Home | History | Annotate | Download | only in CodeGen
      1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code to emit Objective-C code as LLVM code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CGDebugInfo.h"
     15 #include "CGObjCRuntime.h"
     16 #include "CodeGenFunction.h"
     17 #include "CodeGenModule.h"
     18 #include "TargetInfo.h"
     19 #include "clang/AST/ASTContext.h"
     20 #include "clang/AST/DeclObjC.h"
     21 #include "clang/AST/StmtObjC.h"
     22 #include "clang/Basic/Diagnostic.h"
     23 #include "llvm/ADT/STLExtras.h"
     24 #include "llvm/IR/DataLayout.h"
     25 #include "llvm/IR/InlineAsm.h"
     26 using namespace clang;
     27 using namespace CodeGen;
     28 
     29 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
     30 static TryEmitResult
     31 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
     32 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
     33                                       QualType ET,
     34                                       const ObjCMethodDecl *Method,
     35                                       RValue Result);
     36 
     37 /// Given the address of a variable of pointer type, find the correct
     38 /// null to store into it.
     39 static llvm::Constant *getNullForVariable(llvm::Value *addr) {
     40   llvm::Type *type =
     41     cast<llvm::PointerType>(addr->getType())->getElementType();
     42   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
     43 }
     44 
     45 /// Emits an instance of NSConstantString representing the object.
     46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
     47 {
     48   llvm::Constant *C =
     49       CGM.getObjCRuntime().GenerateConstantString(E->getString());
     50   // FIXME: This bitcast should just be made an invariant on the Runtime.
     51   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
     52 }
     53 
     54 /// EmitObjCBoxedExpr - This routine generates code to call
     55 /// the appropriate expression boxing method. This will either be
     56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:].
     57 ///
     58 llvm::Value *
     59 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
     60   // Generate the correct selector for this literal's concrete type.
     61   const Expr *SubExpr = E->getSubExpr();
     62   // Get the method.
     63   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
     64   assert(BoxingMethod && "BoxingMethod is null");
     65   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
     66   Selector Sel = BoxingMethod->getSelector();
     67 
     68   // Generate a reference to the class pointer, which will be the receiver.
     69   // Assumes that the method was introduced in the class that should be
     70   // messaged (avoids pulling it out of the result type).
     71   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
     72   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
     73   llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
     74 
     75   const ParmVarDecl *argDecl = *BoxingMethod->param_begin();
     76   QualType ArgQT = argDecl->getType().getUnqualifiedType();
     77   RValue RV = EmitAnyExpr(SubExpr);
     78   CallArgList Args;
     79   Args.add(RV, ArgQT);
     80 
     81   RValue result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
     82                                               BoxingMethod->getResultType(), Sel, Receiver, Args,
     83                                               ClassDecl, BoxingMethod);
     84   return Builder.CreateBitCast(result.getScalarVal(),
     85                                ConvertType(E->getType()));
     86 }
     87 
     88 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
     89                                     const ObjCMethodDecl *MethodWithObjects) {
     90   ASTContext &Context = CGM.getContext();
     91   const ObjCDictionaryLiteral *DLE = 0;
     92   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
     93   if (!ALE)
     94     DLE = cast<ObjCDictionaryLiteral>(E);
     95 
     96   // Compute the type of the array we're initializing.
     97   uint64_t NumElements =
     98     ALE ? ALE->getNumElements() : DLE->getNumElements();
     99   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
    100                             NumElements);
    101   QualType ElementType = Context.getObjCIdType().withConst();
    102   QualType ElementArrayType
    103     = Context.getConstantArrayType(ElementType, APNumElements,
    104                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
    105 
    106   // Allocate the temporary array(s).
    107   llvm::Value *Objects = CreateMemTemp(ElementArrayType, "objects");
    108   llvm::Value *Keys = 0;
    109   if (DLE)
    110     Keys = CreateMemTemp(ElementArrayType, "keys");
    111 
    112   // Perform the actual initialialization of the array(s).
    113   for (uint64_t i = 0; i < NumElements; i++) {
    114     if (ALE) {
    115       // Emit the initializer.
    116       const Expr *Rhs = ALE->getElement(i);
    117       LValue LV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
    118                                    ElementType,
    119                                    Context.getTypeAlignInChars(Rhs->getType()),
    120                                    Context);
    121       EmitScalarInit(Rhs, /*D=*/0, LV, /*capturedByInit=*/false);
    122     } else {
    123       // Emit the key initializer.
    124       const Expr *Key = DLE->getKeyValueElement(i).Key;
    125       LValue KeyLV = LValue::MakeAddr(Builder.CreateStructGEP(Keys, i),
    126                                       ElementType,
    127                                     Context.getTypeAlignInChars(Key->getType()),
    128                                       Context);
    129       EmitScalarInit(Key, /*D=*/0, KeyLV, /*capturedByInit=*/false);
    130 
    131       // Emit the value initializer.
    132       const Expr *Value = DLE->getKeyValueElement(i).Value;
    133       LValue ValueLV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
    134                                         ElementType,
    135                                   Context.getTypeAlignInChars(Value->getType()),
    136                                         Context);
    137       EmitScalarInit(Value, /*D=*/0, ValueLV, /*capturedByInit=*/false);
    138     }
    139   }
    140 
    141   // Generate the argument list.
    142   CallArgList Args;
    143   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
    144   const ParmVarDecl *argDecl = *PI++;
    145   QualType ArgQT = argDecl->getType().getUnqualifiedType();
    146   Args.add(RValue::get(Objects), ArgQT);
    147   if (DLE) {
    148     argDecl = *PI++;
    149     ArgQT = argDecl->getType().getUnqualifiedType();
    150     Args.add(RValue::get(Keys), ArgQT);
    151   }
    152   argDecl = *PI;
    153   ArgQT = argDecl->getType().getUnqualifiedType();
    154   llvm::Value *Count =
    155     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
    156   Args.add(RValue::get(Count), ArgQT);
    157 
    158   // Generate a reference to the class pointer, which will be the receiver.
    159   Selector Sel = MethodWithObjects->getSelector();
    160   QualType ResultType = E->getType();
    161   const ObjCObjectPointerType *InterfacePointerType
    162     = ResultType->getAsObjCInterfacePointerType();
    163   ObjCInterfaceDecl *Class
    164     = InterfacePointerType->getObjectType()->getInterface();
    165   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
    166   llvm::Value *Receiver = Runtime.GetClass(*this, Class);
    167 
    168   // Generate the message send.
    169   RValue result
    170     = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
    171                                   MethodWithObjects->getResultType(),
    172                                   Sel,
    173                                   Receiver, Args, Class,
    174                                   MethodWithObjects);
    175   return Builder.CreateBitCast(result.getScalarVal(),
    176                                ConvertType(E->getType()));
    177 }
    178 
    179 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
    180   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
    181 }
    182 
    183 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
    184                                             const ObjCDictionaryLiteral *E) {
    185   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
    186 }
    187 
    188 /// Emit a selector.
    189 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
    190   // Untyped selector.
    191   // Note that this implementation allows for non-constant strings to be passed
    192   // as arguments to @selector().  Currently, the only thing preventing this
    193   // behaviour is the type checking in the front end.
    194   return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
    195 }
    196 
    197 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
    198   // FIXME: This should pass the Decl not the name.
    199   return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
    200 }
    201 
    202 /// \brief Adjust the type of the result of an Objective-C message send
    203 /// expression when the method has a related result type.
    204 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
    205                                       QualType ExpT,
    206                                       const ObjCMethodDecl *Method,
    207                                       RValue Result) {
    208   if (!Method)
    209     return Result;
    210 
    211   if (!Method->hasRelatedResultType() ||
    212       CGF.getContext().hasSameType(ExpT, Method->getResultType()) ||
    213       !Result.isScalar())
    214     return Result;
    215 
    216   // We have applied a related result type. Cast the rvalue appropriately.
    217   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
    218                                                CGF.ConvertType(ExpT)));
    219 }
    220 
    221 /// Decide whether to extend the lifetime of the receiver of a
    222 /// returns-inner-pointer message.
    223 static bool
    224 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
    225   switch (message->getReceiverKind()) {
    226 
    227   // For a normal instance message, we should extend unless the
    228   // receiver is loaded from a variable with precise lifetime.
    229   case ObjCMessageExpr::Instance: {
    230     const Expr *receiver = message->getInstanceReceiver();
    231     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
    232     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
    233     receiver = ice->getSubExpr()->IgnoreParens();
    234 
    235     // Only __strong variables.
    236     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
    237       return true;
    238 
    239     // All ivars and fields have precise lifetime.
    240     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
    241       return false;
    242 
    243     // Otherwise, check for variables.
    244     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
    245     if (!declRef) return true;
    246     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
    247     if (!var) return true;
    248 
    249     // All variables have precise lifetime except local variables with
    250     // automatic storage duration that aren't specially marked.
    251     return (var->hasLocalStorage() &&
    252             !var->hasAttr<ObjCPreciseLifetimeAttr>());
    253   }
    254 
    255   case ObjCMessageExpr::Class:
    256   case ObjCMessageExpr::SuperClass:
    257     // It's never necessary for class objects.
    258     return false;
    259 
    260   case ObjCMessageExpr::SuperInstance:
    261     // We generally assume that 'self' lives throughout a method call.
    262     return false;
    263   }
    264 
    265   llvm_unreachable("invalid receiver kind");
    266 }
    267 
    268 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
    269                                             ReturnValueSlot Return) {
    270   // Only the lookup mechanism and first two arguments of the method
    271   // implementation vary between runtimes.  We can get the receiver and
    272   // arguments in generic code.
    273 
    274   bool isDelegateInit = E->isDelegateInitCall();
    275 
    276   const ObjCMethodDecl *method = E->getMethodDecl();
    277 
    278   // We don't retain the receiver in delegate init calls, and this is
    279   // safe because the receiver value is always loaded from 'self',
    280   // which we zero out.  We don't want to Block_copy block receivers,
    281   // though.
    282   bool retainSelf =
    283     (!isDelegateInit &&
    284      CGM.getLangOpts().ObjCAutoRefCount &&
    285      method &&
    286      method->hasAttr<NSConsumesSelfAttr>());
    287 
    288   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
    289   bool isSuperMessage = false;
    290   bool isClassMessage = false;
    291   ObjCInterfaceDecl *OID = 0;
    292   // Find the receiver
    293   QualType ReceiverType;
    294   llvm::Value *Receiver = 0;
    295   switch (E->getReceiverKind()) {
    296   case ObjCMessageExpr::Instance:
    297     ReceiverType = E->getInstanceReceiver()->getType();
    298     if (retainSelf) {
    299       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
    300                                                    E->getInstanceReceiver());
    301       Receiver = ter.getPointer();
    302       if (ter.getInt()) retainSelf = false;
    303     } else
    304       Receiver = EmitScalarExpr(E->getInstanceReceiver());
    305     break;
    306 
    307   case ObjCMessageExpr::Class: {
    308     ReceiverType = E->getClassReceiver();
    309     const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
    310     assert(ObjTy && "Invalid Objective-C class message send");
    311     OID = ObjTy->getInterface();
    312     assert(OID && "Invalid Objective-C class message send");
    313     Receiver = Runtime.GetClass(*this, OID);
    314     isClassMessage = true;
    315     break;
    316   }
    317 
    318   case ObjCMessageExpr::SuperInstance:
    319     ReceiverType = E->getSuperType();
    320     Receiver = LoadObjCSelf();
    321     isSuperMessage = true;
    322     break;
    323 
    324   case ObjCMessageExpr::SuperClass:
    325     ReceiverType = E->getSuperType();
    326     Receiver = LoadObjCSelf();
    327     isSuperMessage = true;
    328     isClassMessage = true;
    329     break;
    330   }
    331 
    332   if (retainSelf)
    333     Receiver = EmitARCRetainNonBlock(Receiver);
    334 
    335   // In ARC, we sometimes want to "extend the lifetime"
    336   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
    337   // messages.
    338   if (getLangOpts().ObjCAutoRefCount && method &&
    339       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
    340       shouldExtendReceiverForInnerPointerMessage(E))
    341     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
    342 
    343   QualType ResultType =
    344     method ? method->getResultType() : E->getType();
    345 
    346   CallArgList Args;
    347   EmitCallArgs(Args, method, E->arg_begin(), E->arg_end());
    348 
    349   // For delegate init calls in ARC, do an unsafe store of null into
    350   // self.  This represents the call taking direct ownership of that
    351   // value.  We have to do this after emitting the other call
    352   // arguments because they might also reference self, but we don't
    353   // have to worry about any of them modifying self because that would
    354   // be an undefined read and write of an object in unordered
    355   // expressions.
    356   if (isDelegateInit) {
    357     assert(getLangOpts().ObjCAutoRefCount &&
    358            "delegate init calls should only be marked in ARC");
    359 
    360     // Do an unsafe store of null into self.
