Home | History | Annotate | Download | only in target-i386
      1 /*
      2  * QEMU KVM support
      3  *
      4  * Copyright (C) 2006-2008 Qumranet Technologies
      5  * Copyright IBM, Corp. 2008
      6  *
      7  * Authors:
      8  *  Anthony Liguori   <aliguori (at) us.ibm.com>
      9  *
     10  * This work is licensed under the terms of the GNU GPL, version 2 or later.
     11  * See the COPYING file in the top-level directory.
     12  *
     13  */
     14 
     15 #include <sys/types.h>
     16 #include <sys/ioctl.h>
     17 #include <sys/mman.h>
     18 
     19 #undef __user
     20 #define __xuser  /* nothing */
     21 #include <linux/kvm.h>
     22 
     23 #include "qemu-common.h"
     24 #include "sysemu.h"
     25 #include "kvm.h"
     26 #include "cpu.h"
     27 #include "gdbstub.h"
     28 
     29 #ifdef CONFIG_KVM_GS_RESTORE
     30 #include "kvm-gs-restore.h"
     31 #endif
     32 
     33 //#define DEBUG_KVM
     34 
     35 #ifdef DEBUG_KVM
     36 #define dprintf(fmt, ...) \
     37     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
     38 #else
     39 #define dprintf(fmt, ...) \
     40     do { } while (0)
     41 #endif
     42 
     43 #ifdef KVM_CAP_EXT_CPUID
     44 
     45 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
     46 {
     47     struct kvm_cpuid2 *cpuid;
     48     int r, size;
     49 
     50     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
     51     cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
     52     cpuid->nent = max;
     53     r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
     54     if (r == 0 && cpuid->nent >= max) {
     55         r = -E2BIG;
     56     }
     57     if (r < 0) {
     58         if (r == -E2BIG) {
     59             qemu_free(cpuid);
     60             return NULL;
     61         } else {
     62             fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
     63                     strerror(-r));
     64             exit(1);
     65         }
     66     }
     67     return cpuid;
     68 }
     69 
     70 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
     71 {
     72     struct kvm_cpuid2 *cpuid;
     73     int i, max;
     74     uint32_t ret = 0;
     75     uint32_t cpuid_1_edx;
     76 
     77     if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
     78         return -1U;
     79     }
     80 
     81     max = 1;
     82     while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
     83         max *= 2;
     84     }
     85 
     86     for (i = 0; i < cpuid->nent; ++i) {
     87         if (cpuid->entries[i].function == function) {
     88             switch (reg) {
     89             case R_EAX:
     90                 ret = cpuid->entries[i].eax;
     91                 break;
     92             case R_EBX:
     93                 ret = cpuid->entries[i].ebx;
     94                 break;
     95             case R_ECX:
     96                 ret = cpuid->entries[i].ecx;
     97                 break;
     98             case R_EDX:
     99                 ret = cpuid->entries[i].edx;
    100                 if (function == 0x80000001) {
    101                     /* On Intel, kvm returns cpuid according to the Intel spec,
    102                      * so add missing bits according to the AMD spec:
    103                      */
    104                     cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX);
    105                     ret |= cpuid_1_edx & 0xdfeff7ff;
    106                 }
    107                 break;
    108             }
    109         }
    110     }
    111 
    112     qemu_free(cpuid);
    113 
    114     return ret;
    115 }
    116 
    117 #else
    118 
    119 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
    120 {
    121     return -1U;
    122 }
    123 
    124 #endif
    125 
    126 #ifndef KVM_MP_STATE_RUNNABLE
    127 #define KVM_MP_STATE_RUNNABLE 0
    128 #endif
    129 
    130 int kvm_arch_init_vcpu(CPUState *env)
    131 {
    132     struct {
    133         struct kvm_cpuid2 cpuid;
    134         struct kvm_cpuid_entry2 entries[100];
    135     } __attribute__((packed)) cpuid_data;
    136     uint32_t limit, i, j, cpuid_i;
    137     uint32_t unused;
    138 
    139     env->mp_state = KVM_MP_STATE_RUNNABLE;
    140 
    141     cpuid_i = 0;
    142 
    143     cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
    144 
    145     for (i = 0; i <= limit; i++) {
    146         struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
    147 
    148         switch (i) {
    149         case 2: {
