Home | History | Annotate | Download | only in Utils
      1 //===-- AArch64BaseInfo.cpp - AArch64 Base encoding information------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file provides basic encoding and assembly information for AArch64.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 #include "AArch64BaseInfo.h"
     14 #include "llvm/ADT/APFloat.h"
     15 #include "llvm/ADT/SmallVector.h"
     16 #include "llvm/ADT/StringExtras.h"
     17 #include "llvm/Support/Regex.h"
     18 
     19 using namespace llvm;
     20 
     21 StringRef NamedImmMapper::toString(uint32_t Value, bool &Valid) const {
     22   for (unsigned i = 0; i < NumPairs; ++i) {
     23     if (Pairs[i].Value == Value) {
     24       Valid = true;
     25       return Pairs[i].Name;
     26     }
     27   }
     28 
     29   Valid = false;
     30   return StringRef();
     31 }
     32 
     33 uint32_t NamedImmMapper::fromString(StringRef Name, bool &Valid) const {
     34   std::string LowerCaseName = Name.lower();
     35   for (unsigned i = 0; i < NumPairs; ++i) {
     36     if (Pairs[i].Name == LowerCaseName) {
     37       Valid = true;
     38       return Pairs[i].Value;
     39     }
     40   }
     41 
     42   Valid = false;
     43   return -1;
     44 }
     45 
     46 bool NamedImmMapper::validImm(uint32_t Value) const {
     47   return Value < TooBigImm;
     48 }
     49 
     50 const NamedImmMapper::Mapping A64AT::ATMapper::ATPairs[] = {
     51   {"s1e1r", S1E1R},
     52   {"s1e2r", S1E2R},
     53   {"s1e3r", S1E3R},
     54   {"s1e1w", S1E1W},
     55   {"s1e2w", S1E2W},
     56   {"s1e3w", S1E3W},
     57   {"s1e0r", S1E0R},
     58   {"s1e0w", S1E0W},
     59   {"s12e1r", S12E1R},
     60   {"s12e1w", S12E1W},
     61   {"s12e0r", S12E0R},
     62   {"s12e0w", S12E0W},
     63 };
     64 
     65 A64AT::ATMapper::ATMapper()
     66   : NamedImmMapper(ATPairs, 0) {}
     67 
     68 const NamedImmMapper::Mapping A64DB::DBarrierMapper::DBarrierPairs[] = {
     69   {"oshld", OSHLD},
     70   {"oshst", OSHST},
     71   {"osh", OSH},
     72   {"nshld", NSHLD},
     73   {"nshst", NSHST},
     74   {"nsh", NSH},
     75   {"ishld", ISHLD},
     76   {"ishst", ISHST},
     77   {"ish", ISH},
     78   {"ld", LD},
     79   {"st", ST},
     80   {"sy", SY}
     81 };
     82 
     83 A64DB::DBarrierMapper::DBarrierMapper()
     84   : NamedImmMapper(DBarrierPairs, 16u) {}
     85 
     86 const NamedImmMapper::Mapping A64DC::DCMapper::DCPairs[] = {
     87   {"zva", ZVA},
     88   {"ivac", IVAC},
     89   {"isw", ISW},
     90   {"cvac", CVAC},
     91   {"csw", CSW},
     92   {"cvau", CVAU},
     93   {"civac", CIVAC},
     94   {"cisw", CISW}
     95 };
     96 
     97 A64DC::DCMapper::DCMapper()
     98   : NamedImmMapper(DCPairs, 0) {}
     99 
    100 const NamedImmMapper::Mapping A64IC::ICMapper::ICPairs[] = {
    101   {"ialluis",  IALLUIS},
    102   {"iallu", IALLU},
    103   {"ivau", IVAU}
    104 };
    105 
    106 A64IC::ICMapper::ICMapper()
    107   : NamedImmMapper(ICPairs, 0) {}
    108 
    109 const NamedImmMapper::Mapping A64ISB::ISBMapper::ISBPairs[] = {
    110   {"sy",  SY},
    111 };
    112 
    113 A64ISB::ISBMapper::ISBMapper()
    114   : NamedImmMapper(ISBPairs, 16) {}
    115 
    116 const NamedImmMapper::Mapping A64PRFM::PRFMMapper::PRFMPairs[] = {
    117   {"pldl1keep", PLDL1KEEP},
    118   {"pldl1strm", PLDL1STRM},
    119   {"pldl2keep", PLDL2KEEP},
    120   {"pldl2strm", PLDL2STRM},
    121   {"pldl3keep", PLDL3KEEP},
