1 // Copyright 2008 The RE2 Authors. All Rights Reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // A DFA (deterministic finite automaton)-based regular expression search. 6 // 7 // The DFA search has two main parts: the construction of the automaton, 8 // which is represented by a graph of State structures, and the execution 9 // of the automaton over a given input string. 10 // 11 // The basic idea is that the State graph is constructed so that the 12 // execution can simply start with a state s, and then for each byte c in 13 // the input string, execute "s = s->next[c]", checking at each point whether 14 // the current s represents a matching state. 15 // 16 // The simple explanation just given does convey the essence of this code, 17 // but it omits the details of how the State graph gets constructed as well 18 // as some performance-driven optimizations to the execution of the automaton. 19 // All these details are explained in the comments for the code following 20 // the definition of class DFA. 21 // 22 // See http://swtch.com/~rsc/regexp/ for a very bare-bones equivalent. 23 24 #include "re2/prog.h" 25 #include "re2/stringpiece.h" 26 #include "util/atomicops.h" 27 #include "util/flags.h" 28 #include "util/sparse_set.h" 29 30 DEFINE_bool(re2_dfa_bail_when_slow, true, 31 "Whether the RE2 DFA should bail out early " 32 "if the NFA would be faster (for testing)."); 33 34 namespace re2 { 35 36 #if !defined(__linux__) /* only Linux seems to have memrchr */ 37 static void* memrchr(const void* s, int c, size_t n) { 38 const unsigned char* p = (const unsigned char*)s; 39 for (p += n; n > 0; n--) 40 if (*--p == c) 41 return (void*)p; 42 43 return NULL; 44 } 45 #endif 46 47 // Changing this to true compiles in prints that trace execution of the DFA. 48 // Generates a lot of output -- only useful for debugging. 49 static const bool DebugDFA = false; 50 51 // A DFA implementation of a regular expression program. 52 // Since this is entirely a forward declaration mandated by C++, 53 // some of the comments here are better understood after reading 54 // the comments in the sections that follow the DFA definition. 55 class DFA { 56 public: 57 DFA(Prog* prog, Prog::MatchKind kind, int64 max_mem); 58 ~DFA(); 59 bool ok() const { return !init_failed_; } 60 Prog::MatchKind kind() { return kind_; } 61 62 // Searches for the regular expression in text, which is considered 63 // as a subsection of context for the purposes of interpreting flags 64 // like ^ and $ and \A and \z. 65 // Returns whether a match was found. 66 // If a match is found, sets *ep to the end point of the best match in text. 67 // If "anchored", the match must begin at the start of text. 68 // If "want_earliest_match", the match that ends first is used, not 69 // necessarily the best one. 70 // If "run_forward" is true, the DFA runs from text.begin() to text.end(). 71 // If it is false, the DFA runs from text.end() to text.begin(), 72 // returning the leftmost end of the match instead of the rightmost one. 73 // If the DFA cannot complete the search (for example, if it is out of 74 // memory), it sets *failed and returns false. 75 bool Search(const StringPiece& text, const StringPiece& context, 76 bool anchored, bool want_earliest_match, bool run_forward, 77 bool* failed, const char** ep, vector<int>* matches); 78 79 // Builds out all states for the entire DFA. FOR TESTING ONLY 80 // Returns number of states. 81 int BuildAllStates(); 82 83 // Computes min and max for matching strings. Won't return strings 84 // bigger than maxlen. 85 bool PossibleMatchRange(string* min, string* max, int maxlen); 86 87 // These data structures are logically private, but C++ makes it too 88 // difficult to mark them as such. 89 class Workq; 90 class RWLocker; 91 class StateSaver; 92 93 // A single DFA state. The DFA is represented as a graph of these 94 // States, linked by the next_ pointers. If in state s and reading 95 // byte c, the next state should be s->next_[c]. 96 struct State { 97 inline bool IsMatch() const { return flag_ & kFlagMatch; } 98 void SaveMatch(vector<int>* v); 99 100 int* inst_; // Instruction pointers in the state. 101 int ninst_; // # of inst_ pointers. 102 uint flag_; // Empty string bitfield flags in effect on the way 103 // into this state, along with kFlagMatch if this 104 // is a matching state. 105 State** next_; // Outgoing arrows from State, 106 // one per input byte class 107 }; 108 109 enum { 110 kByteEndText = 256, // imaginary byte at end of text 111 112 kFlagEmptyMask = 0xFFF, // State.flag_: bits holding kEmptyXXX flags 113 kFlagMatch = 0x1000, // State.flag_: this is a matching state 114 kFlagLastWord = 0x2000, // State.flag_: last byte was a word char 115 kFlagNeedShift = 16, // needed kEmpty bits are or'ed in shifted left 116 }; 117 118 #ifndef STL_MSVC 119 // STL function structures for use with unordered_set. 120 struct StateEqual { 121 bool operator()(const State* a, const State* b) const { 122 if (a == b) 123 return true; 124 if (a == NULL || b == NULL) 125 return false; 126 if (a->ninst_ != b->ninst_) 127 return false; 128 if (a->flag_ != b->flag_) 129 return false; 130 for (int i = 0; i < a->ninst_; i++) 131 if (a->inst_[i] != b->inst_[i]) 132 return false; 133 return true; // they're equal 134 } 135 }; 136 #endif // STL_MSVC 137 struct StateHash { 138 size_t operator()(const State* a) const { 139 if (a == NULL) 140 return 0; 141 const char* s = reinterpret_cast<const char*>(a->inst_); 142 int len = a->ninst_ * sizeof a->inst_[0]; 143 if (sizeof(size_t) == sizeof(uint32)) 144 return Hash32StringWithSeed(s, len, a->flag_); 145 else 146 return Hash64StringWithSeed(s, len, a->flag_); 147 } 148 #ifdef STL_MSVC 149 // Less than operator. 150 bool operator()(const State* a, const State* b) const { 151 if (a == b) 152 return false; 153 if (a == NULL || b == NULL) 154 return a == NULL; 155 if (a->ninst_ != b->ninst_) 156 return a->ninst_ < b->ninst_; 157 if (a->flag_ != b->flag_) 158 return a->flag_ < b->flag_; 159 for (int i = 0; i < a->ninst_; ++i) 160 if (a->inst_[i] != b->inst_[i]) 161 return a->inst_[i] < b->inst_[i]; 162 return false; // they're equal 163 } 164 // The two public members are required by msvc. 4 and 8 are default values. 165 // Reference: http://msdn.microsoft.com/en-us/library/1s1byw77.aspx 166 static const size_t bucket_size = 4; 167 static const size_t min_buckets = 8; 168 #endif // STL_MSVC 169 }; 170 171 #ifdef STL_MSVC 172 typedef unordered_set<State*, StateHash> StateSet; 173 #else // !STL_MSVC 174 typedef unordered_set<State*, StateHash, StateEqual> StateSet; 175 #endif // STL_MSVC 176 177 178 private: 179 // Special "firstbyte" values for a state. (Values >= 0 denote actual bytes.) 180 enum { 181 kFbUnknown = -1, // No analysis has been performed. 182 kFbMany = -2, // Many bytes will lead out of this state. 183 kFbNone = -3, // No bytes lead out of this state. 184 }; 185 186 enum { 187 // Indices into start_ for unanchored searches. 188 // Add kStartAnchored for anchored searches. 189 kStartBeginText = 0, // text at beginning of context 190 kStartBeginLine = 2, // text at beginning of line 191 kStartAfterWordChar = 4, // text follows a word character 192 kStartAfterNonWordChar = 6, // text follows non-word character 193 kMaxStart = 8, 194 195 kStartAnchored = 1, 196 }; 197 198 // Resets the DFA State cache, flushing all saved State* information. 199 // Releases and reacquires cache_mutex_ via cache_lock, so any 200 // State* existing before the call are not valid after the call. 201 // Use a StateSaver to preserve important states across the call. 202 // cache_mutex_.r <= L < mutex_ 203 // After: cache_mutex_.w <= L < mutex_ 204 void ResetCache(RWLocker* cache_lock); 205 206 // Looks up and returns the State corresponding to a Workq. 207 // L >= mutex_ 208 State* WorkqToCachedState(Workq* q, uint flag); 209 210 // Looks up and returns a State matching the inst, ninst, and flag. 211 // L >= mutex_ 212 State* CachedState(int* inst, int ninst, uint flag); 213 214 // Clear the cache entirely. 215 // Must hold cache_mutex_.w or be in destructor. 216 void ClearCache(); 217 218 // Converts a State into a Workq: the opposite of WorkqToCachedState. 219 // L >= mutex_ 220 static void StateToWorkq(State* s, Workq* q); 221 222 // Runs a State on a given byte, returning the next state. 223 State* RunStateOnByteUnlocked(State*, int); // cache_mutex_.r <= L < mutex_ 224 State* RunStateOnByte(State*, int); // L >= mutex_ 225 226 // Runs a Workq on a given byte followed by a set of empty-string flags, 227 // producing a new Workq in nq. If a match instruction is encountered, 228 // sets *ismatch to true. 229 // L >= mutex_ 230 void RunWorkqOnByte(Workq* q, Workq* nq, 231 int c, uint flag, bool* ismatch, 232 Prog::MatchKind kind, 233 int new_byte_loop); 234 235 // Runs a Workq on a set of empty-string flags, producing a new Workq in nq. 236 // L >= mutex_ 237 void RunWorkqOnEmptyString(Workq* q, Workq* nq, uint flag); 238 239 // Adds the instruction id to the Workq, following empty arrows 240 // according to flag. 241 // L >= mutex_ 242 void AddToQueue(Workq* q, int id, uint flag); 243 244 // For debugging, returns a text representation of State. 245 static string DumpState(State* state); 246 247 // For debugging, returns a text representation of a Workq. 