    150             /* Keep reading function 2 till all the input is received */
    151             int times;
    152 
    153             c->function = i;
    154             c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
    155                        KVM_CPUID_FLAG_STATE_READ_NEXT;
    156             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
    157             times = c->eax & 0xff;
    158 
    159             for (j = 1; j < times; ++j) {
    160                 c = &cpuid_data.entries[cpuid_i++];
    161                 c->function = i;
    162                 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
    163                 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
    164             }
    165             break;
    166         }
    167         case 4:
    168         case 0xb:
    169         case 0xd:
    170             for (j = 0; ; j++) {
    171                 c->function = i;
    172                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
    173                 c->index = j;
    174                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
    175 
    176                 if (i == 4 && c->eax == 0)
    177                     break;
    178                 if (i == 0xb && !(c->ecx & 0xff00))
    179                     break;
    180                 if (i == 0xd && c->eax == 0)
    181                     break;
    182 
    183                 c = &cpuid_data.entries[cpuid_i++];
    184             }
    185             break;
    186         default:
    187             c->function = i;
    188             c->flags = 0;
    189             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
    190             break;
    191         }
    192     }
    193     cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
    194 
    195     for (i = 0x80000000; i <= limit; i++) {
    196         struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
    197 
    198         c->function = i;
    199         c->flags = 0;
    200         cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
    201     }
    202 
    203     cpuid_data.cpuid.nent = cpuid_i;
    204 
    205     return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
    206 }
    207 
    208 static int kvm_has_msr_star(CPUState *env)
    209 {
    210     static int has_msr_star;
    211     int ret;
    212 
    213     /* first time */
    214     if (has_msr_star == 0) {
    215         struct kvm_msr_list msr_list, *kvm_msr_list;
    216 
    217         has_msr_star = -1;
    218 
    219         /* Obtain MSR list from KVM.  These are the MSRs that we must
    220          * save/restore */
    221         msr_list.nmsrs = 0;
    222         ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
    223         if (ret < 0)
    224             return 0;
    225 
    226         kvm_msr_list = qemu_mallocz(sizeof(msr_list) +
    227                                     msr_list.nmsrs * sizeof(msr_list.indices[0]));
    228 
    229         kvm_msr_list->nmsrs = msr_list.nmsrs;
    230         ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
    231         if (ret >= 0) {
    232             int i;
    233 
    234             for (i = 0; i < kvm_msr_list->nmsrs; i++) {
    235                 if (kvm_msr_list->indices[i] == MSR_STAR) {
    236                     has_msr_star = 1;
    237                     break;
    238                 }
    239             }
    240         }
    241 
    242         free(kvm_msr_list);
    243     }
    244 
    245     if (has_msr_star == 1)
    246         return 1;
    247     return 0;
    248 }
    249 
    250 int kvm_arch_init(KVMState *s, int smp_cpus)
    251 {
    252     int ret;
    253 
    254     /* create vm86 tss.  KVM uses vm86 mode to emulate 16-bit code
    255      * directly.  In order to use vm86 mode, a TSS is needed.  Since this
    256      * must be part of guest physical memory, we need to allocate it.  Older
    257      * versions of KVM just assumed that it would be at the end of physical
    258      * memory but that doesn't work with more than 4GB of memory.  We simply
    259      * refuse to work with those older versions of KVM. */
    260     ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
    261     if (ret <= 0) {
    262         fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
    263         return ret;
    264     }
    265 
    266     /* this address is 3 pages before the bios, and the bios should present
    267      * as unavaible memory.  FIXME, need to ensure the e820 map deals with
    268      * this?