    122   {"pldl3strm", PLDL3STRM},
    123   {"plil1keep", PLIL1KEEP},
    124   {"plil1strm", PLIL1STRM},
    125   {"plil2keep", PLIL2KEEP},
    126   {"plil2strm", PLIL2STRM},
    127   {"plil3keep", PLIL3KEEP},
    128   {"plil3strm", PLIL3STRM},
    129   {"pstl1keep", PSTL1KEEP},
    130   {"pstl1strm", PSTL1STRM},
    131   {"pstl2keep", PSTL2KEEP},
    132   {"pstl2strm", PSTL2STRM},
    133   {"pstl3keep", PSTL3KEEP},
    134   {"pstl3strm", PSTL3STRM}
    135 };
    136 
    137 A64PRFM::PRFMMapper::PRFMMapper()
    138   : NamedImmMapper(PRFMPairs, 32) {}
    139 
    140 const NamedImmMapper::Mapping A64PState::PStateMapper::PStatePairs[] = {
    141   {"spsel", SPSel},
    142   {"daifset", DAIFSet},
    143   {"daifclr", DAIFClr}
    144 };
    145 
    146 A64PState::PStateMapper::PStateMapper()
    147   : NamedImmMapper(PStatePairs, 0) {}
    148 
    149 const NamedImmMapper::Mapping A64SysReg::MRSMapper::MRSPairs[] = {
    150   {"mdccsr_el0", MDCCSR_EL0},
    151   {"dbgdtrrx_el0", DBGDTRRX_EL0},
    152   {"mdrar_el1", MDRAR_EL1},
    153   {"oslsr_el1", OSLSR_EL1},
    154   {"dbgauthstatus_el1", DBGAUTHSTATUS_EL1},
    155   {"pmceid0_el0", PMCEID0_EL0},
    156   {"pmceid1_el0", PMCEID1_EL0},
    157   {"midr_el1", MIDR_EL1},
    158   {"ccsidr_el1", CCSIDR_EL1},
    159   {"clidr_el1", CLIDR_EL1},
    160   {"ctr_el0", CTR_EL0},
    161   {"mpidr_el1", MPIDR_EL1},
    162   {"revidr_el1", REVIDR_EL1},
    163   {"aidr_el1", AIDR_EL1},
    164   {"dczid_el0", DCZID_EL0},
    165   {"id_pfr0_el1", ID_PFR0_EL1},
    166   {"id_pfr1_el1", ID_PFR1_EL1},
    167   {"id_dfr0_el1", ID_DFR0_EL1},
    168   {"id_afr0_el1", ID_AFR0_EL1},
    169   {"id_mmfr0_el1", ID_MMFR0_EL1},
    170   {"id_mmfr1_el1", ID_MMFR1_EL1},
    171   {"id_mmfr2_el1", ID_MMFR2_EL1},
    172   {"id_mmfr3_el1", ID_MMFR3_EL1},
    173   {"id_isar0_el1", ID_ISAR0_EL1},
    174   {"id_isar1_el1", ID_ISAR1_EL1},
    175   {"id_isar2_el1", ID_ISAR2_EL1},
    176   {"id_isar3_el1", ID_ISAR3_EL1},
    177   {"id_isar4_el1", ID_ISAR4_EL1},
    178   {"id_isar5_el1", ID_ISAR5_EL1},
    179   {"id_aa64pfr0_el1", ID_AA64PFR0_EL1},
    180   {"id_aa64pfr1_el1", ID_AA64PFR1_EL1},
    181   {"id_aa64dfr0_el1", ID_AA64DFR0_EL1},
    182   {"id_aa64dfr1_el1", ID_AA64DFR1_EL1},
    183   {"id_aa64afr0_el1", ID_AA64AFR0_EL1},
    184   {"id_aa64afr1_el1", ID_AA64AFR1_EL1},
    185   {"id_aa64isar0_el1", ID_AA64ISAR0_EL1},
    186   {"id_aa64isar1_el1", ID_AA64ISAR1_EL1},
    187   {"id_aa64mmfr0_el1", ID_AA64MMFR0_EL1},
    188   {"id_aa64mmfr1_el1", ID_AA64MMFR1_EL1},
    189   {"mvfr0_el1", MVFR0_EL1},
    190   {"mvfr1_el1", MVFR1_EL1},
    191   {"mvfr2_el1", MVFR2_EL1},
    192   {"rvbar_el1", RVBAR_EL1},
    193   {"rvbar_el2", RVBAR_EL2},
    194   {"rvbar_el3", RVBAR_EL3},
    195   {"isr_el1", ISR_EL1},
    196   {"cntpct_el0", CNTPCT_EL0},
    197   {"cntvct_el0", CNTVCT_EL0}
    198 };
    199 
    200 A64SysReg::MRSMapper::MRSMapper() {
    201     InstPairs = &MRSPairs[0];
    202     NumInstPairs = llvm::array_lengthof(MRSPairs);
    203 }
    204 
    205 const NamedImmMapper::Mapping A64SysReg::MSRMapper::MSRPairs[] = {
    206   {"dbgdtrtx_el0", DBGDTRTX_EL0},
    207   {"oslar_el1", OSLAR_EL1},
    208   {"pmswinc_el0", PMSWINC_EL0}
    209 };
    210 
    211 A64SysReg::MSRMapper::MSRMapper() {
    212     InstPairs = &MSRPairs[0];
    213     NumInstPairs = llvm::array_lengthof(MSRPairs);
    214 }
    215 
    216 
    217 const NamedImmMapper::Mapping A64SysReg::SysRegMapper::SysRegPairs[] = {
