Home | History | Annotate | Download | only in CodeGen
      1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This is the internal per-function state used for llvm translation.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
     15 #define CLANG_CODEGEN_CODEGENFUNCTION_H
     16 
     17 #include "CGBuilder.h"
     18 #include "CGDebugInfo.h"
     19 #include "CGValue.h"
     20 #include "CodeGenModule.h"
     21 #include "clang/AST/CharUnits.h"
     22 #include "clang/AST/ExprCXX.h"
     23 #include "clang/AST/ExprObjC.h"
     24 #include "clang/AST/Type.h"
     25 #include "clang/Basic/ABI.h"
     26 #include "clang/Basic/TargetInfo.h"
     27 #include "clang/Frontend/CodeGenOptions.h"
     28 #include "llvm/ADT/ArrayRef.h"
     29 #include "llvm/ADT/DenseMap.h"
     30 #include "llvm/ADT/SmallVector.h"
     31 #include "llvm/Support/Debug.h"
     32 #include "llvm/Support/ValueHandle.h"
     33 
     34 namespace llvm {
     35   class BasicBlock;
     36   class LLVMContext;
     37   class MDNode;
     38   class Module;
     39   class SwitchInst;
     40   class Twine;
     41   class Value;
     42   class CallSite;
     43 }
     44 
     45 namespace clang {
     46   class ASTContext;
     47   class BlockDecl;
     48   class CXXDestructorDecl;
     49   class CXXForRangeStmt;
     50   class CXXTryStmt;
     51   class Decl;
     52   class LabelDecl;
     53   class EnumConstantDecl;
     54   class FunctionDecl;
     55   class FunctionProtoType;
     56   class LabelStmt;
     57   class ObjCContainerDecl;
     58   class ObjCInterfaceDecl;
     59   class ObjCIvarDecl;
     60   class ObjCMethodDecl;
     61   class ObjCImplementationDecl;
     62   class ObjCPropertyImplDecl;
     63   class TargetInfo;
     64   class TargetCodeGenInfo;
     65   class VarDecl;
     66   class ObjCForCollectionStmt;
     67   class ObjCAtTryStmt;
     68   class ObjCAtThrowStmt;
     69   class ObjCAtSynchronizedStmt;
     70   class ObjCAutoreleasePoolStmt;
     71 
     72 namespace CodeGen {
     73   class CodeGenTypes;
     74   class CGFunctionInfo;
     75   class CGRecordLayout;
     76   class CGBlockInfo;
     77   class CGCXXABI;
     78   class BlockFlags;
     79   class BlockFieldFlags;
     80 
     81 /// The kind of evaluation to perform on values of a particular
     82 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
     83 /// CGExprAgg?
     84 ///
     85 /// TODO: should vectors maybe be split out into their own thing?
     86 enum TypeEvaluationKind {
     87   TEK_Scalar,
     88   TEK_Complex,
     89   TEK_Aggregate
     90 };
     91 
     92 /// A branch fixup.  These are required when emitting a goto to a
     93 /// label which hasn't been emitted yet.  The goto is optimistically
     94 /// emitted as a branch to the basic block for the label, and (if it
     95 /// occurs in a scope with non-trivial cleanups) a fixup is added to
     96 /// the innermost cleanup.  When a (normal) cleanup is popped, any
     97 /// unresolved fixups in that scope are threaded through the cleanup.
     98 struct BranchFixup {
     99   /// The block containing the terminator which needs to be modified
    100   /// into a switch if this fixup is resolved into the current scope.
    101   /// If null, LatestBranch points directly to the destination.
    102   llvm::BasicBlock *OptimisticBranchBlock;
    103 
    104   /// The ultimate destination of the branch.
    105   ///
    106   /// This can be set to null to indicate that this fixup was
    107   /// successfully resolved.
    108   llvm::BasicBlock *Destination;
    109 
    110   /// The destination index value.
    111   unsigned DestinationIndex;
    112 
    113   /// The initial branch of the fixup.
    114   llvm::BranchInst *InitialBranch;
    115 };
    116 
    117 template <class T> struct InvariantValue {
    118   typedef T type;
    119   typedef T saved_type;
    120   static bool needsSaving(type value) { return false; }
    121   static saved_type save(CodeGenFunction &CGF, type value) { return value; }
    122   static type restore(CodeGenFunction &CGF, saved_type value) { return value; }
    123 };
    124 
    125 /// A metaprogramming class for ensuring that a value will dominate an
    126 /// arbitrary position in a function.
    127 template <class T> struct DominatingValue : InvariantValue<T> {};
    128 
    129 template <class T, bool mightBeInstruction =
    130             llvm::is_base_of<llvm::Value, T>::value &&
    131             !llvm::is_base_of<llvm::Constant, T>::value &&
    132             !llvm::is_base_of<llvm::BasicBlock, T>::value>
    133 struct DominatingPointer;
    134 template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {};
    135 // template <class T> struct DominatingPointer<T,true> at end of file
    136 
    137 template <class T> struct DominatingValue<T*> : DominatingPointer<T> {};
    138 
    139 enum CleanupKind {
    140   EHCleanup = 0x1,
    141   NormalCleanup = 0x2,
    142   NormalAndEHCleanup = EHCleanup | NormalCleanup,
    143 
    144   InactiveCleanup = 0x4,
    145   InactiveEHCleanup = EHCleanup | InactiveCleanup,
    146   InactiveNormalCleanup = NormalCleanup | InactiveCleanup,
    147   InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup
    148 };
    149 
    150 /// A stack of scopes which respond to exceptions, including cleanups
    151 /// and catch blocks.
    152 class EHScopeStack {
    153 public:
    154   /// A saved depth on the scope stack.  This is necessary because
    155   /// pushing scopes onto the stack invalidates iterators.
    156   class stable_iterator {
    157     friend class EHScopeStack;
    158 
    159     /// Offset from StartOfData to EndOfBuffer.
    160     ptrdiff_t Size;
    161 
    162     stable_iterator(ptrdiff_t Size) : Size(Size) {}
    163 
    164   public:
    165     static stable_iterator invalid() { return stable_iterator(-1); }
    166     stable_iterator() : Size(-1) {}
    167 
    168     bool isValid() const { return Size >= 0; }
    169 
    170     /// Returns true if this scope encloses I.
    171     /// Returns false if I is invalid.
    172     /// This scope must be valid.
    173     bool encloses(stable_iterator I) const { return Size <= I.Size; }
    174 
    175     /// Returns true if this scope strictly encloses I: that is,
    176     /// if it encloses I and is not I.
    177     /// Returns false is I is invalid.
    178     /// This scope must be valid.
    179     bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; }
    180 
    181     friend bool operator==(stable_iterator A, stable_iterator B) {
    182       return A.Size == B.Size;
    183     }
    184     friend bool operator!=(stable_iterator A, stable_iterator B) {
    185       return A.Size != B.Size;
    186     }
    187   };
    188 
    189   /// Information for lazily generating a cleanup.  Subclasses must be
    190   /// POD-like: cleanups will not be destructed, and they will be
    191   /// allocated on the cleanup stack and freely copied and moved
    192   /// around.
    193   ///
    194   /// Cleanup implementations should generally be declared in an
    195   /// anonymous namespace.
    196   class Cleanup {
    197     // Anchor the construction vtable.
    198     virtual void anchor();
    199   public:
    200     /// Generation flags.
    201     class Flags {
    202       enum {
    203         F_IsForEH             = 0x1,
    204         F_IsNormalCleanupKind = 0x2,
    205         F_IsEHCleanupKind     = 0x4
    206       };
    207       unsigned flags;
    208 
    209     public:
    210       Flags() : flags(0) {}
    211 
    212       /// isForEH - true if the current emission is for an EH cleanup.
    213       bool isForEHCleanup() const { return flags & F_IsForEH; }
    214       bool isForNormalCleanup() const { return !isForEHCleanup(); }
    215       void setIsForEHCleanup() { flags |= F_IsForEH; }
    216 
    217       bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; }
    218       void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; }
    219 
    220       /// isEHCleanupKind - true if the cleanup was pushed as an EH
    221       /// cleanup.
    222       bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; }
    223       void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; }
    224     };
    225 
    226     // Provide a virtual destructor to suppress a very common warning
    227     // that unfortunately cannot be suppressed without this.  Cleanups
    228     // should not rely on this destructor ever being called.
    229     virtual ~Cleanup() {}
    230 
    231     /// Emit the cleanup.  For normal cleanups, this is run in the
    232     /// same EH context as when the cleanup was pushed, i.e. the
    233     /// immediately-enclosing context of the cleanup scope.  For
    234     /// EH cleanups, this is run in a terminate context.
    235     ///
    236     // \param flags cleanup kind.
    237     virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0;
    238   };
    239 
    240   /// ConditionalCleanupN stores the saved form of its N parameters,
    241   /// then restores them and performs the cleanup.
    242   template <class T, class A0>
    243   class ConditionalCleanup1 : public Cleanup {
    244     typedef typename DominatingValue<A0>::saved_type A0_saved;
    245     A0_saved a0_saved;
    246 
    247     void Emit(CodeGenFunction &CGF, Flags flags) {
    248       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
    249       T(a0).Emit(CGF, flags);
    250     }
    251 
    252   public:
    253     ConditionalCleanup1(A0_saved a0)
    254       : a0_saved(a0) {}
    255   };
    256 
    257   template <class T, class A0, class A1>
    258   class ConditionalCleanup2 : public Cleanup {
    259     typedef typename DominatingValue<A0>::saved_type A0_saved;
    260     typedef typename DominatingValue<A1>::saved_type A1_saved;
    261     A0_saved a0_saved;
    262     A1_saved a1_saved;
    263 
    264     void Emit(CodeGenFunction &CGF, Flags flags) {
    265       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
    266       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
    267       T(a0, a1).Emit(CGF, flags);
    268     }
    269 
    270   public:
    271     ConditionalCleanup2(A0_saved a0, A1_saved a1)
    272       : a0_saved(a0), a1_saved(a1) {}
    273   };
    274 
    275   template <class T, class A0, class A1, class A2>
    276   class ConditionalCleanup3 : public Cleanup {
    277     typedef typename DominatingValue<A0>::saved_type A0_saved;
    278     typedef typename DominatingValue<A1>::saved_type A1_saved;
    279     typedef typename DominatingValue<A2>::saved_type A2_saved;
    280     A0_saved a0_saved;
    281     A1_saved a1_saved;
    282     A2_saved a2_saved;
    283 
    284     void Emit(CodeGenFunction &CGF, Flags flags) {
    285       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
    286       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
    287       A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
    288       T(a0, a1, a2).Emit(CGF, flags);
    289     }
    290 
    291   public:
    292     ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2)
    293       : a0_saved(a0), a1_saved(a1), a2_saved(a2) {}
    294   };
    295 
    296   template <class T, class A0, class A1, class A2, class A3>
    297   class ConditionalCleanup4 : public Cleanup {
    298     typedef typename DominatingValue<A0>::saved_type A0_saved;
    299     typedef typename DominatingValue<A1>::saved_type A1_saved;
    300     typedef typename DominatingValue<A2>::saved_type A2_saved;
    301     typedef typename DominatingValue<A3>::saved_type A3_saved;
    302     A0_saved a0_saved;
    303     A1_saved a1_saved;
    304     A2_saved a2_saved;
    305     A3_saved a3_saved;
    306 
    307     void Emit(CodeGenFunction &CGF, Flags flags) {
    308       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
    309       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
    310       A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
    311       A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved);
    312       T(a0, a1, a2, a3).Emit(CGF, flags);
    313     }
    314 
    315   public:
    316     ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3)
    317       : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {}
    318   };
    319 
    320 private:
    321   // The implementation for this class is in CGException.h and
    322   // CGException.cpp; the definition is here because it's used as a
    323   // member of CodeGenFunction.
    324 
    325   /// The start of the scope-stack buffer, i.e. the allocated pointer
    326   /// for the buffer.  All of these pointers are either simultaneously
    327   /// null or simultaneously valid.
    328   char *StartOfBuffer;
    329 
    330   /// The end of the buffer.
    331   char *EndOfBuffer;
    332 
    333   /// The first valid entry in the buffer.
    334   char *StartOfData;
    335 
    336   /// The innermost normal cleanup on the stack.
    337   stable_iterator InnermostNormalCleanup;
    338 
    339   /// The innermost EH scope on the stack.
    340   stable_iterator InnermostEHScope;
    341 
    342   /// The current set of branch fixups.  A branch fixup is a jump to
    343   /// an as-yet unemitted label, i.e. a label for which we don't yet
    344   /// know the EH stack depth.  Whenever we pop a cleanup, we have
    345   /// to thread all the current branch fixups through it.
    346   ///
    347   /// Fixups are recorded as the Use of the respective branch or
    348   /// switch statement.  The use points to the final destination.
    349   /// When popping out of a cleanup, these uses are threaded through
    350   /// the cleanup and adjusted to point to the new cleanup.
    351   ///
    352   /// Note that branches are allowed to jump into protected scopes
    353   /// in certain situations;  e.g. the following code is legal:
    354   ///     struct A { ~A(); }; // trivial ctor, non-trivial dtor
    355   ///     goto foo;
    356   ///     A a;
    357   ///    foo:
    358   ///     bar();
    359   SmallVector<BranchFixup, 8> BranchFixups;
    360 
    361   char *allocate(size_t Size);
    362 
    363   void *pushCleanup(CleanupKind K, size_t DataSize);
    364 
    365 public:
    366   EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0),
    367                    InnermostNormalCleanup(stable_end()),
    368                    InnermostEHScope(stable_end()) {}
    369   ~EHScopeStack() { delete[] StartOfBuffer; }
    370 
    371   // Variadic templates would make this not terrible.