248 static string DumpWorkq(Workq* q); 249 250 // Search parameters 251 struct SearchParams { 252 SearchParams(const StringPiece& text, const StringPiece& context, 253 RWLocker* cache_lock) 254 : text(text), context(context), 255 anchored(false), 256 want_earliest_match(false), 257 run_forward(false), 258 start(NULL), 259 firstbyte(kFbUnknown), 260 cache_lock(cache_lock), 261 failed(false), 262 ep(NULL), 263 matches(NULL) { } 264 265 StringPiece text; 266 StringPiece context; 267 bool anchored; 268 bool want_earliest_match; 269 bool run_forward; 270 State* start; 271 int firstbyte; 272 RWLocker *cache_lock; 273 bool failed; // "out" parameter: whether search gave up 274 const char* ep; // "out" parameter: end pointer for match 275 vector<int>* matches; 276 277 private: 278 DISALLOW_EVIL_CONSTRUCTORS(SearchParams); 279 }; 280 281 // Before each search, the parameters to Search are analyzed by 282 // AnalyzeSearch to determine the state in which to start and the 283 // "firstbyte" for that state, if any. 284 struct StartInfo { 285 StartInfo() : start(NULL), firstbyte(kFbUnknown) { } 286 State* start; 287 volatile int firstbyte; 288 }; 289 290 // Fills in params->start and params->firstbyte using 291 // the other search parameters. Returns true on success, 292 // false on failure. 293 // cache_mutex_.r <= L < mutex_ 294 bool AnalyzeSearch(SearchParams* params); 295 bool AnalyzeSearchHelper(SearchParams* params, StartInfo* info, uint flags); 296 297 // The generic search loop, inlined to create specialized versions. 298 // cache_mutex_.r <= L < mutex_ 299 // Might unlock and relock cache_mutex_ via params->cache_lock. 300 inline bool InlinedSearchLoop(SearchParams* params, 301 bool have_firstbyte, 302 bool want_earliest_match, 303 bool run_forward); 304 305 // The specialized versions of InlinedSearchLoop. The three letters 306 // at the ends of the name denote the true/false values used as the 307 // last three parameters of InlinedSearchLoop. 308 // cache_mutex_.r <= L < mutex_ 309 // Might unlock and relock cache_mutex_ via params->cache_lock. 310 bool SearchFFF(SearchParams* params); 311 bool SearchFFT(SearchParams* params); 312 bool SearchFTF(SearchParams* params); 313 bool SearchFTT(SearchParams* params); 314 bool SearchTFF(SearchParams* params); 315 bool SearchTFT(SearchParams* params); 316 bool SearchTTF(SearchParams* params); 317 bool SearchTTT(SearchParams* params); 318 319 // The main search loop: calls an appropriate specialized version of 320 // InlinedSearchLoop. 321 // cache_mutex_.r <= L < mutex_ 322 // Might unlock and relock cache_mutex_ via params->cache_lock. 323 bool FastSearchLoop(SearchParams* params); 324 325 // For debugging, a slow search loop that calls InlinedSearchLoop 326 // directly -- because the booleans passed are not constants, the 327 // loop is not specialized like the SearchFFF etc. versions, so it 328 // runs much more slowly. Useful only for debugging. 329 // cache_mutex_.r <= L < mutex_ 330 // Might unlock and relock cache_mutex_ via params->cache_lock. 331 bool SlowSearchLoop(SearchParams* params); 332 333 // Looks up bytes in bytemap_ but handles case c == kByteEndText too. 334 int ByteMap(int c) { 335 if (c == kByteEndText) 336 return prog_->bytemap_range(); 337 return prog_->bytemap()[c]; 338 } 339 340 // Constant after initialization. 341 Prog* prog_; // The regular expression program to run. 342 Prog::MatchKind kind_; // The kind of DFA. 343 int start_unanchored_; // start of unanchored program 344 bool init_failed_; // initialization failed (out of memory) 345 346 Mutex mutex_; // mutex_ >= cache_mutex_.r 347 348 // Scratch areas, protected by mutex_. 349 Workq* q0_; // Two pre-allocated work queues. 350 Workq* q1_; 351 int* astack_; // Pre-allocated stack for AddToQueue 352 int nastack_; 353 354 // State* cache. Many threads use and add to the cache simultaneously, 355 // holding cache_mutex_ for reading and mutex_ (above) when adding. 356 // If the cache fills and needs to be discarded, the discarding is done 357 // while holding cache_mutex_ for writing, to avoid interrupting other 358 // readers. Any State* pointers are only valid while cache_mutex_ 359 // is held. 360 Mutex cache_mutex_; 361 int64 mem_budget_; // Total memory budget for all States. 362 int64 state_budget_; // Amount of memory remaining for new States. 363 StateSet state_cache_; // All States computed so far. 364 StartInfo start_[kMaxStart]; 365 bool cache_warned_; // have printed to LOG(INFO) about the cache 366 }; 367 368 // Shorthand for casting to uint8*. 369 static inline const uint8* BytePtr(const void* v) { 370 return reinterpret_cast<const uint8*>(v); 371 } 372 373 // Work queues 374 375 // Marks separate thread groups of different priority 376 // in the work queue when in leftmost-longest matching mode. 377 #define Mark (-1) 378 379 // Internally, the DFA uses a sparse array of 380 // program instruction pointers as a work queue. 381 // In leftmost longest mode, marks separate sections 382 // of workq that started executing at different 383 // locations in the string (earlier locations first). 384 class DFA::Workq : public SparseSet { 385 public: 386 // Constructor: n is number of normal slots, maxmark number of mark slots. 387 Workq(int n, int maxmark) : 388 SparseSet(n+maxmark), 389 n_(n), 390 maxmark_(maxmark), 391 nextmark_(n), 392 last_was_mark_(true) { 393 } 394 395 bool is_mark(int i) { return i >= n_; } 396 397 int maxmark() { return maxmark_; } 398 399 void clear() { 400 SparseSet::clear(); 401 nextmark_ = n_; 402 } 403 404 void mark() { 405 if (last_was_mark_) 406 return; 407 last_was_mark_ = false; 408 SparseSet::insert_new(nextmark_++); 409 } 410 411 int size() { 412 return n_ + maxmark_; 413 } 414 415 void insert(int id) { 416 if (contains(id)) 417 return; 418 insert_new(id); 419 } 420 421 void insert_new(int id) { 422 last_was_mark_ = false; 423 SparseSet::insert_new(id); 424 } 425 426 private: 427 int n_; // size excluding marks 428 int maxmark_; // maximum number of marks 429 int nextmark_; // id of next mark 430 bool last_was_mark_; // last inserted was mark 431 DISALLOW_EVIL_CONSTRUCTORS(Workq); 432 }; 433 434 DFA::DFA(Prog* prog, Prog::MatchKind kind, int64 max_mem) 435 : prog_(prog), 436 kind_(kind), 437 init_failed_(false), 438 q0_(NULL), 439 q1_(NULL), 440 astack_(NULL), 441 mem_budget_(max_mem), 442 cache_warned_(false) { 443 if (DebugDFA) 444 fprintf(stderr, "\nkind %d\n%s\n", (int)kind_, prog_->DumpUnanchored().c_str()); 445 int nmark = 0; 446 start_unanchored_ = 0; 447 if (kind_ == Prog::kLongestMatch) { 448 nmark = prog->size(); 449 start_unanchored_ = prog->start_unanchored(); 450 } 451 nastack_ = 2 * prog->size() + nmark; 452 453 // Account for space needed for DFA, q0, q1, astack. 454 mem_budget_ -= sizeof(DFA); 455 mem_budget_ -= (prog_->size() + nmark) * 456 (sizeof(int)+sizeof(int)) * 2; // q0, q1 457 mem_budget_ -= nastack_ * sizeof(int); // astack 458 if (mem_budget_ < 0) { 459 LOG(INFO) << StringPrintf("DFA out of memory: prog size %lld mem %lld", 460 prog_->size(), max_mem); 461 init_failed_ = true; 462 return; 463 } 464 465 state_budget_ = mem_budget_; 466 467 // Make sure there is a reasonable amount of working room left. 468 // At minimum, the search requires room for two states in order 469 // to limp along, restarting frequently. We'll get better performance 470 // if there is room for a larger number of states, say 20. 471 int64 one_state = sizeof(State) + (prog_->size()+nmark)*sizeof(int) + 472 (prog_->bytemap_range()+1)*sizeof(State*); 473 if (state_budget_ < 20*one_state) { 474 LOG(INFO) << StringPrintf("DFA out of memory: prog size %lld mem %lld", 475 prog_->size(), max_mem); 476 init_failed_ = true; 477 return; 478 } 479 480 q0_ = new Workq(prog->size(), nmark); 481 q1_ = new Workq(prog->size(), nmark); 482 astack_ = new int[nastack_]; 483 } 484 485 DFA::~DFA() { 486 delete q0_; 487 delete q1_; 488 delete[] astack_; 489 ClearCache(); 490 } 491 492 // In the DFA state graph, s->next[c] == NULL means that the 493 // state has not yet been computed and needs to be. We need 494 // a different special value to signal that s->next[c] is a 495 // state that can never lead to a match (and thus the search 496 // can be called off). Hence DeadState. 497 #define DeadState reinterpret_cast<State*>(1) 498 499 // Signals that the rest of the string matches no matter what it is. 500 #define FullMatchState reinterpret_cast<State*>(2) 501 502 #define SpecialStateMax FullMatchState 503 504 // Debugging printouts 505 506 // For debugging, returns a string representation of the work queue. 507 string DFA::DumpWorkq(Workq* q) { 508 string s; 509 const char* sep = ""; 510 for (DFA::Workq::iterator it = q->begin(); it != q->end(); ++it) { 511 if (q->is_mark(*it)) { 512 StringAppendF(&s, "|"); 513 sep = ""; 514 } else { 515 StringAppendF(&s, "%s%d", sep, *it); 516 sep = ","; 517 } 518 } 519 return s; 520 } 521 522 // For debugging, returns a string representation of the state. 523 string DFA::DumpState(State* state) { 524 if (state == NULL) 525 return "_"; 526 if (state == DeadState) 527 return "X"; 528 if (state == FullMatchState) 529 return "*"; 530 string s; 531 const char* sep = ""; 532 StringAppendF(&s, "(%p)", state); 533 for (int i = 0; i < state->ninst_; i++) { 534 if (state->inst_[i] == Mark) { 535 StringAppendF(&s, "|"); 536 sep = ""; 537 } else { 538 StringAppendF(&s, "%s%d", sep, state->inst_[i]); 539 sep = ","; 540 } 541 } 542 StringAppendF(&s, " flag=%#x", state->flag_); 543 return s; 544 } 545 546 ////////////////////////////////////////////////////////////////////// 547 // 548 // DFA state graph construction. 549 // 550 // The DFA state graph is a heavily-linked collection of State* structures. 