Home | History | Annotate | Download | only in blas
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #include "common.h"
     11 
     12 int EIGEN_BLAS_FUNC(gemv)(char *opa, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *incb, RealScalar *pbeta, RealScalar *pc, int *incc)
     13 {
     14   typedef void (*functype)(int, int, const Scalar *, int, const Scalar *, int , Scalar *, int, Scalar);
     15   static functype func[4];
     16 
     17   static bool init = false;
     18   if(!init)
     19   {
     20     for(int k=0; k<4; ++k)
     21       func[k] = 0;
     22 
     23     func[NOTR] = (internal::general_matrix_vector_product<int,Scalar,ColMajor,false,Scalar,false>::run);
     24     func[TR  ] = (internal::general_matrix_vector_product<int,Scalar,RowMajor,false,Scalar,false>::run);
     25     func[ADJ ] = (internal::general_matrix_vector_product<int,Scalar,RowMajor,Conj, Scalar,false>::run);
     26 
     27     init = true;
     28   }
     29 
     30   Scalar* a = reinterpret_cast<Scalar*>(pa);
     31   Scalar* b = reinterpret_cast<Scalar*>(pb);
     32   Scalar* c = reinterpret_cast<Scalar*>(pc);
     33   Scalar alpha  = *reinterpret_cast<Scalar*>(palpha);
     34   Scalar beta   = *reinterpret_cast<Scalar*>(pbeta);
     35 
     36   // check arguments
     37   int info = 0;
     38   if(OP(*opa)==INVALID)           info = 1;
     39   else if(*m<0)                   info = 2;
     40   else if(*n<0)                   info = 3;
     41   else if(*lda<std::max(1,*m))    info = 6;
     42   else if(*incb==0)               info = 8;
     43   else if(*incc==0)               info = 11;
     44   if(info)
     45     return xerbla_(SCALAR_SUFFIX_UP"GEMV ",&info,6);
     46 
     47   if(*m==0 || *n==0 || (alpha==Scalar(0) && beta==Scalar(1)))
     48     return 0;
     49 
     50   int actual_m = *m;
     51   int actual_n = *n;
     52   if(OP(*opa)!=NOTR)
     53     std::swap(actual_m,actual_n);
     54 
     55   Scalar* actual_b = get_compact_vector(b,actual_n,*incb);
     56   Scalar* actual_c = get_compact_vector(c,actual_m,*incc);
     57 
     58   if(beta!=Scalar(1))
     59   {
     60     if(beta==Scalar(0)) vector(actual_c, actual_m).setZero();
     61     else                vector(actual_c, actual_m) *= beta;
     62   }
     63 
     64   int code = OP(*opa);
     65   func[code](actual_m, actual_n, a, *lda, actual_b, 1, actual_c, 1, alpha);
     66 
     67   if(actual_b!=b) delete[] actual_b;
     68   if(actual_c!=c) delete[] copy_back(actual_c,c,actual_m,*incc);
     69 
     70   return 1;
     71 }
     72 
     73 int EIGEN_BLAS_FUNC(trsv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pa, int *lda, RealScalar *pb, int *incb)
     74 {
     75   typedef void (*functype)(int, const Scalar *, int, Scalar *);
     76   static functype func[16];
     77 
     78   static bool init = false;
     79   if(!init)
     80   {
     81     for(int k=0; k<16; ++k)
     82       func[k] = 0;
     83 
     84     func[NOTR  | (UP << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0,       false,ColMajor>::run);
     85     func[TR    | (UP << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0,       false,RowMajor>::run);
     86     func[ADJ   | (UP << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0,       Conj, RowMajor>::run);
     87 
     88     func[NOTR  | (LO << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0,       false,ColMajor>::run);
     89     func[TR    | (LO << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0,       false,RowMajor>::run);
     90     func[ADJ   | (LO << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0,       Conj, RowMajor>::run);
     91 
     92     func[NOTR  | (UP << 2) | (UNIT  << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,false,ColMajor>::run);
     93     func[TR    | (UP << 2) | (UNIT  << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,false,RowMajor>::run);
     94     func[ADJ   | (UP << 2) | (UNIT  << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,Conj, RowMajor>::run);
     95 
     96     func[NOTR  | (LO << 2) | (UNIT  << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,false,ColMajor>::run);
     97     func[TR    | (LO << 2) | (UNIT  << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,false,RowMajor>::run);
     98     func[ADJ   | (LO << 2) | (UNIT  << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,Conj, RowMajor>::run);
     99 
    100     init = true;
    101   }
    102 
    103   Scalar* a = reinterpret_cast<Scalar*>(pa);
    104   Scalar* b = reinterpret_cast<Scalar*>(pb);
    105 
    106   int info = 0;
    107   if(UPLO(*uplo)==INVALID)                                            info = 1;
