   1318     CallEndCatchForFinally(llvm::Value *ForEHVar, llvm::Value *EndCatchFn)
   1319       : ForEHVar(ForEHVar), EndCatchFn(EndCatchFn) {}
   1320 
   1321     void Emit(CodeGenFunction &CGF, Flags flags) {
   1322       llvm::BasicBlock *EndCatchBB = CGF.createBasicBlock("finally.endcatch");
   1323       llvm::BasicBlock *CleanupContBB =
   1324         CGF.createBasicBlock("finally.cleanup.cont");
   1325 
   1326       llvm::Value *ShouldEndCatch =
   1327         CGF.Builder.CreateLoad(ForEHVar, "finally.endcatch");
   1328       CGF.Builder.CreateCondBr(ShouldEndCatch, EndCatchBB, CleanupContBB);
   1329       CGF.EmitBlock(EndCatchBB);
   1330       CGF.EmitRuntimeCallOrInvoke(EndCatchFn); // catch-all, so might throw
   1331       CGF.EmitBlock(CleanupContBB);
   1332     }
   1333   };
   1334 
   1335   struct PerformFinally : EHScopeStack::Cleanup {
   1336     const Stmt *Body;
   1337     llvm::Value *ForEHVar;
   1338     llvm::Value *EndCatchFn;
   1339     llvm::Value *RethrowFn;
   1340     llvm::Value *SavedExnVar;
   1341 
   1342     PerformFinally(const Stmt *Body, llvm::Value *ForEHVar,
   1343                    llvm::Value *EndCatchFn,
   1344                    llvm::Value *RethrowFn, llvm::Value *SavedExnVar)
   1345       : Body(Body), ForEHVar(ForEHVar), EndCatchFn(EndCatchFn),
   1346         RethrowFn(RethrowFn), SavedExnVar(SavedExnVar) {}
   1347 
   1348     void Emit(CodeGenFunction &CGF, Flags flags) {
   1349       // Enter a cleanup to call the end-catch function if one was provided.
   1350       if (EndCatchFn)
   1351         CGF.EHStack.pushCleanup<CallEndCatchForFinally>(NormalAndEHCleanup,
   1352                                                         ForEHVar, EndCatchFn);
   1353 
   1354       // Save the current cleanup destination in case there are
   1355       // cleanups in the finally block.
   1356       llvm::Value *SavedCleanupDest =
   1357         CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot(),
   1358                                "cleanup.dest.saved");
   1359 
   1360       // Emit the finally block.
   1361       CGF.EmitStmt(Body);
   1362 
   1363       // If the end of the finally is reachable, check whether this was
   1364       // for EH.  If so, rethrow.
   1365       if (CGF.HaveInsertPoint()) {
   1366         llvm::BasicBlock *RethrowBB = CGF.createBasicBlock("finally.rethrow");
   1367         llvm::BasicBlock *ContBB = CGF.createBasicBlock("finally.cont");
   1368 
   1369         llvm::Value *ShouldRethrow =
   1370           CGF.Builder.CreateLoad(ForEHVar, "finally.shouldthrow");
   1371         CGF.Builder.CreateCondBr(ShouldRethrow, RethrowBB, ContBB);
   1372 
   1373         CGF.EmitBlock(RethrowBB);
   1374         if (SavedExnVar) {
   1375           CGF.EmitRuntimeCallOrInvoke(RethrowFn,
   1376                                       CGF.Builder.CreateLoad(SavedExnVar));
   1377         } else {
   1378           CGF.EmitRuntimeCallOrInvoke(RethrowFn);
   1379         }
   1380         CGF.Builder.CreateUnreachable();
   1381 
   1382         CGF.EmitBlock(ContBB);
   1383 
   1384         // Restore the cleanup destination.
   1385         CGF.Builder.CreateStore(SavedCleanupDest,
   1386                                 CGF.getNormalCleanupDestSlot());
   1387       }
   1388 
   1389       // Leave the end-catch cleanup.  As an optimization, pretend that
   1390       // the fallthrough path was inaccessible; we've dynamically proven
   1391       // that we're not in the EH case along that path.
   1392       if (EndCatchFn) {
   1393         CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP();
   1394         CGF.PopCleanupBlock();
   1395         CGF.Builder.restoreIP(SavedIP);
   1396       }
   1397 
   1398       // Now make sure we actually have an insertion point or the
   1399       // cleanup gods will hate us.
   1400       CGF.EnsureInsertPoint();
   1401     }
   1402   };
   1403 }
   1404 
   1405 /// Enters a finally block for an implementation using zero-cost
   1406 /// exceptions.  This is mostly general, but hard-codes some
   1407 /// language/ABI-specific behavior in the catch-all sections.