551 // The state_cache_ is a set of all the State structures ever allocated, 552 // so that if the same state is reached by two different paths, 553 // the same State structure can be used. This reduces allocation 554 // requirements and also avoids duplication of effort across the two 555 // identical states. 556 // 557 // A State is defined by an ordered list of instruction ids and a flag word. 558 // 559 // The choice of an ordered list of instructions differs from a typical 560 // textbook DFA implementation, which would use an unordered set. 561 // Textbook descriptions, however, only care about whether 562 // the DFA matches, not where it matches in the text. To decide where the 563 // DFA matches, we need to mimic the behavior of the dominant backtracking 564 // implementations like PCRE, which try one possible regular expression 565 // execution, then another, then another, stopping when one of them succeeds. 566 // The DFA execution tries these many executions in parallel, representing 567 // each by an instruction id. These pointers are ordered in the State.inst_ 568 // list in the same order that the executions would happen in a backtracking 569 // search: if a match is found during execution of inst_[2], inst_[i] for i>=3 570 // can be discarded. 571 // 572 // Textbooks also typically do not consider context-aware empty string operators 573 // like ^ or $. These are handled by the flag word, which specifies the set 574 // of empty-string operators that should be matched when executing at the 575 // current text position. These flag bits are defined in prog.h. 576 // The flag word also contains two DFA-specific bits: kFlagMatch if the state 577 // is a matching state (one that reached a kInstMatch in the program) 578 // and kFlagLastWord if the last processed byte was a word character, for the 579 // implementation of \B and \b. 580 // 581 // The flag word also contains, shifted up 16 bits, the bits looked for by 582 // any kInstEmptyWidth instructions in the state. These provide a useful 583 // summary indicating when new flags might be useful. 584 // 585 // The permanent representation of a State's instruction ids is just an array, 586 // but while a state is being analyzed, these instruction ids are represented 587 // as a Workq, which is an array that allows iteration in insertion order. 588 589 // NOTE(rsc): The choice of State construction determines whether the DFA 590 // mimics backtracking implementations (so-called leftmost first matching) or 591 // traditional DFA implementations (so-called leftmost longest matching as 592 // prescribed by POSIX). This implementation chooses to mimic the 593 // backtracking implementations, because we want to replace PCRE. To get 594 // POSIX behavior, the states would need to be considered not as a simple 595 // ordered list of instruction ids, but as a list of unordered sets of instruction 596 // ids. A match by a state in one set would inhibit the running of sets 597 // farther down the list but not other instruction ids in the same set. Each 598 // set would correspond to matches beginning at a given point in the string. 599 // This is implemented by separating different sets with Mark pointers. 600 601 // Looks in the State cache for a State matching q, flag. 602 // If one is found, returns it. If one is not found, allocates one, 603 // inserts it in the cache, and returns it. 604 DFA::State* DFA::WorkqToCachedState(Workq* q, uint flag) { 605 if (DEBUG_MODE) 606 mutex_.AssertHeld(); 607 608 // Construct array of instruction ids for the new state. 609 // Only ByteRange, EmptyWidth, and Match instructions are useful to keep: 610 // those are the only operators with any effect in 611 // RunWorkqOnEmptyString or RunWorkqOnByte. 612 int* inst = new int[q->size()]; 613 int n = 0; 614 uint needflags = 0; // flags needed by kInstEmptyWidth instructions 615 bool sawmatch = false; // whether queue contains guaranteed kInstMatch 616 bool sawmark = false; // whether queue contains a Mark 617 if (DebugDFA) 618 fprintf(stderr, "WorkqToCachedState %s [%#x]", DumpWorkq(q).c_str(), flag); 619 for (Workq::iterator it = q->begin(); it != q->end(); ++it) { 620 int id = *it; 621 if (sawmatch && (kind_ == Prog::kFirstMatch || q->is_mark(id))) 622 break; 623 if (q->is_mark(id)) { 624 if (n > 0 && inst[n-1] != Mark) { 625 sawmark = true; 626 inst[n++] = Mark; 627 } 628 continue; 629 } 630 Prog::Inst* ip = prog_->inst(id); 631 switch (ip->opcode()) { 632 case kInstAltMatch: 633 // This state will continue to a match no matter what 634 // the rest of the input is. If it is the highest priority match 635 // being considered, return the special FullMatchState 636 // to indicate that it's all matches from here out. 637 if (kind_ != Prog::kManyMatch && 638 (kind_ != Prog::kFirstMatch || 639 (it == q->begin() && ip->greedy(prog_))) && 640 (kind_ != Prog::kLongestMatch || !sawmark) && 641 (flag & kFlagMatch)) { 642 delete[] inst; 643 if (DebugDFA) 644 fprintf(stderr, " -> FullMatchState\n"); 645 return FullMatchState; 646 } 647 // Fall through. 648 case kInstByteRange: // These are useful. 649 case kInstEmptyWidth: 650 case kInstMatch: 651 case kInstAlt: // Not useful, but necessary [*] 652 inst[n++] = *it; 653 if (ip->opcode() == kInstEmptyWidth) 654 needflags |= ip->empty(); 655 if (ip->opcode() == kInstMatch && !prog_->anchor_end()) 656 sawmatch = true; 657 break; 658 659 default: // The rest are not. 660 break; 661 } 662 663 // [*] kInstAlt would seem useless to record in a state, since 664 // we've already followed both its arrows and saved all the 665 // interesting states we can reach from there. The problem 666 // is that one of the empty-width instructions might lead 667 // back to the same kInstAlt (if an empty-width operator is starred), 668 // producing a different evaluation order depending on whether 669 // we keep the kInstAlt to begin with. Sigh. 670 // A specific case that this affects is /(^|a)+/ matching "a". 671 // If we don't save the kInstAlt, we will match the whole "a" (0,1) 672 // but in fact the correct leftmost-first match is the leading "" (0,0). 673 } 674 DCHECK_LE(n, q->size()); 675 if (n > 0 && inst[n-1] == Mark) 676 n--; 677 678 // If there are no empty-width instructions waiting to execute, 679 // then the extra flag bits will not be used, so there is no 680 // point in saving them. (Discarding them reduces the number 681 // of distinct states.) 682 if (needflags == 0) 683 flag &= kFlagMatch; 684 685 // NOTE(rsc): The code above cannot do flag &= needflags, 686 // because if the right flags were present to pass the current 687 // kInstEmptyWidth instructions, new kInstEmptyWidth instructions 688 // might be reached that in turn need different flags. 689 // The only sure thing is that if there are no kInstEmptyWidth 690 // instructions at all, no flags will be needed. 691 // We could do the extra work to figure out the full set of 692 // possibly needed flags by exploring past the kInstEmptyWidth 693 // instructions, but the check above -- are any flags needed 694 // at all? -- handles the most common case. More fine-grained 695 // analysis can only be justified by measurements showing that 696 // too many redundant states are being allocated. 697 698 // If there are no Insts in the list, it's a dead state, 699 // which is useful to signal with a special pointer so that 700 // the execution loop can stop early. This is only okay 701 // if the state is *not* a matching state. 702 if (n == 0 && flag == 0) { 703 delete[] inst; 704 if (DebugDFA) 705 fprintf(stderr, " -> DeadState\n"); 706 return DeadState; 707 } 708 709 // If we're in longest match mode, the state is a sequence of 710 // unordered state sets separated by Marks. Sort each set 711 // to canonicalize, to reduce the number of distinct sets stored. 712 if (kind_ == Prog::kLongestMatch) { 713 int* ip = inst; 714 int* ep = ip + n; 715 while (ip < ep) { 716 int* markp = ip; 717 while (markp < ep && *markp != Mark) 718 markp++; 719 sort(ip, markp); 720 if (markp < ep) 721 markp++; 722 ip = markp; 723 } 724 } 725 726 // Save the needed empty-width flags in the top bits for use later. 727 flag |= needflags << kFlagNeedShift; 728 729 State* state = CachedState(inst, n, flag); 730 delete[] inst; 731 return state; 732 } 733 734 // Looks in the State cache for a State matching inst, ninst, flag. 735 // If one is found, returns it. If one is not found, allocates one, 736 // inserts it in the cache, and returns it. 737 DFA::State* DFA::CachedState(int* inst, int ninst, uint flag) { 738 if (DEBUG_MODE) 739 mutex_.AssertHeld(); 740 741 // Look in the cache for a pre-existing state. 742 State state = { inst, ninst, flag, NULL }; 743 StateSet::iterator it = state_cache_.find(&state); 744 if (it != state_cache_.end()) { 745 if (DebugDFA) 746 fprintf(stderr, " -cached-> %s\n", DumpState(*it).c_str()); 747 return *it; 748 } 749 750 // Must have enough memory for new state. 751 // In addition to what we're going to allocate, 752 // the state cache hash table seems to incur about 32 bytes per 753 // State*, empirically. 754 const int kStateCacheOverhead = 32; 755 int nnext = prog_->bytemap_range() + 1; // + 1 for kByteEndText slot 756 int mem = sizeof(State) + nnext*sizeof(State*) + ninst*sizeof(int); 757 if (mem_budget_ < mem + kStateCacheOverhead) { 758 mem_budget_ = -1; 759 return NULL; 760 } 761 mem_budget_ -= mem + kStateCacheOverhead; 762 763 // Allocate new state, along with room for next and inst. 764 char* space = new char[mem]; 765 State* s = reinterpret_cast<State*>(space); 766 s->next_ = reinterpret_cast<State**>(s + 1); 767 s->inst_ = reinterpret_cast<int*>(s->next_ + nnext); 768 memset(s->next_, 0, nnext*sizeof s->next_[0]); 769 memmove(s->inst_, inst, ninst*sizeof s->inst_[0]); 770 s->ninst_ = ninst; 771 s->flag_ = flag; 772 if (DebugDFA) 773 fprintf(stderr, " -> %s\n", DumpState(s).c_str()); 774 775 // Put state in cache and return it. 776 state_cache_.insert(s); 777 return s; 778 } 779 780 // Clear the cache. Must hold cache_mutex_.w or be in destructor. 