    361     llvm::Value *selfAddr =
    362       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
    363     assert(selfAddr && "no self entry for a delegate init call?");
    364 
    365     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
    366   }
    367 
    368   RValue result;
    369   if (isSuperMessage) {
    370     // super is only valid in an Objective-C method
    371     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
    372     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
    373     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
    374                                               E->getSelector(),
    375                                               OMD->getClassInterface(),
    376                                               isCategoryImpl,
    377                                               Receiver,
    378                                               isClassMessage,
    379                                               Args,
    380                                               method);
    381   } else {
    382     result = Runtime.GenerateMessageSend(*this, Return, ResultType,
    383                                          E->getSelector(),
    384                                          Receiver, Args, OID,
    385                                          method);
    386   }
    387 
    388   // For delegate init calls in ARC, implicitly store the result of
    389   // the call back into self.  This takes ownership of the value.
    390   if (isDelegateInit) {
    391     llvm::Value *selfAddr =
    392       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
    393     llvm::Value *newSelf = result.getScalarVal();
    394 
    395     // The delegate return type isn't necessarily a matching type; in
    396     // fact, it's quite likely to be 'id'.
    397     llvm::Type *selfTy =
    398       cast<llvm::PointerType>(selfAddr->getType())->getElementType();
    399     newSelf = Builder.CreateBitCast(newSelf, selfTy);
    400 
    401     Builder.CreateStore(newSelf, selfAddr);
    402   }
    403 
    404   return AdjustRelatedResultType(*this, E->getType(), method, result);
    405 }
    406 
    407 namespace {
    408 struct FinishARCDealloc : EHScopeStack::Cleanup {
    409   void Emit(CodeGenFunction &CGF, Flags flags) {
    410     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
    411 
    412     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
    413     const ObjCInterfaceDecl *iface = impl->getClassInterface();
    414     if (!iface->getSuperClass()) return;
    415 
    416     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
    417 
    418     // Call [super dealloc] if we have a superclass.
    419     llvm::Value *self = CGF.LoadObjCSelf();
    420 
    421     CallArgList args;
    422     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
    423                                                       CGF.getContext().VoidTy,
    424                                                       method->getSelector(),
    425                                                       iface,
    426                                                       isCategory,
    427                                                       self,
    428                                                       /*is class msg*/ false,
    429                                                       args,
    430                                                       method);
    431   }
    432 };
    433 }
    434 
    435 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
    436 /// the LLVM function and sets the other context used by
    437 /// CodeGenFunction.
    438 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
    439                                       const ObjCContainerDecl *CD,
    440                                       SourceLocation StartLoc) {
    441   FunctionArgList args;
    442   // Check if we should generate debug info for this method.
    443   if (!OMD->hasAttr<NoDebugAttr>())
    444     maybeInitializeDebugInfo();
    445 
    446   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
    447 
    448   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
    449   CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
    450 
    451   args.push_back(OMD->getSelfDecl());
    452   args.push_back(OMD->getCmdDecl());
    453 
    454   for (ObjCMethodDecl::param_const_iterator PI = OMD->param_begin(),
    455          E = OMD->param_end(); PI != E; ++PI)
    456     args.push_back(*PI);
    457 
    458   CurGD = OMD;
    459 
    460   StartFunction(OMD, OMD->getResultType(), Fn, FI, args, StartLoc);
    461 
    462   // In ARC, certain methods get an extra cleanup.
    463   if (CGM.getLangOpts().ObjCAutoRefCount &&
    464       OMD->isInstanceMethod() &&
    465       OMD->getSelector().isUnarySelector()) {
    466     const IdentifierInfo *ident =
    467       OMD->getSelector().getIdentifierInfoForSlot(0);
    468     if (ident->isStr("dealloc"))
    469       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
    470   }
    471 }
    472 
    473 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
    474                                               LValue lvalue, QualType type);
    475 
    476 /// Generate an Objective-C method.  An Objective-C method is a C function with
    477 /// its pointer, name, and types registered in the class struture.
    478 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
    479   StartObjCMethod(OMD, OMD->getClassInterface(), OMD->getLocStart());
    480   EmitStmt(OMD->getBody());
    481   FinishFunction(OMD->getBodyRBrace());
    482 }
    483 
    484 /// emitStructGetterCall - Call the runtime function to load a property
    485 /// into the return value slot.
    486 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
    487                                  bool isAtomic, bool hasStrong) {
    488   ASTContext &Context = CGF.getContext();
    489 
    490   llvm::Value *src =
    491     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(),
    492                           ivar, 0).getAddress();
    493 
    494   // objc_copyStruct (ReturnValue, &structIvar,
    495   //                  sizeof (Type of Ivar), isAtomic, false);
    496   CallArgList args;
    497 
    498   llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
    499   args.add(RValue::get(dest), Context.VoidPtrTy);
    500 
    501   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
    502   args.add(RValue::get(src), Context.VoidPtrTy);
    503 
    504   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
    505   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
    506   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
    507   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
    508 
    509   llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
    510   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Context.VoidTy, args,
    511                                                       FunctionType::ExtInfo(),
    512                                                       RequiredArgs::All),
    513                fn, ReturnValueSlot(), args);
    514 }
    515 
    516 /// Determine whether the given architecture supports unaligned atomic
    517 /// accesses.  They don't have to be fast, just faster than a function
    518 /// call and a mutex.
    519 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
    520   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
    521   // currently supported by the backend.)
    522   return 0;
    523 }
    524 
    525 /// Return the maximum size that permits atomic accesses for the given
    526 /// architecture.
    527 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
    528                                         llvm::Triple::ArchType arch) {
    529   // ARM has 8-byte atomic accesses, but it's not clear whether we
    530   // want to rely on them here.
    531 
    532   // In the default case, just assume that any size up to a pointer is
    533   // fine given adequate alignment.
    534   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
    535 }
    536 
    537 namespace {
    538   class PropertyImplStrategy {
    539   public:
    540     enum StrategyKind {
    541       /// The 'native' strategy is to use the architecture's provided
    542       /// reads and writes.
    543       Native,
    544 
    545       /// Use objc_setProperty and objc_getProperty.
    546       GetSetProperty,
    547 
    548       /// Use objc_setProperty for the setter, but use expression
    549       /// evaluation for the getter.
    550       SetPropertyAndExpressionGet,
    551 
    552       /// Use objc_copyStruct.
    553       CopyStruct,
    554 
    555       /// The 'expression' strategy is to emit normal assignment or
    556       /// lvalue-to-rvalue expressions.
    557       Expression
    558     };
    559 
    560     StrategyKind getKind() const { return StrategyKind(Kind); }
    561 
    562     bool hasStrongMember() const { return HasStrong; }
    563     bool isAtomic() const { return IsAtomic; }
    564     bool isCopy() const { return IsCopy; }
    565 
    566     CharUnits getIvarSize() const { return IvarSize; }
    567     CharUnits getIvarAlignment() const { return IvarAlignment; }
    568 
    569     PropertyImplStrategy(CodeGenModule &CGM,
    570                          const ObjCPropertyImplDecl *propImpl);
    571 
    572   private:
    573     unsigned Kind : 8;
    574     unsigned IsAtomic : 1;
    575     unsigned IsCopy : 1;
    576     unsigned HasStrong : 1;
    577 
    578     CharUnits IvarSize;
    579     CharUnits IvarAlignment;
    580   };
    581 }
    582 
    583 /// Pick an implementation strategy for the given property synthesis.
    584 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
    585                                      const ObjCPropertyImplDecl *propImpl) {
    586   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
    587   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
    588 
    589   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
    590   IsAtomic = prop->isAtomic();
    591   HasStrong = false; // doesn't matter here.
    592 
    593   // Evaluate the ivar's size and alignment.
    594   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
    595   QualType ivarType = ivar->getType();
    596   llvm::tie(IvarSize, IvarAlignment)
    597     = CGM.getContext().getTypeInfoInChars(ivarType);
    598 
    599   // If we have a copy property, we always have to use getProperty/setProperty.
    600   // TODO: we could actually use setProperty and an expression for non-atomics.
    601   if (IsCopy) {
    602     Kind = GetSetProperty;
    603     return;
    604   }
    605 
    606   // Handle retain.
    607   if (setterKind == ObjCPropertyDecl::Retain) {
    608     // In GC-only, there's nothing special that needs to be done.
    609     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
    610       // fallthrough
    611 
    612     // In ARC, if the property is non-atomic, use expression emission,
    613     // which translates to objc_storeStrong.  This isn't required, but
    614     // it's slightly nicer.
    615     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
    616       // Using standard expression emission for the setter is only
    617       // acceptable if the ivar is __strong, which won't be true if
    618       // the property is annotated with __attribute__((NSObject)).
    619       // TODO: falling all the way back to objc_setProperty here is
    620       // just laziness, though;  we could still use objc_storeStrong
    621       // if we hacked it right.
    622       if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
    623         Kind = Expression;
    624       else
    625         Kind = SetPropertyAndExpressionGet;
    626       return;
    627 
    628     // Otherwise, we need to at least use setProperty.  However, if
    629     // the property isn't atomic, we can use normal expression
    630     // emission for the getter.
    631     } else if (!IsAtomic) {
    632       Kind = SetPropertyAndExpressionGet;
    633       return;
    634 
    635     // Otherwise, we have to use both setProperty and getProperty.
    636     } else {
    637       Kind = GetSetProperty;
    638       return;
    639     }
    640   }
    641 
    642   // If we're not atomic, just use expression accesses.
    643   if (!IsAtomic) {
    644     Kind = Expression;
    645     return;
    646   }
    647 
    648   // Properties on bitfield ivars need to be emitted using expression
    649   // accesses even if they're nominally atomic.
    650   if (ivar->isBitField()) {
    651     Kind = Expression;
    652     return;
    653   }
    654 
    655   // GC-qualified or ARC-qualified ivars need to be emitted as
    656   // expressions.  This actually works out to being atomic anyway,
    657   // except for ARC __strong, but that should trigger the above code.
    658   if (ivarType.hasNonTrivialObjCLifetime() ||
    659       (CGM.getLangOpts().getGC() &&
    660        CGM.getContext().getObjCGCAttrKind(ivarType))) {
    661     Kind = Expression;
    662     return;
    663   }
    664 
    665   // Compute whether the ivar has strong members.
    666   if (CGM.getLangOpts().getGC())
    667     if (const RecordType *recordType = ivarType->getAs<RecordType>())
    668       HasStrong = recordType->getDecl()->hasObjectMember();
    669 
    670   // We can never access structs with object members with a native
    671   // access, because we need to use write barriers.  This is what
    672   // objc_copyStruct is for.
    673   if (HasStrong) {
    674     Kind = CopyStruct;
    675     return;
    676   }
    677 
    678   // Otherwise, this is target-dependent and based on the size and
    679   // alignment of the ivar.
    680 
    681   // If the size of the ivar is not a power of two, give up.  We don't
    682   // want to get into the business of doing compare-and-swaps.
    683   if (!IvarSize.isPowerOfTwo()) {
    684     Kind = CopyStruct;
    685     return;
    686   }
    687 
    688   llvm::Triple::ArchType arch =
    689     CGM.getContext().getTargetInfo().getTriple().getArch();
    690 
    691   // Most architectures require memory to fit within a single cache
    692   // line, so the alignment has to be at least the size of the access.
    693   // Otherwise we have to grab a lock.
    694   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
    695     Kind = CopyStruct;
    696     return;
    697   }
    698 
    699   // If the ivar's size exceeds the architecture's maximum atomic
    700   // access size, we have to use CopyStruct.
    701   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
    702     Kind = CopyStruct;
    703     return;
    704   }
    705 
    706   // Otherwise, we can use native loads and stores.
    707   Kind = Native;
    708 }
    709 
    710 /// \brief Generate an Objective-C property getter function.
    711 ///
    712 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
    713 /// is illegal within a category.
    714 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
    715                                          const ObjCPropertyImplDecl *PID) {
    716   llvm::Constant *AtomicHelperFn =
    717     GenerateObjCAtomicGetterCopyHelperFunction(PID);
    718   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
    719   ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
    720   assert(OMD && "Invalid call to generate getter (empty method)");
    721   StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
    722 
    723   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
    724 
    725   FinishFunction();
    726 }
    727 
    728 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
    729   const Expr *getter = propImpl->getGetterCXXConstructor();
    730   if (!getter) return true;
    731 
    732   // Sema only makes only of these when the ivar has a C++ class type,
    733   // so the form is pretty constrained.
    734 
    735   // If the property has a reference type, we might just be binding a
    736   // reference, in which case the result will be a gl-value.  We should
    737   // treat this as a non-trivial operation.
    738   if (getter->isGLValue())
    739     return false;
    740 
    741   // If we selected a trivial copy-constructor, we're okay.
    742   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
    743     return (construct->getConstructor()->isTrivial());
    744 
    745   // The constructor might require cleanups (in which case it's never
    746   // trivial).
    747   assert(isa<ExprWithCleanups>(getter));
    748   return false;
    749 }
    750 
    751 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
    752 /// copy the ivar into the resturn slot.
    753 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
    754                                           llvm::Value *returnAddr,
    755                                           ObjCIvarDecl *ivar,
    756                                           llvm::Constant *AtomicHelperFn) {
    757   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
    758   //                           AtomicHelperFn);
    759   CallArgList args;
    760 
    761   // The 1st argument is the return Slot.
    762   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
    763 
    764   // The 2nd argument is the address of the ivar.
    765   llvm::Value *ivarAddr =
    766   CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
    767                         CGF.LoadObjCSelf(), ivar, 0).getAddress();
    768   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
    769   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
    770 
    771   // Third argument is the helper function.