    269      */
    270     return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
    271 }
    272 
    273 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
    274 {
    275     lhs->selector = rhs->selector;
    276     lhs->base = rhs->base;
    277     lhs->limit = rhs->limit;
    278     lhs->type = 3;
    279     lhs->present = 1;
    280     lhs->dpl = 3;
    281     lhs->db = 0;
    282     lhs->s = 1;
    283     lhs->l = 0;
    284     lhs->g = 0;
    285     lhs->avl = 0;
    286     lhs->unusable = 0;
    287 }
    288 
    289 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
    290 {
    291     unsigned flags = rhs->flags;
    292     lhs->selector = rhs->selector;
    293     lhs->base = rhs->base;
    294     lhs->limit = rhs->limit;
    295     lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
    296     lhs->present = (flags & DESC_P_MASK) != 0;
    297     lhs->dpl = rhs->selector & 3;
    298     lhs->db = (flags >> DESC_B_SHIFT) & 1;
    299     lhs->s = (flags & DESC_S_MASK) != 0;
    300     lhs->l = (flags >> DESC_L_SHIFT) & 1;
    301     lhs->g = (flags & DESC_G_MASK) != 0;
    302     lhs->avl = (flags & DESC_AVL_MASK) != 0;
    303     lhs->unusable = 0;
    304 }
    305 
    306 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
    307 {
    308     lhs->selector = rhs->selector;
    309     lhs->base = rhs->base;
    310     lhs->limit = rhs->limit;
    311     lhs->flags =
    312 	(rhs->type << DESC_TYPE_SHIFT)
    313 	| (rhs->present * DESC_P_MASK)
    314 	| (rhs->dpl << DESC_DPL_SHIFT)
    315 	| (rhs->db << DESC_B_SHIFT)
    316 	| (rhs->s * DESC_S_MASK)
    317 	| (rhs->l << DESC_L_SHIFT)
    318 	| (rhs->g * DESC_G_MASK)
    319 	| (rhs->avl * DESC_AVL_MASK);
    320 }
    321 
    322 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
    323 {
    324     if (set)
    325         *kvm_reg = *qemu_reg;
    326     else
    327         *qemu_reg = *kvm_reg;
    328 }
    329 
    330 static int kvm_getput_regs(CPUState *env, int set)
    331 {
    332     struct kvm_regs regs;
    333     int ret = 0;
    334 
    335     if (!set) {
    336         ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
    337         if (ret < 0)
    338             return ret;
    339     }
    340 
    341     kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
    342     kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
    343     kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
    344     kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
    345     kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
    346     kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
    347     kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
    348     kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
    349 #ifdef TARGET_X86_64
    350     kvm_getput_reg(&regs.r8, &env->regs[8], set);
    351     kvm_getput_reg(&regs.r9, &env->regs[9], set);
    352     kvm_getput_reg(&regs.r10, &env->regs[10], set);
    353     kvm_getput_reg(&regs.r11, &env->regs[11], set);
    354     kvm_getput_reg(&regs.r12, &env->regs[12], set);
    355     kvm_getput_reg(&regs.r13, &env->regs[13], set);
    356     kvm_getput_reg(&regs.r14, &env->regs[14], set);
    357     kvm_getput_reg(&regs.r15, &env->regs[15], set);
    358 #endif
    359 
    360     kvm_getput_reg(&regs.rflags, &env->eflags, set);
    361     kvm_getput_reg(&regs.rip, &env->eip, set);
    362 
    363     if (set)
    364         ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
    365 
    366     return ret;
    367 }
    368 
    369 static int kvm_put_fpu(CPUState *env)
    370 {
    371     struct kvm_fpu fpu;
    372     int i;
    373 
    374     memset(&fpu, 0, sizeof fpu);
    375     fpu.fsw = env->fpus & ~(7 << 11);
    376     fpu.fsw |= (env->fpstt & 7) << 11;
    377     fpu.fcw = env->fpuc;
    378     for (i = 0; i < 8; ++i)
    379 	fpu.ftwx |= (!env->fptags[i]) << i;
    380     memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
    381     memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
    382     fpu.mxcsr = env->mxcsr;
    383 
    384     return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
    385 }
    386 
    387 static int kvm_put_sregs(CPUState *env)
    388 {
    389     struct kvm_sregs sregs;
    390 
    391     memcpy(sregs.interrupt_bitmap,
    392            env->interrupt_bitmap,
    393            sizeof(sregs.interrupt_bitmap));
    394 
    395     if ((env->eflags & VM_MASK)) {
    396 	    set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
    397 	    set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
    398 	    set_v8086_seg(&sregs.es, &env->segs[R_ES]);
    399 	    set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