781 void DFA::ClearCache() { 782 // In case state_cache_ doesn't support deleting entries 783 // during iteration, copy into a vector and then delete. 784 vector<State*> v; 785 v.reserve(state_cache_.size()); 786 for (StateSet::iterator it = state_cache_.begin(); 787 it != state_cache_.end(); ++it) 788 v.push_back(*it); 789 state_cache_.clear(); 790 for (int i = 0; i < v.size(); i++) 791 delete[] reinterpret_cast<const char*>(v[i]); 792 } 793 794 // Copies insts in state s to the work queue q. 795 void DFA::StateToWorkq(State* s, Workq* q) { 796 q->clear(); 797 for (int i = 0; i < s->ninst_; i++) { 798 if (s->inst_[i] == Mark) 799 q->mark(); 800 else 801 q->insert_new(s->inst_[i]); 802 } 803 } 804 805 // Adds ip to the work queue, following empty arrows according to flag 806 // and expanding kInstAlt instructions (two-target gotos). 807 void DFA::AddToQueue(Workq* q, int id, uint flag) { 808 809 // Use astack_ to hold our stack of states yet to process. 810 // It is sized to have room for nastack_ == 2*prog->size() + nmark 811 // instructions, which is enough: each instruction can be 812 // processed by the switch below only once, and the processing 813 // pushes at most two instructions plus maybe a mark. 814 // (If we're using marks, nmark == prog->size(); otherwise nmark == 0.) 815 int* stk = astack_; 816 int nstk = 0; 817 818 stk[nstk++] = id; 819 while (nstk > 0) { 820 DCHECK_LE(nstk, nastack_); 821 id = stk[--nstk]; 822 823 if (id == Mark) { 824 q->mark(); 825 continue; 826 } 827 828 if (id == 0) 829 continue; 830 831 // If ip is already on the queue, nothing to do. 832 // Otherwise add it. We don't actually keep all the ones 833 // that get added -- for example, kInstAlt is ignored 834 // when on a work queue -- but adding all ip's here 835 // increases the likelihood of q->contains(id), 836 // reducing the amount of duplicated work. 837 if (q->contains(id)) 838 continue; 839 q->insert_new(id); 840 841 // Process instruction. 842 Prog::Inst* ip = prog_->inst(id); 843 switch (ip->opcode()) { 844 case kInstFail: // can't happen: discarded above 845 break; 846 847 case kInstByteRange: // just save these on the queue 848 case kInstMatch: 849 break; 850 851 case kInstCapture: // DFA treats captures as no-ops. 852 case kInstNop: 853 stk[nstk++] = ip->out(); 854 break; 855 856 case kInstAlt: // two choices: expand both, in order 857 case kInstAltMatch: 858 // Want to visit out then out1, so push on stack in reverse order. 859 // This instruction is the [00-FF]* loop at the beginning of 860 // a leftmost-longest unanchored search, separate out from out1 861 // with a Mark, so that out1's threads (which will start farther 862 // to the right in the string being searched) are lower priority 863 // than the current ones. 864 stk[nstk++] = ip->out1(); 865 if (q->maxmark() > 0 && 866 id == prog_->start_unanchored() && id != prog_->start()) 867 stk[nstk++] = Mark; 868 stk[nstk++] = ip->out(); 869 break; 870 871 case kInstEmptyWidth: 872 if ((ip->empty() & flag) == ip->empty()) 873 stk[nstk++] = ip->out(); 874 break; 875 } 876 } 877 } 878 879 // Running of work queues. In the work queue, order matters: 880 // the queue is sorted in priority order. If instruction i comes before j, 881 // then the instructions that i produces during the run must come before 882 // the ones that j produces. In order to keep this invariant, all the 883 // work queue runners have to take an old queue to process and then 884 // also a new queue to fill in. It's not acceptable to add to the end of 885 // an existing queue, because new instructions will not end up in the 886 // correct position. 887 888 // Runs the work queue, processing the empty strings indicated by flag. 889 // For example, flag == kEmptyBeginLine|kEmptyEndLine means to match 890 // both ^ and $. It is important that callers pass all flags at once: 891 // processing both ^ and $ is not the same as first processing only ^ 892 // and then processing only $. Doing the two-step sequence won't match 893 // ^$^$^$ but processing ^ and $ simultaneously will (and is the behavior 894 // exhibited by existing implementations). 895 void DFA::RunWorkqOnEmptyString(Workq* oldq, Workq* newq, uint flag) { 896 newq->clear(); 897 for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) { 898 if (oldq->is_mark(*i)) 899 AddToQueue(newq, Mark, flag); 900 else 901 AddToQueue(newq, *i, flag); 902 } 903 } 904 905 // Runs the work queue, processing the single byte c followed by any empty 906 // strings indicated by flag. For example, c == 'a' and flag == kEmptyEndLine, 907 // means to match c$. Sets the bool *ismatch to true if the end of the 908 // regular expression program has been reached (the regexp has matched). 909 void DFA::RunWorkqOnByte(Workq* oldq, Workq* newq, 910 int c, uint flag, bool* ismatch, 911 Prog::MatchKind kind, 912 int new_byte_loop) { 913 if (DEBUG_MODE) 914 mutex_.AssertHeld(); 915 916 newq->clear(); 917 for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) { 918 if (oldq->is_mark(*i)) { 919 if (*ismatch) 920 return; 921 newq->mark(); 922 continue; 923 } 924 int id = *i; 925 Prog::Inst* ip = prog_->inst(id); 926 switch (ip->opcode()) { 927 case kInstFail: // never succeeds 928 case kInstCapture: // already followed 929 case kInstNop: // already followed 930 case kInstAlt: // already followed 931 case kInstAltMatch: // already followed 932 case kInstEmptyWidth: // already followed 933 break; 934 935 case kInstByteRange: // can follow if c is in range 936 if (ip->Matches(c)) 937 AddToQueue(newq, ip->out(), flag); 938 break; 939 940 case kInstMatch: 941 if (prog_->anchor_end() && c != kByteEndText) 942 break; 943 *ismatch = true; 944 if (kind == Prog::kFirstMatch) { 945 // Can stop processing work queue since we found a match. 946 return; 947 } 948 break; 949 } 950 } 951 952 if (DebugDFA) 953 fprintf(stderr, "%s on %d[%#x] -> %s [%d]\n", DumpWorkq(oldq).c_str(), 954 c, flag, DumpWorkq(newq).c_str(), *ismatch); 955 } 956 957 // Processes input byte c in state, returning new state. 958 // Caller does not hold mutex. 959 DFA::State* DFA::RunStateOnByteUnlocked(State* state, int c) { 960 // Keep only one RunStateOnByte going 961 // even if the DFA is being run by multiple threads. 962 MutexLock l(&mutex_); 963 return RunStateOnByte(state, c); 964 } 965 966 // Processes input byte c in state, returning new state. 967 DFA::State* DFA::RunStateOnByte(State* state, int c) { 968 if (DEBUG_MODE) 969 mutex_.AssertHeld(); 970 if (state <= SpecialStateMax) { 971 if (state == FullMatchState) { 972 // It is convenient for routines like PossibleMatchRange 973 // if we implement RunStateOnByte for FullMatchState: 974 // once you get into this state you never get out, 975 // so it's pretty easy. 976 return FullMatchState; 977 } 978 if (state == DeadState) { 979 LOG(DFATAL) << "DeadState in RunStateOnByte"; 980 return NULL; 981 } 982 if (state == NULL) { 983 LOG(DFATAL) << "NULL state in RunStateOnByte"; 984 return NULL; 985 } 986 LOG(DFATAL) << "Unexpected special state in RunStateOnByte"; 987 return NULL; 988 } 989 990 // If someone else already computed this, return it. 991 MaybeReadMemoryBarrier(); // On alpha we need to ensure read ordering 992 State* ns = state->next_[ByteMap(c)]; 993 ANNOTATE_HAPPENS_AFTER(ns); 994 if (ns != NULL) 995 return ns; 996 997 // Convert state into Workq. 998 StateToWorkq(state, q0_); 999 1000 // Flags marking the kinds of empty-width things (^ $ etc) 1001 // around this byte. Before the byte we have the flags recorded 1002 // in the State structure itself. After the byte we have 1003 // nothing yet (but that will change: read on). 1004 uint needflag = state->flag_ >> kFlagNeedShift; 1005 uint beforeflag = state->flag_ & kFlagEmptyMask; 1006 uint oldbeforeflag = beforeflag; 1007 uint afterflag = 0; 1008 1009 if (c == '\n') { 1010 // Insert implicit $ and ^ around \n 1011 beforeflag |= kEmptyEndLine; 1012 afterflag |= kEmptyBeginLine; 1013 } 1014 1015 if (c == kByteEndText) { 1016 // Insert implicit $ and \z before the fake "end text" byte. 1017 beforeflag |= kEmptyEndLine | kEmptyEndText; 1018 } 1019 1020 // The state flag kFlagLastWord says whether the last 1021 // byte processed was a word character. Use that info to 1022 // insert empty-width (non-)word boundaries. 1023 bool islastword = state->flag_ & kFlagLastWord; 1024 bool isword = (c != kByteEndText && Prog::IsWordChar(c)); 1025 if (isword == islastword) 1026 beforeflag |= kEmptyNonWordBoundary; 1027 else 1028 beforeflag |= kEmptyWordBoundary; 1029 1030 // Okay, finally ready to run. 1031 // Only useful to rerun on empty string if there are new, useful flags. 1032 if (beforeflag & ~oldbeforeflag & needflag) { 1033 RunWorkqOnEmptyString(q0_, q1_, beforeflag); 1034 swap(q0_, q1_); 1035 } 1036 bool ismatch = false; 1037 RunWorkqOnByte(q0_, q1_, c, afterflag, &ismatch, kind_, start_unanchored_); 1038 1039 // Most of the time, we build the state from the output of 1040 // RunWorkqOnByte, so swap q0_ and q1_ here. However, so that 1041 // RE2::Set can tell exactly which match instructions 1042 // contributed to the match, don't swap if c is kByteEndText. 