    772   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
    773 
    774   llvm::Value *copyCppAtomicObjectFn =
    775     CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
    776   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
    777                                                       args,
    778                                                       FunctionType::ExtInfo(),
    779                                                       RequiredArgs::All),
    780                copyCppAtomicObjectFn, ReturnValueSlot(), args);
    781 }
    782 
    783 void
    784 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
    785                                         const ObjCPropertyImplDecl *propImpl,
    786                                         const ObjCMethodDecl *GetterMethodDecl,
    787                                         llvm::Constant *AtomicHelperFn) {
    788   // If there's a non-trivial 'get' expression, we just have to emit that.
    789   if (!hasTrivialGetExpr(propImpl)) {
    790     if (!AtomicHelperFn) {
    791       ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(),
    792                      /*nrvo*/ 0);
    793       EmitReturnStmt(ret);
    794     }
    795     else {
    796       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
    797       emitCPPObjectAtomicGetterCall(*this, ReturnValue,
    798                                     ivar, AtomicHelperFn);
    799     }
    800     return;
    801   }
    802 
    803   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
    804   QualType propType = prop->getType();
    805   ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
    806 
    807   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
    808 
    809   // Pick an implementation strategy.
    810   PropertyImplStrategy strategy(CGM, propImpl);
    811   switch (strategy.getKind()) {
    812   case PropertyImplStrategy::Native: {
    813     // We don't need to do anything for a zero-size struct.
    814     if (strategy.getIvarSize().isZero())
    815       return;
    816 
    817     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
    818 
    819     // Currently, all atomic accesses have to be through integer
    820     // types, so there's no point in trying to pick a prettier type.
    821     llvm::Type *bitcastType =
    822       llvm::Type::getIntNTy(getLLVMContext(),
    823                             getContext().toBits(strategy.getIvarSize()));
    824     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
    825 
    826     // Perform an atomic load.  This does not impose ordering constraints.
    827     llvm::Value *ivarAddr = LV.getAddress();
    828     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
    829     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
    830     load->setAlignment(strategy.getIvarAlignment().getQuantity());
    831     load->setAtomic(llvm::Unordered);
    832 
    833     // Store that value into the return address.  Doing this with a
    834     // bitcast is likely to produce some pretty ugly IR, but it's not
    835     // the *most* terrible thing in the world.
    836     Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType));
    837 
    838     // Make sure we don't do an autorelease.
    839     AutoreleaseResult = false;
    840     return;
    841   }
    842 
    843   case PropertyImplStrategy::GetSetProperty: {
    844     llvm::Value *getPropertyFn =
    845       CGM.getObjCRuntime().GetPropertyGetFunction();
    846     if (!getPropertyFn) {
    847       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
    848       return;
    849     }
    850 
    851     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
    852     // FIXME: Can't this be simpler? This might even be worse than the
    853     // corresponding gcc code.
    854     llvm::Value *cmd =
    855       Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd");
    856     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
    857     llvm::Value *ivarOffset =
    858       EmitIvarOffset(classImpl->getClassInterface(), ivar);
    859 
    860     CallArgList args;
    861     args.add(RValue::get(self), getContext().getObjCIdType());
    862     args.add(RValue::get(cmd), getContext().getObjCSelType());
    863     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
    864     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
    865              getContext().BoolTy);
    866 
    867     // FIXME: We shouldn't need to get the function info here, the
    868     // runtime already should have computed it to build the function.
    869     RValue RV = EmitCall(getTypes().arrangeFreeFunctionCall(propType, args,
    870                                                        FunctionType::ExtInfo(),
    871                                                             RequiredArgs::All),
    872                          getPropertyFn, ReturnValueSlot(), args);
    873 
    874     // We need to fix the type here. Ivars with copy & retain are
    875     // always objects so we don't need to worry about complex or
    876     // aggregates.
    877     RV = RValue::get(Builder.CreateBitCast(RV.getScalarVal(),
    878            getTypes().ConvertType(getterMethod->getResultType())));
    879 
    880     EmitReturnOfRValue(RV, propType);
    881 
    882     // objc_getProperty does an autorelease, so we should suppress ours.
    883     AutoreleaseResult = false;
    884 
    885     return;
    886   }
    887 
    888   case PropertyImplStrategy::CopyStruct:
    889     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
    890                          strategy.hasStrongMember());
    891     return;
    892 
    893   case PropertyImplStrategy::Expression:
    894   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
    895     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
    896 
    897     QualType ivarType = ivar->getType();
    898     switch (getEvaluationKind(ivarType)) {
    899     case TEK_Complex: {
    900       ComplexPairTy pair = EmitLoadOfComplex(LV);
    901       EmitStoreOfComplex(pair,
    902                          MakeNaturalAlignAddrLValue(ReturnValue, ivarType),
    903                          /*init*/ true);
    904       return;
    905     }
    906     case TEK_Aggregate:
    907       // The return value slot is guaranteed to not be aliased, but
    908       // that's not necessarily the same as "on the stack", so
    909       // we still potentially need objc_memmove_collectable.
    910       EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType);
    911       return;
    912     case TEK_Scalar: {
    913       llvm::Value *value;
    914       if (propType->isReferenceType()) {
    915         value = LV.getAddress();
    916       } else {
    917         // We want to load and autoreleaseReturnValue ARC __weak ivars.
    918         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
    919           value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
    920 
    921         // Otherwise we want to do a simple load, suppressing the
    922         // final autorelease.
    923         } else {
    924           value = EmitLoadOfLValue(LV).getScalarVal();
    925           AutoreleaseResult = false;
    926         }
    927 
    928         value = Builder.CreateBitCast(value, ConvertType(propType));
    929         value = Builder.CreateBitCast(value,
    930                   ConvertType(GetterMethodDecl->getResultType()));
    931       }
    932 
    933       EmitReturnOfRValue(RValue::get(value), propType);
    934       return;
    935     }
    936     }
    937     llvm_unreachable("bad evaluation kind");
    938   }
    939 
    940   }
    941   llvm_unreachable("bad @property implementation strategy!");
    942 }
    943 
    944 /// emitStructSetterCall - Call the runtime function to store the value
    945 /// from the first formal parameter into the given ivar.
    946 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
    947                                  ObjCIvarDecl *ivar) {
    948   // objc_copyStruct (&structIvar, &Arg,
    949   //                  sizeof (struct something), true, false);
    950   CallArgList args;
    951 
    952   // The first argument is the address of the ivar.
    953   llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
    954                                                 CGF.LoadObjCSelf(), ivar, 0)
    955     .getAddress();
    956   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
    957   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
    958 
    959   // The second argument is the address of the parameter variable.
    960   ParmVarDecl *argVar = *OMD->param_begin();
    961   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
    962                      VK_LValue, SourceLocation());
    963   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
    964   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
    965   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
    966 
    967   // The third argument is the sizeof the type.
    968   llvm::Value *size =
    969     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
    970   args.add(RValue::get(size), CGF.getContext().getSizeType());
    971 
    972   // The fourth argument is the 'isAtomic' flag.
    973   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
    974 
    975   // The fifth argument is the 'hasStrong' flag.
    976   // FIXME: should this really always be false?
    977   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
    978 
    979   llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
    980   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
    981                                                       args,
    982                                                       FunctionType::ExtInfo(),
    983                                                       RequiredArgs::All),
    984                copyStructFn, ReturnValueSlot(), args);
    985 }
    986 
    987 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
    988 /// the value from the first formal parameter into the given ivar, using
    989 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
    990 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
    991                                           ObjCMethodDecl *OMD,
    992                                           ObjCIvarDecl *ivar,
    993                                           llvm::Constant *AtomicHelperFn) {
    994   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
    995   //                           AtomicHelperFn);
    996   CallArgList args;
    997 
    998   // The first argument is the address of the ivar.
    999   llvm::Value *ivarAddr =
   1000     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
   1001                           CGF.LoadObjCSelf(), ivar, 0).getAddress();
   1002   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
   1003   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
   1004 
   1005   // The second argument is the address of the parameter variable.
   1006   ParmVarDecl *argVar = *OMD->param_begin();
   1007   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
   1008                      VK_LValue, SourceLocation());
   1009   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
   1010   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
   1011   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
   1012 
   1013   // Third argument is the helper function.
   1014   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
   1015 
   1016   llvm::Value *copyCppAtomicObjectFn =
   1017     CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
   1018   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
   1019                                                       args,
   1020                                                       FunctionType::ExtInfo(),
   1021                                                       RequiredArgs::All),
   1022                copyCppAtomicObjectFn, ReturnValueSlot(), args);
   1023 
   1024 
   1025 }
   1026 
   1027 
   1028 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
   1029   Expr *setter = PID->getSetterCXXAssignment();
   1030   if (!setter) return true;
   1031 
   1032   // Sema only makes only of these when the ivar has a C++ class type,
   1033   // so the form is pretty constrained.
   1034 
   1035   // An operator call is trivial if the function it calls is trivial.
   1036   // This also implies that there's nothing non-trivial going on with
   1037   // the arguments, because operator= can only be trivial if it's a
   1038   // synthesized assignment operator and therefore both parameters are
   1039   // references.
   1040   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
   1041     if (const FunctionDecl *callee
   1042           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
   1043       if (callee->isTrivial())
   1044         return true;
   1045     return false;
   1046   }
   1047 
   1048   assert(isa<ExprWithCleanups>(setter));
   1049   return false;
   1050 }
   1051 
   1052 static bool UseOptimizedSetter(CodeGenModule &CGM) {
   1053   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
   1054     return false;
   1055   return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
   1056 }
   1057 
   1058 void
   1059 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
   1060                                         const ObjCPropertyImplDecl *propImpl,
   1061                                         llvm::Constant *AtomicHelperFn) {
   1062   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
   1063   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
   1064   ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
   1065 
   1066   // Just use the setter expression if Sema gave us one and it's
   1067   // non-trivial.
   1068   if (!hasTrivialSetExpr(propImpl)) {
   1069     if (!AtomicHelperFn)
   1070       // If non-atomic, assignment is called directly.
   1071       EmitStmt(propImpl->getSetterCXXAssignment());
   1072     else
   1073       // If atomic, assignment is called via a locking api.
   1074       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
   1075                                     AtomicHelperFn);
   1076     return;
   1077   }
   1078 
   1079   PropertyImplStrategy strategy(CGM, propImpl);
   1080   switch (strategy.getKind()) {
   1081   case PropertyImplStrategy::Native: {
   1082     // We don't need to do anything for a zero-size struct.
   1083     if (strategy.getIvarSize().isZero())
   1084       return;
   1085 
   1086     llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()];
   1087 
   1088     LValue ivarLValue =
   1089       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
   1090     llvm::Value *ivarAddr = ivarLValue.getAddress();
   1091 
   1092     // Currently, all atomic accesses have to be through integer
   1093     // types, so there's no point in trying to pick a prettier type.
   1094     llvm::Type *bitcastType =
   1095       llvm::Type::getIntNTy(getLLVMContext(),
   1096                             getContext().toBits(strategy.getIvarSize()));
   1097     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
   1098 
   1099     // Cast both arguments to the chosen operation type.
   1100     argAddr = Builder.CreateBitCast(argAddr, bitcastType);
   1101     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
   1102 
   1103     // This bitcast load is likely to cause some nasty IR.
   1104     llvm::Value *load = Builder.CreateLoad(argAddr);
   1105 
   1106     // Perform an atomic store.  There are no memory ordering requirements.
   1107     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
   1108     store->setAlignment(strategy.getIvarAlignment().getQuantity());
   1109     store->setAtomic(llvm::Unordered);
   1110     return;
   1111   }
   1112 
   1113   case PropertyImplStrategy::GetSetProperty:
   1114   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
   1115 
   1116     llvm::Value *setOptimizedPropertyFn = 0;
   1117     llvm::Value *setPropertyFn = 0;
   1118     if (UseOptimizedSetter(CGM)) {
   1119       // 10.8 and iOS 6.0 code and GC is off
   1120       setOptimizedPropertyFn =
   1121         CGM.getObjCRuntime()
   1122            .GetOptimizedPropertySetFunction(strategy.isAtomic(),
   1123                                             strategy.isCopy());
   1124       if (!setOptimizedPropertyFn) {
   1125         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
   1126         return;
   1127       }
   1128     }
   1129     else {
   1130       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
   1131       if (!setPropertyFn) {
   1132         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
   1133         return;
   1134       }
   1135     }
   1136 
   1137     // Emit objc_setProperty((id) self, _cmd, offset, arg,
   1138     //                       <is-atomic>, <is-copy>).
   1139     llvm::Value *cmd =
   1140       Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]);
   1141     llvm::Value *self =
   1142       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
   1143     llvm::Value *ivarOffset =
   1144       EmitIvarOffset(classImpl->getClassInterface(), ivar);
   1145     llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()];
   1146     arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy);
   1147 
   1148     CallArgList args;
   1149     args.add(RValue::get(self), getContext().getObjCIdType());
   1150     args.add(RValue::get(cmd), getContext().getObjCSelType());
   1151     if (setOptimizedPropertyFn) {
   1152       args.add(RValue::get(arg), getContext().getObjCIdType());
   1153       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
   1154       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
   1155                                                   FunctionType::ExtInfo(),
   1156                                                   RequiredArgs::All),
   1157                setOptimizedPropertyFn, ReturnValueSlot(), args);
   1158     } else {
   1159       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
   1160       args.add(RValue::get(arg), getContext().getObjCIdType());
   1161       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
   1162                getContext().BoolTy);
   1163       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
   1164                getContext().BoolTy);
   1165       // FIXME: We shouldn't need to get the function info here, the runtime
   1166       // already should have computed it to build the function.