    218   {"osdtrrx_el1", OSDTRRX_EL1},
    219   {"osdtrtx_el1",  OSDTRTX_EL1},
    220   {"teecr32_el1", TEECR32_EL1},
    221   {"mdccint_el1", MDCCINT_EL1},
    222   {"mdscr_el1", MDSCR_EL1},
    223   {"dbgdtr_el0", DBGDTR_EL0},
    224   {"oseccr_el1", OSECCR_EL1},
    225   {"dbgvcr32_el2", DBGVCR32_EL2},
    226   {"dbgbvr0_el1", DBGBVR0_EL1},
    227   {"dbgbvr1_el1", DBGBVR1_EL1},
    228   {"dbgbvr2_el1", DBGBVR2_EL1},
    229   {"dbgbvr3_el1", DBGBVR3_EL1},
    230   {"dbgbvr4_el1", DBGBVR4_EL1},
    231   {"dbgbvr5_el1", DBGBVR5_EL1},
    232   {"dbgbvr6_el1", DBGBVR6_EL1},
    233   {"dbgbvr7_el1", DBGBVR7_EL1},
    234   {"dbgbvr8_el1", DBGBVR8_EL1},
    235   {"dbgbvr9_el1", DBGBVR9_EL1},
    236   {"dbgbvr10_el1", DBGBVR10_EL1},
    237   {"dbgbvr11_el1", DBGBVR11_EL1},
    238   {"dbgbvr12_el1", DBGBVR12_EL1},
    239   {"dbgbvr13_el1", DBGBVR13_EL1},
    240   {"dbgbvr14_el1", DBGBVR14_EL1},
    241   {"dbgbvr15_el1", DBGBVR15_EL1},
    242   {"dbgbcr0_el1", DBGBCR0_EL1},
    243   {"dbgbcr1_el1", DBGBCR1_EL1},
    244   {"dbgbcr2_el1", DBGBCR2_EL1},
    245   {"dbgbcr3_el1", DBGBCR3_EL1},
    246   {"dbgbcr4_el1", DBGBCR4_EL1},
    247   {"dbgbcr5_el1", DBGBCR5_EL1},
    248   {"dbgbcr6_el1", DBGBCR6_EL1},
    249   {"dbgbcr7_el1", DBGBCR7_EL1},
    250   {"dbgbcr8_el1", DBGBCR8_EL1},
    251   {"dbgbcr9_el1", DBGBCR9_EL1},
    252   {"dbgbcr10_el1", DBGBCR10_EL1},
    253   {"dbgbcr11_el1", DBGBCR11_EL1},
    254   {"dbgbcr12_el1", DBGBCR12_EL1},
    255   {"dbgbcr13_el1", DBGBCR13_EL1},
    256   {"dbgbcr14_el1", DBGBCR14_EL1},
    257   {"dbgbcr15_el1", DBGBCR15_EL1},
    258   {"dbgwvr0_el1", DBGWVR0_EL1},
    259   {"dbgwvr1_el1", DBGWVR1_EL1},
    260   {"dbgwvr2_el1", DBGWVR2_EL1},
    261   {"dbgwvr3_el1", DBGWVR3_EL1},
    262   {"dbgwvr4_el1", DBGWVR4_EL1},
    263   {"dbgwvr5_el1", DBGWVR5_EL1},
    264   {"dbgwvr6_el1", DBGWVR6_EL1},
    265   {"dbgwvr7_el1", DBGWVR7_EL1},
    266   {"dbgwvr8_el1", DBGWVR8_EL1},
    267   {"dbgwvr9_el1", DBGWVR9_EL1},
    268   {"dbgwvr10_el1", DBGWVR10_EL1},
    269   {"dbgwvr11_el1", DBGWVR11_EL1},
    270   {"dbgwvr12_el1", DBGWVR12_EL1},
    271   {"dbgwvr13_el1", DBGWVR13_EL1},
    272   {"dbgwvr14_el1", DBGWVR14_EL1},
    273   {"dbgwvr15_el1", DBGWVR15_EL1},
    274   {"dbgwcr0_el1", DBGWCR0_EL1},
    275   {"dbgwcr1_el1", DBGWCR1_EL1},
    276   {"dbgwcr2_el1", DBGWCR2_EL1},
    277   {"dbgwcr3_el1", DBGWCR3_EL1},
    278   {"dbgwcr4_el1", DBGWCR4_EL1},
    279   {"dbgwcr5_el1", DBGWCR5_EL1},
    280   {"dbgwcr6_el1", DBGWCR6_EL1},
    281   {"dbgwcr7_el1", DBGWCR7_EL1},
    282   {"dbgwcr8_el1", DBGWCR8_EL1},
    283   {"dbgwcr9_el1", DBGWCR9_EL1},
    284   {"dbgwcr10_el1", DBGWCR10_EL1},
    285   {"dbgwcr11_el1", DBGWCR11_EL1},
    286   {"dbgwcr12_el1", DBGWCR12_EL1},
    287   {"dbgwcr13_el1", DBGWCR13_EL1},
    288   {"dbgwcr14_el1", DBGWCR14_EL1},
    289   {"dbgwcr15_el1", DBGWCR15_EL1},
    290   {"teehbr32_el1", TEEHBR32_EL1},
    291   {"osdlr_el1", OSDLR_EL1},
    292   {"dbgprcr_el1", DBGPRCR_EL1},
    293   {"dbgclaimset_el1", DBGCLAIMSET_EL1},
    294   {"dbgclaimclr_el1", DBGCLAIMCLR_EL1},
    295   {"csselr_el1", CSSELR_EL1},
    296   {"vpidr_el2", VPIDR_EL2},
    297   {"vmpidr_el2", VMPIDR_EL2},
    298   {"sctlr_el1", SCTLR_EL1},
    299   {"sctlr_el2", SCTLR_EL2},
    300   {"sctlr_el3", SCTLR_EL3},
    301   {"actlr_el1", ACTLR_EL1},
    302   {"actlr_el2", ACTLR_EL2},
    303   {"actlr_el3", ACTLR_EL3},
    304   {"cpacr_el1", CPACR_EL1},
    305   {"hcr_el2", HCR_EL2},
    306   {"scr_el3", SCR_EL3},