    400 	    set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
    401 	    set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
    402     } else {
    403 	    set_seg(&sregs.cs, &env->segs[R_CS]);
    404 	    set_seg(&sregs.ds, &env->segs[R_DS]);
    405 	    set_seg(&sregs.es, &env->segs[R_ES]);
    406 	    set_seg(&sregs.fs, &env->segs[R_FS]);
    407 	    set_seg(&sregs.gs, &env->segs[R_GS]);
    408 	    set_seg(&sregs.ss, &env->segs[R_SS]);
    409 
    410 	    if (env->cr[0] & CR0_PE_MASK) {
    411 		/* force ss cpl to cs cpl */
    412 		sregs.ss.selector = (sregs.ss.selector & ~3) |
    413 			(sregs.cs.selector & 3);
    414 		sregs.ss.dpl = sregs.ss.selector & 3;
    415 	    }
    416     }
    417 
    418     set_seg(&sregs.tr, &env->tr);
    419     set_seg(&sregs.ldt, &env->ldt);
    420 
    421     sregs.idt.limit = env->idt.limit;
    422     sregs.idt.base = env->idt.base;
    423     sregs.gdt.limit = env->gdt.limit;
    424     sregs.gdt.base = env->gdt.base;
    425 
    426     sregs.cr0 = env->cr[0];
    427     sregs.cr2 = env->cr[2];
    428     sregs.cr3 = env->cr[3];
    429     sregs.cr4 = env->cr[4];
    430 
    431     sregs.cr8 = cpu_get_apic_tpr(env);
    432     sregs.apic_base = cpu_get_apic_base(env);
    433 
    434     sregs.efer = env->efer;
    435 
    436     return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
    437 }
    438 
    439 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
    440                               uint32_t index, uint64_t value)
    441 {
    442     entry->index = index;
    443     entry->data = value;
    444 }
    445 
    446 static int kvm_put_msrs(CPUState *env)
    447 {
    448     struct {
    449         struct kvm_msrs info;
    450         struct kvm_msr_entry entries[100];
    451     } msr_data;
    452     struct kvm_msr_entry *msrs = msr_data.entries;
    453     int n = 0;
    454 
    455     kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
    456     kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
    457     kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
    458     if (kvm_has_msr_star(env))
    459 	kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
    460     kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
    461 #ifdef TARGET_X86_64
    462     /* FIXME if lm capable */
    463     kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
    464     kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
    465     kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
    466     kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
    467 #endif
    468     msr_data.info.nmsrs = n;
    469 
    470     return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
    471 
    472 }
    473 
    474 
    475 static int kvm_get_fpu(CPUState *env)
    476 {
    477     struct kvm_fpu fpu;
    478     int i, ret;
    479 
    480     ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
    481     if (ret < 0)
    482         return ret;
    483 
    484     env->fpstt = (fpu.fsw >> 11) & 7;
    485     env->fpus = fpu.fsw;
    486     env->fpuc = fpu.fcw;
    487     for (i = 0; i < 8; ++i)
    488 	env->fptags[i] = !((fpu.ftwx >> i) & 1);
    489     memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
    490     memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
    491     env->mxcsr = fpu.mxcsr;
    492 
    493     return 0;
    494 }
    495 
    496 int kvm_get_sregs(CPUState *env)
    497 {
    498     struct kvm_sregs sregs;
    499     uint32_t hflags;
    500     int ret;
    501 
    502     ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
    503     if (ret < 0)
    504         return ret;
    505 
    506     memcpy(env->interrupt_bitmap,
    507            sregs.interrupt_bitmap,
    508            sizeof(sregs.interrupt_bitmap));
    509 
    510     get_seg(&env->segs[R_CS], &sregs.cs);
    511     get_seg(&env->segs[R_DS], &sregs.ds);
    512     get_seg(&env->segs[R_ES], &sregs.es);
    513     get_seg(&env->segs[R_FS], &sregs.fs);
    514     get_seg(&env->segs[R_GS], &sregs.gs);
    515     get_seg(&env->segs[R_SS], &sregs.ss);
    516 
    517     get_seg(&env->tr, &sregs.tr);
    518     get_seg(&env->ldt, &sregs.ldt);
    519 
    520     env->idt.limit = sregs.idt.limit;
    521     env->idt.base = sregs.idt.base;
    522     env->gdt.limit = sregs.gdt.limit;
    523     env->gdt.base = sregs.gdt.base;
    524 
    525     env->cr[0] = sregs.cr0;
    526     env->cr[2] = sregs.cr2;
    527     env->cr[3] = sregs.cr3;
    528     env->cr[4] = sregs.cr4;
    529 
    530     cpu_set_apic_base(env, sregs.apic_base);
    531 
    532     env->efer = sregs.efer;
    533     //cpu_set_apic_tpr(env, sregs.cr8);