   1167       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
   1168                                                   FunctionType::ExtInfo(),
   1169                                                   RequiredArgs::All),
   1170                setPropertyFn, ReturnValueSlot(), args);
   1171     }
   1172 
   1173     return;
   1174   }
   1175 
   1176   case PropertyImplStrategy::CopyStruct:
   1177     emitStructSetterCall(*this, setterMethod, ivar);
   1178     return;
   1179 
   1180   case PropertyImplStrategy::Expression:
   1181     break;
   1182   }
   1183 
   1184   // Otherwise, fake up some ASTs and emit a normal assignment.
   1185   ValueDecl *selfDecl = setterMethod->getSelfDecl();
   1186   DeclRefExpr self(selfDecl, false, selfDecl->getType(),
   1187                    VK_LValue, SourceLocation());
   1188   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
   1189                             selfDecl->getType(), CK_LValueToRValue, &self,
   1190                             VK_RValue);
   1191   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
   1192                           SourceLocation(), &selfLoad, true, true);
   1193 
   1194   ParmVarDecl *argDecl = *setterMethod->param_begin();
   1195   QualType argType = argDecl->getType().getNonReferenceType();
   1196   DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation());
   1197   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
   1198                            argType.getUnqualifiedType(), CK_LValueToRValue,
   1199                            &arg, VK_RValue);
   1200 
   1201   // The property type can differ from the ivar type in some situations with
   1202   // Objective-C pointer types, we can always bit cast the RHS in these cases.
   1203   // The following absurdity is just to ensure well-formed IR.
   1204   CastKind argCK = CK_NoOp;
   1205   if (ivarRef.getType()->isObjCObjectPointerType()) {
   1206     if (argLoad.getType()->isObjCObjectPointerType())
   1207       argCK = CK_BitCast;
   1208     else if (argLoad.getType()->isBlockPointerType())
   1209       argCK = CK_BlockPointerToObjCPointerCast;
   1210     else
   1211       argCK = CK_CPointerToObjCPointerCast;
   1212   } else if (ivarRef.getType()->isBlockPointerType()) {
   1213      if (argLoad.getType()->isBlockPointerType())
   1214       argCK = CK_BitCast;
   1215     else
   1216       argCK = CK_AnyPointerToBlockPointerCast;
   1217   } else if (ivarRef.getType()->isPointerType()) {
   1218     argCK = CK_BitCast;
   1219   }
   1220   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
   1221                            ivarRef.getType(), argCK, &argLoad,
   1222                            VK_RValue);
   1223   Expr *finalArg = &argLoad;
   1224   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
   1225                                            argLoad.getType()))
   1226     finalArg = &argCast;
   1227 
   1228 
   1229   BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
   1230                         ivarRef.getType(), VK_RValue, OK_Ordinary,
   1231                         SourceLocation(), false);
   1232   EmitStmt(&assign);
   1233 }
   1234 
   1235 /// \brief Generate an Objective-C property setter function.
   1236 ///
   1237 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
   1238 /// is illegal within a category.
   1239 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
   1240                                          const ObjCPropertyImplDecl *PID) {
   1241   llvm::Constant *AtomicHelperFn =
   1242     GenerateObjCAtomicSetterCopyHelperFunction(PID);
   1243   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
   1244   ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
   1245   assert(OMD && "Invalid call to generate setter (empty method)");
   1246   StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
   1247 
   1248   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
   1249 
   1250   FinishFunction();
   1251 }
   1252 
   1253 namespace {
   1254   struct DestroyIvar : EHScopeStack::Cleanup {
   1255   private:
   1256     llvm::Value *addr;
   1257     const ObjCIvarDecl *ivar;
   1258     CodeGenFunction::Destroyer *destroyer;
   1259     bool useEHCleanupForArray;
   1260   public:
   1261     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
   1262                 CodeGenFunction::Destroyer *destroyer,
   1263                 bool useEHCleanupForArray)
   1264       : addr(addr), ivar(ivar), destroyer(destroyer),
   1265         useEHCleanupForArray(useEHCleanupForArray) {}
   1266 
   1267     void Emit(CodeGenFunction &CGF, Flags flags) {
   1268       LValue lvalue
   1269         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
   1270       CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
   1271                       flags.isForNormalCleanup() && useEHCleanupForArray);
   1272     }
   1273   };
   1274 }
   1275 
   1276 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
   1277 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
   1278                                       llvm::Value *addr,
   1279                                       QualType type) {
   1280   llvm::Value *null = getNullForVariable(addr);
   1281   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
   1282 }
   1283 
   1284 static void emitCXXDestructMethod(CodeGenFunction &CGF,
   1285                                   ObjCImplementationDecl *impl) {
   1286   CodeGenFunction::RunCleanupsScope scope(CGF);
   1287 
   1288   llvm::Value *self = CGF.LoadObjCSelf();
   1289 
   1290   const ObjCInterfaceDecl *iface = impl->getClassInterface();
   1291   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
   1292        ivar; ivar = ivar->getNextIvar()) {
   1293     QualType type = ivar->getType();
   1294 
   1295     // Check whether the ivar is a destructible type.
   1296     QualType::DestructionKind dtorKind = type.isDestructedType();
   1297     if (!dtorKind) continue;
   1298 
   1299     CodeGenFunction::Destroyer *destroyer = 0;
   1300 
   1301     // Use a call to objc_storeStrong to destroy strong ivars, for the
   1302     // general benefit of the tools.
   1303     if (dtorKind == QualType::DK_objc_strong_lifetime) {
   1304       destroyer = destroyARCStrongWithStore;
   1305 
   1306     // Otherwise use the default for the destruction kind.
   1307     } else {
   1308       destroyer = CGF.getDestroyer(dtorKind);
   1309     }
   1310 
   1311     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
   1312 
   1313     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
   1314                                          cleanupKind & EHCleanup);
   1315   }
   1316 
   1317   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
   1318 }
   1319 
   1320 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
   1321                                                  ObjCMethodDecl *MD,
   1322                                                  bool ctor) {
   1323   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
   1324   StartObjCMethod(MD, IMP->getClassInterface(), MD->getLocStart());
   1325 
   1326   // Emit .cxx_construct.
   1327   if (ctor) {
   1328     // Suppress the final autorelease in ARC.
   1329     AutoreleaseResult = false;
   1330 
   1331     SmallVector<CXXCtorInitializer *, 8> IvarInitializers;
   1332     for (ObjCImplementationDecl::init_const_iterator B = IMP->init_begin(),
   1333            E = IMP->init_end(); B != E; ++B) {
   1334       CXXCtorInitializer *IvarInit = (*B);
   1335       FieldDecl *Field = IvarInit->getAnyMember();
   1336       ObjCIvarDecl  *Ivar = cast<ObjCIvarDecl>(Field);
   1337       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
   1338                                     LoadObjCSelf(), Ivar, 0);
   1339       EmitAggExpr(IvarInit->getInit(),
   1340                   AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
   1341                                           AggValueSlot::DoesNotNeedGCBarriers,
   1342                                           AggValueSlot::IsNotAliased));
   1343     }
   1344     // constructor returns 'self'.
   1345     CodeGenTypes &Types = CGM.getTypes();
   1346     QualType IdTy(CGM.getContext().getObjCIdType());
   1347     llvm::Value *SelfAsId =
   1348       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
   1349     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
   1350 
   1351   // Emit .cxx_destruct.
   1352   } else {
   1353     emitCXXDestructMethod(*this, IMP);
   1354   }
   1355   FinishFunction();
   1356 }
   1357 
   1358 bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) {
   1359   CGFunctionInfo::const_arg_iterator it = FI.arg_begin();
   1360   it++; it++;
   1361   const ABIArgInfo &AI = it->info;
   1362   // FIXME. Is this sufficient check?
   1363   return (AI.getKind() == ABIArgInfo::Indirect);
   1364 }
   1365 
   1366 bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) {
   1367   if (CGM.getLangOpts().getGC() == LangOptions::NonGC)
   1368     return false;
   1369   if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>())
   1370     return FDTTy->getDecl()->hasObjectMember();
   1371   return false;
   1372 }
   1373 
   1374 llvm::Value *CodeGenFunction::LoadObjCSelf() {
   1375   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
   1376   return Builder.CreateLoad(LocalDeclMap[OMD->getSelfDecl()], "self");
   1377 }
   1378 
   1379 QualType CodeGenFunction::TypeOfSelfObject() {
   1380   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
   1381   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
   1382   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
   1383     getContext().getCanonicalType(selfDecl->getType()));
   1384   return PTy->getPointeeType();
   1385 }
   1386 
   1387 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
   1388   llvm::Constant *EnumerationMutationFn =
   1389     CGM.getObjCRuntime().EnumerationMutationFunction();
   1390 
   1391   if (!EnumerationMutationFn) {
   1392     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
   1393     return;
   1394   }
   1395 
   1396   CGDebugInfo *DI = getDebugInfo();
   1397   if (DI)
   1398     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
   1399 
   1400   // The local variable comes into scope immediately.
   1401   AutoVarEmission variable = AutoVarEmission::invalid();
   1402   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
   1403     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
   1404 
   1405   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
   1406 
   1407   // Fast enumeration state.
   1408   QualType StateTy = CGM.getObjCFastEnumerationStateType();
   1409   llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr");
   1410   EmitNullInitialization(StatePtr, StateTy);
   1411 
   1412   // Number of elements in the items array.
   1413   static const unsigned NumItems = 16;
   1414 
   1415   // Fetch the countByEnumeratingWithState:objects:count: selector.
   1416   IdentifierInfo *II[] = {
   1417     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
   1418     &CGM.getContext().Idents.get("objects"),
   1419     &CGM.getContext().Idents.get("count")
   1420   };
   1421   Selector FastEnumSel =
   1422     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
   1423 
   1424   QualType ItemsTy =
   1425     getContext().getConstantArrayType(getContext().getObjCIdType(),
   1426                                       llvm::APInt(32, NumItems),
   1427                                       ArrayType::Normal, 0);
   1428   llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
   1429 
   1430   // Emit the collection pointer.  In ARC, we do a retain.
   1431   llvm::Value *Collection;
   1432   if (getLangOpts().ObjCAutoRefCount) {
   1433     Collection = EmitARCRetainScalarExpr(S.getCollection());
   1434 
   1435     // Enter a cleanup to do the release.
   1436     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
   1437   } else {
   1438     Collection = EmitScalarExpr(S.getCollection());
   1439   }
   1440 
   1441   // The 'continue' label needs to appear within the cleanup for the
   1442   // collection object.
   1443   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
   1444 
   1445   // Send it our message:
   1446   CallArgList Args;
   1447 
   1448   // The first argument is a temporary of the enumeration-state type.
   1449   Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy));
   1450 
   1451   // The second argument is a temporary array with space for NumItems
   1452   // pointers.  We'll actually be loading elements from the array
   1453   // pointer written into the control state; this buffer is so that
   1454   // collections that *aren't* backed by arrays can still queue up
   1455   // batches of elements.
   1456   Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy));
   1457 
   1458   // The third argument is the capacity of that temporary array.
   1459   llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy);
   1460   llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems);
   1461   Args.add(RValue::get(Count), getContext().UnsignedLongTy);
   1462 
   1463   // Start the enumeration.
   1464   RValue CountRV =
   1465     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
   1466                                              getContext().UnsignedLongTy,
   1467                                              FastEnumSel,
   1468                                              Collection, Args);
   1469 
   1470   // The initial number of objects that were returned in the buffer.
   1471   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
   1472 
   1473   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
   1474   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
   1475 
   1476   llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy);
   1477 
   1478   // If the limit pointer was zero to begin with, the collection is
   1479   // empty; skip all this.
   1480   Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"),
   1481                        EmptyBB, LoopInitBB);
   1482 
   1483   // Otherwise, initialize the loop.
   1484   EmitBlock(LoopInitBB);
   1485 
   1486   // Save the initial mutations value.  This is the value at an
   1487   // address that was written into the state object by
   1488   // countByEnumeratingWithState:objects:count:.
   1489   llvm::Value *StateMutationsPtrPtr =
   1490     Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
   1491   llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr,
   1492                                                       "mutationsptr");
   1493 
   1494   llvm::Value *initialMutations =
   1495     Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations");
   1496 
   1497   // Start looping.  This is the point we return to whenever we have a
   1498   // fresh, non-empty batch of objects.
   1499   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
   1500   EmitBlock(LoopBodyBB);
   1501 
   1502   // The current index into the buffer.
   1503   llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index");
   1504   index->addIncoming(zero, LoopInitBB);
   1505 
   1506   // The current buffer size.