    108   else if(OP(*opa)==INVALID)                                          info = 2;
    109   else if(DIAG(*diag)==INVALID)                                       info = 3;
    110   else if(*n<0)                                                       info = 4;
    111   else if(*lda<std::max(1,*n))                                        info = 6;
    112   else if(*incb==0)                                                   info = 8;
    113   if(info)
    114     return xerbla_(SCALAR_SUFFIX_UP"TRSV ",&info,6);
    115 
    116   Scalar* actual_b = get_compact_vector(b,*n,*incb);
    117 
    118   int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3);
    119   func[code](*n, a, *lda, actual_b);
    120 
    121   if(actual_b!=b) delete[] copy_back(actual_b,b,*n,*incb);
    122 
    123   return 0;
    124 }
    125 
    126 
    127 
    128 int EIGEN_BLAS_FUNC(trmv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pa, int *lda, RealScalar *pb, int *incb)
    129 {
    130   typedef void (*functype)(int, int, const Scalar *, int, const Scalar *, int, Scalar *, int, Scalar);
    131   static functype func[16];
    132 
    133   static bool init = false;
    134   if(!init)
    135   {
    136     for(int k=0; k<16; ++k)
    137       func[k] = 0;
    138 
    139     func[NOTR  | (UP << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|0,       Scalar,false,Scalar,false,ColMajor>::run);
    140     func[TR    | (UP << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|0,       Scalar,false,Scalar,false,RowMajor>::run);
    141     func[ADJ   | (UP << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|0,       Scalar,Conj, Scalar,false,RowMajor>::run);
    142 
    143     func[NOTR  | (LO << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|0,       Scalar,false,Scalar,false,ColMajor>::run);
    144     func[TR    | (LO << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|0,       Scalar,false,Scalar,false,RowMajor>::run);
    145     func[ADJ   | (LO << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|0,       Scalar,Conj, Scalar,false,RowMajor>::run);
    146 
    147     func[NOTR  | (UP << 2) | (UNIT  << 3)] = (internal::triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,false,Scalar,false,ColMajor>::run);
    148     func[TR    | (UP << 2) | (UNIT  << 3)] = (internal::triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,false,Scalar,false,RowMajor>::run);
    149     func[ADJ   | (UP << 2) | (UNIT  << 3)] = (internal::triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,Conj, Scalar,false,RowMajor>::run);
    150 
    151     func[NOTR  | (LO << 2) | (UNIT  << 3)] = (internal::triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,false,Scalar,false,ColMajor>::run);
    152     func[TR    | (LO << 2) | (UNIT  << 3)] = (internal::triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,false,Scalar,false,RowMajor>::run);
    153     func[ADJ   | (LO << 2) | (UNIT  << 3)] = (internal::triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,Conj, Scalar,false,RowMajor>::run);
    154 
    155     init = true;
    156   }
    157 
    158   Scalar* a = reinterpret_cast<Scalar*>(pa);
    159   Scalar* b = reinterpret_cast<Scalar*>(pb);
    160 
    161   int info = 0;
    162   if(UPLO(*uplo)==INVALID)                                            info = 1;
    163   else if(OP(*opa)==INVALID)                                          info = 2;
    164   else if(DIAG(*diag)==INVALID)                                       info = 3;
    165   else if(*n<0)                                                       info = 4;
    166   else if(*lda<std::max(1,*n))                                        info = 6;
    167   else if(*incb==0)                                                   info = 8;
    168   if(info)
    169     return xerbla_(SCALAR_SUFFIX_UP"TRMV ",&info,6);
    170 
    171   if(*n==0)
    172     return 1;
    173 
    174   Scalar* actual_b = get_compact_vector(b,*n,*incb);
    175   Matrix<Scalar,Dynamic,1> res(*n);
    176   res.setZero();
    177 
    178   int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3);
    179   if(code>=16 || func[code]==0)
    180     return 0;
    181 
    182   func[code](*n, *n, a, *lda, actual_b, 1, res.data(), 1, Scalar(1));
    183 
    184   copy_back(res.data(),b,*n,*incb);
    185   if(actual_b!=b) delete[] actual_b;
    186 
    187   return 0;
    188 }
    189 
    190 /**  GBMV  performs one of the matrix-vector operations
    191   *
    192   *     y := alpha*A*x + beta*y,   or   y := alpha*A'*x + beta*y,
    193   *
    194   *  where alpha and beta are scalars, x and y are vectors and A is an
    195   *  m by n band matrix, with kl sub-diagonals and ku super-diagonals.