    372 
    373   /// Push a lazily-created cleanup on the stack.
    374   template <class T>
    375   void pushCleanup(CleanupKind Kind) {
    376     void *Buffer = pushCleanup(Kind, sizeof(T));
    377     Cleanup *Obj = new(Buffer) T();
    378     (void) Obj;
    379   }
    380 
    381   /// Push a lazily-created cleanup on the stack.
    382   template <class T, class A0>
    383   void pushCleanup(CleanupKind Kind, A0 a0) {
    384     void *Buffer = pushCleanup(Kind, sizeof(T));
    385     Cleanup *Obj = new(Buffer) T(a0);
    386     (void) Obj;
    387   }
    388 
    389   /// Push a lazily-created cleanup on the stack.
    390   template <class T, class A0, class A1>
    391   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) {
    392     void *Buffer = pushCleanup(Kind, sizeof(T));
    393     Cleanup *Obj = new(Buffer) T(a0, a1);
    394     (void) Obj;
    395   }
    396 
    397   /// Push a lazily-created cleanup on the stack.
    398   template <class T, class A0, class A1, class A2>
    399   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) {
    400     void *Buffer = pushCleanup(Kind, sizeof(T));
    401     Cleanup *Obj = new(Buffer) T(a0, a1, a2);
    402     (void) Obj;
    403   }
    404 
    405   /// Push a lazily-created cleanup on the stack.
    406   template <class T, class A0, class A1, class A2, class A3>
    407   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
    408     void *Buffer = pushCleanup(Kind, sizeof(T));
    409     Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3);
    410     (void) Obj;
    411   }
    412 
    413   /// Push a lazily-created cleanup on the stack.
    414   template <class T, class A0, class A1, class A2, class A3, class A4>
    415   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) {
    416     void *Buffer = pushCleanup(Kind, sizeof(T));
    417     Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4);
    418     (void) Obj;
    419   }
    420 
    421   // Feel free to add more variants of the following:
    422 
    423   /// Push a cleanup with non-constant storage requirements on the
    424   /// stack.  The cleanup type must provide an additional static method:
    425   ///   static size_t getExtraSize(size_t);
    426   /// The argument to this method will be the value N, which will also
    427   /// be passed as the first argument to the constructor.
    428   ///
    429   /// The data stored in the extra storage must obey the same
    430   /// restrictions as normal cleanup member data.
    431   ///
    432   /// The pointer returned from this method is valid until the cleanup
    433   /// stack is modified.
    434   template <class T, class A0, class A1, class A2>
    435   T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) {
    436     void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N));
    437     return new (Buffer) T(N, a0, a1, a2);
    438   }
    439 
    440   /// Pops a cleanup scope off the stack.  This is private to CGCleanup.cpp.
    441   void popCleanup();
    442 
    443   /// Push a set of catch handlers on the stack.  The catch is
    444   /// uninitialized and will need to have the given number of handlers
    445   /// set on it.
    446   class EHCatchScope *pushCatch(unsigned NumHandlers);
    447 
    448   /// Pops a catch scope off the stack.  This is private to CGException.cpp.
    449   void popCatch();
    450 
    451   /// Push an exceptions filter on the stack.
    452   class EHFilterScope *pushFilter(unsigned NumFilters);
    453 
    454   /// Pops an exceptions filter off the stack.
    455   void popFilter();
    456 
    457   /// Push a terminate handler on the stack.
    458   void pushTerminate();
    459 
    460   /// Pops a terminate handler off the stack.
    461   void popTerminate();
    462 
    463   /// Determines whether the exception-scopes stack is empty.
    464   bool empty() const { return StartOfData == EndOfBuffer; }
    465 
    466   bool requiresLandingPad() const {
    467     return InnermostEHScope != stable_end();
    468   }
    469 
    470   /// Determines whether there are any normal cleanups on the stack.
    471   bool hasNormalCleanups() const {
    472     return InnermostNormalCleanup != stable_end();
    473   }
    474 
    475   /// Returns the innermost normal cleanup on the stack, or
    476   /// stable_end() if there are no normal cleanups.
    477   stable_iterator getInnermostNormalCleanup() const {
    478     return InnermostNormalCleanup;
    479   }
    480   stable_iterator getInnermostActiveNormalCleanup() const;
    481 
    482   stable_iterator getInnermostEHScope() const {
    483     return InnermostEHScope;
    484   }
    485 
    486   stable_iterator getInnermostActiveEHScope() const;
    487 
    488   /// An unstable reference to a scope-stack depth.  Invalidated by
    489   /// pushes but not pops.
    490   class iterator;
    491 
    492   /// Returns an iterator pointing to the innermost EH scope.
    493   iterator begin() const;
    494 
    495   /// Returns an iterator pointing to the outermost EH scope.
    496   iterator end() const;
    497 
    498   /// Create a stable reference to the top of the EH stack.  The
    499   /// returned reference is valid until that scope is popped off the
    500   /// stack.
    501   stable_iterator stable_begin() const {
    502     return stable_iterator(EndOfBuffer - StartOfData);
    503   }
    504 
    505   /// Create a stable reference to the bottom of the EH stack.
    506   static stable_iterator stable_end() {
    507     return stable_iterator(0);
    508   }
    509 
    510   /// Translates an iterator into a stable_iterator.
    511   stable_iterator stabilize(iterator it) const;
    512 
    513   /// Turn a stable reference to a scope depth into a unstable pointer
    514   /// to the EH stack.
    515   iterator find(stable_iterator save) const;
    516 
    517   /// Removes the cleanup pointed to by the given stable_iterator.
    518   void removeCleanup(stable_iterator save);
    519 
    520   /// Add a branch fixup to the current cleanup scope.
    521   BranchFixup &addBranchFixup() {
    522     assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
    523     BranchFixups.push_back(BranchFixup());
    524     return BranchFixups.back();
    525   }
    526 
    527   unsigned getNumBranchFixups() const { return BranchFixups.size(); }
    528   BranchFixup &getBranchFixup(unsigned I) {
    529     assert(I < getNumBranchFixups());
    530     return BranchFixups[I];
    531   }
    532 
    533   /// Pops lazily-removed fixups from the end of the list.  This
    534   /// should only be called by procedures which have just popped a
    535   /// cleanup or resolved one or more fixups.
    536   void popNullFixups();
    537 
    538   /// Clears the branch-fixups list.  This should only be called by
    539   /// ResolveAllBranchFixups.
    540   void clearFixups() { BranchFixups.clear(); }
    541 };
    542 
    543 /// CodeGenFunction - This class organizes the per-function state that is used
    544 /// while generating LLVM code.
    545 class CodeGenFunction : public CodeGenTypeCache {
    546   CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
    547   void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
    548 
    549   friend class CGCXXABI;
    550 public:
    551   /// A jump destination is an abstract label, branching to which may
    552   /// require a jump out through normal cleanups.
    553   struct JumpDest {
    554     JumpDest() : Block(0), ScopeDepth(), Index(0) {}
    555     JumpDest(llvm::BasicBlock *Block,
    556              EHScopeStack::stable_iterator Depth,
    557              unsigned Index)
    558       : Block(Block), ScopeDepth(Depth), Index(Index) {}
    559 
    560     bool isValid() const { return Block != 0; }
    561     llvm::BasicBlock *getBlock() const { return Block; }
    562     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
    563     unsigned getDestIndex() const { return Index; }
    564 
    565   private:
    566     llvm::BasicBlock *Block;
    567     EHScopeStack::stable_iterator ScopeDepth;
    568     unsigned Index;
    569   };
    570 
    571   CodeGenModule &CGM;  // Per-module state.
    572   const TargetInfo &Target;
    573 
    574   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
    575   CGBuilderTy Builder;
    576 
    577   /// CurFuncDecl - Holds the Decl for the current function or ObjC method.
    578   /// This excludes BlockDecls.
    579   const Decl *CurFuncDecl;
    580   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
    581   const Decl *CurCodeDecl;
    582   const CGFunctionInfo *CurFnInfo;
    583   QualType FnRetTy;
    584   llvm::Function *CurFn;
    585 
    586   /// CurGD - The GlobalDecl for the current function being compiled.
    587   GlobalDecl CurGD;
    588 
    589   /// PrologueCleanupDepth - The cleanup depth enclosing all the
    590   /// cleanups associated with the parameters.
    591   EHScopeStack::stable_iterator PrologueCleanupDepth;
    592 
    593   /// ReturnBlock - Unified return block.
    594   JumpDest ReturnBlock;
    595 
    596   /// ReturnValue - The temporary alloca to hold the return value. This is null
    597   /// iff the function has no return value.
    598   llvm::Value *ReturnValue;
    599 
    600   /// AllocaInsertPoint - This is an instruction in the entry block before which
    601   /// we prefer to insert allocas.
    602   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
    603 
    604   /// BoundsChecking - Emit run-time bounds checks. Higher values mean
    605   /// potentially higher performance penalties.
    606   unsigned char BoundsChecking;
    607 
    608   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
    609   /// calls to EmitTypeCheck can be skipped.
    610   bool SanitizePerformTypeCheck;
    611 
    612   /// \brief Sanitizer options to use for this function.
    613   const SanitizerOptions *SanOpts;
    614 
    615   /// In ARC, whether we should autorelease the return value.
    616   bool AutoreleaseResult;
    617 
    618   const CodeGen::CGBlockInfo *BlockInfo;
    619   llvm::Value *BlockPointer;
    620 
    621   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
    622   FieldDecl *LambdaThisCaptureField;
    623 
    624   /// \brief A mapping from NRVO variables to the flags used to indicate
    625   /// when the NRVO has been applied to this variable.
    626   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
    627 
    628   EHScopeStack EHStack;
    629 
    630   /// i32s containing the indexes of the cleanup destinations.
    631   llvm::AllocaInst *NormalCleanupDest;
    632 
    633   unsigned NextCleanupDestIndex;
    634 
    635   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
    636   CGBlockInfo *FirstBlockInfo;
    637 
    638   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
    639   llvm::BasicBlock *EHResumeBlock;
    640 
    641   /// The exception slot.  All landing pads write the current exception pointer
    642   /// into this alloca.
    643   llvm::Value *ExceptionSlot;
    644 
    645   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
    646   /// write the current selector value into this alloca.
    647   llvm::AllocaInst *EHSelectorSlot;
    648 
    649   /// Emits a landing pad for the current EH stack.
    650   llvm::BasicBlock *EmitLandingPad();
    651 
    652   llvm::BasicBlock *getInvokeDestImpl();
    653 
    654   template <class T>
    655   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
    656     return DominatingValue<T>::save(*this, value);
    657   }
    658 
    659 public:
    660   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
    661   /// rethrows.
    662   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
    663 
    664   /// A class controlling the emission of a finally block.
    665   class FinallyInfo {
    666     /// Where the catchall's edge through the cleanup should go.
    667     JumpDest RethrowDest;
    668 
    669     /// A function to call to enter the catch.
    670     llvm::Constant *BeginCatchFn;
    671 
    672     /// An i1 variable indicating whether or not the @finally is
    673     /// running for an exception.
    674     llvm::AllocaInst *ForEHVar;
    675 
    676     /// An i8* variable into which the exception pointer to rethrow
    677     /// has been saved.
    678     llvm::AllocaInst *SavedExnVar;
    679 
    680   public:
    681     void enter(CodeGenFunction &CGF, const Stmt *Finally,
    682                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
    683                llvm::Constant *rethrowFn);
    684     void exit(CodeGenFunction &CGF);
    685   };
    686 
    687   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
    688   /// current full-expression.  Safe against the possibility that
    689   /// we're currently inside a conditionally-evaluated expression.
    690   template <class T, class A0>
    691   void pushFullExprCleanup(CleanupKind kind, A0 a0) {
    692     // If we're not in a conditional branch, or if none of the
    693     // arguments requires saving, then use the unconditional cleanup.
    694     if (!isInConditionalBranch())
    695       return EHStack.pushCleanup<T>(kind, a0);
    696 
    697     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
    698 
    699     typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
    700     EHStack.pushCleanup<CleanupType>(kind, a0_saved);
    701     initFullExprCleanup();
    702   }
    703 
    704   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
    705   /// current full-expression.  Safe against the possibility that
    706   /// we're currently inside a conditionally-evaluated expression.
    707   template <class T, class A0, class A1>
    708   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
    709     // If we're not in a conditional branch, or if none of the
    710     // arguments requires saving, then use the unconditional cleanup.
    711     if (!isInConditionalBranch())
    712       return EHStack.pushCleanup<T>(kind, a0, a1);
    713 
    714     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
    715     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
    716 
    717     typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
    718     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
    719     initFullExprCleanup();
    720   }
    721 
    722   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
    723   /// current full-expression.  Safe against the possibility that
    724   /// we're currently inside a conditionally-evaluated expression.
    725   template <class T, class A0, class A1, class A2>
    726   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
    727     // If we're not in a conditional branch, or if none of the
    728     // arguments requires saving, then use the unconditional cleanup.
    729     if (!isInConditionalBranch()) {
    730       return EHStack.pushCleanup<T>(kind, a0, a1, a2);
    731     }
    732 
    733     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
    734     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
    735     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
    736 
    737     typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
    738     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
    739     initFullExprCleanup();
    740   }
    741 
    742   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
    743   /// current full-expression.  Safe against the possibility that
    744   /// we're currently inside a conditionally-evaluated expression.