    307   {"mdcr_el2", MDCR_EL2},
    308   {"sder32_el3", SDER32_EL3},
    309   {"cptr_el2", CPTR_EL2},
    310   {"cptr_el3", CPTR_EL3},
    311   {"hstr_el2", HSTR_EL2},
    312   {"hacr_el2", HACR_EL2},
    313   {"mdcr_el3", MDCR_EL3},
    314   {"ttbr0_el1", TTBR0_EL1},
    315   {"ttbr0_el2", TTBR0_EL2},
    316   {"ttbr0_el3", TTBR0_EL3},
    317   {"ttbr1_el1", TTBR1_EL1},
    318   {"tcr_el1", TCR_EL1},
    319   {"tcr_el2", TCR_EL2},
    320   {"tcr_el3", TCR_EL3},
    321   {"vttbr_el2", VTTBR_EL2},
    322   {"vtcr_el2", VTCR_EL2},
    323   {"dacr32_el2", DACR32_EL2},
    324   {"spsr_el1", SPSR_EL1},
    325   {"spsr_el2", SPSR_EL2},
    326   {"spsr_el3", SPSR_EL3},
    327   {"elr_el1", ELR_EL1},
    328   {"elr_el2", ELR_EL2},
    329   {"elr_el3", ELR_EL3},
    330   {"sp_el0", SP_EL0},
    331   {"sp_el1", SP_EL1},
    332   {"sp_el2", SP_EL2},
    333   {"spsel", SPSel},
    334   {"nzcv", NZCV},
    335   {"daif", DAIF},
    336   {"currentel", CurrentEL},
    337   {"spsr_irq", SPSR_irq},
    338   {"spsr_abt", SPSR_abt},
    339   {"spsr_und", SPSR_und},
    340   {"spsr_fiq", SPSR_fiq},
    341   {"fpcr", FPCR},
    342   {"fpsr", FPSR},
    343   {"dspsr_el0", DSPSR_EL0},
    344   {"dlr_el0", DLR_EL0},
    345   {"ifsr32_el2", IFSR32_EL2},
    346   {"afsr0_el1", AFSR0_EL1},
    347   {"afsr0_el2", AFSR0_EL2},
    348   {"afsr0_el3", AFSR0_EL3},
    349   {"afsr1_el1", AFSR1_EL1},
    350   {"afsr1_el2", AFSR1_EL2},
    351   {"afsr1_el3", AFSR1_EL3},
    352   {"esr_el1", ESR_EL1},
    353   {"esr_el2", ESR_EL2},
    354   {"esr_el3", ESR_EL3},
    355   {"fpexc32_el2", FPEXC32_EL2},
    356   {"far_el1", FAR_EL1},
    357   {"far_el2", FAR_EL2},
    358   {"far_el3", FAR_EL3},
    359   {"hpfar_el2", HPFAR_EL2},
    360   {"par_el1", PAR_EL1},
    361   {"pmcr_el0", PMCR_EL0},
    362   {"pmcntenset_el0", PMCNTENSET_EL0},
    363   {"pmcntenclr_el0", PMCNTENCLR_EL0},
    364   {"pmovsclr_el0", PMOVSCLR_EL0},
    365   {"pmselr_el0", PMSELR_EL0},
    366   {"pmccntr_el0", PMCCNTR_EL0},
    367   {"pmxevtyper_el0", PMXEVTYPER_EL0},
    368   {"pmxevcntr_el0", PMXEVCNTR_EL0},
    369   {"pmuserenr_el0", PMUSERENR_EL0},
    370   {"pmintenset_el1", PMINTENSET_EL1},
    371   {"pmintenclr_el1", PMINTENCLR_EL1},
    372   {"pmovsset_el0", PMOVSSET_EL0},
    373   {"mair_el1", MAIR_EL1},
    374   {"mair_el2", MAIR_EL2},
    375   {"mair_el3", MAIR_EL3},
    376   {"amair_el1", AMAIR_EL1},
    377   {"amair_el2", AMAIR_EL2},
    378   {"amair_el3", AMAIR_EL3},
    379   {"vbar_el1", VBAR_EL1},
    380   {"vbar_el2", VBAR_EL2},
    381   {"vbar_el3", VBAR_EL3},
    382   {"rmr_el1", RMR_EL1},
    383   {"rmr_el2", RMR_EL2},
    384   {"rmr_el3", RMR_EL3},
    385   {"contextidr_el1", CONTEXTIDR_EL1},
    386   {"tpidr_el0", TPIDR_EL0},
    387   {"tpidr_el2", TPIDR_EL2},
    388   {"tpidr_el3", TPIDR_EL3},
    389   {"tpidrro_el0", TPIDRRO_EL0},
    390   {"tpidr_el1", TPIDR_EL1},
    391   {"cntfrq_el0", CNTFRQ_EL0},
    392   {"cntvoff_el2", CNTVOFF_EL2},
    393   {"cntkctl_el1", CNTKCTL_EL1},
    394   {"cnthctl_el2", CNTHCTL_EL2},
    395   {"cntp_tval_el0", CNTP_TVAL_EL0},
    396   {"cnthp_tval_el2", CNTHP_TVAL_EL2},
    397   {"cntps_tval_el1", CNTPS_TVAL_EL1},
    398   {"cntp_ctl_el0", CNTP_CTL_EL0},
    399   {"cnthp_ctl_el2", CNTHP_CTL_EL2},
    400   {"cntps_ctl_el1", CNTPS_CTL_EL1},
    401   {"cntp_cval_el0", CNTP_CVAL_EL0},
    402   {"cnthp_cval_el2", CNTHP_CVAL_EL2},
    403   {"cntps_cval_el1", CNTPS_CVAL_EL1},
    404   {"cntv_tval_el0", CNTV_TVAL_EL0},