   1507   llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count");
   1508   count->addIncoming(initialBufferLimit, LoopInitBB);
   1509 
   1510   // Check whether the mutations value has changed from where it was
   1511   // at start.  StateMutationsPtr should actually be invariant between
   1512   // refreshes.
   1513   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
   1514   llvm::Value *currentMutations
   1515     = Builder.CreateLoad(StateMutationsPtr, "statemutations");
   1516 
   1517   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
   1518   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
   1519 
   1520   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
   1521                        WasNotMutatedBB, WasMutatedBB);
   1522 
   1523   // If so, call the enumeration-mutation function.
   1524   EmitBlock(WasMutatedBB);
   1525   llvm::Value *V =
   1526     Builder.CreateBitCast(Collection,
   1527                           ConvertType(getContext().getObjCIdType()));
   1528   CallArgList Args2;
   1529   Args2.add(RValue::get(V), getContext().getObjCIdType());
   1530   // FIXME: We shouldn't need to get the function info here, the runtime already
   1531   // should have computed it to build the function.
   1532   EmitCall(CGM.getTypes().arrangeFreeFunctionCall(getContext().VoidTy, Args2,
   1533                                                   FunctionType::ExtInfo(),
   1534                                                   RequiredArgs::All),
   1535            EnumerationMutationFn, ReturnValueSlot(), Args2);
   1536 
   1537   // Otherwise, or if the mutation function returns, just continue.
   1538   EmitBlock(WasNotMutatedBB);
   1539 
   1540   // Initialize the element variable.
   1541   RunCleanupsScope elementVariableScope(*this);
   1542   bool elementIsVariable;
   1543   LValue elementLValue;
   1544   QualType elementType;
   1545   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
   1546     // Initialize the variable, in case it's a __block variable or something.
   1547     EmitAutoVarInit(variable);
   1548 
   1549     const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
   1550     DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(),
   1551                         VK_LValue, SourceLocation());
   1552     elementLValue = EmitLValue(&tempDRE);
   1553     elementType = D->getType();
   1554     elementIsVariable = true;
   1555 
   1556     if (D->isARCPseudoStrong())
   1557       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
   1558   } else {
   1559     elementLValue = LValue(); // suppress warning
   1560     elementType = cast<Expr>(S.getElement())->getType();
   1561     elementIsVariable = false;
   1562   }
   1563   llvm::Type *convertedElementType = ConvertType(elementType);
   1564 
   1565   // Fetch the buffer out of the enumeration state.
   1566   // TODO: this pointer should actually be invariant between
   1567   // refreshes, which would help us do certain loop optimizations.
   1568   llvm::Value *StateItemsPtr =
   1569     Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
   1570   llvm::Value *EnumStateItems =
   1571     Builder.CreateLoad(StateItemsPtr, "stateitems");
   1572 
   1573   // Fetch the value at the current index from the buffer.
   1574   llvm::Value *CurrentItemPtr =
   1575     Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
   1576   llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr);
   1577 
   1578   // Cast that value to the right type.
   1579   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
   1580                                       "currentitem");
   1581 
   1582   // Make sure we have an l-value.  Yes, this gets evaluated every
   1583   // time through the loop.
   1584   if (!elementIsVariable) {
   1585     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
   1586     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
   1587   } else {
   1588     EmitScalarInit(CurrentItem, elementLValue);
   1589   }
   1590 
   1591   // If we do have an element variable, this assignment is the end of
   1592   // its initialization.
   1593   if (elementIsVariable)
   1594     EmitAutoVarCleanups(variable);
   1595 
   1596   // Perform the loop body, setting up break and continue labels.
   1597   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
   1598   {
   1599     RunCleanupsScope Scope(*this);
   1600     EmitStmt(S.getBody());
   1601   }
   1602   BreakContinueStack.pop_back();
   1603 
   1604   // Destroy the element variable now.
   1605   elementVariableScope.ForceCleanup();
   1606 
   1607   // Check whether there are more elements.
   1608   EmitBlock(AfterBody.getBlock());
   1609 
   1610   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
   1611 
   1612   // First we check in the local buffer.
   1613   llvm::Value *indexPlusOne
   1614     = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1));
   1615 
   1616   // If we haven't overrun the buffer yet, we can continue.
   1617   Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count),
   1618                        LoopBodyBB, FetchMoreBB);
   1619 
   1620   index->addIncoming(indexPlusOne, AfterBody.getBlock());
   1621   count->addIncoming(count, AfterBody.getBlock());
   1622 
   1623   // Otherwise, we have to fetch more elements.
   1624   EmitBlock(FetchMoreBB);
   1625 
   1626   CountRV =
   1627     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
   1628                                              getContext().UnsignedLongTy,
   1629                                              FastEnumSel,
   1630                                              Collection, Args);
   1631 
   1632   // If we got a zero count, we're done.
   1633   llvm::Value *refetchCount = CountRV.getScalarVal();
   1634 
   1635   // (note that the message send might split FetchMoreBB)
   1636   index->addIncoming(zero, Builder.GetInsertBlock());
   1637   count->addIncoming(refetchCount, Builder.GetInsertBlock());
   1638 
   1639   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
   1640                        EmptyBB, LoopBodyBB);
   1641 
   1642   // No more elements.
   1643   EmitBlock(EmptyBB);
   1644 
   1645   if (!elementIsVariable) {
   1646     // If the element was not a declaration, set it to be null.
   1647 
   1648     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
   1649     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
   1650     EmitStoreThroughLValue(RValue::get(null), elementLValue);
   1651   }
   1652 
   1653   if (DI)
   1654     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
   1655 
   1656   // Leave the cleanup we entered in ARC.
   1657   if (getLangOpts().ObjCAutoRefCount)
   1658     PopCleanupBlock();
   1659 
   1660   EmitBlock(LoopEnd.getBlock());
   1661 }
   1662 
   1663 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
   1664   CGM.getObjCRuntime().EmitTryStmt(*this, S);
   1665 }
   1666 
   1667 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
   1668   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
   1669 }
   1670 
   1671 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
   1672                                               const ObjCAtSynchronizedStmt &S) {
   1673   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
   1674 }
   1675 
   1676 /// Produce the code for a CK_ARCProduceObject.  Just does a
   1677 /// primitive retain.
   1678 llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type,
   1679                                                     llvm::Value *value) {
   1680   return EmitARCRetain(type, value);
   1681 }
   1682 
   1683 namespace {
   1684   struct CallObjCRelease : EHScopeStack::Cleanup {
   1685     CallObjCRelease(llvm::Value *object) : object(object) {}
   1686     llvm::Value *object;
   1687 
   1688     void Emit(CodeGenFunction &CGF, Flags flags) {
   1689       // Releases at the end of the full-expression are imprecise.
   1690       CGF.EmitARCRelease(object, ARCImpreciseLifetime);
   1691     }
   1692   };
   1693 }
   1694 
   1695 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
   1696 /// release at the end of the full-expression.
   1697 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
   1698                                                     llvm::Value *object) {
   1699   // If we're in a conditional branch, we need to make the cleanup
   1700   // conditional.
   1701   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
   1702   return object;
   1703 }
   1704 
   1705 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
   1706                                                            llvm::Value *value) {
   1707   return EmitARCRetainAutorelease(type, value);
   1708 }
   1709 
   1710 
   1711 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
   1712                                                 llvm::FunctionType *type,
   1713                                                 StringRef fnName) {
   1714   llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName);
   1715 
   1716   if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) {
   1717     // If the target runtime doesn't naturally support ARC, emit weak
   1718     // references to the runtime support library.  We don't really
   1719     // permit this to fail, but we need a particular relocation style.
   1720     if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
   1721       f->setLinkage(llvm::Function::ExternalWeakLinkage);
   1722     } else if (fnName == "objc_retain" || fnName  == "objc_release") {
   1723       // If we have Native ARC, set nonlazybind attribute for these APIs for
   1724       // performance.
   1725       f->addFnAttr(llvm::Attribute::NonLazyBind);
   1726     }
   1727   }
   1728 
   1729   return fn;
   1730 }
   1731 
   1732 /// Perform an operation having the signature
   1733 ///   i8* (i8*)
   1734 /// where a null input causes a no-op and returns null.
   1735 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
   1736                                           llvm::Value *value,
   1737                                           llvm::Constant *&fn,
   1738                                           StringRef fnName,
   1739                                           bool isTailCall = false) {
   1740   if (isa<llvm::ConstantPointerNull>(value)) return value;
   1741 
   1742   if (!fn) {
   1743     llvm::FunctionType *fnType =
   1744       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
   1745     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
   1746   }
   1747 
   1748   // Cast the argument to 'id'.
   1749   llvm::Type *origType = value->getType();
   1750   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
   1751 
   1752   // Call the function.
   1753   llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
   1754   if (isTailCall)
   1755     call->setTailCall();
   1756 
   1757   // Cast the result back to the original type.
   1758   return CGF.Builder.CreateBitCast(call, origType);
   1759 }
   1760 
   1761 /// Perform an operation having the following signature:
   1762 ///   i8* (i8**)
   1763 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
   1764                                          llvm::Value *addr,
   1765                                          llvm::Constant *&fn,
   1766                                          StringRef fnName) {
   1767   if (!fn) {
   1768     llvm::FunctionType *fnType =
   1769       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false);
   1770     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
   1771   }
   1772 
   1773   // Cast the argument to 'id*'.
   1774   llvm::Type *origType = addr->getType();
   1775   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
   1776 
   1777   // Call the function.
   1778   llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr);
   1779 
   1780   // Cast the result back to a dereference of the original type.
   1781   if (origType != CGF.Int8PtrPtrTy)
   1782     result = CGF.Builder.CreateBitCast(result,
   1783                         cast<llvm::PointerType>(origType)->getElementType());
   1784 
   1785   return result;
   1786 }
   1787 
   1788 /// Perform an operation having the following signature:
   1789 ///   i8* (i8**, i8*)
   1790 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
   1791                                           llvm::Value *addr,
   1792                                           llvm::Value *value,
   1793                                           llvm::Constant *&fn,
   1794                                           StringRef fnName,
   1795                                           bool ignored) {
   1796   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
   1797            == value->getType());
   1798 
   1799   if (!fn) {
   1800     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
   1801 
   1802     llvm::FunctionType *fnType
   1803       = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
   1804     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
   1805   }
   1806 
   1807   llvm::Type *origType = value->getType();
   1808 
   1809   llvm::Value *args[] = {
   1810     CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy),
   1811     CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
   1812   };
   1813   llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
   1814 
   1815   if (ignored) return 0;
   1816 
   1817   return CGF.Builder.CreateBitCast(result, origType);
   1818 }
   1819 
   1820 /// Perform an operation having the following signature:
   1821 ///   void (i8**, i8**)
   1822 static void emitARCCopyOperation(CodeGenFunction &CGF,
   1823                                  llvm::Value *dst,
   1824                                  llvm::Value *src,
   1825                                  llvm::Constant *&fn,
   1826                                  StringRef fnName) {
   1827   assert(dst->getType() == src->getType());
   1828 
   1829   if (!fn) {
   1830     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy };
   1831 
   1832     llvm::FunctionType *fnType
   1833       = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
   1834     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
   1835   }
   1836 
   1837   llvm::Value *args[] = {
   1838     CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy),
   1839     CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy)
   1840   };
   1841   CGF.EmitNounwindRuntimeCall(fn, args);
   1842 }
   1843 
   1844 /// Produce the code to do a retain.  Based on the type, calls one of:
   1845 ///   call i8* \@objc_retain(i8* %value)
   1846 ///   call i8* \@objc_retainBlock(i8* %value)
   1847 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
   1848   if (type->isBlockPointerType())
   1849     return EmitARCRetainBlock(value, /*mandatory*/ false);
   1850   else
   1851     return EmitARCRetainNonBlock(value);
   1852 }
   1853 
   1854 /// Retain the given object, with normal retain semantics.
   1855 ///   call i8* \@objc_retain(i8* %value)
   1856 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
   1857   return emitARCValueOperation(*this, value,
   1858                                CGM.getARCEntrypoints().objc_retain,
   1859                                "objc_retain");
   1860 }
   1861 
   1862 /// Retain the given block, with _Block_copy semantics.
   1863 ///   call i8* \@objc_retainBlock(i8* %value)
   1864 ///
   1865 /// \param mandatory - If false, emit the call with metadata
   1866 /// indicating that it's okay for the optimizer to eliminate this call
   1867 /// if it can prove that the block never escapes except down the stack.
   1868 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
   1869                                                  bool mandatory) {
   1870   llvm::Value *result
   1871     = emitARCValueOperation(*this, value,
   1872                             CGM.getARCEntrypoints().objc_retainBlock,
   1873                             "objc_retainBlock");
   1874 
   1875   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
   1876   // tell the optimizer that it doesn't need to do this copy if the
   1877   // block doesn't escape, where being passed as an argument doesn't
   1878   // count as escaping.
   1879   if (!mandatory && isa<llvm::Instruction>(result)) {
   1880     llvm::CallInst *call
   1881       = cast<llvm::CallInst>(result->stripPointerCasts());
   1882     assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock);
   1883 
   1884     SmallVector<llvm::Value*,1> args;
   1885     call->setMetadata("clang.arc.copy_on_escape",
   1886                       llvm::MDNode::get(Builder.getContext(), args));
   1887   }
   1888 
   1889   return result;
   1890 }
   1891 
   1892 /// Retain the given object which is the result of a function call.