    745   template <class T, class A0, class A1, class A2, class A3>
    746   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
    747     // If we're not in a conditional branch, or if none of the
    748     // arguments requires saving, then use the unconditional cleanup.
    749     if (!isInConditionalBranch()) {
    750       return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
    751     }
    752 
    753     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
    754     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
    755     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
    756     typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
    757 
    758     typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
    759     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
    760                                      a2_saved, a3_saved);
    761     initFullExprCleanup();
    762   }
    763 
    764   /// Set up the last cleaup that was pushed as a conditional
    765   /// full-expression cleanup.
    766   void initFullExprCleanup();
    767 
    768   /// PushDestructorCleanup - Push a cleanup to call the
    769   /// complete-object destructor of an object of the given type at the
    770   /// given address.  Does nothing if T is not a C++ class type with a
    771   /// non-trivial destructor.
    772   void PushDestructorCleanup(QualType T, llvm::Value *Addr);
    773 
    774   /// PushDestructorCleanup - Push a cleanup to call the
    775   /// complete-object variant of the given destructor on the object at
    776   /// the given address.
    777   void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
    778                              llvm::Value *Addr);
    779 
    780   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
    781   /// process all branch fixups.
    782   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
    783 
    784   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
    785   /// The block cannot be reactivated.  Pops it if it's the top of the
    786   /// stack.
    787   ///
    788   /// \param DominatingIP - An instruction which is known to
    789   ///   dominate the current IP (if set) and which lies along
    790   ///   all paths of execution between the current IP and the
    791   ///   the point at which the cleanup comes into scope.
    792   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
    793                               llvm::Instruction *DominatingIP);
    794 
    795   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
    796   /// Cannot be used to resurrect a deactivated cleanup.
    797   ///
    798   /// \param DominatingIP - An instruction which is known to
    799   ///   dominate the current IP (if set) and which lies along
    800   ///   all paths of execution between the current IP and the
    801   ///   the point at which the cleanup comes into scope.
    802   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
    803                             llvm::Instruction *DominatingIP);
    804 
    805   /// \brief Enters a new scope for capturing cleanups, all of which
    806   /// will be executed once the scope is exited.
    807   class RunCleanupsScope {
    808     EHScopeStack::stable_iterator CleanupStackDepth;
    809     bool OldDidCallStackSave;
    810   protected:
    811     bool PerformCleanup;
    812   private:
    813 
    814     RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
    815     void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
    816 
    817   protected:
    818     CodeGenFunction& CGF;
    819 
    820   public:
    821     /// \brief Enter a new cleanup scope.
    822     explicit RunCleanupsScope(CodeGenFunction &CGF)
    823       : PerformCleanup(true), CGF(CGF)
    824     {
    825       CleanupStackDepth = CGF.EHStack.stable_begin();
    826       OldDidCallStackSave = CGF.DidCallStackSave;
    827       CGF.DidCallStackSave = false;
    828     }
    829 
    830     /// \brief Exit this cleanup scope, emitting any accumulated
    831     /// cleanups.
    832     ~RunCleanupsScope() {
    833       if (PerformCleanup) {
    834         CGF.DidCallStackSave = OldDidCallStackSave;
    835         CGF.PopCleanupBlocks(CleanupStackDepth);
    836       }
    837     }
    838 
    839     /// \brief Determine whether this scope requires any cleanups.
    840     bool requiresCleanups() const {
    841       return CGF.EHStack.stable_begin() != CleanupStackDepth;
    842     }
    843 
    844     /// \brief Force the emission of cleanups now, instead of waiting
    845     /// until this object is destroyed.
    846     void ForceCleanup() {
    847       assert(PerformCleanup && "Already forced cleanup");
    848       CGF.DidCallStackSave = OldDidCallStackSave;
    849       CGF.PopCleanupBlocks(CleanupStackDepth);
    850       PerformCleanup = false;
    851     }
    852   };
    853 
    854   class LexicalScope: protected RunCleanupsScope {
    855     SourceRange Range;
    856 
    857     LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION;
    858     void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION;
    859 
    860   public:
    861     /// \brief Enter a new cleanup scope.
    862     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
    863       : RunCleanupsScope(CGF), Range(Range) {
    864       if (CGDebugInfo *DI = CGF.getDebugInfo())
    865         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
    866     }
    867 
    868     /// \brief Exit this cleanup scope, emitting any accumulated
    869     /// cleanups.
    870     ~LexicalScope() {
    871       if (PerformCleanup) endLexicalScope();
    872     }
    873 
    874     /// \brief Force the emission of cleanups now, instead of waiting
    875     /// until this object is destroyed.
    876     void ForceCleanup() {
    877       RunCleanupsScope::ForceCleanup();
    878       endLexicalScope();
    879     }
    880 
    881   private:
    882     void endLexicalScope() {
    883       if (CGDebugInfo *DI = CGF.getDebugInfo())
    884         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
    885     }
    886   };
    887 
    888 
    889   /// PopCleanupBlocks - Takes the old cleanup stack size and emits
    890   /// the cleanup blocks that have been added.
    891   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
    892 
    893   void ResolveBranchFixups(llvm::BasicBlock *Target);
    894 
    895   /// The given basic block lies in the current EH scope, but may be a
    896   /// target of a potentially scope-crossing jump; get a stable handle
    897   /// to which we can perform this jump later.
    898   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
    899     return JumpDest(Target,
    900                     EHStack.getInnermostNormalCleanup(),
    901                     NextCleanupDestIndex++);
    902   }
    903 
    904   /// The given basic block lies in the current EH scope, but may be a
    905   /// target of a potentially scope-crossing jump; get a stable handle
    906   /// to which we can perform this jump later.
    907   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
    908     return getJumpDestInCurrentScope(createBasicBlock(Name));
    909   }
    910 
    911   /// EmitBranchThroughCleanup - Emit a branch from the current insert
    912   /// block through the normal cleanup handling code (if any) and then
    913   /// on to \arg Dest.
    914   void EmitBranchThroughCleanup(JumpDest Dest);
    915 
    916   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
    917   /// specified destination obviously has no cleanups to run.  'false' is always
    918   /// a conservatively correct answer for this method.
    919   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
    920 
    921   /// popCatchScope - Pops the catch scope at the top of the EHScope
    922   /// stack, emitting any required code (other than the catch handlers
    923   /// themselves).
    924   void popCatchScope();
    925 
    926   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
    927   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
    928 
    929   /// An object to manage conditionally-evaluated expressions.
    930   class ConditionalEvaluation {
    931     llvm::BasicBlock *StartBB;
    932 
    933   public:
    934     ConditionalEvaluation(CodeGenFunction &CGF)
    935       : StartBB(CGF.Builder.GetInsertBlock()) {}
    936 
    937     void begin(CodeGenFunction &CGF) {
    938       assert(CGF.OutermostConditional != this);
    939       if (!CGF.OutermostConditional)
    940         CGF.OutermostConditional = this;
    941     }
    942 
    943     void end(CodeGenFunction &CGF) {
    944       assert(CGF.OutermostConditional != 0);
    945       if (CGF.OutermostConditional == this)
    946         CGF.OutermostConditional = 0;
    947     }
    948 
    949     /// Returns a block which will be executed prior to each
    950     /// evaluation of the conditional code.
    951     llvm::BasicBlock *getStartingBlock() const {
    952       return StartBB;
    953     }
    954   };
    955 
    956   /// isInConditionalBranch - Return true if we're currently emitting
    957   /// one branch or the other of a conditional expression.
    958   bool isInConditionalBranch() const { return OutermostConditional != 0; }
    959 
    960   void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
    961     assert(isInConditionalBranch());
    962     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
    963     new llvm::StoreInst(value, addr, &block->back());
    964   }
    965 
    966   /// An RAII object to record that we're evaluating a statement
    967   /// expression.
    968   class StmtExprEvaluation {
    969     CodeGenFunction &CGF;
    970 
    971     /// We have to save the outermost conditional: cleanups in a
    972     /// statement expression aren't conditional just because the
    973     /// StmtExpr is.
    974     ConditionalEvaluation *SavedOutermostConditional;
    975 
    976   public:
    977     StmtExprEvaluation(CodeGenFunction &CGF)
    978       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
    979       CGF.OutermostConditional = 0;
    980     }
    981 
    982     ~StmtExprEvaluation() {
    983       CGF.OutermostConditional = SavedOutermostConditional;
    984       CGF.EnsureInsertPoint();
    985     }
    986   };
    987 
    988   /// An object which temporarily prevents a value from being
    989   /// destroyed by aggressive peephole optimizations that assume that
    990   /// all uses of a value have been realized in the IR.
    991   class PeepholeProtection {
    992     llvm::Instruction *Inst;
    993     friend class CodeGenFunction;
    994 
    995   public:
    996     PeepholeProtection() : Inst(0) {}
    997   };
    998 
    999   /// A non-RAII class containing all the information about a bound
   1000   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
   1001   /// this which makes individual mappings very simple; using this
   1002   /// class directly is useful when you have a variable number of
   1003   /// opaque values or don't want the RAII functionality for some
   1004   /// reason.
   1005   class OpaqueValueMappingData {
   1006     const OpaqueValueExpr *OpaqueValue;
   1007     bool BoundLValue;
   1008     CodeGenFunction::PeepholeProtection Protection;
   1009 
   1010     OpaqueValueMappingData(const OpaqueValueExpr *ov,
   1011                            bool boundLValue)
   1012       : OpaqueValue(ov), BoundLValue(boundLValue) {}
   1013   public:
   1014     OpaqueValueMappingData() : OpaqueValue(0) {}
   1015 
   1016     static bool shouldBindAsLValue(const Expr *expr) {
   1017       // gl-values should be bound as l-values for obvious reasons.
   1018       // Records should be bound as l-values because IR generation
   1019       // always keeps them in memory.  Expressions of function type
   1020       // act exactly like l-values but are formally required to be
   1021       // r-values in C.
   1022       return expr->isGLValue() ||
   1023              expr->getType()->isRecordType() ||
   1024              expr->getType()->isFunctionType();
   1025     }
   1026 
   1027     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
   1028                                        const OpaqueValueExpr *ov,
   1029                                        const Expr *e) {
   1030       if (shouldBindAsLValue(ov))
   1031         return bind(CGF, ov, CGF.EmitLValue(e));
   1032       return bind(CGF, ov, CGF.EmitAnyExpr(e));
   1033     }
   1034 
   1035     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
   1036                                        const OpaqueValueExpr *ov,
   1037                                        const LValue &lv) {
   1038       assert(shouldBindAsLValue(ov));
   1039       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
   1040       return OpaqueValueMappingData(ov, true);
   1041     }
   1042 
   1043     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
   1044                                        const OpaqueValueExpr *ov,
   1045                                        const RValue &rv) {
   1046       assert(!shouldBindAsLValue(ov));
   1047       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
   1048 
   1049       OpaqueValueMappingData data(ov, false);
   1050 
   1051       // Work around an extremely aggressive peephole optimization in
   1052       // EmitScalarConversion which assumes that all other uses of a
   1053       // value are extant.
   1054       data.Protection = CGF.protectFromPeepholes(rv);
   1055 
   1056       return data;
   1057     }
   1058 
   1059     bool isValid() const { return OpaqueValue != 0; }
   1060     void clear() { OpaqueValue = 0; }
   1061 
   1062     void unbind(CodeGenFunction &CGF) {
   1063       assert(OpaqueValue && "no data to unbind!");
   1064 
   1065       if (BoundLValue) {
   1066         CGF.OpaqueLValues.erase(OpaqueValue);
   1067       } else {
   1068         CGF.OpaqueRValues.erase(OpaqueValue);
   1069         CGF.unprotectFromPeepholes(Protection);
   1070       }
   1071     }
   1072   };
   1073 
   1074   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
   1075   class OpaqueValueMapping {
   1076     CodeGenFunction &CGF;
   1077     OpaqueValueMappingData Data;
   1078 
   1079   public:
   1080     static bool shouldBindAsLValue(const Expr *expr) {
   1081       return OpaqueValueMappingData::shouldBindAsLValue(expr);
   1082     }
   1083 
   1084     /// Build the opaque value mapping for the given conditional
   1085     /// operator if it's the GNU ?: extension.  This is a common
   1086     /// enough pattern that the convenience operator is really
   1087     /// helpful.
   1088     ///
   1089     OpaqueValueMapping(CodeGenFunction &CGF,
   1090                        const AbstractConditionalOperator *op) : CGF(CGF) {
   1091       if (isa<ConditionalOperator>(op))
   1092         // Leave Data empty.
   1093         return;
   1094 
   1095       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
   1096       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
   1097                                           e->getCommon());
   1098     }
   1099 
   1100     OpaqueValueMapping(CodeGenFunction &CGF,
   1101                        const OpaqueValueExpr *opaqueValue,
   1102                        LValue lvalue)
   1103       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
   1104     }
   1105 
   1106     OpaqueValueMapping(CodeGenFunction &CGF,
   1107                        const OpaqueValueExpr *opaqueValue,
   1108                        RValue rvalue)
   1109       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
   1110     }
   1111 
   1112     void pop() {
   1113       Data.unbind(CGF);
   1114       Data.clear();
   1115     }
   1116 
   1117     ~OpaqueValueMapping() {
   1118       if (Data.isValid()) Data.unbind(CGF);
   1119     }
   1120   };
   1121 
   1122   /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
   1123   /// number that holds the value.