    534 
    535 #define HFLAG_COPY_MASK ~( \
    536 			HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
    537 			HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
    538 			HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
    539 			HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
    540 
    541 
    542 
    543     hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
    544     hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
    545     hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
    546 	    (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
    547     hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
    548     hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
    549 	    (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
    550 
    551     if (env->efer & MSR_EFER_LMA) {
    552         hflags |= HF_LMA_MASK;
    553     }
    554 
    555     if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
    556         hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
    557     } else {
    558         hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
    559 		(DESC_B_SHIFT - HF_CS32_SHIFT);
    560         hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
    561 		(DESC_B_SHIFT - HF_SS32_SHIFT);
    562         if (!(env->cr[0] & CR0_PE_MASK) ||
    563                    (env->eflags & VM_MASK) ||
    564                    !(hflags & HF_CS32_MASK)) {
    565                 hflags |= HF_ADDSEG_MASK;
    566             } else {
    567                 hflags |= ((env->segs[R_DS].base |
    568                                 env->segs[R_ES].base |
    569                                 env->segs[R_SS].base) != 0) <<
    570                     HF_ADDSEG_SHIFT;
    571             }
    572     }
    573     env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
    574 
    575     return 0;
    576 }
    577 
    578 static int kvm_get_msrs(CPUState *env)
    579 {
    580     struct {
    581         struct kvm_msrs info;
    582         struct kvm_msr_entry entries[100];
    583     } msr_data;
    584     struct kvm_msr_entry *msrs = msr_data.entries;
    585     int ret, i, n;
    586 
    587     n = 0;
    588     msrs[n++].index = MSR_IA32_SYSENTER_CS;
    589     msrs[n++].index = MSR_IA32_SYSENTER_ESP;
    590     msrs[n++].index = MSR_IA32_SYSENTER_EIP;
    591     if (kvm_has_msr_star(env))
    592 	msrs[n++].index = MSR_STAR;
    593     msrs[n++].index = MSR_IA32_TSC;
    594 #ifdef TARGET_X86_64
    595     /* FIXME lm_capable_kernel */
    596     msrs[n++].index = MSR_CSTAR;
    597     msrs[n++].index = MSR_KERNELGSBASE;
    598     msrs[n++].index = MSR_FMASK;
    599     msrs[n++].index = MSR_LSTAR;
    600 #endif
    601     msr_data.info.nmsrs = n;
    602     ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
    603     if (ret < 0)
    604         return ret;
    605 
    606     for (i = 0; i < ret; i++) {
    607         switch (msrs[i].index) {
    608         case MSR_IA32_SYSENTER_CS:
    609             env->sysenter_cs = msrs[i].data;
    610             break;
    611         case MSR_IA32_SYSENTER_ESP:
    612             env->sysenter_esp = msrs[i].data;
    613             break;
    614         case MSR_IA32_SYSENTER_EIP:
    615             env->sysenter_eip = msrs[i].data;
    616             break;
    617         case MSR_STAR:
    618             env->star = msrs[i].data;
    619             break;
    620 #ifdef TARGET_X86_64
    621         case MSR_CSTAR:
    622             env->cstar = msrs[i].data;
    623             break;
    624         case MSR_KERNELGSBASE:
    625             env->kernelgsbase = msrs[i].data;
    626             break;
    627         case MSR_FMASK:
    628             env->fmask = msrs[i].data;
    629             break;
    630         case MSR_LSTAR:
    631             env->lstar = msrs[i].data;
    632             break;
    633 #endif
    634         case MSR_IA32_TSC:
    635             env->tsc = msrs[i].data;
    636             break;
    637         }
    638     }
    639 
    640     return 0;
    641 }
    642 
    643 int kvm_arch_put_registers(CPUState *env)
    644 {
    645     int ret;
    646 
    647     ret = kvm_getput_regs(env, 1);
    648     if (ret < 0)
    649         return ret;
    650 
    651     ret = kvm_put_fpu(env);
    652     if (ret < 0)
    653         return ret;
    654 
    655     ret = kvm_put_sregs(env);
    656     if (ret < 0)
    657         return ret;
    658 
    659     ret = kvm_put_msrs(env);
    660     if (ret < 0)
    661         return ret;
    662 
    663     ret = kvm_put_mp_state(env);
    664     if (ret < 0)
    665         return ret;
    666 
    667     ret = kvm_get_mp_state(env);
