1 /* 2 * QEMU NE2000 emulation 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "hw.h" 25 #include "pci.h" 26 #include "pc.h" 27 #include "net.h" 28 29 /* debug NE2000 card */ 30 //#define DEBUG_NE2000 31 32 #define MAX_ETH_FRAME_SIZE 1514 33 34 #define E8390_CMD 0x00 /* The command register (for all pages) */ 35 /* Page 0 register offsets. */ 36 #define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */ 37 #define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */ 38 #define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */ 39 #define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */ 40 #define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */ 41 #define EN0_TSR 0x04 /* Transmit status reg RD */ 42 #define EN0_TPSR 0x04 /* Transmit starting page WR */ 43 #define EN0_NCR 0x05 /* Number of collision reg RD */ 44 #define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */ 45 #define EN0_FIFO 0x06 /* FIFO RD */ 46 #define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */ 47 #define EN0_ISR 0x07 /* Interrupt status reg RD WR */ 48 #define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */ 49 #define EN0_RSARLO 0x08 /* Remote start address reg 0 */ 50 #define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */ 51 #define EN0_RSARHI 0x09 /* Remote start address reg 1 */ 52 #define EN0_RCNTLO 0x0a /* Remote byte count reg WR */ 53 #define EN0_RTL8029ID0 0x0a /* Realtek ID byte #1 RD */ 54 #define EN0_RCNTHI 0x0b /* Remote byte count reg WR */ 55 #define EN0_RTL8029ID1 0x0b /* Realtek ID byte #2 RD */ 56 #define EN0_RSR 0x0c /* rx status reg RD */ 57 #define EN0_RXCR 0x0c /* RX configuration reg WR */ 58 #define EN0_TXCR 0x0d /* TX configuration reg WR */ 59 #define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */ 60 #define EN0_DCFG 0x0e /* Data configuration reg WR */ 61 #define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */ 62 #define EN0_IMR 0x0f /* Interrupt mask reg WR */ 63 #define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */ 64 65 #define EN1_PHYS 0x11 66 #define EN1_CURPAG 0x17 67 #define EN1_MULT 0x18 68 69 #define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */ 70 #define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */ 71 72 #define EN3_CONFIG0 0x33 73 #define EN3_CONFIG1 0x34 74 #define EN3_CONFIG2 0x35 75 #define EN3_CONFIG3 0x36 76 77 /* Register accessed at EN_CMD, the 8390 base addr. */ 78 #define E8390_STOP 0x01 /* Stop and reset the chip */ 79 #define E8390_START 0x02 /* Start the chip, clear reset */ 80 #define E8390_TRANS 0x04 /* Transmit a frame */ 81 #define E8390_RREAD 0x08 /* Remote read */ 82 #define E8390_RWRITE 0x10 /* Remote write */ 83 #define E8390_NODMA 0x20 /* Remote DMA */ 84 #define E8390_PAGE0 0x00 /* Select page chip registers */ 85 #define E8390_PAGE1 0x40 /* using the two high-order bits */ 86 #define E8390_PAGE2 0x80 /* Page 3 is invalid. */ 87 88 /* Bits in EN0_ISR - Interrupt status register */ 89 #define ENISR_RX 0x01 /* Receiver, no error */ 90 #define ENISR_TX 0x02 /* Transmitter, no error */ 91 #define ENISR_RX_ERR 0x04 /* Receiver, with error */ 92 #define ENISR_TX_ERR 0x08 /* Transmitter, with error */ 93 #define ENISR_OVER 0x10 /* Receiver overwrote the ring */ 94 #define ENISR_COUNTERS 0x20 /* Counters need emptying */ 95 #define ENISR_RDC 0x40 /* remote dma complete */ 96 #define ENISR_RESET 0x80 /* Reset completed */ 97 #define ENISR_ALL 0x3f /* Interrupts we will enable */ 98 99 /* Bits in received packet status byte and EN0_RSR*/ 100 #define ENRSR_RXOK 0x01 /* Received a good packet */ 101 #define ENRSR_CRC 0x02 /* CRC error */ 102 #define ENRSR_FAE 0x04 /* frame alignment error */ 103 #define ENRSR_FO 0x08 /* FIFO overrun */ 104 #define ENRSR_MPA 0x10 /* missed pkt */ 105 #define ENRSR_PHY 0x20 /* physical/multicast address */ 106 #define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */ 107 #define ENRSR_DEF 0x80 /* deferring */ 108 109 /* Transmitted packet status, EN0_TSR. */ 110 #define ENTSR_PTX 0x01 /* Packet transmitted without error */ 111 #define ENTSR_ND 0x02 /* The transmit wasn't deferred. */ 112 #define ENTSR_COL 0x04 /* The transmit collided at least once. */ 113 #define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */ 114 #define ENTSR_CRS 0x10 /* The carrier sense was lost. */ 115 #define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */ 116 #define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */ 117 #define ENTSR_OWC 0x80 /* There was an out-of-window collision. */ 118 119 #define NE2000_PMEM_SIZE (32*1024) 120 #define NE2000_PMEM_START (16*1024) 121 #define NE2000_PMEM_END (NE2000_PMEM_SIZE+NE2000_PMEM_START) 122 #define NE2000_MEM_SIZE NE2000_PMEM_END 123 124 typedef struct NE2000State { 125 uint8_t cmd; 126 uint32_t start; 127 uint32_t stop; 128 uint8_t boundary; 129 uint8_t tsr; 130 uint8_t tpsr; 131 uint16_t tcnt; 132 uint16_t rcnt; 133 uint32_t rsar; 134 uint8_t rsr; 135 uint8_t rxcr; 136 uint8_t isr; 137 uint8_t dcfg; 138 uint8_t imr; 139 uint8_t phys[6]; /* mac address */ 140 uint8_t curpag; 141 uint8_t mult[8]; /* multicast mask array */ 142 qemu_irq irq; 143 int isa_io_base; 144 PCIDevice *pci_dev; 145 VLANClientState *vc; 146 uint8_t macaddr[6]; 147 uint8_t mem[NE2000_MEM_SIZE]; 148 } NE2000State; 149 150 static void ne2000_reset(NE2000State *s) 151 { 152 int i; 153 154 s->isr = ENISR_RESET; 155 memcpy(s->mem, s->macaddr, 6); 156 s->mem[14] = 0x57; 157 s->mem[15] = 0x57; 158 159 /* duplicate prom data */ 160 for(i = 15;i >= 0; i--) { 161 s->mem[2 * i] = s->mem[i]; 162 s->mem[2 * i + 1] = s->mem[i]; 163 } 164 } 165 166 static void ne2000_update_irq(NE2000State *s) 167 { 168 int isr; 169 isr = (s->isr & s->imr) & 0x7f; 170 #if defined(DEBUG_NE2000) 171 printf("NE2000: Set IRQ to %d (%02x %02x)\n", 172 isr ? 1 : 0, s->isr, s->imr); 173 #endif 174 qemu_set_irq(s->irq, (isr != 0)); 175 } 176 177 #define POLYNOMIAL 0x04c11db6 178 179 /* From FreeBSD */ 180 /* XXX: optimize */ 181 static int compute_mcast_idx(const uint8_t *ep) 182 { 183 uint32_t crc; 184 int carry, i, j; 185 uint8_t b; 186 187 crc = 0xffffffff; 188 for (i = 0; i < 6; i++) { 189 b = *ep++; 190 for (j = 0; j < 8; j++) { 191 carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01); 192 crc <<= 1; 193 b >>= 1; 194 if (carry) 195 crc = ((crc ^ POLYNOMIAL) | carry); 196 } 197 } 198 return (crc >> 26); 199 } 200 201 static int ne2000_buffer_full(NE2000State *s) 202 { 203 int avail, index, boundary; 204 205 index = s->curpag << 8; 206 boundary = s->boundary << 8; 207 if (index < boundary) 208 avail = boundary - index; 209 else 210 avail = (s->stop - s->start) - (index - boundary); 211 if (avail < (MAX_ETH_FRAME_SIZE + 4)) 212 return 1; 213 return 0; 214 } 215 216 static int ne2000_can_receive(VLANClientState *vc) 217 { 218 NE2000State *s = vc->opaque; 219 220 if (s->cmd & E8390_STOP) 221 return 1; 222 return !ne2000_buffer_full(s); 223 } 224 225 #define MIN_BUF_SIZE 60 226 227 static ssize_t ne2000_receive(VLANClientState *vc, const uint8_t *buf, size_t size_) 228 { 229 NE2000State *s = vc->opaque; 230 int size = size_; 231 uint8_t *p; 232 unsigned int total_len, next, avail, len, index, mcast_idx; 233 uint8_t buf1[60]; 234 static const uint8_t broadcast_macaddr[6] = 235 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 236 237 #if defined(DEBUG_NE2000) 238 printf("NE2000: received len=%d\n", size); 239 #endif 240 241 if (s->cmd & E8390_STOP || ne2000_buffer_full(s)) 242 return -1; 243 244 /* XXX: check this */ 245 if (s->rxcr & 0x10) { 246 /* promiscuous: receive all */ 247 } else { 248 if (!memcmp(buf, broadcast_macaddr, 6)) { 249 /* broadcast address */ 250 if (!(s->rxcr & 0x04)) 251 return size; 252 } else if (buf[0] & 0x01) { 253 /* multicast */ 254 if (!(s->rxcr & 0x08)) 255 return size; 256 mcast_idx = compute_mcast_idx(buf); 257 if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7)))) 258 return size; 259 } else if (s->mem[0] == buf[0] && 260 s->mem[2] == buf[1] && 261 s->mem[4] == buf[2] && 262 s->mem[6] == buf[3] && 263 s->mem[8] == buf[4] && 264 s->mem[10] == buf[5]) { 265 /* match */ 266 } else { 267 return size; 268 } 269 } 270 271 272 /* if too small buffer, then expand it */ 273 if (size < MIN_BUF_SIZE) { 274 memcpy(buf1, buf, size); 275 memset(buf1 + size, 0, MIN_BUF_SIZE - size); 276 buf = buf1; 277 size = MIN_BUF_SIZE; 278 } 279 280 index = s->curpag << 8; 281 /* 4 bytes for header */ 282 total_len = size + 4; 283 /* address for next packet (4 bytes for CRC) */ 284 next = index + ((total_len + 4 + 255) & ~0xff); 285 if (next >= s->stop) 286 next -= (s->stop - s->start); 287 /* prepare packet header */ 288 p = s->mem + index; 289 s->rsr = ENRSR_RXOK; /* receive status */ 290 /* XXX: check this */ 291 if (buf[0] & 0x01) 292 s->rsr |= ENRSR_PHY; 293 p[0] = s->rsr; 294 p[1] = next >> 8; 295 p[2] = total_len; 296 p[3] = total_len >> 8; 297 index += 4; 298 299 /* write packet data */ 300 while (size > 0) { 301 if (index <= s->stop) 302 avail = s->stop - index; 303 else 304 avail = 0; 305 len = size; 306 if (len > avail) 307 len = avail; 308 memcpy(s->mem + index, buf, len); 309 buf += len; 310 index += len; 311 if (index == s->stop) 312 index = s->start; 313 size -= len; 314 } 315 s->curpag = next >> 8; 316 317 /* now we can signal we have received something */ 318 s->isr |= ENISR_RX; 319 ne2000_update_irq(s); 320 321 return size_; 322 } 323 324 static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val) 325 { 326 NE2000State *s = opaque; 327 int offset, page, index; 328 329 addr &= 0xf; 330 #ifdef DEBUG_NE2000 331 printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val); 332 #endif 333 if (addr == E8390_CMD) { 334 /* control register */ 335 s->cmd = val; 336 if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */ 337 s->isr &= ~ENISR_RESET; 338 /* test specific case: zero length transfer */ 339 if ((val & (E8390_RREAD | E8390_RWRITE)) && 340 s->rcnt == 0) { 341 s->isr |= ENISR_RDC; 342 ne2000_update_irq(s); 343 } 344 if (val & E8390_TRANS) { 