   1124   unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
   1125 
   1126   /// BuildBlockByrefAddress - Computes address location of the
   1127   /// variable which is declared as __block.
   1128   llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
   1129                                       const VarDecl *V);
   1130 private:
   1131   CGDebugInfo *DebugInfo;
   1132   bool DisableDebugInfo;
   1133 
   1134   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
   1135   /// calling llvm.stacksave for multiple VLAs in the same scope.
   1136   bool DidCallStackSave;
   1137 
   1138   /// IndirectBranch - The first time an indirect goto is seen we create a block
   1139   /// with an indirect branch.  Every time we see the address of a label taken,
   1140   /// we add the label to the indirect goto.  Every subsequent indirect goto is
   1141   /// codegen'd as a jump to the IndirectBranch's basic block.
   1142   llvm::IndirectBrInst *IndirectBranch;
   1143 
   1144   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
   1145   /// decls.
   1146   typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
   1147   DeclMapTy LocalDeclMap;
   1148 
   1149   /// LabelMap - This keeps track of the LLVM basic block for each C label.
   1150   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
   1151 
   1152   // BreakContinueStack - This keeps track of where break and continue
   1153   // statements should jump to.
   1154   struct BreakContinue {
   1155     BreakContinue(JumpDest Break, JumpDest Continue)
   1156       : BreakBlock(Break), ContinueBlock(Continue) {}
   1157 
   1158     JumpDest BreakBlock;
   1159     JumpDest ContinueBlock;
   1160   };
   1161   SmallVector<BreakContinue, 8> BreakContinueStack;
   1162 
   1163   /// SwitchInsn - This is nearest current switch instruction. It is null if
   1164   /// current context is not in a switch.
   1165   llvm::SwitchInst *SwitchInsn;
   1166 
   1167   /// CaseRangeBlock - This block holds if condition check for last case
   1168   /// statement range in current switch instruction.
   1169   llvm::BasicBlock *CaseRangeBlock;
   1170 
   1171   /// OpaqueLValues - Keeps track of the current set of opaque value
   1172   /// expressions.
   1173   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
   1174   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
   1175 
   1176   // VLASizeMap - This keeps track of the associated size for each VLA type.
   1177   // We track this by the size expression rather than the type itself because
   1178   // in certain situations, like a const qualifier applied to an VLA typedef,
   1179   // multiple VLA types can share the same size expression.
   1180   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
   1181   // enter/leave scopes.
   1182   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
   1183 
   1184   /// A block containing a single 'unreachable' instruction.  Created
   1185   /// lazily by getUnreachableBlock().
   1186   llvm::BasicBlock *UnreachableBlock;
   1187 
   1188   /// CXXThisDecl - When generating code for a C++ member function,
   1189   /// this will hold the implicit 'this' declaration.
   1190   ImplicitParamDecl *CXXABIThisDecl;
   1191   llvm::Value *CXXABIThisValue;
   1192   llvm::Value *CXXThisValue;
   1193 
   1194   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
   1195   /// destructor, this will hold the implicit argument (e.g. VTT).
   1196   ImplicitParamDecl *CXXStructorImplicitParamDecl;
   1197   llvm::Value *CXXStructorImplicitParamValue;
   1198 
   1199   /// OutermostConditional - Points to the outermost active
   1200   /// conditional control.  This is used so that we know if a
   1201   /// temporary should be destroyed conditionally.
   1202   ConditionalEvaluation *OutermostConditional;
   1203 
   1204 
   1205   /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
   1206   /// type as well as the field number that contains the actual data.
   1207   llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
   1208                                               unsigned> > ByRefValueInfo;
   1209 
   1210   llvm::BasicBlock *TerminateLandingPad;
   1211   llvm::BasicBlock *TerminateHandler;
   1212   llvm::BasicBlock *TrapBB;
   1213 
   1214   /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
   1215   /// In the kernel metadata node, reference the kernel function and metadata
   1216   /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
   1217   /// - A node for the vec_type_hint(<type>) qualifier contains string
   1218   ///   "vec_type_hint", an undefined value of the <type> data type,
   1219   ///   and a Boolean that is true if the <type> is integer and signed.
   1220   /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
   1221   ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
   1222   /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
   1223   ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
   1224   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
   1225                                 llvm::Function *Fn);
   1226 
   1227 public:
   1228   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
   1229   ~CodeGenFunction();
   1230 
   1231   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
   1232   ASTContext &getContext() const { return CGM.getContext(); }
   1233   /// Returns true if DebugInfo is actually initialized.
   1234   bool maybeInitializeDebugInfo() {
   1235     if (CGM.getModuleDebugInfo()) {
   1236       DebugInfo = CGM.getModuleDebugInfo();
   1237       return true;
   1238     }
   1239     return false;
   1240   }
   1241   CGDebugInfo *getDebugInfo() {
   1242     if (DisableDebugInfo)
   1243       return NULL;
   1244     return DebugInfo;
   1245   }
   1246   void disableDebugInfo() { DisableDebugInfo = true; }
   1247   void enableDebugInfo() { DisableDebugInfo = false; }
   1248 
   1249   bool shouldUseFusedARCCalls() {
   1250     return CGM.getCodeGenOpts().OptimizationLevel == 0;
   1251   }
   1252 
   1253   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
   1254 
   1255   /// Returns a pointer to the function's exception object and selector slot,
   1256   /// which is assigned in every landing pad.
   1257   llvm::Value *getExceptionSlot();
   1258   llvm::Value *getEHSelectorSlot();
   1259 
   1260   /// Returns the contents of the function's exception object and selector
   1261   /// slots.
   1262   llvm::Value *getExceptionFromSlot();
   1263   llvm::Value *getSelectorFromSlot();
   1264 
   1265   llvm::Value *getNormalCleanupDestSlot();
   1266 
   1267   llvm::BasicBlock *getUnreachableBlock() {
   1268     if (!UnreachableBlock) {
   1269       UnreachableBlock = createBasicBlock("unreachable");
   1270       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
   1271     }
   1272     return UnreachableBlock;
   1273   }
   1274 
   1275   llvm::BasicBlock *getInvokeDest() {
   1276     if (!EHStack.requiresLandingPad()) return 0;
   1277     return getInvokeDestImpl();
   1278   }
   1279 
   1280   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
   1281 
   1282   //===--------------------------------------------------------------------===//
   1283   //                                  Cleanups
   1284   //===--------------------------------------------------------------------===//
   1285 
   1286   typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
   1287 
   1288   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
   1289                                         llvm::Value *arrayEndPointer,
   1290                                         QualType elementType,
   1291                                         Destroyer *destroyer);
   1292   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
   1293                                       llvm::Value *arrayEnd,
   1294                                       QualType elementType,
   1295                                       Destroyer *destroyer);
   1296 
   1297   void pushDestroy(QualType::DestructionKind dtorKind,
   1298                    llvm::Value *addr, QualType type);
   1299   void pushEHDestroy(QualType::DestructionKind dtorKind,
   1300                      llvm::Value *addr, QualType type);
   1301   void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
   1302                    Destroyer *destroyer, bool useEHCleanupForArray);
   1303   void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
   1304                    bool useEHCleanupForArray);
   1305   llvm::Function *generateDestroyHelper(llvm::Constant *addr,
   1306                                         QualType type,
   1307                                         Destroyer *destroyer,
   1308                                         bool useEHCleanupForArray);
   1309   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
   1310                         QualType type, Destroyer *destroyer,
   1311                         bool checkZeroLength, bool useEHCleanup);
   1312 
   1313   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
   1314 
   1315   /// Determines whether an EH cleanup is required to destroy a type
   1316   /// with the given destruction kind.
   1317   bool needsEHCleanup(QualType::DestructionKind kind) {
   1318     switch (kind) {
   1319     case QualType::DK_none:
   1320       return false;
   1321     case QualType::DK_cxx_destructor:
   1322     case QualType::DK_objc_weak_lifetime:
   1323       return getLangOpts().Exceptions;
   1324     case QualType::DK_objc_strong_lifetime:
   1325       return getLangOpts().Exceptions &&
   1326              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
   1327     }
   1328     llvm_unreachable("bad destruction kind");
   1329   }
   1330 
   1331   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
   1332     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
   1333   }
   1334 
   1335   //===--------------------------------------------------------------------===//
   1336   //                                  Objective-C
   1337   //===--------------------------------------------------------------------===//
   1338 
   1339   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
   1340 
   1341   void StartObjCMethod(const ObjCMethodDecl *MD,
   1342                        const ObjCContainerDecl *CD,
   1343                        SourceLocation StartLoc);
   1344 
   1345   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
   1346   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
   1347                           const ObjCPropertyImplDecl *PID);
   1348   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
   1349                               const ObjCPropertyImplDecl *propImpl,
   1350                               const ObjCMethodDecl *GetterMothodDecl,
   1351                               llvm::Constant *AtomicHelperFn);
   1352 
   1353   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
   1354                                   ObjCMethodDecl *MD, bool ctor);
   1355 
   1356   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
   1357   /// for the given property.
   1358   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
   1359                           const ObjCPropertyImplDecl *PID);
   1360   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
   1361                               const ObjCPropertyImplDecl *propImpl,
   1362                               llvm::Constant *AtomicHelperFn);
   1363   bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
   1364   bool IvarTypeWithAggrGCObjects(QualType Ty);
   1365 
   1366   //===--------------------------------------------------------------------===//
   1367   //                                  Block Bits
   1368   //===--------------------------------------------------------------------===//
   1369 
   1370   llvm::Value *EmitBlockLiteral(const BlockExpr *);
   1371   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
   1372   static void destroyBlockInfos(CGBlockInfo *info);
   1373   llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
   1374                                            const CGBlockInfo &Info,
   1375                                            llvm::StructType *,
   1376                                            llvm::Constant *BlockVarLayout);
   1377 
   1378   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
   1379                                         const CGBlockInfo &Info,
   1380                                         const Decl *OuterFuncDecl,
   1381                                         const DeclMapTy &ldm,
   1382                                         bool IsLambdaConversionToBlock);
   1383 
   1384   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
   1385   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
   1386   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
   1387                                              const ObjCPropertyImplDecl *PID);
   1388   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
   1389                                              const ObjCPropertyImplDecl *PID);
   1390   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
   1391 
   1392   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
   1393 
   1394   class AutoVarEmission;
   1395 
   1396   void emitByrefStructureInit(const AutoVarEmission &emission);
   1397   void enterByrefCleanup(const AutoVarEmission &emission);
   1398 
   1399   llvm::Value *LoadBlockStruct() {
   1400     assert(BlockPointer && "no block pointer set!");
   1401     return BlockPointer;
   1402   }
   1403 
   1404   void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
   1405   void AllocateBlockDecl(const DeclRefExpr *E);
   1406   llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
   1407   llvm::Type *BuildByRefType(const VarDecl *var);
   1408 
   1409   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
   1410                     const CGFunctionInfo &FnInfo);
   1411   void StartFunction(GlobalDecl GD, QualType RetTy,
   1412                      llvm::Function *Fn,
   1413                      const CGFunctionInfo &FnInfo,
   1414                      const FunctionArgList &Args,
   1415                      SourceLocation StartLoc);
   1416 
   1417   void EmitConstructorBody(FunctionArgList &Args);
   1418   void EmitDestructorBody(FunctionArgList &Args);
   1419   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
   1420   void EmitFunctionBody(FunctionArgList &Args);
   1421 
   1422   void EmitForwardingCallToLambda(const CXXRecordDecl *Lambda,
   1423                                   CallArgList &CallArgs);
   1424   void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
   1425   void EmitLambdaBlockInvokeBody();
   1426   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
   1427   void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
   1428 
   1429   /// EmitReturnBlock - Emit the unified return block, trying to avoid its
   1430   /// emission when possible.
   1431   void EmitReturnBlock();
   1432 
   1433   /// FinishFunction - Complete IR generation of the current function. It is
   1434   /// legal to call this function even if there is no current insertion point.
   1435   void FinishFunction(SourceLocation EndLoc=SourceLocation());
   1436 
   1437   /// GenerateThunk - Generate a thunk for the given method.
   1438   void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
   1439                      GlobalDecl GD, const ThunkInfo &Thunk);
   1440 
   1441   void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
   1442                             GlobalDecl GD, const ThunkInfo &Thunk);
   1443 
   1444   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
   1445                         FunctionArgList &Args);
   1446 
   1447   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
   1448                                ArrayRef<VarDecl *> ArrayIndexes);
   1449 
   1450   /// InitializeVTablePointer - Initialize the vtable pointer of the given
   1451   /// subobject.
   1452   ///
   1453   void InitializeVTablePointer(BaseSubobject Base,
   1454                                const CXXRecordDecl *NearestVBase,
   1455                                CharUnits OffsetFromNearestVBase,
   1456                                llvm::Constant *VTable,
   1457                                const CXXRecordDecl *VTableClass);
   1458 
   1459   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
   1460   void InitializeVTablePointers(BaseSubobject Base,
   1461                                 const CXXRecordDecl *NearestVBase,
   1462                                 CharUnits OffsetFromNearestVBase,
   1463                                 bool BaseIsNonVirtualPrimaryBase,
   1464                                 llvm::Constant *VTable,
   1465                                 const CXXRecordDecl *VTableClass,
   1466                                 VisitedVirtualBasesSetTy& VBases);
   1467 
   1468   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
   1469 
   1470   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
   1471   /// to by This.