    668     if (ret < 0)
    669         return ret;
    670 
    671     return 0;
    672 }
    673 
    674 int kvm_arch_get_registers(CPUState *env)
    675 {
    676     int ret;
    677 
    678     ret = kvm_getput_regs(env, 0);
    679     if (ret < 0)
    680         return ret;
    681 
    682     ret = kvm_get_fpu(env);
    683     if (ret < 0)
    684         return ret;
    685 
    686     ret = kvm_get_sregs(env);
    687     if (ret < 0)
    688         return ret;
    689 
    690     ret = kvm_get_msrs(env);
    691     if (ret < 0)
    692         return ret;
    693 
    694     return 0;
    695 }
    696 
    697 int kvm_arch_vcpu_run(CPUState *env)
    698 {
    699 #ifdef CONFIG_KVM_GS_RESTORE
    700     if (gs_need_restore  != KVM_GS_RESTORE_NO)
    701         return no_gs_ioctl(env->kvm_fd, KVM_RUN, 0);
    702     else
    703 #endif
    704         return kvm_vcpu_ioctl(env, KVM_RUN, 0);
    705 }
    706 
    707 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
    708 {
    709     /* Try to inject an interrupt if the guest can accept it */
    710     if (run->ready_for_interrupt_injection &&
    711         (env->interrupt_request & CPU_INTERRUPT_HARD) &&
    712         (env->eflags & IF_MASK)) {
    713         int irq;
    714 
    715         env->interrupt_request &= ~CPU_INTERRUPT_HARD;
    716         irq = cpu_get_pic_interrupt(env);
    717         if (irq >= 0) {
    718             struct kvm_interrupt intr;
    719             intr.irq = irq;
    720             /* FIXME: errors */
    721             dprintf("injected interrupt %d\n", irq);
    722             kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
    723         }
    724     }
    725 
    726     /* If we have an interrupt but the guest is not ready to receive an
    727      * interrupt, request an interrupt window exit.  This will
    728      * cause a return to userspace as soon as the guest is ready to
    729      * receive interrupts. */
    730     if ((env->interrupt_request & CPU_INTERRUPT_HARD))
    731         run->request_interrupt_window = 1;
    732     else
    733         run->request_interrupt_window = 0;
    734 
    735     dprintf("setting tpr\n");
    736     run->cr8 = cpu_get_apic_tpr(env);
    737 
    738 #ifdef CONFIG_KVM_GS_RESTORE
    739     gs_base_pre_run();
    740 #endif
    741 
    742     return 0;
    743 }
    744 
    745 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
    746 {
    747 #ifdef CONFIG_KVM_GS_RESTORE
    748     gs_base_post_run();
    749 #endif
    750     if (run->if_flag)
    751         env->eflags |= IF_MASK;
    752     else
    753         env->eflags &= ~IF_MASK;
    754 
    755     cpu_set_apic_tpr(env, run->cr8);
    756     cpu_set_apic_base(env, run->apic_base);
    757 
    758     return 0;
    759 }
    760 
    761 static int kvm_handle_halt(CPUState *env)
    762 {
    763     if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
    764           (env->eflags & IF_MASK)) &&
    765         !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
    766         env->halted = 1;
    767         env->exception_index = EXCP_HLT;
    768         return 0;
    769     }
    770 
    771     return 1;
    772 }
    773 
    774 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
    775 {
    776     int ret = 0;
    777 
    778     switch (run->exit_reason) {
    779     case KVM_EXIT_HLT:
    780         dprintf("handle_hlt\n");
    781         ret = kvm_handle_halt(env);
    782         break;
    783     }
    784 
    785     return ret;
    786 }
    787 
    788 #ifdef KVM_CAP_SET_GUEST_DEBUG
    789 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
    790 {
    791     const static uint8_t int3 = 0xcc;
    792 
    793     if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
    794         cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
    795         return -EINVAL;
    796     return 0;
    797 }
    798 
    799 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
    800 {
    801     uint8_t int3;
    802 
    803     if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
    804         cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
    805         return -EINVAL;
    806     return 0;
    807 }
    808 
    809 static struct {
    810     target_ulong addr;
    811     int len;
    812     int type;
    813 } hw_breakpoint[4];
    814 
    815 static int nb_hw_breakpoint;
    816 
    817 static int find_hw_breakpoint(target_ulong addr, int len, int type)
    818 {
    819     int n;
    820 
    821     for (n = 0; n < nb_hw_breakpoint; n++)
    822         if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
    823             (hw_breakpoint[n].len == len || len == -1))