1043 // The resulting state wouldn't be correct for further processing 1044 // of the string, but we're at the end of the text so that's okay. 1045 // Leaving q0_ alone preseves the match instructions that led to 1046 // the current setting of ismatch. 1047 if (c != kByteEndText || kind_ != Prog::kManyMatch) 1048 swap(q0_, q1_); 1049 1050 // Save afterflag along with ismatch and isword in new state. 1051 uint flag = afterflag; 1052 if (ismatch) 1053 flag |= kFlagMatch; 1054 if (isword) 1055 flag |= kFlagLastWord; 1056 1057 ns = WorkqToCachedState(q0_, flag); 1058 1059 // Write barrier before updating state->next_ so that the 1060 // main search loop can proceed without any locking, for speed. 1061 // (Otherwise it would need one mutex operation per input byte.) 1062 // The annotations below tell race detectors that: 1063 // a) the access to next_ should be ignored, 1064 // b) 'ns' is properly published. 1065 WriteMemoryBarrier(); // Flush ns before linking to it. 1066 1067 ANNOTATE_IGNORE_WRITES_BEGIN(); 1068 ANNOTATE_HAPPENS_BEFORE(ns); 1069 state->next_[ByteMap(c)] = ns; 1070 ANNOTATE_IGNORE_WRITES_END(); 1071 return ns; 1072 } 1073 1074 1075 ////////////////////////////////////////////////////////////////////// 1076 // DFA cache reset. 1077 1078 // Reader-writer lock helper. 1079 // 1080 // The DFA uses a reader-writer mutex to protect the state graph itself. 1081 // Traversing the state graph requires holding the mutex for reading, 1082 // and discarding the state graph and starting over requires holding the 1083 // lock for writing. If a search needs to expand the graph but is out 1084 // of memory, it will need to drop its read lock and then acquire the 1085 // write lock. Since it cannot then atomically downgrade from write lock 1086 // to read lock, it runs the rest of the search holding the write lock. 1087 // (This probably helps avoid repeated contention, but really the decision 1088 // is forced by the Mutex interface.) It's a bit complicated to keep 1089 // track of whether the lock is held for reading or writing and thread 1090 // that through the search, so instead we encapsulate it in the RWLocker 1091 // and pass that around. 1092 1093 class DFA::RWLocker { 1094 public: 1095 explicit RWLocker(Mutex* mu); 1096 ~RWLocker(); 1097 1098 // If the lock is only held for reading right now, 1099 // drop the read lock and re-acquire for writing. 1100 // Subsequent calls to LockForWriting are no-ops. 1101 // Notice that the lock is *released* temporarily. 1102 void LockForWriting(); 1103 1104 // Returns whether the lock is already held for writing. 1105 bool IsLockedForWriting() { 1106 return writing_; 1107 } 1108 1109 private: 1110 Mutex* mu_; 1111 bool writing_; 1112 1113 DISALLOW_EVIL_CONSTRUCTORS(RWLocker); 1114 }; 1115 1116 DFA::RWLocker::RWLocker(Mutex* mu) 1117 : mu_(mu), writing_(false) { 1118 1119 mu_->ReaderLock(); 1120 } 1121 1122 // This function is marked as NO_THREAD_SAFETY_ANALYSIS because the annotations 1123 // does not support lock upgrade. 1124 void DFA::RWLocker::LockForWriting() NO_THREAD_SAFETY_ANALYSIS { 1125 if (!writing_) { 1126 mu_->ReaderUnlock(); 1127 mu_->Lock(); 1128 writing_ = true; 1129 } 1130 } 1131 1132 DFA::RWLocker::~RWLocker() { 1133 if (writing_) 1134 mu_->WriterUnlock(); 1135 else 1136 mu_->ReaderUnlock(); 1137 } 1138 1139 1140 // When the DFA's State cache fills, we discard all the states in the 1141 // cache and start over. Many threads can be using and adding to the 1142 // cache at the same time, so we synchronize using the cache_mutex_ 1143 // to keep from stepping on other threads. Specifically, all the 1144 // threads using the current cache hold cache_mutex_ for reading. 1145 // When a thread decides to flush the cache, it drops cache_mutex_ 1146 // and then re-acquires it for writing. That ensures there are no 1147 // other threads accessing the cache anymore. The rest of the search 1148 // runs holding cache_mutex_ for writing, avoiding any contention 1149 // with or cache pollution caused by other threads. 1150 1151 void DFA::ResetCache(RWLocker* cache_lock) { 1152 // Re-acquire the cache_mutex_ for writing (exclusive use). 1153 bool was_writing = cache_lock->IsLockedForWriting(); 1154 cache_lock->LockForWriting(); 1155 1156 // If we already held cache_mutex_ for writing, it means 1157 // this invocation of Search() has already reset the 1158 // cache once already. That's a pretty clear indication 1159 // that the cache is too small. Warn about that, once. 1160 // TODO(rsc): Only warn if state_cache_.size() < some threshold. 1161 if (was_writing && !cache_warned_) { 1162 LOG(INFO) << "DFA memory cache could be too small: " 1163 << "only room for " << state_cache_.size() << " states."; 1164 cache_warned_ = true; 1165 } 1166 1167 // Clear the cache, reset the memory budget. 1168 for (int i = 0; i < kMaxStart; i++) { 1169 start_[i].start = NULL; 1170 start_[i].firstbyte = kFbUnknown; 1171 } 1172 ClearCache(); 1173 mem_budget_ = state_budget_; 1174 } 1175 1176 // Typically, a couple States do need to be preserved across a cache 1177 // reset, like the State at the current point in the search. 1178 // The StateSaver class helps keep States across cache resets. 1179 // It makes a copy of the state's guts outside the cache (before the reset) 1180 // and then can be asked, after the reset, to recreate the State 1181 // in the new cache. For example, in a DFA method ("this" is a DFA): 1182 // 1183 // StateSaver saver(this, s); 1184 // ResetCache(cache_lock); 1185 // s = saver.Restore(); 1186 // 1187 // The saver should always have room in the cache to re-create the state, 1188 // because resetting the cache locks out all other threads, and the cache 1189 // is known to have room for at least a couple states (otherwise the DFA 1190 // constructor fails). 1191 1192 class DFA::StateSaver { 1193 public: 1194 explicit StateSaver(DFA* dfa, State* state); 1195 ~StateSaver(); 1196 1197 // Recreates and returns a state equivalent to the 1198 // original state passed to the constructor. 1199 // Returns NULL if the cache has filled, but 1200 // since the DFA guarantees to have room in the cache 1201 // for a couple states, should never return NULL 1202 // if used right after ResetCache. 1203 State* Restore(); 1204 1205 private: 1206 DFA* dfa_; // the DFA to use 1207 int* inst_; // saved info from State 1208 int ninst_; 1209 uint flag_; 1210 bool is_special_; // whether original state was special 1211 State* special_; // if is_special_, the original state 1212 1213 DISALLOW_EVIL_CONSTRUCTORS(StateSaver); 1214 }; 1215 1216 DFA::StateSaver::StateSaver(DFA* dfa, State* state) { 1217 dfa_ = dfa; 1218 if (state <= SpecialStateMax) { 1219 inst_ = NULL; 1220 ninst_ = 0; 1221 flag_ = 0; 1222 is_special_ = true; 1223 special_ = state; 1224 return; 1225 } 1226 is_special_ = false; 1227 special_ = NULL; 1228 flag_ = state->flag_; 1229 ninst_ = state->ninst_; 1230 inst_ = new int[ninst_]; 1231 memmove(inst_, state->inst_, ninst_*sizeof inst_[0]); 1232 } 1233 1234 DFA::StateSaver::~StateSaver() { 1235 if (!is_special_) 1236 delete[] inst_; 1237 } 1238 1239 DFA::State* DFA::StateSaver::Restore() { 1240 if (is_special_) 1241 return special_; 1242 MutexLock l(&dfa_->mutex_); 1243 State* s = dfa_->CachedState(inst_, ninst_, flag_); 1244 if (s == NULL) 1245 LOG(DFATAL) << "StateSaver failed to restore state."; 1246 return s; 1247 } 1248 1249 1250 ////////////////////////////////////////////////////////////////////// 1251 // 1252 // DFA execution. 1253 // 1254 // The basic search loop is easy: start in a state s and then for each 1255 // byte c in the input, s = s->next[c]. 1256 // 1257 // This simple description omits a few efficiency-driven complications. 1258 // 1259 // First, the State graph is constructed incrementally: it is possible 1260 // that s->next[c] is null, indicating that that state has not been 1261 // fully explored. In this case, RunStateOnByte must be invoked to 1262 // determine the next state, which is cached in s->next[c] to save 1263 // future effort. An alternative reason for s->next[c] to be null is 1264 // that the DFA has reached a so-called "dead state", in which any match 1265 // is no longer possible. In this case RunStateOnByte will return NULL 1266 // and the processing of the string can stop early. 1267 // 1268 // Second, a 256-element pointer array for s->next_ makes each State 1269 // quite large (2kB on 64-bit machines). Instead, dfa->bytemap_[] 1270 // maps from bytes to "byte classes" and then next_ only needs to have 1271 // as many pointers as there are byte classes. A byte class is simply a 1272 // range of bytes that the regexp never distinguishes between. 1273 // A regexp looking for a[abc] would have four byte ranges -- 0 to 'a'-1, 1274 // 'a', 'b' to 'c', and 'c' to 0xFF. The bytemap slows us a little bit 1275 // but in exchange we typically cut the size of a State (and thus our 1276 // memory footprint) by about 5-10x. The comments still refer to 1277 // s->next[c] for simplicity, but code should refer to s->next_[bytemap_[c]]. 1278 // 1279 // Third, it is common for a DFA for an unanchored match to begin in a 1280 // state in which only one particular byte value can take the DFA to a 1281 // different state. That is, s->next[c] != s for only one c. In this 1282 // situation, the DFA can do better than executing the simple loop. 1283 // Instead, it can call memchr to search very quickly for the byte c. 1284 // Whether the start state has this property is determined during a 1285 // pre-compilation pass, and if so, the byte b is passed to the search 1286 // loop as the "firstbyte" argument, along with a boolean "have_firstbyte". 