   1408 void CodeGenFunction::FinallyInfo::enter(CodeGenFunction &CGF,
   1409                                          const Stmt *body,
   1410                                          llvm::Constant *beginCatchFn,
   1411                                          llvm::Constant *endCatchFn,
   1412                                          llvm::Constant *rethrowFn) {
   1413   assert((beginCatchFn != 0) == (endCatchFn != 0) &&
   1414          "begin/end catch functions not paired");
   1415   assert(rethrowFn && "rethrow function is required");
   1416 
   1417   BeginCatchFn = beginCatchFn;
   1418 
   1419   // The rethrow function has one of the following two types:
   1420   //   void (*)()
   1421   //   void (*)(void*)
   1422   // In the latter case we need to pass it the exception object.
   1423   // But we can't use the exception slot because the @finally might
   1424   // have a landing pad (which would overwrite the exception slot).
   1425   llvm::FunctionType *rethrowFnTy =
   1426     cast<llvm::FunctionType>(
   1427       cast<llvm::PointerType>(rethrowFn->getType())->getElementType());
   1428   SavedExnVar = 0;
   1429   if (rethrowFnTy->getNumParams())
   1430     SavedExnVar = CGF.CreateTempAlloca(CGF.Int8PtrTy, "finally.exn");
   1431 
   1432   // A finally block is a statement which must be executed on any edge
   1433   // out of a given scope.  Unlike a cleanup, the finally block may
   1434   // contain arbitrary control flow leading out of itself.  In
   1435   // addition, finally blocks should always be executed, even if there
   1436   // are no catch handlers higher on the stack.  Therefore, we
   1437   // surround the protected scope with a combination of a normal
   1438   // cleanup (to catch attempts to break out of the block via normal
   1439   // control flow) and an EH catch-all (semantically "outside" any try
   1440   // statement to which the finally block might have been attached).
   1441   // The finally block itself is generated in the context of a cleanup
   1442   // which conditionally leaves the catch-all.
   1443 
   1444   // Jump destination for performing the finally block on an exception
   1445   // edge.  We'll never actually reach this block, so unreachable is
   1446   // fine.
   1447   RethrowDest = CGF.getJumpDestInCurrentScope(CGF.getUnreachableBlock());
   1448 
   1449   // Whether the finally block is being executed for EH purposes.
   1450   ForEHVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), "finally.for-eh");
   1451   CGF.Builder.CreateStore(CGF.Builder.getFalse(), ForEHVar);
   1452 
   1453   // Enter a normal cleanup which will perform the @finally block.
   1454   CGF.EHStack.pushCleanup<PerformFinally>(NormalCleanup, body,
   1455                                           ForEHVar, endCatchFn,
   1456                                           rethrowFn, SavedExnVar);
   1457 
   1458   // Enter a catch-all scope.
   1459   llvm::BasicBlock *catchBB = CGF.createBasicBlock("finally.catchall");
   1460   EHCatchScope *catchScope = CGF.EHStack.pushCatch(1);
   1461   catchScope->setCatchAllHandler(0, catchBB);
   1462 }
   1463 
   1464 void CodeGenFunction::FinallyInfo::exit(CodeGenFunction &CGF) {
   1465   // Leave the finally catch-all.
   1466   EHCatchScope &catchScope = cast<EHCatchScope>(*CGF.EHStack.begin());
   1467   llvm::BasicBlock *catchBB = catchScope.getHandler(0).Block;
   1468 
   1469   CGF.popCatchScope();
   1470 
   1471   // If there are any references to the catch-all block, emit it.
   1472   if (catchBB->use_empty()) {
   1473     delete catchBB;
   1474   } else {
   1475     CGBuilderTy::InsertPoint savedIP = CGF.Builder.saveAndClearIP();
   1476     CGF.EmitBlock(catchBB);
   1477 
   1478     llvm::Value *exn = 0;
   1479 
   1480     // If there's a begin-catch function, call it.
   1481     if (BeginCatchFn) {
   1482       exn = CGF.getExceptionFromSlot();
   1483       CGF.EmitNounwindRuntimeCall(BeginCatchFn, exn);
   1484     }
   1485 
   1486     // If we need to remember the exception pointer to rethrow later, do so.
   1487     if (SavedExnVar) {
   1488       if (!exn) exn = CGF.getExceptionFromSlot();
   1489       CGF.Builder.CreateStore(exn, SavedExnVar);
   1490     }
   1491 
   1492     // Tell the cleanups in the finally block that we're do this for EH.