    405   {"cntv_ctl_el0", CNTV_CTL_EL0},
    406   {"cntv_cval_el0", CNTV_CVAL_EL0},
    407   {"pmevcntr0_el0", PMEVCNTR0_EL0},
    408   {"pmevcntr1_el0", PMEVCNTR1_EL0},
    409   {"pmevcntr2_el0", PMEVCNTR2_EL0},
    410   {"pmevcntr3_el0", PMEVCNTR3_EL0},
    411   {"pmevcntr4_el0", PMEVCNTR4_EL0},
    412   {"pmevcntr5_el0", PMEVCNTR5_EL0},
    413   {"pmevcntr6_el0", PMEVCNTR6_EL0},
    414   {"pmevcntr7_el0", PMEVCNTR7_EL0},
    415   {"pmevcntr8_el0", PMEVCNTR8_EL0},
    416   {"pmevcntr9_el0", PMEVCNTR9_EL0},
    417   {"pmevcntr10_el0", PMEVCNTR10_EL0},
    418   {"pmevcntr11_el0", PMEVCNTR11_EL0},
    419   {"pmevcntr12_el0", PMEVCNTR12_EL0},
    420   {"pmevcntr13_el0", PMEVCNTR13_EL0},
    421   {"pmevcntr14_el0", PMEVCNTR14_EL0},
    422   {"pmevcntr15_el0", PMEVCNTR15_EL0},
    423   {"pmevcntr16_el0", PMEVCNTR16_EL0},
    424   {"pmevcntr17_el0", PMEVCNTR17_EL0},
    425   {"pmevcntr18_el0", PMEVCNTR18_EL0},
    426   {"pmevcntr19_el0", PMEVCNTR19_EL0},
    427   {"pmevcntr20_el0", PMEVCNTR20_EL0},
    428   {"pmevcntr21_el0", PMEVCNTR21_EL0},
    429   {"pmevcntr22_el0", PMEVCNTR22_EL0},
    430   {"pmevcntr23_el0", PMEVCNTR23_EL0},
    431   {"pmevcntr24_el0", PMEVCNTR24_EL0},
    432   {"pmevcntr25_el0", PMEVCNTR25_EL0},
    433   {"pmevcntr26_el0", PMEVCNTR26_EL0},
    434   {"pmevcntr27_el0", PMEVCNTR27_EL0},
    435   {"pmevcntr28_el0", PMEVCNTR28_EL0},
    436   {"pmevcntr29_el0", PMEVCNTR29_EL0},
    437   {"pmevcntr30_el0", PMEVCNTR30_EL0},
    438   {"pmccfiltr_el0", PMCCFILTR_EL0},
    439   {"pmevtyper0_el0", PMEVTYPER0_EL0},
    440   {"pmevtyper1_el0", PMEVTYPER1_EL0},
    441   {"pmevtyper2_el0", PMEVTYPER2_EL0},
    442   {"pmevtyper3_el0", PMEVTYPER3_EL0},
    443   {"pmevtyper4_el0", PMEVTYPER4_EL0},
    444   {"pmevtyper5_el0", PMEVTYPER5_EL0},
    445   {"pmevtyper6_el0", PMEVTYPER6_EL0},
    446   {"pmevtyper7_el0", PMEVTYPER7_EL0},
    447   {"pmevtyper8_el0", PMEVTYPER8_EL0},
    448   {"pmevtyper9_el0", PMEVTYPER9_EL0},
    449   {"pmevtyper10_el0", PMEVTYPER10_EL0},
    450   {"pmevtyper11_el0", PMEVTYPER11_EL0},
    451   {"pmevtyper12_el0", PMEVTYPER12_EL0},
    452   {"pmevtyper13_el0", PMEVTYPER13_EL0},
    453   {"pmevtyper14_el0", PMEVTYPER14_EL0},
    454   {"pmevtyper15_el0", PMEVTYPER15_EL0},
    455   {"pmevtyper16_el0", PMEVTYPER16_EL0},
    456   {"pmevtyper17_el0", PMEVTYPER17_EL0},
    457   {"pmevtyper18_el0", PMEVTYPER18_EL0},
    458   {"pmevtyper19_el0", PMEVTYPER19_EL0},
    459   {"pmevtyper20_el0", PMEVTYPER20_EL0},
    460   {"pmevtyper21_el0", PMEVTYPER21_EL0},
    461   {"pmevtyper22_el0", PMEVTYPER22_EL0},
    462   {"pmevtyper23_el0", PMEVTYPER23_EL0},
    463   {"pmevtyper24_el0", PMEVTYPER24_EL0},
    464   {"pmevtyper25_el0", PMEVTYPER25_EL0},
    465   {"pmevtyper26_el0", PMEVTYPER26_EL0},
    466   {"pmevtyper27_el0", PMEVTYPER27_EL0},
    467   {"pmevtyper28_el0", PMEVTYPER28_EL0},
    468   {"pmevtyper29_el0", PMEVTYPER29_EL0},
    469   {"pmevtyper30_el0", PMEVTYPER30_EL0},
    470 };
    471 
    472 uint32_t
    473 A64SysReg::SysRegMapper::fromString(StringRef Name, bool &Valid) const {
    474   // First search the registers shared by all
    475   std::string NameLower = Name.lower();
    476   for (unsigned i = 0; i < array_lengthof(SysRegPairs); ++i) {
    477     if (SysRegPairs[i].Name == NameLower) {
    478       Valid = true;
    479       return SysRegPairs[i].Value;
    480     }
    481   }
    482 
    483   // Now try the instruction-specific registers (either read-only or
    484   // write-only).