1287 // 1288 // Fourth, the desired behavior is to search for the leftmost-best match 1289 // (approximately, the same one that Perl would find), which is not 1290 // necessarily the match ending earliest in the string. Each time a 1291 // match is found, it must be noted, but the DFA must continue on in 1292 // hope of finding a higher-priority match. In some cases, the caller only 1293 // cares whether there is any match at all, not which one is found. 1294 // The "want_earliest_match" flag causes the search to stop at the first 1295 // match found. 1296 // 1297 // Fifth, one algorithm that uses the DFA needs it to run over the 1298 // input string backward, beginning at the end and ending at the beginning. 1299 // Passing false for the "run_forward" flag causes the DFA to run backward. 1300 // 1301 // The checks for these last three cases, which in a naive implementation 1302 // would be performed once per input byte, slow the general loop enough 1303 // to merit specialized versions of the search loop for each of the 1304 // eight possible settings of the three booleans. Rather than write 1305 // eight different functions, we write one general implementation and then 1306 // inline it to create the specialized ones. 1307 // 1308 // Note that matches are delayed by one byte, to make it easier to 1309 // accomodate match conditions depending on the next input byte (like $ and \b). 1310 // When s->next[c]->IsMatch(), it means that there is a match ending just 1311 // *before* byte c. 1312 1313 // The generic search loop. Searches text for a match, returning 1314 // the pointer to the end of the chosen match, or NULL if no match. 1315 // The bools are equal to the same-named variables in params, but 1316 // making them function arguments lets the inliner specialize 1317 // this function to each combination (see two paragraphs above). 1318 inline bool DFA::InlinedSearchLoop(SearchParams* params, 1319 bool have_firstbyte, 1320 bool want_earliest_match, 1321 bool run_forward) { 1322 State* start = params->start; 1323 const uint8* bp = BytePtr(params->text.begin()); // start of text 1324 const uint8* p = bp; // text scanning point 1325 const uint8* ep = BytePtr(params->text.end()); // end of text 1326 const uint8* resetp = NULL; // p at last cache reset 1327 if (!run_forward) 1328 swap(p, ep); 1329 1330 const uint8* bytemap = prog_->bytemap(); 1331 const uint8* lastmatch = NULL; // most recent matching position in text 1332 bool matched = false; 1333 State* s = start; 1334 1335 if (s->IsMatch()) { 1336 matched = true; 1337 lastmatch = p; 1338 if (want_earliest_match) { 1339 params->ep = reinterpret_cast<const char*>(lastmatch); 1340 return true; 1341 } 1342 } 1343 1344 while (p != ep) { 1345 if (DebugDFA) 1346 fprintf(stderr, "@%d: %s\n", static_cast<int>(p - bp), 1347 DumpState(s).c_str()); 1348 if (have_firstbyte && s == start) { 1349 // In start state, only way out is to find firstbyte, 1350 // so use optimized assembly in memchr to skip ahead. 1351 // If firstbyte isn't found, we can skip to the end 1352 // of the string. 1353 if (run_forward) { 1354 if ((p = BytePtr(memchr(p, params->firstbyte, ep - p))) == NULL) { 1355 p = ep; 1356 break; 1357 } 1358 } else { 1359 if ((p = BytePtr(memrchr(ep, params->firstbyte, p - ep))) == NULL) { 1360 p = ep; 1361 break; 1362 } 1363 p++; 1364 } 1365 } 1366 1367 int c; 1368 if (run_forward) 1369 c = *p++; 1370 else 1371 c = *--p; 1372 1373 // Note that multiple threads might be consulting 1374 // s->next_[bytemap[c]] simultaneously. 1375 // RunStateOnByte takes care of the appropriate locking, 1376 // including a memory barrier so that the unlocked access 1377 // (sometimes known as "double-checked locking") is safe. 1378 // The alternative would be either one DFA per thread 1379 // or one mutex operation per input byte. 1380 // 1381 // ns == DeadState means the state is known to be dead 1382 // (no more matches are possible). 1383 // ns == NULL means the state has not yet been computed 1384 // (need to call RunStateOnByteUnlocked). 1385 // RunStateOnByte returns ns == NULL if it is out of memory. 1386 // ns == FullMatchState means the rest of the string matches. 1387 // 1388 // Okay to use bytemap[] not ByteMap() here, because 1389 // c is known to be an actual byte and not kByteEndText. 1390 1391 MaybeReadMemoryBarrier(); // On alpha we need to ensure read ordering 1392 State* ns = s->next_[bytemap[c]]; 1393 ANNOTATE_HAPPENS_AFTER(ns); 1394 if (ns == NULL) { 1395 ns = RunStateOnByteUnlocked(s, c); 1396 if (ns == NULL) { 1397 // After we reset the cache, we hold cache_mutex exclusively, 1398 // so if resetp != NULL, it means we filled the DFA state 1399 // cache with this search alone (without any other threads). 1400 // Benchmarks show that doing a state computation on every 1401 // byte runs at about 0.2 MB/s, while the NFA (nfa.cc) can do the 1402 // same at about 2 MB/s. Unless we're processing an average 1403 // of 10 bytes per state computation, fail so that RE2 can 1404 // fall back to the NFA. 1405 if (FLAGS_re2_dfa_bail_when_slow && resetp != NULL && 1406 (p - resetp) < 10*state_cache_.size()) { 1407 params->failed = true; 1408 return false; 1409 } 1410 resetp = p; 1411 1412 // Prepare to save start and s across the reset. 1413 StateSaver save_start(this, start); 1414 StateSaver save_s(this, s); 1415 1416 // Discard all the States in the cache. 1417 ResetCache(params->cache_lock); 1418 1419 // Restore start and s so we can continue. 1420 if ((start = save_start.Restore()) == NULL || 1421 (s = save_s.Restore()) == NULL) { 1422 // Restore already did LOG(DFATAL). 1423 params->failed = true; 1424 return false; 1425 } 1426 ns = RunStateOnByteUnlocked(s, c); 1427 if (ns == NULL) { 1428 LOG(DFATAL) << "RunStateOnByteUnlocked failed after ResetCache"; 1429 params->failed = true; 1430 return false; 1431 } 1432 } 1433 } 1434 if (ns <= SpecialStateMax) { 1435 if (ns == DeadState) { 1436 params->ep = reinterpret_cast<const char*>(lastmatch); 1437 return matched; 1438 } 1439 // FullMatchState 1440 params->ep = reinterpret_cast<const char*>(ep); 1441 return true; 1442 } 1443 s = ns; 1444 1445 if (s->IsMatch()) { 1446 matched = true; 1447 // The DFA notices the match one byte late, 1448 // so adjust p before using it in the match. 1449 if (run_forward) 1450 lastmatch = p - 1; 1451 else 1452 lastmatch = p + 1; 1453 if (DebugDFA) 1454 fprintf(stderr, "match @%d! [%s]\n", 1455 static_cast<int>(lastmatch - bp), 1456 DumpState(s).c_str()); 1457 1458 if (want_earliest_match) { 1459 params->ep = reinterpret_cast<const char*>(lastmatch); 1460 return true; 1461 } 1462 } 1463 } 1464 1465 // Process one more byte to see if it triggers a match. 1466 // (Remember, matches are delayed one byte.) 1467 int lastbyte; 1468 if (run_forward) { 1469 if (params->text.end() == params->context.end()) 1470 lastbyte = kByteEndText; 1471 else 1472 lastbyte = params->text.end()[0] & 0xFF; 1473 } else { 1474 if (params->text.begin() == params->context.begin()) 1475 lastbyte = kByteEndText; 1476 else 1477 lastbyte = params->text.begin()[-1] & 0xFF; 1478 } 1479 1480 MaybeReadMemoryBarrier(); // On alpha we need to ensure read ordering 1481 State* ns = s->next_[ByteMap(lastbyte)]; 1482 ANNOTATE_HAPPENS_AFTER(ns); 1483 if (ns == NULL) { 1484 ns = RunStateOnByteUnlocked(s, lastbyte); 1485 if (ns == NULL) { 1486 StateSaver save_s(this, s); 1487 ResetCache(params->cache_lock); 1488 if ((s = save_s.Restore()) == NULL) { 1489 params->failed = true; 1490 return false; 1491 } 1492 ns = RunStateOnByteUnlocked(s, lastbyte); 1493 if (ns == NULL) { 1494 LOG(DFATAL) << "RunStateOnByteUnlocked failed after Reset"; 1495 params->failed = true; 1496 return false; 1497 } 1498 } 1499 } 1500 s = ns; 1501 if (DebugDFA) 1502 fprintf(stderr, "@_: %s\n", DumpState(s).c_str()); 1503 if (s == FullMatchState) { 1504 params->ep = reinterpret_cast<const char*>(ep); 1505 return true; 1506 } 1507 if (s > SpecialStateMax && s->IsMatch()) { 1508 matched = true; 1509 lastmatch = p; 1510 if (params->matches && kind_ == Prog::kManyMatch) { 1511 vector<int>* v = params->matches; 1512 v->clear(); 1513 for (int i = 0; i < s->ninst_; i++) { 1514 Prog::Inst* ip = prog_->inst(s->inst_[i]); 1515 if (ip->opcode() == kInstMatch) 1516 v->push_back(ip->match_id()); 1517 } 1518 } 1519 if (DebugDFA) 1520 fprintf(stderr, "match @%d! [%s]\n", static_cast<int>(lastmatch - bp), 1521 DumpState(s).c_str()); 1522 } 1523 params->ep = reinterpret_cast<const char*>(lastmatch); 1524 return matched; 1525 } 1526 1527 // Inline specializations of the general loop. 1528 bool DFA::SearchFFF(SearchParams* params) { 1529 return InlinedSearchLoop(params, 0, 0, 0); 1530 } 1531 bool DFA::SearchFFT(SearchParams* params) { 1532 return InlinedSearchLoop(params, 0, 0, 1); 1533 } 1534 bool DFA::SearchFTF(SearchParams* params) { 1535 return InlinedSearchLoop(params, 0, 1, 0); 1536 } 1537 bool DFA::SearchFTT(SearchParams* params) { 1538 return InlinedSearchLoop(params, 0, 1, 1); 1539 } 1540 bool DFA::SearchTFF(SearchParams* params) { 1541 return InlinedSearchLoop(params, 1, 0, 0); 1542 } 1543 bool DFA::SearchTFT(SearchParams* params) { 1544 return InlinedSearchLoop(params, 1, 0, 1); 1545 } 1546 bool DFA::SearchTTF(SearchParams* params) { 1547 return InlinedSearchLoop(params, 1, 1, 0); 1548 } 1549 bool DFA::SearchTTT(SearchParams* params) { 1550 return InlinedSearchLoop(params, 1, 1, 1); 1551 } 1552 1553 // For debugging, calls the general code directly. 