   1472   llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
   1473 
   1474   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
   1475   /// given phase of destruction for a destructor.  The end result
   1476   /// should call destructors on members and base classes in reverse
   1477   /// order of their construction.
   1478   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
   1479 
   1480   /// ShouldInstrumentFunction - Return true if the current function should be
   1481   /// instrumented with __cyg_profile_func_* calls
   1482   bool ShouldInstrumentFunction();
   1483 
   1484   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
   1485   /// instrumentation function with the current function and the call site, if
   1486   /// function instrumentation is enabled.
   1487   void EmitFunctionInstrumentation(const char *Fn);
   1488 
   1489   /// EmitMCountInstrumentation - Emit call to .mcount.
   1490   void EmitMCountInstrumentation();
   1491 
   1492   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
   1493   /// arguments for the given function. This is also responsible for naming the
   1494   /// LLVM function arguments.
   1495   void EmitFunctionProlog(const CGFunctionInfo &FI,
   1496                           llvm::Function *Fn,
   1497                           const FunctionArgList &Args);
   1498 
   1499   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
   1500   /// given temporary.
   1501   void EmitFunctionEpilog(const CGFunctionInfo &FI);
   1502 
   1503   /// EmitStartEHSpec - Emit the start of the exception spec.
   1504   void EmitStartEHSpec(const Decl *D);
   1505 
   1506   /// EmitEndEHSpec - Emit the end of the exception spec.
   1507   void EmitEndEHSpec(const Decl *D);
   1508 
   1509   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
   1510   llvm::BasicBlock *getTerminateLandingPad();
   1511 
   1512   /// getTerminateHandler - Return a handler (not a landing pad, just
   1513   /// a catch handler) that just calls terminate.  This is used when
   1514   /// a terminate scope encloses a try.
   1515   llvm::BasicBlock *getTerminateHandler();
   1516 
   1517   llvm::Type *ConvertTypeForMem(QualType T);
   1518   llvm::Type *ConvertType(QualType T);
   1519   llvm::Type *ConvertType(const TypeDecl *T) {
   1520     return ConvertType(getContext().getTypeDeclType(T));
   1521   }
   1522 
   1523   /// LoadObjCSelf - Load the value of self. This function is only valid while
   1524   /// generating code for an Objective-C method.
   1525   llvm::Value *LoadObjCSelf();
   1526 
   1527   /// TypeOfSelfObject - Return type of object that this self represents.
   1528   QualType TypeOfSelfObject();
   1529 
   1530   /// hasAggregateLLVMType - Return true if the specified AST type will map into
   1531   /// an aggregate LLVM type or is void.
   1532   static TypeEvaluationKind getEvaluationKind(QualType T);
   1533 
   1534   static bool hasScalarEvaluationKind(QualType T) {
   1535     return getEvaluationKind(T) == TEK_Scalar;
   1536   }
   1537 
   1538   static bool hasAggregateEvaluationKind(QualType T) {
   1539     return getEvaluationKind(T) == TEK_Aggregate;
   1540   }
   1541 
   1542   /// createBasicBlock - Create an LLVM basic block.
   1543   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
   1544                                      llvm::Function *parent = 0,
   1545                                      llvm::BasicBlock *before = 0) {
   1546 #ifdef NDEBUG
   1547     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
   1548 #else
   1549     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
   1550 #endif
   1551   }
   1552 
   1553   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
   1554   /// label maps to.
   1555   JumpDest getJumpDestForLabel(const LabelDecl *S);
   1556 
   1557   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
   1558   /// another basic block, simplify it. This assumes that no other code could
   1559   /// potentially reference the basic block.
   1560   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
   1561 
   1562   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
   1563   /// adding a fall-through branch from the current insert block if
   1564   /// necessary. It is legal to call this function even if there is no current
   1565   /// insertion point.
   1566   ///
   1567   /// IsFinished - If true, indicates that the caller has finished emitting
   1568   /// branches to the given block and does not expect to emit code into it. This
   1569   /// means the block can be ignored if it is unreachable.
   1570   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
   1571 
   1572   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
   1573   /// near its uses, and leave the insertion point in it.
   1574   void EmitBlockAfterUses(llvm::BasicBlock *BB);
   1575 
   1576   /// EmitBranch - Emit a branch to the specified basic block from the current
   1577   /// insert block, taking care to avoid creation of branches from dummy
   1578   /// blocks. It is legal to call this function even if there is no current
   1579   /// insertion point.
   1580   ///
   1581   /// This function clears the current insertion point. The caller should follow
   1582   /// calls to this function with calls to Emit*Block prior to generation new
   1583   /// code.
   1584   void EmitBranch(llvm::BasicBlock *Block);
   1585 
   1586   /// HaveInsertPoint - True if an insertion point is defined. If not, this
   1587   /// indicates that the current code being emitted is unreachable.
   1588   bool HaveInsertPoint() const {
   1589     return Builder.GetInsertBlock() != 0;
   1590   }
   1591 
   1592   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
   1593   /// emitted IR has a place to go. Note that by definition, if this function
   1594   /// creates a block then that block is unreachable; callers may do better to
   1595   /// detect when no insertion point is defined and simply skip IR generation.
   1596   void EnsureInsertPoint() {
   1597     if (!HaveInsertPoint())
   1598       EmitBlock(createBasicBlock());
   1599   }
   1600 
   1601   /// ErrorUnsupported - Print out an error that codegen doesn't support the
   1602   /// specified stmt yet.
   1603   void ErrorUnsupported(const Stmt *S, const char *Type,
   1604                         bool OmitOnError=false);
   1605 
   1606   //===--------------------------------------------------------------------===//
   1607   //                                  Helpers
   1608   //===--------------------------------------------------------------------===//
   1609 
   1610   LValue MakeAddrLValue(llvm::Value *V, QualType T,
   1611                         CharUnits Alignment = CharUnits()) {
   1612     return LValue::MakeAddr(V, T, Alignment, getContext(),
   1613                             CGM.getTBAAInfo(T));
   1614   }
   1615 
   1616   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
   1617     CharUnits Alignment;
   1618     if (!T->isIncompleteType())
   1619       Alignment = getContext().getTypeAlignInChars(T);
   1620     return LValue::MakeAddr(V, T, Alignment, getContext(),
   1621                             CGM.getTBAAInfo(T));
   1622   }
   1623 
   1624   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
   1625   /// block. The caller is responsible for setting an appropriate alignment on
   1626   /// the alloca.
   1627   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
   1628                                      const Twine &Name = "tmp");
   1629 
   1630   /// InitTempAlloca - Provide an initial value for the given alloca.
   1631   void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
   1632 
   1633   /// CreateIRTemp - Create a temporary IR object of the given type, with
   1634   /// appropriate alignment. This routine should only be used when an temporary
   1635   /// value needs to be stored into an alloca (for example, to avoid explicit
   1636   /// PHI construction), but the type is the IR type, not the type appropriate
   1637   /// for storing in memory.
   1638   llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
   1639 
   1640   /// CreateMemTemp - Create a temporary memory object of the given type, with
   1641   /// appropriate alignment.
   1642   llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
   1643 
   1644   /// CreateAggTemp - Create a temporary memory object for the given
   1645   /// aggregate type.
   1646   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
   1647     CharUnits Alignment = getContext().getTypeAlignInChars(T);
   1648     return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
   1649                                  T.getQualifiers(),
   1650                                  AggValueSlot::IsNotDestructed,
   1651                                  AggValueSlot::DoesNotNeedGCBarriers,
   1652                                  AggValueSlot::IsNotAliased);
   1653   }
   1654 
   1655   /// Emit a cast to void* in the appropriate address space.
   1656   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
   1657 
   1658   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
   1659   /// expression and compare the result against zero, returning an Int1Ty value.
   1660   llvm::Value *EvaluateExprAsBool(const Expr *E);
   1661 
   1662   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
   1663   void EmitIgnoredExpr(const Expr *E);
   1664 
   1665   /// EmitAnyExpr - Emit code to compute the specified expression which can have
   1666   /// any type.  The result is returned as an RValue struct.  If this is an
   1667   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
   1668   /// the result should be returned.
   1669   ///
   1670   /// \param ignoreResult True if the resulting value isn't used.
   1671   RValue EmitAnyExpr(const Expr *E,
   1672                      AggValueSlot aggSlot = AggValueSlot::ignored(),
   1673                      bool ignoreResult = false);
   1674 
   1675   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
   1676   // or the value of the expression, depending on how va_list is defined.
   1677   llvm::Value *EmitVAListRef(const Expr *E);
   1678 
   1679   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
   1680   /// always be accessible even if no aggregate location is provided.
   1681   RValue EmitAnyExprToTemp(const Expr *E);
   1682 
   1683   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
   1684   /// arbitrary expression into the given memory location.
   1685   void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
   1686                         Qualifiers Quals, bool IsInitializer);
   1687 
   1688   /// EmitExprAsInit - Emits the code necessary to initialize a
   1689   /// location in memory with the given initializer.
   1690   void EmitExprAsInit(const Expr *init, const ValueDecl *D,
   1691                       LValue lvalue, bool capturedByInit);
   1692 
   1693   /// hasVolatileMember - returns true if aggregate type has a volatile
   1694   /// member.
   1695   bool hasVolatileMember(QualType T) {
   1696     if (const RecordType *RT = T->getAs<RecordType>()) {
   1697       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
   1698       return RD->hasVolatileMember();
   1699     }
   1700     return false;
   1701   }
   1702   /// EmitAggregateCopy - Emit an aggregate assignment.
   1703   ///
   1704   /// The difference to EmitAggregateCopy is that tail padding is not copied.
   1705   /// This is required for correctness when assigning non-POD structures in C++.
   1706   void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr,
   1707                            QualType EltTy) {
   1708     bool IsVolatile = hasVolatileMember(EltTy);
   1709     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(),
   1710                       true);
   1711   }
   1712 
   1713   /// EmitAggregateCopy - Emit an aggregate copy.
   1714   ///
   1715   /// \param isVolatile - True iff either the source or the destination is
   1716   /// volatile.
   1717   /// \param isAssignment - If false, allow padding to be copied.  This often
   1718   /// yields more efficient.
   1719   void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
   1720                          QualType EltTy, bool isVolatile=false,
   1721                          CharUnits Alignment = CharUnits::Zero(),
   1722                          bool isAssignment = false);
   1723 
   1724   /// StartBlock - Start new block named N. If insert block is a dummy block
   1725   /// then reuse it.
   1726   void StartBlock(const char *N);
   1727 
   1728   /// GetAddrOfLocalVar - Return the address of a local variable.
   1729   llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
   1730     llvm::Value *Res = LocalDeclMap[VD];
   1731     assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
   1732     return Res;
   1733   }
   1734 
   1735   /// getOpaqueLValueMapping - Given an opaque value expression (which
   1736   /// must be mapped to an l-value), return its mapping.
   1737   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
   1738     assert(OpaqueValueMapping::shouldBindAsLValue(e));
   1739 
   1740     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
   1741       it = OpaqueLValues.find(e);
   1742     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
   1743     return it->second;
   1744   }
   1745 
   1746   /// getOpaqueRValueMapping - Given an opaque value expression (which
   1747   /// must be mapped to an r-value), return its mapping.
   1748   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
   1749     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
   1750 
   1751     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
   1752       it = OpaqueRValues.find(e);
   1753     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
   1754     return it->second;
   1755   }
   1756 
   1757   /// getAccessedFieldNo - Given an encoded value and a result number, return
   1758   /// the input field number being accessed.
   1759   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
   1760 
   1761   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
   1762   llvm::BasicBlock *GetIndirectGotoBlock();
   1763 
   1764   /// EmitNullInitialization - Generate code to set a value of the given type to
   1765   /// null, If the type contains data member pointers, they will be initialized
   1766   /// to -1 in accordance with the Itanium C++ ABI.
   1767   void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
   1768 
   1769   // EmitVAArg - Generate code to get an argument from the passed in pointer
   1770   // and update it accordingly. The return value is a pointer to the argument.
   1771   // FIXME: We should be able to get rid of this method and use the va_arg
   1772   // instruction in LLVM instead once it works well enough.
   1773   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
   1774 
   1775   /// emitArrayLength - Compute the length of an array, even if it's a
   1776   /// VLA, and drill down to the base element type.
   1777   llvm::Value *emitArrayLength(const ArrayType *arrayType,
   1778                                QualType &baseType,
   1779                                llvm::Value *&addr);
   1780 
   1781   /// EmitVLASize - Capture all the sizes for the VLA expressions in
   1782   /// the given variably-modified type and store them in the VLASizeMap.
   1783   ///
   1784   /// This function can be called with a null (unreachable) insert point.
   1785   void EmitVariablyModifiedType(QualType Ty);
   1786 
   1787   /// getVLASize - Returns an LLVM value that corresponds to the size,
   1788   /// in non-variably-sized elements, of a variable length array type,
   1789   /// plus that largest non-variably-sized element type.  Assumes that
   1790   /// the type has already been emitted with EmitVariablyModifiedType.
   1791   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
   1792   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
   1793 
   1794   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
   1795   /// generating code for an C++ member function.
   1796   llvm::Value *LoadCXXThis() {
   1797     assert(CXXThisValue && "no 'this' value for this function");
   1798     return CXXThisValue;
   1799   }
   1800 
   1801   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
   1802   /// virtual bases.
   1803   // FIXME: Every place that calls LoadCXXVTT is something
   1804   // that needs to be abstracted properly.