    485   for (unsigned i = 0; i < NumInstPairs; ++i) {
    486     if (InstPairs[i].Name == NameLower) {
    487       Valid = true;
    488       return InstPairs[i].Value;
    489     }
    490   }
    491 
    492   // Try to parse an S<op0>_<op1>_<Cn>_<Cm>_<op2> register name, where the bits
    493   // are: 11 xxx 1x11 xxxx xxx
    494   Regex GenericRegPattern("^s3_([0-7])_c(1[15])_c([0-9]|1[0-5])_([0-7])$");
    495 
    496   SmallVector<StringRef, 4> Ops;
    497   if (!GenericRegPattern.match(NameLower, &Ops)) {
    498     Valid = false;
    499     return -1;
    500   }
    501 
    502   uint32_t Op0 = 3, Op1 = 0, CRn = 0, CRm = 0, Op2 = 0;
    503   uint32_t Bits;
    504   Ops[1].getAsInteger(10, Op1);
    505   Ops[2].getAsInteger(10, CRn);
    506   Ops[3].getAsInteger(10, CRm);
    507   Ops[4].getAsInteger(10, Op2);
    508   Bits = (Op0 << 14) | (Op1 << 11) | (CRn << 7) | (CRm << 3) | Op2;
    509 
    510   Valid = true;
    511   return Bits;
    512 }
    513 
    514 std::string
    515 A64SysReg::SysRegMapper::toString(uint32_t Bits, bool &Valid) const {
    516   for (unsigned i = 0; i < array_lengthof(SysRegPairs); ++i) {
    517     if (SysRegPairs[i].Value == Bits) {
    518       Valid = true;
    519       return SysRegPairs[i].Name;
    520     }
    521   }
    522 
    523   for (unsigned i = 0; i < NumInstPairs; ++i) {
    524     if (InstPairs[i].Value == Bits) {
    525       Valid = true;
    526       return InstPairs[i].Name;
    527     }
    528   }
    529 
    530   uint32_t Op0 = (Bits >> 14) & 0x3;
    531   uint32_t Op1 = (Bits >> 11) & 0x7;
    532   uint32_t CRn = (Bits >> 7) & 0xf;
    533   uint32_t CRm = (Bits >> 3) & 0xf;
    534   uint32_t Op2 = Bits & 0x7;
    535 
    536   // Only combinations matching: 11 xxx 1x11 xxxx xxx are valid for a generic
    537   // name.
    538   if (Op0 != 3 || (CRn != 11 && CRn != 15)) {
    539       Valid = false;
    540       return "";
    541   }
    542 
    543   assert(Op0 == 3 && (CRn == 11 || CRn == 15) && "Invalid generic sysreg");
    544 
    545   Valid = true;
    546   return "s3_" + utostr(Op1) + "_c" + utostr(CRn)
    547                + "_c" + utostr(CRm) + "_" + utostr(Op2);
    548 }
    549 
    550 const NamedImmMapper::Mapping A64TLBI::TLBIMapper::TLBIPairs[] = {
    551   {"ipas2e1is", IPAS2E1IS},
    552   {"ipas2le1is", IPAS2LE1IS},
    553   {"vmalle1is", VMALLE1IS},
    554   {"alle2is", ALLE2IS},
    555   {"alle3is", ALLE3IS},
    556   {"vae1is", VAE1IS},
    557   {"vae2is", VAE2IS},
    558   {"vae3is", VAE3IS},
    559   {"aside1is", ASIDE1IS},
    560   {"vaae1is", VAAE1IS},
    561   {"alle1is", ALLE1IS},
    562   {"vale1is", VALE1IS},
    563   {"vale2is", VALE2IS},
    564   {"vale3is", VALE3IS},
    565   {"vmalls12e1is", VMALLS12E1IS},
    566   {"vaale1is", VAALE1IS},
    567   {"ipas2e1", IPAS2E1},
    568   {"ipas2le1", IPAS2LE1},
    569   {"vmalle1", VMALLE1},
    570   {"alle2", ALLE2},
    571   {"alle3", ALLE3},
    572   {"vae1", VAE1},
    573   {"vae2", VAE2},
    574   {"vae3", VAE3},
    575   {"aside1", ASIDE1},
    576   {"vaae1", VAAE1},
    577   {"alle1", ALLE1},
    578   {"vale1", VALE1},
    579   {"vale2", VALE2},
    580   {"vale3", VALE3},
    581   {"vmalls12e1", VMALLS12E1},
    582   {"vaale1", VAALE1}
    583 };
    584 
    585 A64TLBI::TLBIMapper::TLBIMapper()
    586   : NamedImmMapper(TLBIPairs, 0) {}
    587 
    588 bool A64Imms::isFPImm(const APFloat &Val, uint32_t &Imm8Bits) {
    589   const fltSemantics &Sem = Val.getSemantics();
    590   unsigned FracBits = APFloat::semanticsPrecision(Sem) - 1;
    591 
    592   uint32_t ExpMask;
    593   switch (FracBits) {
    594   case 10: // IEEE half-precision
    595     ExpMask = 0x1f;
    596     break;
    597   case 23: // IEEE single-precision
    598     ExpMask = 0xff;
    599     break;
    600   case 52: // IEEE double-precision
    601     ExpMask = 0x7ff;
    602     break;
    603   case 112: // IEEE quad-precision
    604     // No immediates are valid for double precision.