    196   */
    197 int EIGEN_BLAS_FUNC(gbmv)(char *trans, int *m, int *n, int *kl, int *ku, RealScalar *palpha, RealScalar *pa, int *lda,
    198                           RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy)
    199 {
    200   Scalar* a = reinterpret_cast<Scalar*>(pa);
    201   Scalar* x = reinterpret_cast<Scalar*>(px);
    202   Scalar* y = reinterpret_cast<Scalar*>(py);
    203   Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
    204   Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
    205   int coeff_rows = *kl+*ku+1;
    206 
    207   int info = 0;
    208        if(OP(*trans)==INVALID)                                        info = 1;
    209   else if(*m<0)                                                       info = 2;
    210   else if(*n<0)                                                       info = 3;
    211   else if(*kl<0)                                                      info = 4;
    212   else if(*ku<0)                                                      info = 5;
    213   else if(*lda<coeff_rows)                                            info = 8;
    214   else if(*incx==0)                                                   info = 10;
    215   else if(*incy==0)                                                   info = 13;
    216   if(info)
    217     return xerbla_(SCALAR_SUFFIX_UP"GBMV ",&info,6);
    218 
    219   if(*m==0 || *n==0 || (alpha==Scalar(0) && beta==Scalar(1)))
    220     return 0;
    221 
    222   int actual_m = *m;
    223   int actual_n = *n;
    224   if(OP(*trans)!=NOTR)
    225     std::swap(actual_m,actual_n);
    226 
    227   Scalar* actual_x = get_compact_vector(x,actual_n,*incx);
    228   Scalar* actual_y = get_compact_vector(y,actual_m,*incy);
    229 
    230   if(beta!=Scalar(1))
    231   {
    232     if(beta==Scalar(0)) vector(actual_y, actual_m).setZero();
    233     else                vector(actual_y, actual_m) *= beta;
    234   }
    235 
    236   MatrixType mat_coeffs(a,coeff_rows,*n,*lda);
    237 
    238   int nb = std::min(*n,(*m)+(*ku));
    239   for(int j=0; j<nb; ++j)
    240   {
    241     int start = std::max(0,j - *ku);
    242     int end = std::min((*m)-1,j + *kl);
    243     int len = end - start + 1;
    244     int offset = (*ku) - j + start;
    245     if(OP(*trans)==NOTR)
    246       vector(actual_y+start,len) += (alpha*actual_x[j]) * mat_coeffs.col(j).segment(offset,len);
    247     else if(OP(*trans)==TR)
    248       actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).transpose() * vector(actual_x+start,len) ).value();
    249     else
    250       actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).adjoint()   * vector(actual_x+start,len) ).value();
    251   }
    252 
    253   if(actual_x!=x) delete[] actual_x;
    254   if(actual_y!=y) delete[] copy_back(actual_y,y,actual_m,*incy);
    255 
    256   return 0;
    257 }
    258 
    259 #if 0
    260 /**  TBMV  performs one of the matrix-vector operations
    261   *
    262   *     x := A*x,   or   x := A'*x,
    263   *
    264   *  where x is an n element vector and  A is an n by n unit, or non-unit,
    265   *  upper or lower triangular band matrix, with ( k + 1 ) diagonals.