   1893 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
   1894 ///
   1895 /// Yes, this function name is one character away from a different
   1896 /// call with completely different semantics.
   1897 llvm::Value *
   1898 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
   1899   // Fetch the void(void) inline asm which marks that we're going to
   1900   // retain the autoreleased return value.
   1901   llvm::InlineAsm *&marker
   1902     = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker;
   1903   if (!marker) {
   1904     StringRef assembly
   1905       = CGM.getTargetCodeGenInfo()
   1906            .getARCRetainAutoreleasedReturnValueMarker();
   1907 
   1908     // If we have an empty assembly string, there's nothing to do.
   1909     if (assembly.empty()) {
   1910 
   1911     // Otherwise, at -O0, build an inline asm that we're going to call
   1912     // in a moment.
   1913     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
   1914       llvm::FunctionType *type =
   1915         llvm::FunctionType::get(VoidTy, /*variadic*/false);
   1916 
   1917       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
   1918 
   1919     // If we're at -O1 and above, we don't want to litter the code
   1920     // with this marker yet, so leave a breadcrumb for the ARC
   1921     // optimizer to pick up.
   1922     } else {
   1923       llvm::NamedMDNode *metadata =
   1924         CGM.getModule().getOrInsertNamedMetadata(
   1925                             "clang.arc.retainAutoreleasedReturnValueMarker");
   1926       assert(metadata->getNumOperands() <= 1);
   1927       if (metadata->getNumOperands() == 0) {
   1928         llvm::Value *string = llvm::MDString::get(getLLVMContext(), assembly);
   1929         metadata->addOperand(llvm::MDNode::get(getLLVMContext(), string));
   1930       }
   1931     }
   1932   }
   1933 
   1934   // Call the marker asm if we made one, which we do only at -O0.
   1935   if (marker) Builder.CreateCall(marker);
   1936 
   1937   return emitARCValueOperation(*this, value,
   1938                      CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue,
   1939                                "objc_retainAutoreleasedReturnValue");
   1940 }
   1941 
   1942 /// Release the given object.
   1943 ///   call void \@objc_release(i8* %value)
   1944 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
   1945                                      ARCPreciseLifetime_t precise) {
   1946   if (isa<llvm::ConstantPointerNull>(value)) return;
   1947 
   1948   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release;
   1949   if (!fn) {
   1950     llvm::FunctionType *fnType =
   1951       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
   1952     fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
   1953   }
   1954 
   1955   // Cast the argument to 'id'.
   1956   value = Builder.CreateBitCast(value, Int8PtrTy);
   1957 
   1958   // Call objc_release.
   1959   llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
   1960 
   1961   if (precise == ARCImpreciseLifetime) {
   1962     SmallVector<llvm::Value*,1> args;
   1963     call->setMetadata("clang.imprecise_release",
   1964                       llvm::MDNode::get(Builder.getContext(), args));
   1965   }
   1966 }
   1967 
   1968 /// Destroy a __strong variable.
   1969 ///
   1970 /// At -O0, emit a call to store 'null' into the address;
   1971 /// instrumenting tools prefer this because the address is exposed,
   1972 /// but it's relatively cumbersome to optimize.
   1973 ///
   1974 /// At -O1 and above, just load and call objc_release.
   1975 ///
   1976 ///   call void \@objc_storeStrong(i8** %addr, i8* null)
   1977 void CodeGenFunction::EmitARCDestroyStrong(llvm::Value *addr,
   1978                                            ARCPreciseLifetime_t precise) {
   1979   if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
   1980     llvm::PointerType *addrTy = cast<llvm::PointerType>(addr->getType());
   1981     llvm::Value *null = llvm::ConstantPointerNull::get(
   1982                           cast<llvm::PointerType>(addrTy->getElementType()));
   1983     EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
   1984     return;
   1985   }
   1986 
   1987   llvm::Value *value = Builder.CreateLoad(addr);
   1988   EmitARCRelease(value, precise);
   1989 }
   1990 
   1991 /// Store into a strong object.  Always calls this:
   1992 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
   1993 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr,
   1994                                                      llvm::Value *value,
   1995                                                      bool ignored) {
   1996   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
   1997            == value->getType());
   1998 
   1999   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong;
   2000   if (!fn) {
   2001     llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
   2002     llvm::FunctionType *fnType
   2003       = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
   2004     fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
   2005   }
   2006 
   2007   llvm::Value *args[] = {
   2008     Builder.CreateBitCast(addr, Int8PtrPtrTy),
   2009     Builder.CreateBitCast(value, Int8PtrTy)
   2010   };
   2011   EmitNounwindRuntimeCall(fn, args);
   2012 
   2013   if (ignored) return 0;
   2014   return value;
   2015 }
   2016 
   2017 /// Store into a strong object.  Sometimes calls this:
   2018 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
   2019 /// Other times, breaks it down into components.
   2020 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
   2021                                                  llvm::Value *newValue,
   2022                                                  bool ignored) {
   2023   QualType type = dst.getType();
   2024   bool isBlock = type->isBlockPointerType();
   2025 
   2026   // Use a store barrier at -O0 unless this is a block type or the
   2027   // lvalue is inadequately aligned.
   2028   if (shouldUseFusedARCCalls() &&
   2029       !isBlock &&
   2030       (dst.getAlignment().isZero() ||
   2031        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
   2032     return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
   2033   }
   2034 
   2035   // Otherwise, split it out.
   2036 
   2037   // Retain the new value.
   2038   newValue = EmitARCRetain(type, newValue);
   2039 
   2040   // Read the old value.
   2041   llvm::Value *oldValue = EmitLoadOfScalar(dst);
   2042 
   2043   // Store.  We do this before the release so that any deallocs won't
   2044   // see the old value.
   2045   EmitStoreOfScalar(newValue, dst);
   2046 
   2047   // Finally, release the old value.
   2048   EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
   2049 
   2050   return newValue;
   2051 }
   2052 
   2053 /// Autorelease the given object.
   2054 ///   call i8* \@objc_autorelease(i8* %value)
   2055 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
   2056   return emitARCValueOperation(*this, value,
   2057                                CGM.getARCEntrypoints().objc_autorelease,
   2058                                "objc_autorelease");
   2059 }
   2060 
   2061 /// Autorelease the given object.
   2062 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
   2063 llvm::Value *
   2064 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
   2065   return emitARCValueOperation(*this, value,
   2066                             CGM.getARCEntrypoints().objc_autoreleaseReturnValue,
   2067                                "objc_autoreleaseReturnValue",
   2068                                /*isTailCall*/ true);
   2069 }
   2070 
   2071 /// Do a fused retain/autorelease of the given object.
   2072 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
   2073 llvm::Value *
   2074 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
   2075   return emitARCValueOperation(*this, value,
   2076                      CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue,
   2077                                "objc_retainAutoreleaseReturnValue",
   2078                                /*isTailCall*/ true);
   2079 }
   2080 
   2081 /// Do a fused retain/autorelease of the given object.
   2082 ///   call i8* \@objc_retainAutorelease(i8* %value)
   2083 /// or
   2084 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
   2085 ///   call i8* \@objc_autorelease(i8* %retain)
   2086 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
   2087                                                        llvm::Value *value) {
   2088   if (!type->isBlockPointerType())
   2089     return EmitARCRetainAutoreleaseNonBlock(value);
   2090 
   2091   if (isa<llvm::ConstantPointerNull>(value)) return value;
   2092 
   2093   llvm::Type *origType = value->getType();
   2094   value = Builder.CreateBitCast(value, Int8PtrTy);
   2095   value = EmitARCRetainBlock(value, /*mandatory*/ true);
   2096   value = EmitARCAutorelease(value);
   2097   return Builder.CreateBitCast(value, origType);
   2098 }
   2099 
   2100 /// Do a fused retain/autorelease of the given object.
   2101 ///   call i8* \@objc_retainAutorelease(i8* %value)
   2102 llvm::Value *
   2103 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
   2104   return emitARCValueOperation(*this, value,
   2105                                CGM.getARCEntrypoints().objc_retainAutorelease,
   2106                                "objc_retainAutorelease");
   2107 }
   2108 
   2109 /// i8* \@objc_loadWeak(i8** %addr)
   2110 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
   2111 llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) {
   2112   return emitARCLoadOperation(*this, addr,
   2113                               CGM.getARCEntrypoints().objc_loadWeak,
   2114                               "objc_loadWeak");
   2115 }
   2116 
   2117 /// i8* \@objc_loadWeakRetained(i8** %addr)
   2118 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) {
   2119   return emitARCLoadOperation(*this, addr,
   2120                               CGM.getARCEntrypoints().objc_loadWeakRetained,
   2121                               "objc_loadWeakRetained");
   2122 }
   2123 
   2124 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
   2125 /// Returns %value.
   2126 llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr,
   2127                                                llvm::Value *value,
   2128                                                bool ignored) {
   2129   return emitARCStoreOperation(*this, addr, value,
   2130                                CGM.getARCEntrypoints().objc_storeWeak,
   2131                                "objc_storeWeak", ignored);
   2132 }
   2133 
   2134 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
   2135 /// Returns %value.  %addr is known to not have a current weak entry.
   2136 /// Essentially equivalent to:
   2137 ///   *addr = nil; objc_storeWeak(addr, value);
   2138 void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) {
   2139   // If we're initializing to null, just write null to memory; no need
   2140   // to get the runtime involved.  But don't do this if optimization
   2141   // is enabled, because accounting for this would make the optimizer
   2142   // much more complicated.
   2143   if (isa<llvm::ConstantPointerNull>(value) &&
   2144       CGM.getCodeGenOpts().OptimizationLevel == 0) {
   2145     Builder.CreateStore(value, addr);
   2146     return;
   2147   }
   2148 
   2149   emitARCStoreOperation(*this, addr, value,
   2150                         CGM.getARCEntrypoints().objc_initWeak,
   2151                         "objc_initWeak", /*ignored*/ true);
   2152 }
   2153 
   2154 /// void \@objc_destroyWeak(i8** %addr)
   2155 /// Essentially objc_storeWeak(addr, nil).
   2156 void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) {
   2157   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak;
   2158   if (!fn) {
   2159     llvm::FunctionType *fnType =
   2160       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false);
   2161     fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
   2162   }
   2163 
   2164   // Cast the argument to 'id*'.
   2165   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
   2166 
   2167   EmitNounwindRuntimeCall(fn, addr);
   2168 }
   2169 
   2170 /// void \@objc_moveWeak(i8** %dest, i8** %src)
   2171 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
   2172 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
   2173 void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) {
   2174   emitARCCopyOperation(*this, dst, src,
   2175                        CGM.getARCEntrypoints().objc_moveWeak,
   2176                        "objc_moveWeak");
   2177 }
   2178 
   2179 /// void \@objc_copyWeak(i8** %dest, i8** %src)
   2180 /// Disregards the current value in %dest.  Essentially
   2181 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
   2182 void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) {
   2183   emitARCCopyOperation(*this, dst, src,
   2184                        CGM.getARCEntrypoints().objc_copyWeak,
   2185                        "objc_copyWeak");
   2186 }
   2187 
   2188 /// Produce the code to do a objc_autoreleasepool_push.
   2189 ///   call i8* \@objc_autoreleasePoolPush(void)
   2190 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
   2191   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush;
   2192   if (!fn) {
   2193     llvm::FunctionType *fnType =
   2194       llvm::FunctionType::get(Int8PtrTy, false);
   2195     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
   2196   }
   2197 
   2198   return EmitNounwindRuntimeCall(fn);
   2199 }
   2200 
   2201 /// Produce the code to do a primitive release.
   2202 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
   2203 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
   2204   assert(value->getType() == Int8PtrTy);
   2205 
   2206   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop;
   2207   if (!fn) {
   2208     llvm::FunctionType *fnType =
   2209       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
   2210 
   2211     // We don't want to use a weak import here; instead we should not
   2212     // fall into this path.
   2213     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
   2214   }
   2215 
   2216   EmitNounwindRuntimeCall(fn, value);
   2217 }
   2218 
   2219 /// Produce the code to do an MRR version objc_autoreleasepool_push.
   2220 /// Which is: [[NSAutoreleasePool alloc] init];
   2221 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
   2222 /// init is declared as: - (id) init; in its NSObject super class.
   2223 ///
   2224 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
   2225   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
   2226   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
   2227   // [NSAutoreleasePool alloc]
   2228   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
   2229   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
   2230   CallArgList Args;
   2231   RValue AllocRV =
   2232     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
   2233                                 getContext().getObjCIdType(),
   2234                                 AllocSel, Receiver, Args);
   2235 
   2236   // [Receiver init]
   2237   Receiver = AllocRV.getScalarVal();
   2238   II = &CGM.getContext().Idents.get("init");
   2239   Selector InitSel = getContext().Selectors.getSelector(0, &II);
   2240   RValue InitRV =
   2241     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
   2242                                 getContext().getObjCIdType(),
   2243                                 InitSel, Receiver, Args);
   2244   return InitRV.getScalarVal();
   2245 }
   2246 
   2247 /// Produce the code to do a primitive release.