    605     return false;
    606   default:
    607     llvm_unreachable("Only half, single and double precision supported");
    608   }
    609 
    610   uint32_t ExpStart = FracBits;
    611   uint64_t FracMask = (1ULL << FracBits) - 1;
    612 
    613   uint32_t Sign = Val.isNegative();
    614 
    615   uint64_t Bits= Val.bitcastToAPInt().getLimitedValue();
    616   uint64_t Fraction = Bits & FracMask;
    617   int32_t Exponent = ((Bits >> ExpStart) & ExpMask);
    618   Exponent -= ExpMask >> 1;
    619 
    620   // S[d] = imm8<7>:NOT(imm8<6>):Replicate(imm8<6>, 5):imm8<5:0>:Zeros(19)
    621   // D[d] = imm8<7>:NOT(imm8<6>):Replicate(imm8<6>, 8):imm8<5:0>:Zeros(48)
    622   // This translates to: only 4 bits of fraction; -3 <= exp <= 4.
    623   uint64_t A64FracStart = FracBits - 4;
    624   uint64_t A64FracMask = 0xf;
    625 
    626   // Are there too many fraction bits?
    627   if (Fraction & ~(A64FracMask << A64FracStart))
    628     return false;
    629 
    630   if (Exponent < -3 || Exponent > 4)
    631     return false;
    632 
    633   uint32_t PackedFraction = (Fraction >> A64FracStart) & A64FracMask;
    634   uint32_t PackedExp = (Exponent + 7) & 0x7;
    635 
    636   Imm8Bits = (Sign << 7) | (PackedExp << 4) | PackedFraction;
    637   return true;
    638 }
    639 
    640 // Encoding of the immediate for logical (immediate) instructions:
    641 //
    642 // | N | imms   | immr   | size | R            | S            |
    643 // |---+--------+--------+------+--------------+--------------|
    644 // | 1 | ssssss | rrrrrr |   64 | UInt(rrrrrr) | UInt(ssssss) |
    645 // | 0 | 0sssss | xrrrrr |   32 | UInt(rrrrr)  | UInt(sssss)  |
    646 // | 0 | 10ssss | xxrrrr |   16 | UInt(rrrr)   | UInt(ssss)   |
    647 // | 0 | 110sss | xxxrrr |    8 | UInt(rrr)    | UInt(sss)    |
    648 // | 0 | 1110ss | xxxxrr |    4 | UInt(rr)     | UInt(ss)     |
    649 // | 0 | 11110s | xxxxxr |    2 | UInt(r)      | UInt(s)      |
    650 // | 0 | 11111x | -      |      | UNALLOCATED  |              |
    651 //
    652 // Columns 'R', 'S' and 'size' specify a "bitmask immediate" of size bits in
    653 // which the lower S+1 bits are ones and the remaining bits are zero, then
    654 // rotated right by R bits, which is then replicated across the datapath.
    655 //
    656 // + Values of 'N', 'imms' and 'immr' which do not match the above table are
    657 //   RESERVED.
    658 // + If all 's' bits in the imms field are set then the instruction is
    659 //   RESERVED.
    660 // + The 'x' bits in the 'immr' field are IGNORED.
    661 
    662 bool A64Imms::isLogicalImm(unsigned RegWidth, uint64_t Imm, uint32_t &Bits) {
    663   int RepeatWidth;
    664   int Rotation = 0;
    665   int Num1s = 0;
    666 
    667   // Because there are S+1 ones in the replicated mask, an immediate of all
    668   // zeros is not allowed. Filtering it here is probably more efficient.
    669   if (Imm == 0) return false;
    670 
    671   for (RepeatWidth = RegWidth; RepeatWidth > 1; RepeatWidth /= 2) {
    672     uint64_t RepeatMask = RepeatWidth == 64 ? -1 : (1ULL << RepeatWidth) - 1;
    673     uint64_t ReplicatedMask = Imm & RepeatMask;
    674 
    675     if (ReplicatedMask == 0) continue;
    676 
    677     // First we have to make sure the mask is actually repeated in each slot for
    678     // this width-specifier.
    679     bool IsReplicatedMask = true;
    680     for (unsigned i = RepeatWidth; i < RegWidth; i += RepeatWidth) {
    681       if (((Imm >> i) & RepeatMask) != ReplicatedMask) {
    682         IsReplicatedMask = false;
    683         break;
    684       }
    685     }
    686     if (!IsReplicatedMask) continue;
    687 
    688     // Now we have to work out the amount of rotation needed. The first part of
    689     // this calculation is actually independent of RepeatWidth, but the complex
    690     // case will depend on it.
    691     Rotation = CountTrailingZeros_64(Imm);
    692     if (Rotation == 0) {
    693       // There were no leading zeros, which means it's either in place or there
    694       // are 1s at each end (e.g. 0x8003 needs rotating).