    266   */
    267 int EIGEN_BLAS_FUNC(tbmv)(char *uplo, char *opa, char *diag, int *n, int *k, RealScalar *pa, int *lda, RealScalar *px, int *incx)
    268 {
    269   Scalar* a = reinterpret_cast<Scalar*>(pa);
    270   Scalar* x = reinterpret_cast<Scalar*>(px);
    271   int coeff_rows = *k + 1;
    272 
    273   int info = 0;
    274        if(UPLO(*uplo)==INVALID)                                       info = 1;
    275   else if(OP(*opa)==INVALID)                                          info = 2;
    276   else if(DIAG(*diag)==INVALID)                                       info = 3;
    277   else if(*n<0)                                                       info = 4;
    278   else if(*k<0)                                                       info = 5;
    279   else if(*lda<coeff_rows)                                            info = 7;
    280   else if(*incx==0)                                                   info = 9;
    281   if(info)
    282     return xerbla_(SCALAR_SUFFIX_UP"TBMV ",&info,6);
    283 
    284   if(*n==0)
    285     return 0;
    286 
    287   int actual_n = *n;
    288 
    289   Scalar* actual_x = get_compact_vector(x,actual_n,*incx);
    290 
    291   MatrixType mat_coeffs(a,coeff_rows,*n,*lda);
    292 
    293   int ku = UPLO(*uplo)==UPPER ? *k : 0;
    294   int kl = UPLO(*uplo)==LOWER ? *k : 0;
    295 
    296   for(int j=0; j<*n; ++j)
    297   {
    298     int start = std::max(0,j - ku);
    299     int end = std::min((*m)-1,j + kl);
    300     int len = end - start + 1;
    301     int offset = (ku) - j + start;
    302 
    303     if(OP(*trans)==NOTR)
    304       vector(actual_y+start,len) += (alpha*actual_x[j]) * mat_coeffs.col(j).segment(offset,len);
    305     else if(OP(*trans)==TR)
    306       actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).transpose() * vector(actual_x+start,len) ).value();
    307     else
    308       actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).adjoint()   * vector(actual_x+start,len) ).value();
    309   }
    310 
    311   if(actual_x!=x) delete[] actual_x;
    312   if(actual_y!=y) delete[] copy_back(actual_y,y,actual_m,*incy);
    313 
    314   return 0;
    315 }
    316 #endif
    317 
    318 /**  DTBSV  solves one of the systems of equations
    319   *
    320   *     A*x = b,   or   A'*x = b,
    321   *
    322   *  where b and x are n element vectors and A is an n by n unit, or
    323   *  non-unit, upper or lower triangular band matrix, with ( k + 1 )
    324   *  diagonals.
    325   *
    326   *  No test for singularity or near-singularity is included in this
    327   *  routine. Such tests must be performed before calling this routine.
    328   */
    329 int EIGEN_BLAS_FUNC(tbsv)(char *uplo, char *op, char *diag, int *n, int *k, RealScalar *pa, int *lda, RealScalar *px, int *incx)
    330 {
    331   typedef void (*functype)(int, int, const Scalar *, int, Scalar *);
    332   static functype func[16];
    333 
    334   static bool init = false;
    335   if(!init)
    336   {
    337     for(int k=0; k<16; ++k)
    338       func[k] = 0;
    339 
    340     func[NOTR  | (UP << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|0,       Scalar,false,Scalar,ColMajor>::run);
    341     func[TR    | (UP << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|0,       Scalar,false,Scalar,RowMajor>::run);
    342     func[ADJ   | (UP << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|0,       Scalar,Conj, Scalar,RowMajor>::run);
    343 
    344     func[NOTR  | (LO << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|0,       Scalar,false,Scalar,ColMajor>::run);
    345     func[TR    | (LO << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|0,       Scalar,false,Scalar,RowMajor>::run);
    346     func[ADJ   | (LO << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|0,       Scalar,Conj, Scalar,RowMajor>::run);
    347 
    348     func[NOTR  | (UP << 2) | (UNIT  << 3)] = (internal::band_solve_triangular_selector<int,Upper|UnitDiag,Scalar,false,Scalar,ColMajor>::run);
    349     func[TR    | (UP << 2) | (UNIT  << 3)] = (internal::band_solve_triangular_selector<int,Lower|UnitDiag,Scalar,false,Scalar,RowMajor>::run);
    350     func[ADJ   | (UP << 2) | (UNIT  << 3)] = (internal::band_solve_triangular_selector<int,Lower|UnitDiag,Scalar,Conj, Scalar,RowMajor>::run);
    351 
    352     func[NOTR  | (LO << 2) | (UNIT  << 3)] = (internal::band_solve_triangular_selector<int,Lower|UnitDiag,Scalar,false,Scalar,ColMajor>::run);