   1493     CGF.Builder.CreateStore(CGF.Builder.getTrue(), ForEHVar);
   1494 
   1495     // Thread a jump through the finally cleanup.
   1496     CGF.EmitBranchThroughCleanup(RethrowDest);
   1497 
   1498     CGF.Builder.restoreIP(savedIP);
   1499   }
   1500 
   1501   // Finally, leave the @finally cleanup.
   1502   CGF.PopCleanupBlock();
   1503 }
   1504 
   1505 /// In a terminate landing pad, should we use __clang__call_terminate
   1506 /// or just a naked call to std::terminate?
   1507 ///
   1508 /// __clang_call_terminate calls __cxa_begin_catch, which then allows
   1509 /// std::terminate to usefully report something about the
   1510 /// violating exception.
   1511 static bool useClangCallTerminate(CodeGenModule &CGM) {
   1512   // Only do this for Itanium-family ABIs in C++ mode.
   1513   return (CGM.getLangOpts().CPlusPlus &&
   1514           CGM.getTarget().getCXXABI().isItaniumFamily());
   1515 }
   1516 
   1517 /// Get or define the following function:
   1518 ///   void @__clang_call_terminate(i8* %exn) nounwind noreturn
   1519 /// This code is used only in C++.
   1520 static llvm::Constant *getClangCallTerminateFn(CodeGenModule &CGM) {
   1521   llvm::FunctionType *fnTy =
   1522     llvm::FunctionType::get(CGM.VoidTy, CGM.Int8PtrTy, /*IsVarArgs=*/false);
   1523   llvm::Constant *fnRef =
   1524     CGM.CreateRuntimeFunction(fnTy, "__clang_call_terminate");
   1525 
   1526   llvm::Function *fn = dyn_cast<llvm::Function>(fnRef);
   1527   if (fn && fn->empty()) {
   1528     fn->setDoesNotThrow();
   1529     fn->setDoesNotReturn();
   1530 
   1531     // What we really want is to massively penalize inlining without
   1532     // forbidding it completely.  The difference between that and
   1533     // 'noinline' is negligible.
   1534     fn->addFnAttr(llvm::Attribute::NoInline);
   1535 
   1536     // Allow this function to be shared across translation units, but
   1537     // we don't want it to turn into an exported symbol.
   1538     fn->setLinkage(llvm::Function::LinkOnceODRLinkage);
   1539     fn->setVisibility(llvm::Function::HiddenVisibility);
   1540 
   1541     // Set up the function.
   1542     llvm::BasicBlock *entry =
   1543       llvm::BasicBlock::Create(CGM.getLLVMContext(), "", fn);
   1544     CGBuilderTy builder(entry);
   1545 
   1546     // Pull the exception pointer out of the parameter list.
   1547     llvm::Value *exn = &*fn->arg_begin();
   1548 
   1549     // Call __cxa_begin_catch(exn).
   1550     llvm::CallInst *catchCall = builder.CreateCall(getBeginCatchFn(CGM), exn);
   1551     catchCall->setDoesNotThrow();
   1552     catchCall->setCallingConv(CGM.getRuntimeCC());
   1553 
   1554     // Call std::terminate().
   1555     llvm::CallInst *termCall = builder.CreateCall(getTerminateFn(CGM));
   1556     termCall->setDoesNotThrow();
   1557     termCall->setDoesNotReturn();
   1558     termCall->setCallingConv(CGM.getRuntimeCC());
   1559 
   1560     // std::terminate cannot return.
   1561     builder.CreateUnreachable();
   1562   }
   1563 
   1564   return fnRef;
   1565 }
   1566 
   1567 llvm::BasicBlock *CodeGenFunction::getTerminateLandingPad() {
   1568   if (TerminateLandingPad)
   1569     return TerminateLandingPad;
   1570 
   1571   CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
   1572 
   1573   // This will get inserted at the end of the function.
   1574   TerminateLandingPad = createBasicBlock("terminate.lpad");
   1575   Builder.SetInsertPoint(TerminateLandingPad);
   1576 
   1577   // Tell the backend that this is a landing pad.
   1578   const EHPersonality &Personality = EHPersonality::get(CGM.getLangOpts());
   1579   llvm::LandingPadInst *LPadInst =
   1580     Builder.CreateLandingPad(llvm::StructType::get(Int8PtrTy, Int32Ty, NULL),
   1581                              getOpaquePersonalityFn(CGM, Personality), 0);
   1582   LPadInst->addClause(getCatchAllValue(*this));
   1583 
   1584   llvm::CallInst *terminateCall;
   1585   if (useClangCallTerminate(CGM)) {
   1586     // Extract out the exception pointer.