    824             return n;
    825     return -1;
    826 }
    827 
    828 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
    829                                   target_ulong len, int type)
    830 {
    831     switch (type) {
    832     case GDB_BREAKPOINT_HW:
    833         len = 1;
    834         break;
    835     case GDB_WATCHPOINT_WRITE:
    836     case GDB_WATCHPOINT_ACCESS:
    837         switch (len) {
    838         case 1:
    839             break;
    840         case 2:
    841         case 4:
    842         case 8:
    843             if (addr & (len - 1))
    844                 return -EINVAL;
    845             break;
    846         default:
    847             return -EINVAL;
    848         }
    849         break;
    850     default:
    851         return -ENOSYS;
    852     }
    853 
    854     if (nb_hw_breakpoint == 4)
    855         return -ENOBUFS;
    856 
    857     if (find_hw_breakpoint(addr, len, type) >= 0)
    858         return -EEXIST;
    859 
    860     hw_breakpoint[nb_hw_breakpoint].addr = addr;
    861     hw_breakpoint[nb_hw_breakpoint].len = len;
    862     hw_breakpoint[nb_hw_breakpoint].type = type;
    863     nb_hw_breakpoint++;
    864 
    865     return 0;
    866 }
    867 
    868 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
    869                                   target_ulong len, int type)
    870 {
    871     int n;
    872 
    873     n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
    874     if (n < 0)
    875         return -ENOENT;
    876 
    877     nb_hw_breakpoint--;
    878     hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
    879 
    880     return 0;
    881 }
    882 
    883 void kvm_arch_remove_all_hw_breakpoints(void)
    884 {
    885     nb_hw_breakpoint = 0;
    886 }
    887 
    888 static CPUWatchpoint hw_watchpoint;
    889 
    890 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
    891 {
    892     int handle = 0;
    893     int n;
    894 
    895     if (arch_info->exception == 1) {
    896         if (arch_info->dr6 & (1 << 14)) {
    897             if (cpu_single_env->singlestep_enabled)
    898                 handle = 1;
    899         } else {
    900             for (n = 0; n < 4; n++)
    901                 if (arch_info->dr6 & (1 << n))
    902                     switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
    903                     case 0x0:
    904                         handle = 1;
    905                         break;
    906                     case 0x1:
    907                         handle = 1;
    908                         cpu_single_env->watchpoint_hit = &hw_watchpoint;
    909                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
    910                         hw_watchpoint.flags = BP_MEM_WRITE;
    911                         break;
    912                     case 0x3:
    913                         handle = 1;
    914                         cpu_single_env->watchpoint_hit = &hw_watchpoint;
    915                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
    916                         hw_watchpoint.flags = BP_MEM_ACCESS;
    917                         break;
    918                     }
    919         }
    920     } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
    921         handle = 1;
    922 
    923     if (!handle)
    924         kvm_update_guest_debug(cpu_single_env,
    925                         (arch_info->exception == 1) ?
    926                         KVM_GUESTDBG_INJECT_DB : KVM_GUESTDBG_INJECT_BP);
    927 
    928     return handle;
    929 }
    930 
    931 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
    932 {
    933     const uint8_t type_code[] = {
    934         [GDB_BREAKPOINT_HW] = 0x0,
    935         [GDB_WATCHPOINT_WRITE] = 0x1,
    936         [GDB_WATCHPOINT_ACCESS] = 0x3
    937     };
    938     const uint8_t len_code[] = {
    939         [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
    940     };
    941     int n;
    942 
    943     if (kvm_sw_breakpoints_active(env))
    944         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
    945 
    946     if (nb_hw_breakpoint > 0) {
    947         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
    948         dbg->arch.debugreg[7] = 0x0600;
    949         for (n = 0; n < nb_hw_breakpoint; n++) {
    950             dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
    951             dbg->arch.debugreg[7] |= (2 << (n * 2)) |
    952                 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
    953                 (len_code[hw_breakpoint[n].len] << (18 + n*4));
    954         }
    955     }
    956 }
    957 #endif /* KVM_CAP_SET_GUEST_DEBUG */
    958