    353     func[TR    | (LO << 2) | (UNIT  << 3)] = (internal::band_solve_triangular_selector<int,Upper|UnitDiag,Scalar,false,Scalar,RowMajor>::run);
    354     func[ADJ   | (LO << 2) | (UNIT  << 3)] = (internal::band_solve_triangular_selector<int,Upper|UnitDiag,Scalar,Conj, Scalar,RowMajor>::run);
    355 
    356     init = true;
    357   }
    358 
    359   Scalar* a = reinterpret_cast<Scalar*>(pa);
    360   Scalar* x = reinterpret_cast<Scalar*>(px);
    361   int coeff_rows = *k+1;
    362 
    363   int info = 0;
    364        if(UPLO(*uplo)==INVALID)                                       info = 1;
    365   else if(OP(*op)==INVALID)                                           info = 2;
    366   else if(DIAG(*diag)==INVALID)                                       info = 3;
    367   else if(*n<0)                                                       info = 4;
    368   else if(*k<0)                                                       info = 5;
    369   else if(*lda<coeff_rows)                                            info = 7;
    370   else if(*incx==0)                                                   info = 9;
    371   if(info)
    372     return xerbla_(SCALAR_SUFFIX_UP"TBSV ",&info,6);
    373 
    374   if(*n==0 || (*k==0 && DIAG(*diag)==UNIT))
    375     return 0;
    376 
    377   int actual_n = *n;
    378 
    379   Scalar* actual_x = get_compact_vector(x,actual_n,*incx);
    380 
    381   int code = OP(*op) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3);
    382   if(code>=16 || func[code]==0)
    383     return 0;
    384 
    385   func[code](*n, *k, a, *lda, actual_x);
    386 
    387   if(actual_x!=x) delete[] copy_back(actual_x,x,actual_n,*incx);
    388 
    389   return 0;
    390 }
    391 
    392 /**  DTPMV  performs one of the matrix-vector operations
    393   *
    394   *     x := A*x,   or   x := A'*x,
    395   *
    396   *  where x is an n element vector and  A is an n by n unit, or non-unit,
    397   *  upper or lower triangular matrix, supplied in packed form.
    398   */
    399 // int EIGEN_BLAS_FUNC(tpmv)(char *uplo, char *trans, char *diag, int *n, RealScalar *ap, RealScalar *x, int *incx)
    400 // {
    401 //   return 1;
    402 // }
    403 
    404 /**  DTPSV  solves one of the systems of equations
    405   *
    406   *     A*x = b,   or   A'*x = b,
    407   *
    408   *  where b and x are n element vectors and A is an n by n unit, or
    409   *  non-unit, upper or lower triangular matrix, supplied in packed form.
    410   *
    411   *  No test for singularity or near-singularity is included in this
    412   *  routine. Such tests must be performed before calling this routine.
    413   */
    414 // int EIGEN_BLAS_FUNC(tpsv)(char *uplo, char *trans, char *diag, int *n, RealScalar *ap, RealScalar *x, int *incx)
    415 // {
    416 //   return 1;
    417 // }
    418 
    419 /**  DGER   performs the rank 1 operation
    420   *
    421   *     A := alpha*x*y' + A,
    422   *
    423   *  where alpha is a scalar, x is an m element vector, y is an n element
    424   *  vector and A is an m by n matrix.
    425   */
    426 int EIGEN_BLAS_FUNC(ger)(int *m, int *n, Scalar *palpha, Scalar *px, int *incx, Scalar *py, int *incy, Scalar *pa, int *lda)
    427 {
    428   Scalar* x = reinterpret_cast<Scalar*>(px);
    429   Scalar* y = reinterpret_cast<Scalar*>(py);
    430   Scalar* a = reinterpret_cast<Scalar*>(pa);
    431   Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
    432 
    433   int info = 0;
    434        if(*m<0)                                                       info = 1;
    435   else if(*n<0)                                                       info = 2;
    436   else if(*incx==0)                                                   info = 5;
    437   else if(*incy==0)                                                   info = 7;
    438   else if(*lda<std::max(1,*m))                                        info = 9;
    439   if(info)
    440     return xerbla_(SCALAR_SUFFIX_UP"GER  ",&info,6);
    441 
    442   if(alpha==Scalar(0))
    443     return 1;
    444 
    445   Scalar* x_cpy = get_compact_vector(x,*m,*incx);
    446   Scalar* y_cpy = get_compact_vector(y,*n,*incy);
    447 
    448   // TODO perform direct calls to underlying implementation
    449   matrix(a,*m,*n,*lda) += alpha * vector(x_cpy,*m) * vector(y_cpy,*n).adjoint();
    450 
    451   if(x_cpy!=x)  delete[] x_cpy;
    452   if(y_cpy!=y)  delete[] y_cpy;
    453 
    454   return 1;
    455 }
    456 
    457 
    458