   2248 /// [tmp drain];
   2249 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
   2250   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
   2251   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
   2252   CallArgList Args;
   2253   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
   2254                               getContext().VoidTy, DrainSel, Arg, Args);
   2255 }
   2256 
   2257 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
   2258                                               llvm::Value *addr,
   2259                                               QualType type) {
   2260   CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
   2261 }
   2262 
   2263 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
   2264                                                 llvm::Value *addr,
   2265                                                 QualType type) {
   2266   CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
   2267 }
   2268 
   2269 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
   2270                                      llvm::Value *addr,
   2271                                      QualType type) {
   2272   CGF.EmitARCDestroyWeak(addr);
   2273 }
   2274 
   2275 namespace {
   2276   struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup {
   2277     llvm::Value *Token;
   2278 
   2279     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
   2280 
   2281     void Emit(CodeGenFunction &CGF, Flags flags) {
   2282       CGF.EmitObjCAutoreleasePoolPop(Token);
   2283     }
   2284   };
   2285   struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup {
   2286     llvm::Value *Token;
   2287 
   2288     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
   2289 
   2290     void Emit(CodeGenFunction &CGF, Flags flags) {
   2291       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
   2292     }
   2293   };
   2294 }
   2295 
   2296 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
   2297   if (CGM.getLangOpts().ObjCAutoRefCount)
   2298     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
   2299   else
   2300     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
   2301 }
   2302 
   2303 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
   2304                                                   LValue lvalue,
   2305                                                   QualType type) {
   2306   switch (type.getObjCLifetime()) {
   2307   case Qualifiers::OCL_None:
   2308   case Qualifiers::OCL_ExplicitNone:
   2309   case Qualifiers::OCL_Strong:
   2310   case Qualifiers::OCL_Autoreleasing:
   2311     return TryEmitResult(CGF.EmitLoadOfLValue(lvalue).getScalarVal(),
   2312                          false);
   2313 
   2314   case Qualifiers::OCL_Weak:
   2315     return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
   2316                          true);
   2317   }
   2318 
   2319   llvm_unreachable("impossible lifetime!");
   2320 }
   2321 
   2322 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
   2323                                                   const Expr *e) {
   2324   e = e->IgnoreParens();
   2325   QualType type = e->getType();
   2326 
   2327   // If we're loading retained from a __strong xvalue, we can avoid
   2328   // an extra retain/release pair by zeroing out the source of this
   2329   // "move" operation.
   2330   if (e->isXValue() &&
   2331       !type.isConstQualified() &&
   2332       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
   2333     // Emit the lvalue.
   2334     LValue lv = CGF.EmitLValue(e);
   2335 
   2336     // Load the object pointer.
   2337     llvm::Value *result = CGF.EmitLoadOfLValue(lv).getScalarVal();
   2338 
   2339     // Set the source pointer to NULL.
   2340     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
   2341 
   2342     return TryEmitResult(result, true);
   2343   }
   2344 
   2345   // As a very special optimization, in ARC++, if the l-value is the
   2346   // result of a non-volatile assignment, do a simple retain of the
   2347   // result of the call to objc_storeWeak instead of reloading.
   2348   if (CGF.getLangOpts().CPlusPlus &&
   2349       !type.isVolatileQualified() &&
   2350       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
   2351       isa<BinaryOperator>(e) &&
   2352       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
   2353     return TryEmitResult(CGF.EmitScalarExpr(e), false);
   2354 
   2355   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
   2356 }
   2357 
   2358 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
   2359                                            llvm::Value *value);
   2360 
   2361 /// Given that the given expression is some sort of call (which does
   2362 /// not return retained), emit a retain following it.
   2363 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) {
   2364   llvm::Value *value = CGF.EmitScalarExpr(e);
   2365   return emitARCRetainAfterCall(CGF, value);
   2366 }
   2367 
   2368 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
   2369                                            llvm::Value *value) {
   2370   if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
   2371     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
   2372 
   2373     // Place the retain immediately following the call.
   2374     CGF.Builder.SetInsertPoint(call->getParent(),
   2375                                ++llvm::BasicBlock::iterator(call));
   2376     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
   2377 
   2378     CGF.Builder.restoreIP(ip);
   2379     return value;
   2380   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
   2381     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
   2382 
   2383     // Place the retain at the beginning of the normal destination block.
   2384     llvm::BasicBlock *BB = invoke->getNormalDest();
   2385     CGF.Builder.SetInsertPoint(BB, BB->begin());
   2386     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
   2387 
   2388     CGF.Builder.restoreIP(ip);
   2389     return value;
   2390 
   2391   // Bitcasts can arise because of related-result returns.  Rewrite
   2392   // the operand.
   2393   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
   2394     llvm::Value *operand = bitcast->getOperand(0);
   2395     operand = emitARCRetainAfterCall(CGF, operand);
   2396     bitcast->setOperand(0, operand);
   2397     return bitcast;
   2398 
   2399   // Generic fall-back case.
   2400   } else {
   2401     // Retain using the non-block variant: we never need to do a copy
   2402     // of a block that's been returned to us.
   2403     return CGF.EmitARCRetainNonBlock(value);
   2404   }
   2405 }
   2406 
   2407 /// Determine whether it might be important to emit a separate
   2408 /// objc_retain_block on the result of the given expression, or
   2409 /// whether it's okay to just emit it in a +1 context.
   2410 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
   2411   assert(e->getType()->isBlockPointerType());
   2412   e = e->IgnoreParens();
   2413 
   2414   // For future goodness, emit block expressions directly in +1
   2415   // contexts if we can.
   2416   if (isa<BlockExpr>(e))
   2417     return false;
   2418 
   2419   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
   2420     switch (cast->getCastKind()) {
   2421     // Emitting these operations in +1 contexts is goodness.
   2422     case CK_LValueToRValue:
   2423     case CK_ARCReclaimReturnedObject:
   2424     case CK_ARCConsumeObject:
   2425     case CK_ARCProduceObject:
   2426       return false;
   2427 
   2428     // These operations preserve a block type.
   2429     case CK_NoOp:
   2430     case CK_BitCast:
   2431       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
   2432 
   2433     // These operations are known to be bad (or haven't been considered).
   2434     case CK_AnyPointerToBlockPointerCast:
   2435     default:
   2436       return true;
   2437     }
   2438   }
   2439 
   2440   return true;
   2441 }
   2442 
   2443 /// Try to emit a PseudoObjectExpr at +1.
   2444 ///
   2445 /// This massively duplicates emitPseudoObjectRValue.
   2446 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF,
   2447                                                   const PseudoObjectExpr *E) {
   2448   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
   2449 
   2450   // Find the result expression.
   2451   const Expr *resultExpr = E->getResultExpr();
   2452   assert(resultExpr);
   2453   TryEmitResult result;
   2454 
   2455   for (PseudoObjectExpr::const_semantics_iterator
   2456          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
   2457     const Expr *semantic = *i;
   2458 
   2459     // If this semantic expression is an opaque value, bind it
   2460     // to the result of its source expression.
   2461     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
   2462       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
   2463       OVMA opaqueData;
   2464 
   2465       // If this semantic is the result of the pseudo-object
   2466       // expression, try to evaluate the source as +1.
   2467       if (ov == resultExpr) {
   2468         assert(!OVMA::shouldBindAsLValue(ov));
   2469         result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr());
   2470         opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer()));
   2471 
   2472       // Otherwise, just bind it.
   2473       } else {
   2474         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
   2475       }
   2476       opaques.push_back(opaqueData);
   2477 
   2478     // Otherwise, if the expression is the result, evaluate it
   2479     // and remember the result.
   2480     } else if (semantic == resultExpr) {
   2481       result = tryEmitARCRetainScalarExpr(CGF, semantic);
   2482 
   2483     // Otherwise, evaluate the expression in an ignored context.
   2484     } else {
   2485       CGF.EmitIgnoredExpr(semantic);
   2486     }
   2487   }
   2488 
   2489   // Unbind all the opaques now.
   2490   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
   2491     opaques[i].unbind(CGF);
   2492 
   2493   return result;
   2494 }
   2495 
   2496 static TryEmitResult
   2497 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
   2498   // We should *never* see a nested full-expression here, because if
   2499   // we fail to emit at +1, our caller must not retain after we close
   2500   // out the full-expression.
   2501   assert(!isa<ExprWithCleanups>(e));
   2502 
   2503   // The desired result type, if it differs from the type of the
   2504   // ultimate opaque expression.
   2505   llvm::Type *resultType = 0;
   2506 
   2507   while (true) {
   2508     e = e->IgnoreParens();
   2509 
   2510     // There's a break at the end of this if-chain;  anything
   2511     // that wants to keep looping has to explicitly continue.
   2512     if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
   2513       switch (ce->getCastKind()) {
   2514       // No-op casts don't change the type, so we just ignore them.
   2515       case CK_NoOp:
   2516         e = ce->getSubExpr();
   2517         continue;
   2518 
   2519       case CK_LValueToRValue: {
   2520         TryEmitResult loadResult
   2521           = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr());
   2522         if (resultType) {
   2523           llvm::Value *value = loadResult.getPointer();
   2524           value = CGF.Builder.CreateBitCast(value, resultType);
   2525           loadResult.setPointer(value);
   2526         }
   2527         return loadResult;
   2528       }
   2529 
   2530       // These casts can change the type, so remember that and
   2531       // soldier on.  We only need to remember the outermost such
   2532       // cast, though.
   2533       case CK_CPointerToObjCPointerCast:
   2534       case CK_BlockPointerToObjCPointerCast:
   2535       case CK_AnyPointerToBlockPointerCast:
   2536       case CK_BitCast:
   2537         if (!resultType)
   2538           resultType = CGF.ConvertType(ce->getType());
   2539         e = ce->getSubExpr();
   2540         assert(e->getType()->hasPointerRepresentation());
   2541         continue;
   2542 
   2543       // For consumptions, just emit the subexpression and thus elide
   2544       // the retain/release pair.
   2545       case CK_ARCConsumeObject: {
   2546         llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr());
   2547         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
   2548         return TryEmitResult(result, true);
   2549       }
   2550 
   2551       // Block extends are net +0.  Naively, we could just recurse on
   2552       // the subexpression, but actually we need to ensure that the
   2553       // value is copied as a block, so there's a little filter here.
   2554       case CK_ARCExtendBlockObject: {
   2555         llvm::Value *result; // will be a +0 value
   2556 
   2557         // If we can't safely assume the sub-expression will produce a
   2558         // block-copied value, emit the sub-expression at +0.
   2559         if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) {
   2560           result = CGF.EmitScalarExpr(ce->getSubExpr());
   2561 
   2562         // Otherwise, try to emit the sub-expression at +1 recursively.
   2563         } else {
   2564           TryEmitResult subresult
   2565             = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr());
   2566           result = subresult.getPointer();
   2567 
   2568           // If that produced a retained value, just use that,
   2569           // possibly casting down.
   2570           if (subresult.getInt()) {
   2571             if (resultType)
   2572               result = CGF.Builder.CreateBitCast(result, resultType);
   2573             return TryEmitResult(result, true);
   2574           }
   2575 
   2576           // Otherwise it's +0.
   2577         }
   2578 
   2579         // Retain the object as a block, then cast down.
   2580         result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
   2581         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
   2582         return TryEmitResult(result, true);
   2583       }
   2584 
   2585       // For reclaims, emit the subexpression as a retained call and
   2586       // skip the consumption.
   2587       case CK_ARCReclaimReturnedObject: {
   2588         llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr());
   2589         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
   2590         return TryEmitResult(result, true);
   2591       }
   2592 
   2593       default:
   2594         break;
   2595       }
   2596 
   2597     // Skip __extension__.
   2598     } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
   2599       if (op->getOpcode() == UO_Extension) {
   2600         e = op->getSubExpr();
   2601         continue;
   2602       }
   2603 
   2604     // For calls and message sends, use the retained-call logic.
   2605     // Delegate inits are a special case in that they're the only
   2606     // returns-retained expression that *isn't* surrounded by
   2607     // a consume.
   2608     } else if (isa<CallExpr>(e) ||
   2609                (isa<ObjCMessageExpr>(e) &&
   2610                 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
   2611       llvm::Value *result = emitARCRetainCall(CGF, e);
   2612       if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
   2613       return TryEmitResult(result, true);
   2614 
   2615     // Look through pseudo-object expressions.
   2616     } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
   2617       TryEmitResult result
   2618         = tryEmitARCRetainPseudoObject(CGF, pseudo);
   2619       if (resultType) {
   2620         llvm::Value *value = result.getPointer();
   2621         value = CGF.Builder.CreateBitCast(value, resultType);
   2622         result.setPointer(value);
   2623       }
   2624       return result;
   2625     }
   2626 
   2627     // Conservatively halt the search at any other expression kind.
   2628     break;
   2629   }
   2630 
   2631   // We didn't find an obvious production, so emit what we've got and
   2632   // tell the caller that we didn't manage to retain.