1554 bool DFA::SlowSearchLoop(SearchParams* params) { 1555 return InlinedSearchLoop(params, 1556 params->firstbyte >= 0, 1557 params->want_earliest_match, 1558 params->run_forward); 1559 } 1560 1561 // For performance, calls the appropriate specialized version 1562 // of InlinedSearchLoop. 1563 bool DFA::FastSearchLoop(SearchParams* params) { 1564 // Because the methods are private, the Searches array 1565 // cannot be declared at top level. 1566 static bool (DFA::*Searches[])(SearchParams*) = { 1567 &DFA::SearchFFF, 1568 &DFA::SearchFFT, 1569 &DFA::SearchFTF, 1570 &DFA::SearchFTT, 1571 &DFA::SearchTFF, 1572 &DFA::SearchTFT, 1573 &DFA::SearchTTF, 1574 &DFA::SearchTTT, 1575 }; 1576 1577 bool have_firstbyte = (params->firstbyte >= 0); 1578 int index = 4 * have_firstbyte + 1579 2 * params->want_earliest_match + 1580 1 * params->run_forward; 1581 return (this->*Searches[index])(params); 1582 } 1583 1584 1585 // The discussion of DFA execution above ignored the question of how 1586 // to determine the initial state for the search loop. There are two 1587 // factors that influence the choice of start state. 1588 // 1589 // The first factor is whether the search is anchored or not. 1590 // The regexp program (Prog*) itself has 1591 // two different entry points: one for anchored searches and one for 1592 // unanchored searches. (The unanchored version starts with a leading ".*?" 1593 // and then jumps to the anchored one.) 1594 // 1595 // The second factor is where text appears in the larger context, which 1596 // determines which empty-string operators can be matched at the beginning 1597 // of execution. If text is at the very beginning of context, \A and ^ match. 1598 // Otherwise if text is at the beginning of a line, then ^ matches. 1599 // Otherwise it matters whether the character before text is a word character 1600 // or a non-word character. 1601 // 1602 // The two cases (unanchored vs not) and four cases (empty-string flags) 1603 // combine to make the eight cases recorded in the DFA's begin_text_[2], 1604 // begin_line_[2], after_wordchar_[2], and after_nonwordchar_[2] cached 1605 // StartInfos. The start state for each is filled in the first time it 1606 // is used for an actual search. 1607 1608 // Examines text, context, and anchored to determine the right start 1609 // state for the DFA search loop. Fills in params and returns true on success. 1610 // Returns false on failure. 1611 bool DFA::AnalyzeSearch(SearchParams* params) { 1612 const StringPiece& text = params->text; 1613 const StringPiece& context = params->context; 1614 1615 // Sanity check: make sure that text lies within context. 1616 if (text.begin() < context.begin() || text.end() > context.end()) { 1617 LOG(DFATAL) << "Text is not inside context."; 1618 params->start = DeadState; 1619 return true; 1620 } 1621 1622 // Determine correct search type. 1623 int start; 1624 uint flags; 1625 if (params->run_forward) { 1626 if (text.begin() == context.begin()) { 1627 start = kStartBeginText; 1628 flags = kEmptyBeginText|kEmptyBeginLine; 1629 } else if (text.begin()[-1] == '\n') { 1630 start = kStartBeginLine; 1631 flags = kEmptyBeginLine; 1632 } else if (Prog::IsWordChar(text.begin()[-1] & 0xFF)) { 1633 start = kStartAfterWordChar; 1634 flags = kFlagLastWord; 1635 } else { 1636 start = kStartAfterNonWordChar; 1637 flags = 0; 1638 } 1639 } else { 1640 if (text.end() == context.end()) { 1641 start = kStartBeginText; 1642 flags = kEmptyBeginText|kEmptyBeginLine; 1643 } else if (text.end()[0] == '\n') { 1644 start = kStartBeginLine; 1645 flags = kEmptyBeginLine; 1646 } else if (Prog::IsWordChar(text.end()[0] & 0xFF)) { 1647 start = kStartAfterWordChar; 1648 flags = kFlagLastWord; 1649 } else { 1650 start = kStartAfterNonWordChar; 1651 flags = 0; 1652 } 1653 } 1654 if (params->anchored || prog_->anchor_start()) 1655 start |= kStartAnchored; 1656 StartInfo* info = &start_[start]; 1657 1658 // Try once without cache_lock for writing. 1659 // Try again after resetting the cache 1660 // (ResetCache will relock cache_lock for writing). 1661 if (!AnalyzeSearchHelper(params, info, flags)) { 1662 ResetCache(params->cache_lock); 1663 if (!AnalyzeSearchHelper(params, info, flags)) { 1664 LOG(DFATAL) << "Failed to analyze start state."; 1665 params->failed = true; 1666 return false; 1667 } 1668 } 1669 1670 if (DebugDFA) 1671 fprintf(stderr, "anchored=%d fwd=%d flags=%#x state=%s firstbyte=%d\n", 1672 params->anchored, params->run_forward, flags, 1673 DumpState(info->start).c_str(), info->firstbyte); 1674 1675 params->start = info->start; 1676 params->firstbyte = ANNOTATE_UNPROTECTED_READ(info->firstbyte); 1677 1678 return true; 1679 } 1680 1681 // Fills in info if needed. Returns true on success, false on failure. 1682 bool DFA::AnalyzeSearchHelper(SearchParams* params, StartInfo* info, 1683 uint flags) { 1684 // Quick check; okay because of memory barriers below. 1685 if (ANNOTATE_UNPROTECTED_READ(info->firstbyte) != kFbUnknown) { 1686 ANNOTATE_HAPPENS_AFTER(&info->firstbyte); 1687 return true; 1688 } 1689 1690 MutexLock l(&mutex_); 1691 if (info->firstbyte != kFbUnknown) { 1692 ANNOTATE_HAPPENS_AFTER(&info->firstbyte); 1693 return true; 1694 } 1695 1696 q0_->clear(); 1697 AddToQueue(q0_, 1698 params->anchored ? prog_->start() : prog_->start_unanchored(), 1699 flags); 1700 info->start = WorkqToCachedState(q0_, flags); 1701 if (info->start == NULL) 1702 return false; 1703 1704 if (info->start == DeadState) { 1705 ANNOTATE_HAPPENS_BEFORE(&info->firstbyte); 1706 WriteMemoryBarrier(); // Synchronize with "quick check" above. 1707 info->firstbyte = kFbNone; 1708 return true; 1709 } 1710 1711 if (info->start == FullMatchState) { 1712 ANNOTATE_HAPPENS_BEFORE(&info->firstbyte); 1713 WriteMemoryBarrier(); // Synchronize with "quick check" above. 1714 info->firstbyte = kFbNone; // will be ignored 1715 return true; 1716 } 1717 1718 // Compute info->firstbyte by running state on all 1719 // possible byte values, looking for a single one that 1720 // leads to a different state. 1721 int firstbyte = kFbNone; 1722 for (int i = 0; i < 256; i++) { 1723 State* s = RunStateOnByte(info->start, i); 1724 if (s == NULL) { 1725 ANNOTATE_HAPPENS_BEFORE(&info->firstbyte); 1726 WriteMemoryBarrier(); // Synchronize with "quick check" above. 1727 info->firstbyte = firstbyte; 1728 return false; 1729 } 1730 if (s == info->start) 1731 continue; 1732 // Goes to new state... 1733 if (firstbyte == kFbNone) { 1734 firstbyte = i; // ... first one 1735 } else { 1736 firstbyte = kFbMany; // ... too many 1737 break; 1738 } 1739 } 1740 ANNOTATE_HAPPENS_BEFORE(&info->firstbyte); 1741 WriteMemoryBarrier(); // Synchronize with "quick check" above. 1742 info->firstbyte = firstbyte; 1743 return true; 1744 } 1745 1746 // The actual DFA search: calls AnalyzeSearch and then FastSearchLoop. 1747 bool DFA::Search(const StringPiece& text, 1748 const StringPiece& context, 1749 bool anchored, 1750 bool want_earliest_match, 1751 bool run_forward, 1752 bool* failed, 1753 const char** epp, 1754 vector<int>* matches) { 1755 *epp = NULL; 1756 if (!ok()) { 1757 *failed = true; 1758 return false; 1759 } 1760 *failed = false; 1761 1762 if (DebugDFA) { 1763 fprintf(stderr, "\nprogram:\n%s\n", prog_->DumpUnanchored().c_str()); 1764 fprintf(stderr, "text %s anchored=%d earliest=%d fwd=%d kind %d\n", 1765 text.as_string().c_str(), anchored, want_earliest_match, 1766 run_forward, kind_); 1767 } 1768 1769 RWLocker l(&cache_mutex_); 1770 SearchParams params(text, context, &l); 1771 params.anchored = anchored; 1772 params.want_earliest_match = want_earliest_match; 1773 params.run_forward = run_forward; 1774 params.matches = matches; 1775 1776 if (!AnalyzeSearch(¶ms)) { 1777 *failed = true; 1778 return false; 1779 } 1780 if (params.start == DeadState) 1781 return false; 1782 if (params.start == FullMatchState) { 1783 if (run_forward == want_earliest_match) 1784 *epp = text.begin(); 1785 else 1786 *epp = text.end(); 1787 return true; 1788 } 1789 if (DebugDFA) 1790 fprintf(stderr, "start %s\n", DumpState(params.start).c_str()); 1791 bool ret = FastSearchLoop(¶ms); 1792 if (params.failed) { 1793 *failed = true; 1794 return false; 1795 } 1796 *epp = params.ep; 1797 return ret; 1798 } 1799 1800 // Deletes dfa. 1801 // 1802 // This is a separate function so that 1803 // prog.h can be used without moving the definition of 1804 // class DFA out of this file. If you set 1805 // prog->dfa_ = dfa; 1806 // then you also have to set 1807 // prog->delete_dfa_ = DeleteDFA; 1808 // so that ~Prog can delete the dfa. 1809 static void DeleteDFA(DFA* dfa) { 1810 delete dfa; 1811 } 1812 1813 DFA* Prog::GetDFA(MatchKind kind) { 1814 DFA*volatile* pdfa; 1815 if (kind == kFirstMatch || kind == kManyMatch) { 1816 pdfa = &dfa_first_; 1817 } else { 1818 kind = kLongestMatch; 1819 pdfa = &dfa_longest_; 1820 } 1821 1822 // Quick check; okay because of memory barrier below. 1823 DFA *dfa = ANNOTATE_UNPROTECTED_READ(*pdfa); 1824 if (dfa != NULL) { 1825 ANNOTATE_HAPPENS_AFTER(dfa); 1826 return dfa; 1827 } 1828 1829 MutexLock l(&dfa_mutex_); 1830 dfa = *pdfa; 1831 if (dfa != NULL) { 1832 ANNOTATE_HAPPENS_AFTER(dfa); 1833 return dfa; 1834 } 1835 1836 // For a forward DFA, half the memory goes to each DFA. 1837 // For a reverse DFA, all the memory goes to the 1838 // "longest match" DFA, because RE2 never does reverse 1839 // "first match" searches. 1840 int64 m = dfa_mem_/2; 1841 if (reversed_) { 1842 if (kind == kLongestMatch || kind == kManyMatch) 1843 m = dfa_mem_; 1844 else 1845 m = 0; 1846 } 1847 dfa = new DFA(this, kind, m); 1848 delete_dfa_ = DeleteDFA; 1849 1850 // Synchronize with "quick check" above. 