   1587     llvm::Value *exn = Builder.CreateExtractValue(LPadInst, 0);
   1588     terminateCall = EmitNounwindRuntimeCall(getClangCallTerminateFn(CGM), exn);
   1589   } else {
   1590     terminateCall = EmitNounwindRuntimeCall(getTerminateFn(CGM));
   1591   }
   1592   terminateCall->setDoesNotReturn();
   1593   Builder.CreateUnreachable();
   1594 
   1595   // Restore the saved insertion state.
   1596   Builder.restoreIP(SavedIP);
   1597 
   1598   return TerminateLandingPad;
   1599 }
   1600 
   1601 llvm::BasicBlock *CodeGenFunction::getTerminateHandler() {
   1602   if (TerminateHandler)
   1603     return TerminateHandler;
   1604 
   1605   CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
   1606 
   1607   // Set up the terminate handler.  This block is inserted at the very
   1608   // end of the function by FinishFunction.
   1609   TerminateHandler = createBasicBlock("terminate.handler");
   1610   Builder.SetInsertPoint(TerminateHandler);
   1611   llvm::CallInst *TerminateCall = EmitNounwindRuntimeCall(getTerminateFn(CGM));
   1612   TerminateCall->setDoesNotReturn();
   1613   Builder.CreateUnreachable();
   1614 
   1615   // Restore the saved insertion state.
   1616   Builder.restoreIP(SavedIP);
   1617 
   1618   return TerminateHandler;
   1619 }
   1620 
   1621 llvm::BasicBlock *CodeGenFunction::getEHResumeBlock(bool isCleanup) {
   1622   if (EHResumeBlock) return EHResumeBlock;
   1623 
   1624   CGBuilderTy::InsertPoint SavedIP = Builder.saveIP();
   1625 
   1626   // We emit a jump to a notional label at the outermost unwind state.
   1627   EHResumeBlock = createBasicBlock("eh.resume");
   1628   Builder.SetInsertPoint(EHResumeBlock);
   1629 
   1630   const EHPersonality &Personality = EHPersonality::get(CGM.getLangOpts());
   1631 
   1632   // This can always be a call because we necessarily didn't find
   1633   // anything on the EH stack which needs our help.
   1634   const char *RethrowName = Personality.CatchallRethrowFn;
   1635   if (RethrowName != 0 && !isCleanup) {
   1636     EmitRuntimeCall(getCatchallRethrowFn(CGM, RethrowName),
   1637                       getExceptionFromSlot())
   1638       ->setDoesNotReturn();
   1639   } else {
   1640     switch (CleanupHackLevel) {
   1641     case CHL_MandatoryCatchall:
   1642       // In mandatory-catchall mode, we need to use
   1643       // _Unwind_Resume_or_Rethrow, or whatever the personality's
   1644       // equivalent is.
   1645       EmitRuntimeCall(getUnwindResumeOrRethrowFn(),
   1646                         getExceptionFromSlot())
   1647         ->setDoesNotReturn();
   1648       break;
   1649     case CHL_MandatoryCleanup: {
   1650       // In mandatory-cleanup mode, we should use 'resume'.
   1651 
   1652       // Recreate the landingpad's return value for the 'resume' instruction.
   1653       llvm::Value *Exn = getExceptionFromSlot();
   1654       llvm::Value *Sel = getSelectorFromSlot();
   1655 
   1656       llvm::Type *LPadType = llvm::StructType::get(Exn->getType(),
   1657                                                    Sel->getType(), NULL);
   1658       llvm::Value *LPadVal = llvm::UndefValue::get(LPadType);
   1659       LPadVal = Builder.CreateInsertValue(LPadVal, Exn, 0, "lpad.val");
   1660       LPadVal = Builder.CreateInsertValue(LPadVal, Sel, 1, "lpad.val");
   1661 
   1662       Builder.CreateResume(LPadVal);
   1663       Builder.restoreIP(SavedIP);
   1664       return EHResumeBlock;
   1665     }
   1666     case CHL_Ideal:
   1667       // In an idealized mode where we don't have to worry about the
   1668       // optimizer combining landing pads, we should just use
   1669       // _Unwind_Resume (or the personality's equivalent).
   1670       EmitRuntimeCall(getUnwindResumeFn(), getExceptionFromSlot())
   1671         ->setDoesNotReturn();
   1672       break;
   1673     }
   1674   }
   1675 
   1676   Builder.CreateUnreachable();
   1677 
   1678   Builder.restoreIP(SavedIP);
   1679 
   1680   return EHResumeBlock;
   1681 }
   1682