   1805   llvm::Value *LoadCXXVTT() {
   1806     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
   1807     return CXXStructorImplicitParamValue;
   1808   }
   1809 
   1810   /// LoadCXXStructorImplicitParam - Load the implicit parameter
   1811   /// for a constructor/destructor.
   1812   llvm::Value *LoadCXXStructorImplicitParam() {
   1813     assert(CXXStructorImplicitParamValue &&
   1814            "no implicit argument value for this function");
   1815     return CXXStructorImplicitParamValue;
   1816   }
   1817 
   1818   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
   1819   /// complete class to the given direct base.
   1820   llvm::Value *
   1821   GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
   1822                                         const CXXRecordDecl *Derived,
   1823                                         const CXXRecordDecl *Base,
   1824                                         bool BaseIsVirtual);
   1825 
   1826   /// GetAddressOfBaseClass - This function will add the necessary delta to the
   1827   /// load of 'this' and returns address of the base class.
   1828   llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
   1829                                      const CXXRecordDecl *Derived,
   1830                                      CastExpr::path_const_iterator PathBegin,
   1831                                      CastExpr::path_const_iterator PathEnd,
   1832                                      bool NullCheckValue);
   1833 
   1834   llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
   1835                                         const CXXRecordDecl *Derived,
   1836                                         CastExpr::path_const_iterator PathBegin,
   1837                                         CastExpr::path_const_iterator PathEnd,
   1838                                         bool NullCheckValue);
   1839 
   1840   llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This,
   1841                                          const CXXRecordDecl *ClassDecl,
   1842                                          const CXXRecordDecl *BaseClassDecl);
   1843 
   1844   /// GetVTTParameter - Return the VTT parameter that should be passed to a
   1845   /// base constructor/destructor with virtual bases.
   1846   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
   1847   /// to ItaniumCXXABI.cpp together with all the references to VTT.
   1848   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
   1849                                bool Delegating);
   1850 
   1851   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
   1852                                       CXXCtorType CtorType,
   1853                                       const FunctionArgList &Args);
   1854   // It's important not to confuse this and the previous function. Delegating
   1855   // constructors are the C++0x feature. The constructor delegate optimization
   1856   // is used to reduce duplication in the base and complete consturctors where
   1857   // they are substantially the same.
   1858   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
   1859                                         const FunctionArgList &Args);
   1860   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
   1861                               bool ForVirtualBase, bool Delegating,
   1862                               llvm::Value *This,
   1863                               CallExpr::const_arg_iterator ArgBeg,
   1864                               CallExpr::const_arg_iterator ArgEnd);
   1865 
   1866   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
   1867                               llvm::Value *This, llvm::Value *Src,
   1868                               CallExpr::const_arg_iterator ArgBeg,
   1869                               CallExpr::const_arg_iterator ArgEnd);
   1870 
   1871   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
   1872                                   const ConstantArrayType *ArrayTy,
   1873                                   llvm::Value *ArrayPtr,
   1874                                   CallExpr::const_arg_iterator ArgBeg,
   1875                                   CallExpr::const_arg_iterator ArgEnd,
   1876                                   bool ZeroInitialization = false);
   1877 
   1878   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
   1879                                   llvm::Value *NumElements,
   1880                                   llvm::Value *ArrayPtr,
   1881                                   CallExpr::const_arg_iterator ArgBeg,
   1882                                   CallExpr::const_arg_iterator ArgEnd,
   1883                                   bool ZeroInitialization = false);
   1884 
   1885   static Destroyer destroyCXXObject;
   1886 
   1887   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
   1888                              bool ForVirtualBase, bool Delegating,
   1889                              llvm::Value *This);
   1890 
   1891   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
   1892                                llvm::Value *NewPtr, llvm::Value *NumElements);
   1893 
   1894   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
   1895                         llvm::Value *Ptr);
   1896 
   1897   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
   1898   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
   1899 
   1900   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
   1901                       QualType DeleteTy);
   1902 
   1903   llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
   1904   llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
   1905   llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E);
   1906 
   1907   void MaybeEmitStdInitializerListCleanup(llvm::Value *loc, const Expr *init);
   1908   void EmitStdInitializerListCleanup(llvm::Value *loc,
   1909                                      const InitListExpr *init);
   1910 
   1911   /// \brief Situations in which we might emit a check for the suitability of a
   1912   ///        pointer or glvalue.
   1913   enum TypeCheckKind {
   1914     /// Checking the operand of a load. Must be suitably sized and aligned.
   1915     TCK_Load,
   1916     /// Checking the destination of a store. Must be suitably sized and aligned.
   1917     TCK_Store,
   1918     /// Checking the bound value in a reference binding. Must be suitably sized
   1919     /// and aligned, but is not required to refer to an object (until the
   1920     /// reference is used), per core issue 453.
   1921     TCK_ReferenceBinding,
   1922     /// Checking the object expression in a non-static data member access. Must
   1923     /// be an object within its lifetime.
   1924     TCK_MemberAccess,
   1925     /// Checking the 'this' pointer for a call to a non-static member function.
   1926     /// Must be an object within its lifetime.
   1927     TCK_MemberCall,
   1928     /// Checking the 'this' pointer for a constructor call.
   1929     TCK_ConstructorCall,
   1930     /// Checking the operand of a static_cast to a derived pointer type. Must be
   1931     /// null or an object within its lifetime.
   1932     TCK_DowncastPointer,
   1933     /// Checking the operand of a static_cast to a derived reference type. Must
   1934     /// be an object within its lifetime.
   1935     TCK_DowncastReference
   1936   };
   1937 
   1938   /// \brief Emit a check that \p V is the address of storage of the
   1939   /// appropriate size and alignment for an object of type \p Type.
   1940   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
   1941                      QualType Type, CharUnits Alignment = CharUnits::Zero());
   1942 
   1943   /// \brief Emit a check that \p Base points into an array object, which
   1944   /// we can access at index \p Index. \p Accessed should be \c false if we
   1945   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
   1946   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
   1947                        QualType IndexType, bool Accessed);
   1948 
   1949   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
   1950                                        bool isInc, bool isPre);
   1951   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
   1952                                          bool isInc, bool isPre);
   1953   //===--------------------------------------------------------------------===//
   1954   //                            Declaration Emission
   1955   //===--------------------------------------------------------------------===//
   1956 
   1957   /// EmitDecl - Emit a declaration.
   1958   ///
   1959   /// This function can be called with a null (unreachable) insert point.
   1960   void EmitDecl(const Decl &D);
   1961 
   1962   /// EmitVarDecl - Emit a local variable declaration.
   1963   ///
   1964   /// This function can be called with a null (unreachable) insert point.
   1965   void EmitVarDecl(const VarDecl &D);
   1966 
   1967   void EmitScalarInit(const Expr *init, const ValueDecl *D,
   1968                       LValue lvalue, bool capturedByInit);
   1969   void EmitScalarInit(llvm::Value *init, LValue lvalue);
   1970 
   1971   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
   1972                              llvm::Value *Address);
   1973 
   1974   /// EmitAutoVarDecl - Emit an auto variable declaration.
   1975   ///
   1976   /// This function can be called with a null (unreachable) insert point.
   1977   void EmitAutoVarDecl(const VarDecl &D);
   1978 
   1979   class AutoVarEmission {
   1980     friend class CodeGenFunction;
   1981 
   1982     const VarDecl *Variable;
   1983 
   1984     /// The alignment of the variable.
   1985     CharUnits Alignment;
   1986 
   1987     /// The address of the alloca.  Null if the variable was emitted
   1988     /// as a global constant.
   1989     llvm::Value *Address;
   1990 
   1991     llvm::Value *NRVOFlag;
   1992 
   1993     /// True if the variable is a __block variable.
   1994     bool IsByRef;
   1995 
   1996     /// True if the variable is of aggregate type and has a constant
   1997     /// initializer.
   1998     bool IsConstantAggregate;
   1999 
   2000     struct Invalid {};
   2001     AutoVarEmission(Invalid) : Variable(0) {}
   2002 
   2003     AutoVarEmission(const VarDecl &variable)
   2004       : Variable(&variable), Address(0), NRVOFlag(0),
   2005         IsByRef(false), IsConstantAggregate(false) {}
   2006 
   2007     bool wasEmittedAsGlobal() const { return Address == 0; }
   2008 
   2009   public:
   2010     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
   2011 
   2012     /// Returns the address of the object within this declaration.
   2013     /// Note that this does not chase the forwarding pointer for
   2014     /// __block decls.
   2015     llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
   2016       if (!IsByRef) return Address;
   2017 
   2018       return CGF.Builder.CreateStructGEP(Address,
   2019                                          CGF.getByRefValueLLVMField(Variable),
   2020                                          Variable->getNameAsString());
   2021     }
   2022   };
   2023   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
   2024   void EmitAutoVarInit(const AutoVarEmission &emission);
   2025   void EmitAutoVarCleanups(const AutoVarEmission &emission);
   2026   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
   2027                               QualType::DestructionKind dtorKind);
   2028 
   2029   void EmitStaticVarDecl(const VarDecl &D,
   2030                          llvm::GlobalValue::LinkageTypes Linkage);
   2031 
   2032   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
   2033   void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
   2034 
   2035   /// protectFromPeepholes - Protect a value that we're intending to
   2036   /// store to the side, but which will probably be used later, from
   2037   /// aggressive peepholing optimizations that might delete it.
   2038   ///
   2039   /// Pass the result to unprotectFromPeepholes to declare that
   2040   /// protection is no longer required.
   2041   ///
   2042   /// There's no particular reason why this shouldn't apply to
   2043   /// l-values, it's just that no existing peepholes work on pointers.
   2044   PeepholeProtection protectFromPeepholes(RValue rvalue);
   2045   void unprotectFromPeepholes(PeepholeProtection protection);
   2046 
   2047   //===--------------------------------------------------------------------===//
   2048   //                             Statement Emission
   2049   //===--------------------------------------------------------------------===//
   2050 
   2051   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
   2052   void EmitStopPoint(const Stmt *S);
   2053 
   2054   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
   2055   /// this function even if there is no current insertion point.
   2056   ///
   2057   /// This function may clear the current insertion point; callers should use
   2058   /// EnsureInsertPoint if they wish to subsequently generate code without first
   2059   /// calling EmitBlock, EmitBranch, or EmitStmt.
   2060   void EmitStmt(const Stmt *S);
   2061 
   2062   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
   2063   /// necessarily require an insertion point or debug information; typically
   2064   /// because the statement amounts to a jump or a container of other
   2065   /// statements.
   2066   ///
   2067   /// \return True if the statement was handled.
   2068   bool EmitSimpleStmt(const Stmt *S);
   2069 
   2070   RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
   2071                           AggValueSlot AVS = AggValueSlot::ignored());
   2072   RValue EmitCompoundStmtWithoutScope(const CompoundStmt &S,
   2073                                       bool GetLast = false, AggValueSlot AVS =
   2074                                           AggValueSlot::ignored());
   2075 
   2076   /// EmitLabel - Emit the block for the given label. It is legal to call this
   2077   /// function even if there is no current insertion point.
   2078   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
   2079 
   2080   void EmitLabelStmt(const LabelStmt &S);
   2081   void EmitAttributedStmt(const AttributedStmt &S);
   2082   void EmitGotoStmt(const GotoStmt &S);
   2083   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
   2084   void EmitIfStmt(const IfStmt &S);
   2085   void EmitWhileStmt(const WhileStmt &S);
   2086   void EmitDoStmt(const DoStmt &S);
   2087   void EmitForStmt(const ForStmt &S);
   2088   void EmitReturnStmt(const ReturnStmt &S);
   2089   void EmitDeclStmt(const DeclStmt &S);
   2090   void EmitBreakStmt(const BreakStmt &S);
   2091   void EmitContinueStmt(const ContinueStmt &S);
   2092   void EmitSwitchStmt(const SwitchStmt &S);
   2093   void EmitDefaultStmt(const DefaultStmt &S);
   2094   void EmitCaseStmt(const CaseStmt &S);
   2095   void EmitCaseStmtRange(const CaseStmt &S);
   2096   void EmitAsmStmt(const AsmStmt &S);
   2097 
   2098   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
   2099   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
   2100   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
   2101   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
   2102   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
   2103 
   2104   llvm::Constant *getUnwindResumeFn();
   2105   llvm::Constant *getUnwindResumeOrRethrowFn();
   2106   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
   2107   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
   2108 
   2109   void EmitCXXTryStmt(const CXXTryStmt &S);
   2110   void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
   2111 
   2112   //===--------------------------------------------------------------------===//
   2113   //                         LValue Expression Emission
   2114   //===--------------------------------------------------------------------===//
   2115 
   2116   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
   2117   RValue GetUndefRValue(QualType Ty);
   2118 
   2119   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
   2120   /// and issue an ErrorUnsupported style diagnostic (using the
   2121   /// provided Name).
   2122   RValue EmitUnsupportedRValue(const Expr *E,
   2123                                const char *Name);
   2124 
   2125   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
   2126   /// an ErrorUnsupported style diagnostic (using the provided Name).
   2127   LValue EmitUnsupportedLValue(const Expr *E,
   2128                                const char *Name);
   2129 
   2130   /// EmitLValue - Emit code to compute a designator that specifies the location
   2131   /// of the expression.
   2132   ///
   2133   /// This can return one of two things: a simple address or a bitfield
   2134   /// reference.  In either case, the LLVM Value* in the LValue structure is
   2135   /// guaranteed to be an LLVM pointer type.
   2136   ///
   2137   /// If this returns a bitfield reference, nothing about the pointee type of
   2138   /// the LLVM value is known: For example, it may not be a pointer to an
   2139   /// integer.