1851 ANNOTATE_HAPPENS_BEFORE(dfa); 1852 WriteMemoryBarrier(); 1853 *pdfa = dfa; 1854 1855 return dfa; 1856 } 1857 1858 1859 // Executes the regexp program to search in text, 1860 // which itself is inside the larger context. (As a convenience, 1861 // passing a NULL context is equivalent to passing text.) 1862 // Returns true if a match is found, false if not. 1863 // If a match is found, fills in match0->end() to point at the end of the match 1864 // and sets match0->begin() to text.begin(), since the DFA can't track 1865 // where the match actually began. 1866 // 1867 // This is the only external interface (class DFA only exists in this file). 1868 // 1869 bool Prog::SearchDFA(const StringPiece& text, const StringPiece& const_context, 1870 Anchor anchor, MatchKind kind, 1871 StringPiece* match0, bool* failed, vector<int>* matches) { 1872 *failed = false; 1873 1874 StringPiece context = const_context; 1875 if (context.begin() == NULL) 1876 context = text; 1877 bool carat = anchor_start(); 1878 bool dollar = anchor_end(); 1879 if (reversed_) { 1880 bool t = carat; 1881 carat = dollar; 1882 dollar = t; 1883 } 1884 if (carat && context.begin() != text.begin()) 1885 return false; 1886 if (dollar && context.end() != text.end()) 1887 return false; 1888 1889 // Handle full match by running an anchored longest match 1890 // and then checking if it covers all of text. 1891 bool anchored = anchor == kAnchored || anchor_start() || kind == kFullMatch; 1892 bool endmatch = false; 1893 if (kind == kManyMatch) { 1894 endmatch = true; 1895 } else if (kind == kFullMatch || anchor_end()) { 1896 endmatch = true; 1897 kind = kLongestMatch; 1898 } 1899 1900 // If the caller doesn't care where the match is (just whether one exists), 1901 // then we can stop at the very first match we find, the so-called 1902 // "shortest match". 1903 bool want_shortest_match = false; 1904 if (match0 == NULL && !endmatch) { 1905 want_shortest_match = true; 1906 kind = kLongestMatch; 1907 } 1908 1909 DFA* dfa = GetDFA(kind); 1910 const char* ep; 1911 bool matched = dfa->Search(text, context, anchored, 1912 want_shortest_match, !reversed_, 1913 failed, &ep, matches); 1914 if (*failed) 1915 return false; 1916 if (!matched) 1917 return false; 1918 if (endmatch && ep != (reversed_ ? text.begin() : text.end())) 1919 return false; 1920 1921 // If caller cares, record the boundary of the match. 1922 // We only know where it ends, so use the boundary of text 1923 // as the beginning. 1924 if (match0) { 1925 if (reversed_) 1926 *match0 = StringPiece(ep, text.end() - ep); 1927 else 1928 *match0 = StringPiece(text.begin(), ep - text.begin()); 1929 } 1930 return true; 1931 } 1932 1933 // Build out all states in DFA. Returns number of states. 1934 int DFA::BuildAllStates() { 1935 if (!ok()) 1936 return 0; 1937 1938 // Pick out start state for unanchored search 1939 // at beginning of text. 1940 RWLocker l(&cache_mutex_); 1941 SearchParams params(NULL, NULL, &l); 1942 params.anchored = false; 1943 if (!AnalyzeSearch(¶ms) || params.start <= SpecialStateMax) 1944 return 0; 1945 1946 // Add start state to work queue. 1947 StateSet queued; 1948 vector<State*> q; 1949 queued.insert(params.start); 1950 q.push_back(params.start); 1951 1952 // Flood to expand every state. 1953 for (int i = 0; i < q.size(); i++) { 1954 State* s = q[i]; 1955 for (int c = 0; c < 257; c++) { 1956 State* ns = RunStateOnByteUnlocked(s, c); 1957 if (ns > SpecialStateMax && queued.find(ns) == queued.end()) { 1958 queued.insert(ns); 1959 q.push_back(ns); 1960 } 1961 } 1962 } 1963 1964 return q.size(); 1965 } 1966 1967 // Build out all states in DFA for kind. Returns number of states. 1968 int Prog::BuildEntireDFA(MatchKind kind) { 1969 //LOG(ERROR) << "BuildEntireDFA is only for testing."; 1970 return GetDFA(kind)->BuildAllStates(); 1971 } 1972 1973 // Computes min and max for matching string. 1974 // Won't return strings bigger than maxlen. 1975 bool DFA::PossibleMatchRange(string* min, string* max, int maxlen) { 1976 if (!ok()) 1977 return false; 1978 1979 // NOTE: if future users of PossibleMatchRange want more precision when 1980 // presented with infinitely repeated elements, consider making this a 1981 // parameter to PossibleMatchRange. 1982 static int kMaxEltRepetitions = 0; 1983 1984 // Keep track of the number of times we've visited states previously. We only 1985 // revisit a given state if it's part of a repeated group, so if the value 1986 // portion of the map tuple exceeds kMaxEltRepetitions we bail out and set 1987 // |*max| to |PrefixSuccessor(*max)|. 1988 // 1989 // Also note that previously_visited_states[UnseenStatePtr] will, in the STL 1990 // tradition, implicitly insert a '0' value at first use. We take advantage 1991 // of that property below. 1992 map<State*, int> previously_visited_states; 1993 1994 // Pick out start state for anchored search at beginning of text. 1995 RWLocker l(&cache_mutex_); 1996 SearchParams params(NULL, NULL, &l); 1997 params.anchored = true; 1998 if (!AnalyzeSearch(¶ms)) 1999 return false; 2000 if (params.start == DeadState) { // No matching strings 2001 *min = ""; 2002 *max = ""; 2003 return true; 2004 } 2005 if (params.start == FullMatchState) // Every string matches: no max 2006 return false; 2007 2008 // The DFA is essentially a big graph rooted at params.start, 2009 // and paths in the graph correspond to accepted strings. 2010 // Each node in the graph has potentially 256+1 arrows 2011 // coming out, one for each byte plus the magic end of 2012 // text character kByteEndText. 2013 2014 // To find the smallest possible prefix of an accepted 2015 // string, we just walk the graph preferring to follow 2016 // arrows with the lowest bytes possible. To find the 2017 // largest possible prefix, we follow the largest bytes 2018 // possible. 2019 2020 // The test for whether there is an arrow from s on byte j is 2021 // ns = RunStateOnByteUnlocked(s, j); 2022 // if (ns == NULL) 2023 // return false; 2024 // if (ns != DeadState && ns->ninst > 0) 2025 // The RunStateOnByteUnlocked call asks the DFA to build out the graph. 2026 // It returns NULL only if the DFA has run out of memory, 2027 // in which case we can't be sure of anything. 2028 // The second check sees whether there was graph built 2029 // and whether it is interesting graph. Nodes might have 2030 // ns->ninst == 0 if they exist only to represent the fact 2031 // that a match was found on the previous byte. 2032 2033 // Build minimum prefix. 2034 State* s = params.start; 2035 min->clear(); 2036 for (int i = 0; i < maxlen; i++) { 2037 if (previously_visited_states[s] > kMaxEltRepetitions) { 2038 VLOG(2) << "Hit kMaxEltRepetitions=" << kMaxEltRepetitions 2039 << " for state s=" << s << " and min=" << CEscape(*min); 2040 break; 2041 } 2042 previously_visited_states[s]++; 2043 2044 // Stop if min is a match. 2045 State* ns = RunStateOnByteUnlocked(s, kByteEndText); 2046 if (ns == NULL) // DFA out of memory 2047 return false; 2048 if (ns != DeadState && (ns == FullMatchState || ns->IsMatch())) 2049 break; 2050 2051 // Try to extend the string with low bytes. 2052 bool extended = false; 2053 for (int j = 0; j < 256; j++) { 2054 ns = RunStateOnByteUnlocked(s, j); 2055 if (ns == NULL) // DFA out of memory 2056 return false; 2057 if (ns == FullMatchState || 2058 (ns > SpecialStateMax && ns->ninst_ > 0)) { 2059 extended = true; 2060 min->append(1, j); 2061 s = ns; 2062 break; 2063 } 2064 } 2065 if (!extended) 2066 break; 2067 } 2068 2069 // Build maximum prefix. 2070 previously_visited_states.clear(); 2071 s = params.start; 2072 max->clear(); 2073 for (int i = 0; i < maxlen; i++) { 2074 if (previously_visited_states[s] > kMaxEltRepetitions) { 2075 VLOG(2) << "Hit kMaxEltRepetitions=" << kMaxEltRepetitions 2076 << " for state s=" << s << " and max=" << CEscape(*max); 2077 break; 2078 } 2079 previously_visited_states[s] += 1; 2080 2081 // Try to extend the string with high bytes. 2082 bool extended = false; 2083 for (int j = 255; j >= 0; j--) { 2084 State* ns = RunStateOnByteUnlocked(s, j); 2085 if (ns == NULL) 2086 return false; 2087 if (ns == FullMatchState || 2088 (ns > SpecialStateMax && ns->ninst_ > 0)) { 2089 extended = true; 2090 max->append(1, j); 2091 s = ns; 2092 break; 2093 } 2094 } 2095 if (!extended) { 2096 // Done, no need for PrefixSuccessor. 2097 return true; 2098 } 2099 } 2100 2101 // Stopped while still adding to *max - round aaaaaaaaaa... to aaaa...b 2102 *max = PrefixSuccessor(*max); 2103 2104 // If there are no bytes left, we have no way to say "there is no maximum 2105 // string". We could make the interface more complicated and be able to 2106 // return "there is no maximum but here is a minimum", but that seems like 2107 // overkill -- the most common no-max case is all possible strings, so not 2108 // telling the caller that the empty string is the minimum match isn't a 2109 // great loss. 2110 if (max->empty()) 2111 return false; 2112 2113 return true; 2114 } 2115 2116 // PossibleMatchRange for a Prog. 2117 bool Prog::PossibleMatchRange(string* min, string* max, int maxlen) { 2118 DFA* dfa = NULL; 2119 { 2120 MutexLock l(&dfa_mutex_); 2121 // Have to use dfa_longest_ to get all strings for full matches. 2122 // For example, (a|aa) never matches aa in first-match mode. 2123 if (dfa_longest_ == NULL) { 2124 dfa_longest_ = new DFA(this, Prog::kLongestMatch, dfa_mem_/2); 2125 delete_dfa_ = DeleteDFA; 2126 } 2127 dfa = dfa_longest_; 2128 } 2129 return dfa->PossibleMatchRange(min, max, maxlen); 2130 } 2131 2132 } // namespace re2 2133