    695       Rotation = RegWidth == 64 ? CountLeadingOnes_64(Imm)
    696                                 : CountLeadingOnes_32(Imm);
    697       Rotation = RepeatWidth - Rotation;
    698     }
    699 
    700     uint64_t ReplicatedOnes = (ReplicatedMask >> Rotation)
    701       | ((ReplicatedMask << (RepeatWidth - Rotation)) & RepeatMask);
    702     // Of course, they may not actually be ones, so we have to check that:
    703     if (!isMask_64(ReplicatedOnes))
    704       continue;
    705 
    706     Num1s = CountTrailingOnes_64(ReplicatedOnes);
    707 
    708     // We know we've got an almost valid encoding (certainly, if this is invalid
    709     // no other parameters would work).
    710     break;
    711   }
    712 
    713   // The encodings which would produce all 1s are RESERVED.
    714   if (RepeatWidth == 1 || Num1s == RepeatWidth) return false;
    715 
    716   uint32_t N = RepeatWidth == 64;
    717   uint32_t ImmR = RepeatWidth - Rotation;
    718   uint32_t ImmS = Num1s - 1;
    719 
    720   switch (RepeatWidth) {
    721   default: break; // No action required for other valid rotations.
    722   case 16: ImmS |= 0x20; break; // 10ssss
    723   case 8: ImmS |= 0x30; break;  // 110sss
    724   case 4: ImmS |= 0x38; break;  // 1110ss
    725   case 2: ImmS |= 0x3c; break;  // 11110s
    726   }
    727 
    728   Bits = ImmS | (ImmR << 6) | (N << 12);
    729 
    730   return true;
    731 }
    732 
    733 
    734 bool A64Imms::isLogicalImmBits(unsigned RegWidth, uint32_t Bits,
    735                                uint64_t &Imm) {
    736   uint32_t N = Bits >> 12;
    737   uint32_t ImmR = (Bits >> 6) & 0x3f;
    738   uint32_t ImmS = Bits & 0x3f;
    739 
    740   // N=1 encodes a 64-bit replication and is invalid for the 32-bit
    741   // instructions.
    742   if (RegWidth == 32 && N != 0) return false;
    743 
    744   int Width = 0;
    745   if (N == 1)
    746     Width = 64;
    747   else if ((ImmS & 0x20) == 0)
    748     Width = 32;
    749   else if ((ImmS & 0x10) == 0)
    750     Width = 16;
    751   else if ((ImmS & 0x08) == 0)
    752     Width = 8;
    753   else if ((ImmS & 0x04) == 0)
    754     Width = 4;
    755   else if ((ImmS & 0x02) == 0)
    756     Width = 2;
    757   else {
    758     // ImmS  is 0b11111x: UNALLOCATED
    759     return false;
    760   }
    761 
    762   int Num1s = (ImmS & (Width - 1)) + 1;
    763 
    764   // All encodings which would map to -1 (signed) are RESERVED.
    765   if (Num1s == Width) return false;
    766 
    767   int Rotation = (ImmR & (Width - 1));
    768   uint64_t Mask = (1ULL << Num1s) - 1;
    769   uint64_t WidthMask = Width == 64 ? -1 : (1ULL << Width) - 1;
    770   Mask = (Mask >> Rotation)
    771     | ((Mask << (Width - Rotation)) & WidthMask);
    772 
    773   Imm = 0;
    774   for (unsigned i = 0; i < RegWidth / Width; ++i) {
    775     Imm |= Mask;
    776     Mask <<= Width;
    777   }
    778 
    779   return true;
    780 }
    781 
    782 bool A64Imms::isMOVZImm(int RegWidth, uint64_t Value, int &UImm16, int &Shift) {
    783   // If high bits are set then a 32-bit MOVZ can't possibly work.
    784   if (RegWidth == 32 && (Value & ~0xffffffffULL))
    785     return false;
    786 
    787   for (int i = 0; i < RegWidth; i += 16) {
    788     // If the value is 0 when we mask out all the bits that could be set with
    789     // the current LSL value then it's representable.
    790     if ((Value & ~(0xffffULL << i)) == 0) {
    791       Shift = i / 16;
    792       UImm16 = (Value >> i) & 0xffff;
    793       return true;
    794     }
    795   }
    796   return false;
    797 }
    798 
    799 bool A64Imms::isMOVNImm(int RegWidth, uint64_t Value, int &UImm16, int &Shift) {
    800   // MOVN is defined to set its register to NOT(LSL(imm16, shift)).
    801 
    802   // We have to be a little careful about a 32-bit register: 0xffff_1234 *is*
    803   // representable, but ~0xffff_1234 == 0xffff_ffff_0000_edcb which is not
    804   // a valid input for isMOVZImm.
    805   if (RegWidth == 32 && (Value & ~0xffffffffULL))
    806     return false;
    807 
    808   uint64_t MOVZEquivalent = RegWidth == 32 ? ~Value & 0xffffffff : ~Value;
    809 
    810   return isMOVZImm(RegWidth, MOVZEquivalent, UImm16, Shift);
    811 }
    812 
    813 bool A64Imms::isOnlyMOVNImm(int RegWidth, uint64_t Value,
    814                             int &UImm16, int &Shift) {
    815   if (isMOVZImm(RegWidth, Value, UImm16, Shift))
    816     return false;
    817 
    818   return isMOVNImm(RegWidth, Value, UImm16, Shift);
    819 }
    820