   2140   ///
   2141   /// If this returns a normal address, and if the lvalue's C type is fixed
   2142   /// size, this method guarantees that the returned pointer type will point to
   2143   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
   2144   /// variable length type, this is not possible.
   2145   ///
   2146   LValue EmitLValue(const Expr *E);
   2147 
   2148   /// \brief Same as EmitLValue but additionally we generate checking code to
   2149   /// guard against undefined behavior.  This is only suitable when we know
   2150   /// that the address will be used to access the object.
   2151   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
   2152 
   2153   RValue convertTempToRValue(llvm::Value *addr, QualType type);
   2154 
   2155   void EmitAtomicInit(Expr *E, LValue lvalue);
   2156 
   2157   RValue EmitAtomicLoad(LValue lvalue,
   2158                         AggValueSlot slot = AggValueSlot::ignored());
   2159 
   2160   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
   2161 
   2162   /// EmitToMemory - Change a scalar value from its value
   2163   /// representation to its in-memory representation.
   2164   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
   2165 
   2166   /// EmitFromMemory - Change a scalar value from its memory
   2167   /// representation to its value representation.
   2168   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
   2169 
   2170   /// EmitLoadOfScalar - Load a scalar value from an address, taking
   2171   /// care to appropriately convert from the memory representation to
   2172   /// the LLVM value representation.
   2173   llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
   2174                                 unsigned Alignment, QualType Ty,
   2175                                 llvm::MDNode *TBAAInfo = 0);
   2176 
   2177   /// EmitLoadOfScalar - Load a scalar value from an address, taking
   2178   /// care to appropriately convert from the memory representation to
   2179   /// the LLVM value representation.  The l-value must be a simple
   2180   /// l-value.
   2181   llvm::Value *EmitLoadOfScalar(LValue lvalue);
   2182 
   2183   /// EmitStoreOfScalar - Store a scalar value to an address, taking
   2184   /// care to appropriately convert from the memory representation to
   2185   /// the LLVM value representation.
   2186   void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
   2187                          bool Volatile, unsigned Alignment, QualType Ty,
   2188                          llvm::MDNode *TBAAInfo = 0, bool isInit=false);
   2189 
   2190   /// EmitStoreOfScalar - Store a scalar value to an address, taking
   2191   /// care to appropriately convert from the memory representation to
   2192   /// the LLVM value representation.  The l-value must be a simple
   2193   /// l-value.  The isInit flag indicates whether this is an initialization.
   2194   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
   2195   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
   2196 
   2197   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
   2198   /// this method emits the address of the lvalue, then loads the result as an
   2199   /// rvalue, returning the rvalue.
   2200   RValue EmitLoadOfLValue(LValue V);
   2201   RValue EmitLoadOfExtVectorElementLValue(LValue V);
   2202   RValue EmitLoadOfBitfieldLValue(LValue LV);
   2203 
   2204   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
   2205   /// lvalue, where both are guaranteed to the have the same type, and that type
   2206   /// is 'Ty'.
   2207   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false);
   2208   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
   2209 
   2210   /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
   2211   /// EmitStoreThroughLValue.
   2212   ///
   2213   /// \param Result [out] - If non-null, this will be set to a Value* for the
   2214   /// bit-field contents after the store, appropriate for use as the result of
   2215   /// an assignment to the bit-field.
   2216   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
   2217                                       llvm::Value **Result=0);
   2218 
   2219   /// Emit an l-value for an assignment (simple or compound) of complex type.
   2220   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
   2221   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
   2222 
   2223   // Note: only available for agg return types
   2224   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
   2225   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
   2226   // Note: only available for agg return types
   2227   LValue EmitCallExprLValue(const CallExpr *E);
   2228   // Note: only available for agg return types
   2229   LValue EmitVAArgExprLValue(const VAArgExpr *E);
   2230   LValue EmitDeclRefLValue(const DeclRefExpr *E);
   2231   LValue EmitStringLiteralLValue(const StringLiteral *E);
   2232   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
   2233   LValue EmitPredefinedLValue(const PredefinedExpr *E);
   2234   LValue EmitUnaryOpLValue(const UnaryOperator *E);
   2235   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
   2236                                 bool Accessed = false);
   2237   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
   2238   LValue EmitMemberExpr(const MemberExpr *E);
   2239   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
   2240   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
   2241   LValue EmitInitListLValue(const InitListExpr *E);
   2242   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
   2243   LValue EmitCastLValue(const CastExpr *E);
   2244   LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E);
   2245   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
   2246   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
   2247 
   2248   RValue EmitRValueForField(LValue LV, const FieldDecl *FD);
   2249 
   2250   class ConstantEmission {
   2251     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
   2252     ConstantEmission(llvm::Constant *C, bool isReference)
   2253       : ValueAndIsReference(C, isReference) {}
   2254   public:
   2255     ConstantEmission() {}
   2256     static ConstantEmission forReference(llvm::Constant *C) {
   2257       return ConstantEmission(C, true);
   2258     }
   2259     static ConstantEmission forValue(llvm::Constant *C) {
   2260       return ConstantEmission(C, false);
   2261     }
   2262 
   2263     operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; }
   2264 
   2265     bool isReference() const { return ValueAndIsReference.getInt(); }
   2266     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
   2267       assert(isReference());
   2268       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
   2269                                             refExpr->getType());
   2270     }
   2271 
   2272     llvm::Constant *getValue() const {
   2273       assert(!isReference());
   2274       return ValueAndIsReference.getPointer();
   2275     }
   2276   };
   2277 
   2278   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
   2279 
   2280   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
   2281                                 AggValueSlot slot = AggValueSlot::ignored());
   2282   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
   2283 
   2284   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
   2285                               const ObjCIvarDecl *Ivar);
   2286   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
   2287 
   2288   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
   2289   /// if the Field is a reference, this will return the address of the reference
   2290   /// and not the address of the value stored in the reference.
   2291   LValue EmitLValueForFieldInitialization(LValue Base,
   2292                                           const FieldDecl* Field);
   2293 
   2294   LValue EmitLValueForIvar(QualType ObjectTy,
   2295                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
   2296                            unsigned CVRQualifiers);
   2297 
   2298   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
   2299   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
   2300   LValue EmitLambdaLValue(const LambdaExpr *E);
   2301   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
   2302   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
   2303 
   2304   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
   2305   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
   2306   LValue EmitStmtExprLValue(const StmtExpr *E);
   2307   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
   2308   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
   2309   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
   2310 
   2311   //===--------------------------------------------------------------------===//
   2312   //                         Scalar Expression Emission
   2313   //===--------------------------------------------------------------------===//
   2314 
   2315   /// EmitCall - Generate a call of the given function, expecting the given
   2316   /// result type, and using the given argument list which specifies both the
   2317   /// LLVM arguments and the types they were derived from.
   2318   ///
   2319   /// \param TargetDecl - If given, the decl of the function in a direct call;
   2320   /// used to set attributes on the call (noreturn, etc.).
   2321   RValue EmitCall(const CGFunctionInfo &FnInfo,
   2322                   llvm::Value *Callee,
   2323                   ReturnValueSlot ReturnValue,
   2324                   const CallArgList &Args,
   2325                   const Decl *TargetDecl = 0,
   2326                   llvm::Instruction **callOrInvoke = 0);
   2327 
   2328   RValue EmitCall(QualType FnType, llvm::Value *Callee,
   2329                   ReturnValueSlot ReturnValue,
   2330                   CallExpr::const_arg_iterator ArgBeg,
   2331                   CallExpr::const_arg_iterator ArgEnd,
   2332                   const Decl *TargetDecl = 0);
   2333   RValue EmitCallExpr(const CallExpr *E,
   2334                       ReturnValueSlot ReturnValue = ReturnValueSlot());
   2335 
   2336   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
   2337                                   const Twine &name = "");
   2338   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
   2339                                   ArrayRef<llvm::Value*> args,
   2340                                   const Twine &name = "");
   2341   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
   2342                                           const Twine &name = "");
   2343   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
   2344                                           ArrayRef<llvm::Value*> args,
   2345                                           const Twine &name = "");
   2346 
   2347   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
   2348                                   ArrayRef<llvm::Value *> Args,
   2349                                   const Twine &Name = "");
   2350   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
   2351                                   const Twine &Name = "");
   2352   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
   2353                                          ArrayRef<llvm::Value*> args,
   2354                                          const Twine &name = "");
   2355   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
   2356                                          const Twine &name = "");
   2357   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
   2358                                        ArrayRef<llvm::Value*> args);
   2359 
   2360   llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
   2361                                 llvm::Type *Ty);
   2362   llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
   2363                                 llvm::Value *This, llvm::Type *Ty);
   2364   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
   2365                                          NestedNameSpecifier *Qual,
   2366                                          llvm::Type *Ty);
   2367 
   2368   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
   2369                                                    CXXDtorType Type,
   2370                                                    const CXXRecordDecl *RD);
   2371 
   2372   RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
   2373                            SourceLocation CallLoc,
   2374                            llvm::Value *Callee,
   2375                            ReturnValueSlot ReturnValue,
   2376                            llvm::Value *This,
   2377                            llvm::Value *ImplicitParam,
   2378                            QualType ImplicitParamTy,
   2379                            CallExpr::const_arg_iterator ArgBeg,
   2380                            CallExpr::const_arg_iterator ArgEnd);
   2381   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
   2382                                ReturnValueSlot ReturnValue);
   2383   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
   2384                                       ReturnValueSlot ReturnValue);
   2385 
   2386   llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
   2387                                            const CXXMethodDecl *MD,
   2388                                            llvm::Value *This);
   2389   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
   2390                                        const CXXMethodDecl *MD,
   2391                                        ReturnValueSlot ReturnValue);
   2392 
   2393   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
   2394                                 ReturnValueSlot ReturnValue);
   2395 
   2396 
   2397   RValue EmitBuiltinExpr(const FunctionDecl *FD,
   2398                          unsigned BuiltinID, const CallExpr *E);
   2399 
   2400   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
   2401 
   2402   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
   2403   /// is unhandled by the current target.
   2404   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
   2405 
   2406   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
   2407   llvm::Value *EmitNeonCall(llvm::Function *F,
   2408                             SmallVectorImpl<llvm::Value*> &O,
   2409                             const char *name,
   2410                             unsigned shift = 0, bool rightshift = false);
   2411   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
   2412   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
   2413                                    bool negateForRightShift);
   2414 
   2415   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
   2416   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
   2417   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
   2418 
   2419   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
   2420   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
   2421   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
   2422   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
   2423   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
   2424   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
   2425                                 const ObjCMethodDecl *MethodWithObjects);
   2426   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
   2427   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
   2428                              ReturnValueSlot Return = ReturnValueSlot());
   2429 
   2430   /// Retrieves the default cleanup kind for an ARC cleanup.
   2431   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
   2432   CleanupKind getARCCleanupKind() {
   2433     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
   2434              ? NormalAndEHCleanup : NormalCleanup;
   2435   }
   2436 
   2437   // ARC primitives.
   2438   void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
   2439   void EmitARCDestroyWeak(llvm::Value *addr);
   2440   llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
   2441   llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
   2442   llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
   2443                                 bool ignored);
   2444   void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
   2445   void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
   2446   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
   2447   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
   2448   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
   2449                                   bool resultIgnored);
   2450   llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
   2451                                       bool resultIgnored);
   2452   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
   2453   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
   2454   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
   2455   void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise);
   2456   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
   2457   llvm::Value *EmitARCAutorelease(llvm::Value *value);
   2458   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
   2459   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
   2460   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
   2461 
   2462   std::pair<LValue,llvm::Value*>
   2463   EmitARCStoreAutoreleasing(const BinaryOperator *e);
   2464   std::pair<LValue,llvm::Value*>
   2465   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
   2466 
   2467   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
   2468 
   2469   llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
   2470   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
   2471   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
   2472 
   2473   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
   2474   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
   2475   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
   2476 
   2477   static Destroyer destroyARCStrongImprecise;
   2478   static Destroyer destroyARCStrongPrecise;
   2479   static Destroyer destroyARCWeak;
   2480 
   2481   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
   2482   llvm::Value *EmitObjCAutoreleasePoolPush();
   2483   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
   2484   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
   2485   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
   2486 
   2487   /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in
   2488   /// expression. Will emit a temporary variable if E is not an LValue.
   2489   RValue EmitReferenceBindingToExpr(const Expr* E,
   2490                                     const NamedDecl *InitializedDecl);
   2491 
   2492   //===--------------------------------------------------------------------===//
   2493   //                           Expression Emission
   2494   //===--------------------------------------------------------------------===//
   2495 
   2496   // Expressions are broken into three classes: scalar, complex, aggregate.
   2497 
   2498   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
   2499   /// scalar type, returning the result.
   2500   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
   2501 
   2502   /// EmitScalarConversion - Emit a conversion from the specified type to the
   2503   /// specified destination type, both of which are LLVM scalar types.
   2504   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
   2505                                     QualType DstTy);
   2506 
   2507   /// EmitComplexToScalarConversion - Emit a conversion from the specified
   2508   /// complex type to the specified destination type, where the destination type
   2509   /// is an LLVM scalar type.
   2510   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
   2511                                              QualType DstTy);
   2512 
   2513 
   2514   /// EmitAggExpr - Emit the computation of the specified expression
   2515   /// of aggregate type.  The result is computed into the given slot,
   2516   /// which may be null to indicate that the value is not needed.