   2633   llvm::Value *result = CGF.EmitScalarExpr(e);
   2634   if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
   2635   return TryEmitResult(result, false);
   2636 }
   2637 
   2638 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
   2639                                                 LValue lvalue,
   2640                                                 QualType type) {
   2641   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
   2642   llvm::Value *value = result.getPointer();
   2643   if (!result.getInt())
   2644     value = CGF.EmitARCRetain(type, value);
   2645   return value;
   2646 }
   2647 
   2648 /// EmitARCRetainScalarExpr - Semantically equivalent to
   2649 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
   2650 /// best-effort attempt to peephole expressions that naturally produce
   2651 /// retained objects.
   2652 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
   2653   // The retain needs to happen within the full-expression.
   2654   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
   2655     enterFullExpression(cleanups);
   2656     RunCleanupsScope scope(*this);
   2657     return EmitARCRetainScalarExpr(cleanups->getSubExpr());
   2658   }
   2659 
   2660   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
   2661   llvm::Value *value = result.getPointer();
   2662   if (!result.getInt())
   2663     value = EmitARCRetain(e->getType(), value);
   2664   return value;
   2665 }
   2666 
   2667 llvm::Value *
   2668 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
   2669   // The retain needs to happen within the full-expression.
   2670   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
   2671     enterFullExpression(cleanups);
   2672     RunCleanupsScope scope(*this);
   2673     return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
   2674   }
   2675 
   2676   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
   2677   llvm::Value *value = result.getPointer();
   2678   if (result.getInt())
   2679     value = EmitARCAutorelease(value);
   2680   else
   2681     value = EmitARCRetainAutorelease(e->getType(), value);
   2682   return value;
   2683 }
   2684 
   2685 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
   2686   llvm::Value *result;
   2687   bool doRetain;
   2688 
   2689   if (shouldEmitSeparateBlockRetain(e)) {
   2690     result = EmitScalarExpr(e);
   2691     doRetain = true;
   2692   } else {
   2693     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
   2694     result = subresult.getPointer();
   2695     doRetain = !subresult.getInt();
   2696   }
   2697 
   2698   if (doRetain)
   2699     result = EmitARCRetainBlock(result, /*mandatory*/ true);
   2700   return EmitObjCConsumeObject(e->getType(), result);
   2701 }
   2702 
   2703 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
   2704   // In ARC, retain and autorelease the expression.
   2705   if (getLangOpts().ObjCAutoRefCount) {
   2706     // Do so before running any cleanups for the full-expression.
   2707     // EmitARCRetainAutoreleaseScalarExpr does this for us.
   2708     return EmitARCRetainAutoreleaseScalarExpr(expr);
   2709   }
   2710 
   2711   // Otherwise, use the normal scalar-expression emission.  The
   2712   // exception machinery doesn't do anything special with the
   2713   // exception like retaining it, so there's no safety associated with
   2714   // only running cleanups after the throw has started, and when it
   2715   // matters it tends to be substantially inferior code.
   2716   return EmitScalarExpr(expr);
   2717 }
   2718 
   2719 std::pair<LValue,llvm::Value*>
   2720 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
   2721                                     bool ignored) {
   2722   // Evaluate the RHS first.
   2723   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
   2724   llvm::Value *value = result.getPointer();
   2725 
   2726   bool hasImmediateRetain = result.getInt();
   2727 
   2728   // If we didn't emit a retained object, and the l-value is of block
   2729   // type, then we need to emit the block-retain immediately in case
   2730   // it invalidates the l-value.
   2731   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
   2732     value = EmitARCRetainBlock(value, /*mandatory*/ false);
   2733     hasImmediateRetain = true;
   2734   }
   2735 
   2736   LValue lvalue = EmitLValue(e->getLHS());
   2737 
   2738   // If the RHS was emitted retained, expand this.
   2739   if (hasImmediateRetain) {
   2740     llvm::Value *oldValue =
   2741       EmitLoadOfScalar(lvalue);
   2742     EmitStoreOfScalar(value, lvalue);
   2743     EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
   2744   } else {
   2745     value = EmitARCStoreStrong(lvalue, value, ignored);
   2746   }
   2747 
   2748   return std::pair<LValue,llvm::Value*>(lvalue, value);
   2749 }
   2750 
   2751 std::pair<LValue,llvm::Value*>
   2752 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
   2753   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
   2754   LValue lvalue = EmitLValue(e->getLHS());
   2755 
   2756   EmitStoreOfScalar(value, lvalue);
   2757 
   2758   return std::pair<LValue,llvm::Value*>(lvalue, value);
   2759 }
   2760 
   2761 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
   2762                                           const ObjCAutoreleasePoolStmt &ARPS) {
   2763   const Stmt *subStmt = ARPS.getSubStmt();
   2764   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
   2765 
   2766   CGDebugInfo *DI = getDebugInfo();
   2767   if (DI)
   2768     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
   2769 
   2770   // Keep track of the current cleanup stack depth.
   2771   RunCleanupsScope Scope(*this);
   2772   if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
   2773     llvm::Value *token = EmitObjCAutoreleasePoolPush();
   2774     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
   2775   } else {
   2776     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
   2777     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
   2778   }
   2779 
   2780   for (CompoundStmt::const_body_iterator I = S.body_begin(),
   2781        E = S.body_end(); I != E; ++I)
   2782     EmitStmt(*I);
   2783 
   2784   if (DI)
   2785     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
   2786 }
   2787 
   2788 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
   2789 /// make sure it survives garbage collection until this point.
   2790 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
   2791   // We just use an inline assembly.
   2792   llvm::FunctionType *extenderType
   2793     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
   2794   llvm::Value *extender
   2795     = llvm::InlineAsm::get(extenderType,
   2796                            /* assembly */ "",
   2797                            /* constraints */ "r",
   2798                            /* side effects */ true);
   2799 
   2800   object = Builder.CreateBitCast(object, VoidPtrTy);
   2801   EmitNounwindRuntimeCall(extender, object);
   2802 }
   2803 
   2804 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
   2805 /// non-trivial copy assignment function, produce following helper function.
   2806 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
   2807 ///
   2808 llvm::Constant *
   2809 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
   2810                                         const ObjCPropertyImplDecl *PID) {
   2811   if (!getLangOpts().CPlusPlus ||
   2812       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
   2813     return 0;
   2814   QualType Ty = PID->getPropertyIvarDecl()->getType();
   2815   if (!Ty->isRecordType())
   2816     return 0;
   2817   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
   2818   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
   2819     return 0;
   2820   llvm::Constant * HelperFn = 0;
   2821   if (hasTrivialSetExpr(PID))
   2822     return 0;
   2823   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
   2824   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
   2825     return HelperFn;
   2826 
   2827   ASTContext &C = getContext();
   2828   IdentifierInfo *II
   2829     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
   2830   FunctionDecl *FD = FunctionDecl::Create(C,
   2831                                           C.getTranslationUnitDecl(),
   2832                                           SourceLocation(),
   2833                                           SourceLocation(), II, C.VoidTy, 0,
   2834                                           SC_Static,
   2835                                           SC_None,
   2836                                           false,
   2837                                           false);
   2838 
   2839   QualType DestTy = C.getPointerType(Ty);
   2840   QualType SrcTy = Ty;
   2841   SrcTy.addConst();
   2842   SrcTy = C.getPointerType(SrcTy);
   2843 
   2844   FunctionArgList args;
   2845   ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
   2846   args.push_back(&dstDecl);
   2847   ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
   2848   args.push_back(&srcDecl);
   2849 
   2850   const CGFunctionInfo &FI =
   2851     CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
   2852                                               FunctionType::ExtInfo(),
   2853                                               RequiredArgs::All);
   2854 
   2855   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
   2856 
   2857   llvm::Function *Fn =
   2858     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
   2859                            "__assign_helper_atomic_property_",
   2860                            &CGM.getModule());
   2861 
   2862   // Initialize debug info if needed.
   2863   maybeInitializeDebugInfo();
   2864 
   2865   StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
   2866 
   2867   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
   2868                       VK_RValue, SourceLocation());
   2869   UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
   2870                     VK_LValue, OK_Ordinary, SourceLocation());
   2871 
   2872   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
   2873                       VK_RValue, SourceLocation());
   2874   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
   2875                     VK_LValue, OK_Ordinary, SourceLocation());
   2876 
   2877   Expr *Args[2] = { &DST, &SRC };
   2878   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
   2879   CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(),
   2880                               Args, DestTy->getPointeeType(),
   2881                               VK_LValue, SourceLocation(), false);
   2882 
   2883   EmitStmt(&TheCall);
   2884 
   2885   FinishFunction();
   2886   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
   2887   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
   2888   return HelperFn;
   2889 }
   2890 
   2891 llvm::Constant *
   2892 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
   2893                                             const ObjCPropertyImplDecl *PID) {
   2894   if (!getLangOpts().CPlusPlus ||
   2895       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
   2896     return 0;
   2897   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
   2898   QualType Ty = PD->getType();
   2899   if (!Ty->isRecordType())
   2900     return 0;
   2901   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
   2902     return 0;
   2903   llvm::Constant * HelperFn = 0;
   2904 
   2905   if (hasTrivialGetExpr(PID))
   2906     return 0;
   2907   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
   2908   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
   2909     return HelperFn;
   2910 
   2911 
   2912   ASTContext &C = getContext();
   2913   IdentifierInfo *II
   2914   = &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
   2915   FunctionDecl *FD = FunctionDecl::Create(C,
   2916                                           C.getTranslationUnitDecl(),
   2917                                           SourceLocation(),
   2918                                           SourceLocation(), II, C.VoidTy, 0,
   2919                                           SC_Static,
   2920                                           SC_None,
   2921                                           false,
   2922                                           false);
   2923 
   2924   QualType DestTy = C.getPointerType(Ty);
   2925   QualType SrcTy = Ty;
   2926   SrcTy.addConst();
   2927   SrcTy = C.getPointerType(SrcTy);
   2928 
   2929   FunctionArgList args;
   2930   ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
   2931   args.push_back(&dstDecl);
   2932   ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
   2933   args.push_back(&srcDecl);
   2934 
   2935   const CGFunctionInfo &FI =
   2936   CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
   2937                                             FunctionType::ExtInfo(),
   2938                                             RequiredArgs::All);
   2939 
   2940   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
   2941 
   2942   llvm::Function *Fn =
   2943   llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
   2944                          "__copy_helper_atomic_property_", &CGM.getModule());
   2945 
   2946   // Initialize debug info if needed.
   2947   maybeInitializeDebugInfo();
   2948 
   2949   StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
   2950 
   2951   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
   2952                       VK_RValue, SourceLocation());
   2953 
   2954   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
   2955                     VK_LValue, OK_Ordinary, SourceLocation());
   2956 
   2957   CXXConstructExpr *CXXConstExpr =
   2958     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
   2959 
   2960   SmallVector<Expr*, 4> ConstructorArgs;
   2961   ConstructorArgs.push_back(&SRC);
   2962   CXXConstructExpr::arg_iterator A = CXXConstExpr->arg_begin();
   2963   ++A;
   2964 
   2965   for (CXXConstructExpr::arg_iterator AEnd = CXXConstExpr->arg_end();
   2966        A != AEnd; ++A)
   2967     ConstructorArgs.push_back(*A);
   2968 
   2969   CXXConstructExpr *TheCXXConstructExpr =
   2970     CXXConstructExpr::Create(C, Ty, SourceLocation(),
   2971                              CXXConstExpr->getConstructor(),
   2972                              CXXConstExpr->isElidable(),
   2973                              ConstructorArgs,
   2974                              CXXConstExpr->hadMultipleCandidates(),
   2975                              CXXConstExpr->isListInitialization(),
   2976                              CXXConstExpr->requiresZeroInitialization(),
   2977                              CXXConstExpr->getConstructionKind(),
   2978                              SourceRange());
   2979 
   2980   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
   2981                       VK_RValue, SourceLocation());
   2982 
   2983   RValue DV = EmitAnyExpr(&DstExpr);
   2984   CharUnits Alignment
   2985     = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
   2986   EmitAggExpr(TheCXXConstructExpr,
   2987               AggValueSlot::forAddr(DV.getScalarVal(), Alignment, Qualifiers(),
   2988                                     AggValueSlot::IsDestructed,
   2989                                     AggValueSlot::DoesNotNeedGCBarriers,
   2990                                     AggValueSlot::IsNotAliased));
   2991 
   2992   FinishFunction();
   2993   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
   2994   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
   2995   return HelperFn;
   2996 }
   2997 
   2998 llvm::Value *
   2999 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
   3000   // Get selectors for retain/autorelease.
   3001   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
   3002   Selector CopySelector =
   3003       getContext().Selectors.getNullarySelector(CopyID);
   3004   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
   3005   Selector AutoreleaseSelector =
   3006       getContext().Selectors.getNullarySelector(AutoreleaseID);
   3007 
   3008   // Emit calls to retain/autorelease.
   3009   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
   3010   llvm::Value *Val = Block;
   3011   RValue Result;
   3012   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
   3013                                        Ty, CopySelector,
   3014                                        Val, CallArgList(), 0, 0);
   3015   Val = Result.getScalarVal();
   3016   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
   3017                                        Ty, AutoreleaseSelector,
   3018                                        Val, CallArgList(), 0, 0);
   3019   Val = Result.getScalarVal();
   3020   return Val;
   3021 }
   3022 
   3023 
   3024 CGObjCRuntime::~CGObjCRuntime() {}
   3025