   2517   void EmitAggExpr(const Expr *E, AggValueSlot AS);
   2518 
   2519   /// EmitAggExprToLValue - Emit the computation of the specified expression of
   2520   /// aggregate type into a temporary LValue.
   2521   LValue EmitAggExprToLValue(const Expr *E);
   2522 
   2523   /// EmitGCMemmoveCollectable - Emit special API for structs with object
   2524   /// pointers.
   2525   void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
   2526                                 QualType Ty);
   2527 
   2528   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
   2529   /// make sure it survives garbage collection until this point.
   2530   void EmitExtendGCLifetime(llvm::Value *object);
   2531 
   2532   /// EmitComplexExpr - Emit the computation of the specified expression of
   2533   /// complex type, returning the result.
   2534   ComplexPairTy EmitComplexExpr(const Expr *E,
   2535                                 bool IgnoreReal = false,
   2536                                 bool IgnoreImag = false);
   2537 
   2538   /// EmitComplexExprIntoLValue - Emit the given expression of complex
   2539   /// type and place its result into the specified l-value.
   2540   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
   2541 
   2542   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
   2543   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
   2544 
   2545   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
   2546   ComplexPairTy EmitLoadOfComplex(LValue src);
   2547 
   2548   /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
   2549   /// a static local variable.
   2550   llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
   2551                                             const char *Separator,
   2552                                        llvm::GlobalValue::LinkageTypes Linkage);
   2553 
   2554   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
   2555   /// global variable that has already been created for it.  If the initializer
   2556   /// has a different type than GV does, this may free GV and return a different
   2557   /// one.  Otherwise it just returns GV.
   2558   llvm::GlobalVariable *
   2559   AddInitializerToStaticVarDecl(const VarDecl &D,
   2560                                 llvm::GlobalVariable *GV);
   2561 
   2562 
   2563   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
   2564   /// variable with global storage.
   2565   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
   2566                                 bool PerformInit);
   2567 
   2568   /// Call atexit() with a function that passes the given argument to
   2569   /// the given function.
   2570   void registerGlobalDtorWithAtExit(llvm::Constant *fn, llvm::Constant *addr);
   2571 
   2572   /// Emit code in this function to perform a guarded variable
   2573   /// initialization.  Guarded initializations are used when it's not
   2574   /// possible to prove that an initialization will be done exactly
   2575   /// once, e.g. with a static local variable or a static data member
   2576   /// of a class template.
   2577   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
   2578                           bool PerformInit);
   2579 
   2580   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
   2581   /// variables.
   2582   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
   2583                                  llvm::Constant **Decls,
   2584                                  unsigned NumDecls);
   2585 
   2586   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
   2587   /// variables.
   2588   void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
   2589                                   const std::vector<std::pair<llvm::WeakVH,
   2590                                   llvm::Constant*> > &DtorsAndObjects);
   2591 
   2592   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
   2593                                         const VarDecl *D,
   2594                                         llvm::GlobalVariable *Addr,
   2595                                         bool PerformInit);
   2596 
   2597   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
   2598 
   2599   void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
   2600                                   const Expr *Exp);
   2601 
   2602   void enterFullExpression(const ExprWithCleanups *E) {
   2603     if (E->getNumObjects() == 0) return;
   2604     enterNonTrivialFullExpression(E);
   2605   }
   2606   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
   2607 
   2608   void EmitCXXThrowExpr(const CXXThrowExpr *E);
   2609 
   2610   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
   2611 
   2612   RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0);
   2613 
   2614   //===--------------------------------------------------------------------===//
   2615   //                         Annotations Emission
   2616   //===--------------------------------------------------------------------===//
   2617 
   2618   /// Emit an annotation call (intrinsic or builtin).
   2619   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
   2620                                   llvm::Value *AnnotatedVal,
   2621                                   StringRef AnnotationStr,
   2622                                   SourceLocation Location);
   2623 
   2624   /// Emit local annotations for the local variable V, declared by D.
   2625   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
   2626 
   2627   /// Emit field annotations for the given field & value. Returns the
   2628   /// annotation result.
   2629   llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
   2630 
   2631   //===--------------------------------------------------------------------===//
   2632   //                             Internal Helpers
   2633   //===--------------------------------------------------------------------===//
   2634 
   2635   /// ContainsLabel - Return true if the statement contains a label in it.  If
   2636   /// this statement is not executed normally, it not containing a label means
   2637   /// that we can just remove the code.
   2638   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
   2639 
   2640   /// containsBreak - Return true if the statement contains a break out of it.
   2641   /// If the statement (recursively) contains a switch or loop with a break
   2642   /// inside of it, this is fine.
   2643   static bool containsBreak(const Stmt *S);
   2644 
   2645   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
   2646   /// to a constant, or if it does but contains a label, return false.  If it
   2647   /// constant folds return true and set the boolean result in Result.
   2648   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
   2649 
   2650   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
   2651   /// to a constant, or if it does but contains a label, return false.  If it
   2652   /// constant folds return true and set the folded value.
   2653   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
   2654 
   2655   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
   2656   /// if statement) to the specified blocks.  Based on the condition, this might
   2657   /// try to simplify the codegen of the conditional based on the branch.
   2658   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
   2659                             llvm::BasicBlock *FalseBlock);
   2660 
   2661   /// \brief Emit a description of a type in a format suitable for passing to
   2662   /// a runtime sanitizer handler.
   2663   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
   2664 
   2665   /// \brief Convert a value into a format suitable for passing to a runtime
   2666   /// sanitizer handler.
   2667   llvm::Value *EmitCheckValue(llvm::Value *V);
   2668 
   2669   /// \brief Emit a description of a source location in a format suitable for
   2670   /// passing to a runtime sanitizer handler.
   2671   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
   2672 
   2673   /// \brief Specify under what conditions this check can be recovered
   2674   enum CheckRecoverableKind {
   2675     /// Always terminate program execution if this check fails
   2676     CRK_Unrecoverable,
   2677     /// Check supports recovering, allows user to specify which
   2678     CRK_Recoverable,
   2679     /// Runtime conditionally aborts, always need to support recovery.
   2680     CRK_AlwaysRecoverable
   2681   };
   2682 
   2683   /// \brief Create a basic block that will call a handler function in a
   2684   /// sanitizer runtime with the provided arguments, and create a conditional
   2685   /// branch to it.
   2686   void EmitCheck(llvm::Value *Checked, StringRef CheckName,
   2687                  ArrayRef<llvm::Constant *> StaticArgs,
   2688                  ArrayRef<llvm::Value *> DynamicArgs,
   2689                  CheckRecoverableKind Recoverable);
   2690 
   2691   /// \brief Create a basic block that will call the trap intrinsic, and emit a
   2692   /// conditional branch to it, for the -ftrapv checks.
   2693   void EmitTrapCheck(llvm::Value *Checked);
   2694 
   2695   /// EmitCallArg - Emit a single call argument.
   2696   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
   2697 
   2698   /// EmitDelegateCallArg - We are performing a delegate call; that
   2699   /// is, the current function is delegating to another one.  Produce
   2700   /// a r-value suitable for passing the given parameter.
   2701   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param);
   2702 
   2703   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
   2704   /// point operation, expressed as the maximum relative error in ulp.
   2705   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
   2706 
   2707 private:
   2708   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
   2709   void EmitReturnOfRValue(RValue RV, QualType Ty);
   2710 
   2711   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
   2712   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
   2713   ///
   2714   /// \param AI - The first function argument of the expansion.
   2715   /// \return The argument following the last expanded function
   2716   /// argument.
   2717   llvm::Function::arg_iterator
   2718   ExpandTypeFromArgs(QualType Ty, LValue Dst,
   2719                      llvm::Function::arg_iterator AI);
   2720 
   2721   /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
   2722   /// Ty, into individual arguments on the provided vector \arg Args. See
   2723   /// ABIArgInfo::Expand.
   2724   void ExpandTypeToArgs(QualType Ty, RValue Src,
   2725                         SmallVector<llvm::Value*, 16> &Args,
   2726                         llvm::FunctionType *IRFuncTy);
   2727 
   2728   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
   2729                             const Expr *InputExpr, std::string &ConstraintStr);
   2730 
   2731   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
   2732                                   LValue InputValue, QualType InputType,
   2733                                   std::string &ConstraintStr);
   2734 
   2735   /// EmitCallArgs - Emit call arguments for a function.
   2736   /// The CallArgTypeInfo parameter is used for iterating over the known
   2737   /// argument types of the function being called.
   2738   template<typename T>
   2739   void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
   2740                     CallExpr::const_arg_iterator ArgBeg,
   2741                     CallExpr::const_arg_iterator ArgEnd) {
   2742       CallExpr::const_arg_iterator Arg = ArgBeg;
   2743 
   2744     // First, use the argument types that the type info knows about
   2745     if (CallArgTypeInfo) {
   2746       for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
   2747            E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
   2748         assert(Arg != ArgEnd && "Running over edge of argument list!");
   2749         QualType ArgType = *I;
   2750 #ifndef NDEBUG
   2751         QualType ActualArgType = Arg->getType();
   2752         if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
   2753           QualType ActualBaseType =
   2754             ActualArgType->getAs<PointerType>()->getPointeeType();
   2755           QualType ArgBaseType =
   2756             ArgType->getAs<PointerType>()->getPointeeType();
   2757           if (ArgBaseType->isVariableArrayType()) {
   2758             if (const VariableArrayType *VAT =
   2759                 getContext().getAsVariableArrayType(ActualBaseType)) {
   2760               if (!VAT->getSizeExpr())
   2761                 ActualArgType = ArgType;
   2762             }
   2763           }
   2764         }
   2765         assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
   2766                getTypePtr() ==
   2767                getContext().getCanonicalType(ActualArgType).getTypePtr() &&
   2768                "type mismatch in call argument!");
   2769 #endif
   2770         EmitCallArg(Args, *Arg, ArgType);
   2771       }
   2772 
   2773       // Either we've emitted all the call args, or we have a call to a
   2774       // variadic function.
   2775       assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
   2776              "Extra arguments in non-variadic function!");
   2777 
   2778     }
   2779 
   2780     // If we still have any arguments, emit them using the type of the argument.
   2781     for (; Arg != ArgEnd; ++Arg)
   2782       EmitCallArg(Args, *Arg, Arg->getType());
   2783   }
   2784 
   2785   const TargetCodeGenInfo &getTargetHooks() const {
   2786     return CGM.getTargetCodeGenInfo();
   2787   }
   2788 
   2789   void EmitDeclMetadata();
   2790 
   2791   CodeGenModule::ByrefHelpers *
   2792   buildByrefHelpers(llvm::StructType &byrefType,
   2793                     const AutoVarEmission &emission);
   2794 
   2795   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
   2796 
   2797   /// GetPointeeAlignment - Given an expression with a pointer type, emit the
   2798   /// value and compute our best estimate of the alignment of the pointee.
   2799   std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr);
   2800 };
   2801 
   2802 /// Helper class with most of the code for saving a value for a
   2803 /// conditional expression cleanup.
   2804 struct DominatingLLVMValue {
   2805   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
   2806 
   2807   /// Answer whether the given value needs extra work to be saved.
   2808   static bool needsSaving(llvm::Value *value) {
   2809     // If it's not an instruction, we don't need to save.
   2810     if (!isa<llvm::Instruction>(value)) return false;
   2811 
   2812     // If it's an instruction in the entry block, we don't need to save.
   2813     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
   2814     return (block != &block->getParent()->getEntryBlock());
   2815   }
   2816 
   2817   /// Try to save the given value.
   2818   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
   2819     if (!needsSaving(value)) return saved_type(value, false);
   2820 
   2821     // Otherwise we need an alloca.
   2822     llvm::Value *alloca =
   2823       CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
   2824     CGF.Builder.CreateStore(value, alloca);
   2825 
   2826     return saved_type(alloca, true);
   2827   }
   2828 
   2829   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
   2830     if (!value.getInt()) return value.getPointer();
   2831     return CGF.Builder.CreateLoad(value.getPointer());
   2832   }
   2833 };
   2834 
   2835 /// A partial specialization of DominatingValue for llvm::Values that
   2836 /// might be llvm::Instructions.
   2837 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
   2838   typedef T *type;
   2839   static type restore(CodeGenFunction &CGF, saved_type value) {
   2840     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
   2841   }
   2842 };
   2843 
   2844 /// A specialization of DominatingValue for RValue.
   2845 template <> struct DominatingValue<RValue> {
   2846   typedef RValue type;
   2847   class saved_type {
   2848     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
   2849                 AggregateAddress, ComplexAddress };
   2850 
   2851     llvm::Value *Value;
   2852     Kind K;
   2853     saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
   2854 
   2855   public:
   2856     static bool needsSaving(RValue value);
   2857     static saved_type save(CodeGenFunction &CGF, RValue value);
   2858     RValue restore(CodeGenFunction &CGF);
   2859 
   2860     // implementations in CGExprCXX.cpp
   2861   };
   2862 
   2863   static bool needsSaving(type value) {
   2864     return saved_type::needsSaving(value);
   2865   }
   2866   static saved_type save(CodeGenFunction &CGF, type value) {
   2867     return saved_type::save(CGF, value);
   2868   }
   2869   static type restore(CodeGenFunction &CGF, saved_type value) {
   2870     return value.restore(CGF);
   2871   }
   2872 };
   2873 
   2874 }  // end namespace CodeGen
   2875 }  // end namespace clang
   2876 
   2877 #endif
   2878