345 index = (s->tpsr << 8); 346 /* XXX: next 2 lines are a hack to make netware 3.11 work */ 347 if (index >= NE2000_PMEM_END) 348 index -= NE2000_PMEM_SIZE; 349 /* fail safe: check range on the transmitted length */ 350 if (index + s->tcnt <= NE2000_PMEM_END) { 351 qemu_send_packet(s->vc, s->mem + index, s->tcnt); 352 } 353 /* signal end of transfer */ 354 s->tsr = ENTSR_PTX; 355 s->isr |= ENISR_TX; 356 s->cmd &= ~E8390_TRANS; 357 ne2000_update_irq(s); 358 } 359 } 360 } else { 361 page = s->cmd >> 6; 362 offset = addr | (page << 4); 363 switch(offset) { 364 case EN0_STARTPG: 365 s->start = val << 8; 366 break; 367 case EN0_STOPPG: 368 s->stop = val << 8; 369 break; 370 case EN0_BOUNDARY: 371 s->boundary = val; 372 break; 373 case EN0_IMR: 374 s->imr = val; 375 ne2000_update_irq(s); 376 break; 377 case EN0_TPSR: 378 s->tpsr = val; 379 break; 380 case EN0_TCNTLO: 381 s->tcnt = (s->tcnt & 0xff00) | val; 382 break; 383 case EN0_TCNTHI: 384 s->tcnt = (s->tcnt & 0x00ff) | (val << 8); 385 break; 386 case EN0_RSARLO: 387 s->rsar = (s->rsar & 0xff00) | val; 388 break; 389 case EN0_RSARHI: 390 s->rsar = (s->rsar & 0x00ff) | (val << 8); 391 break; 392 case EN0_RCNTLO: 393 s->rcnt = (s->rcnt & 0xff00) | val; 394 break; 395 case EN0_RCNTHI: 396 s->rcnt = (s->rcnt & 0x00ff) | (val << 8); 397 break; 398 case EN0_RXCR: 399 s->rxcr = val; 400 break; 401 case EN0_DCFG: 402 s->dcfg = val; 403 break; 404 case EN0_ISR: 405 s->isr &= ~(val & 0x7f); 406 ne2000_update_irq(s); 407 break; 408 case EN1_PHYS ... EN1_PHYS + 5: 409 s->phys[offset - EN1_PHYS] = val; 410 break; 411 case EN1_CURPAG: 412 s->curpag = val; 413 break; 414 case EN1_MULT ... EN1_MULT + 7: 415 s->mult[offset - EN1_MULT] = val; 416 break; 417 } 418 } 419 } 420 421 static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr) 422 { 423 NE2000State *s = opaque; 424 int offset, page, ret; 425 426 addr &= 0xf; 427 if (addr == E8390_CMD) { 428 ret = s->cmd; 429 } else { 430 page = s->cmd >> 6; 431 offset = addr | (page << 4); 432 switch(offset) { 433 case EN0_TSR: 434 ret = s->tsr; 435 break; 436 case EN0_BOUNDARY: 437 ret = s->boundary; 438 break; 439 case EN0_ISR: 440 ret = s->isr; 441 break; 442 case EN0_RSARLO: 443 ret = s->rsar & 0x00ff; 444 break; 445 case EN0_RSARHI: 446 ret = s->rsar >> 8; 447 break; 448 case EN1_PHYS ... EN1_PHYS + 5: 449 ret = s->phys[offset - EN1_PHYS]; 450 break; 451 case EN1_CURPAG: 452 ret = s->curpag; 453 break; 454 case EN1_MULT ... EN1_MULT + 7: 455 ret = s->mult[offset - EN1_MULT]; 456 break; 457 case EN0_RSR: 458 ret = s->rsr; 459 break; 460 case EN2_STARTPG: 461 ret = s->start >> 8; 462 break; 463 case EN2_STOPPG: 464 ret = s->stop >> 8; 465 break; 466 case EN0_RTL8029ID0: 467 ret = 0x50; 468 break; 469 case EN0_RTL8029ID1: 470 ret = 0x43; 471 break; 472 case EN3_CONFIG0: 473 ret = 0; /* 10baseT media */ 474 break; 475 case EN3_CONFIG2: 476 ret = 0x40; /* 10baseT active */ 477 break; 478 case EN3_CONFIG3: 479 ret = 0x40; /* Full duplex */ 480 break; 481 default: 482 ret = 0x00; 483 break; 484 } 485 } 486 #ifdef DEBUG_NE2000 487 printf("NE2000: read addr=0x%x val=%02x\n", addr, ret); 488 #endif 489 return ret; 490 } 491 492 static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr, 493 uint32_t val) 494 { 495 if (addr < 32 || 496 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) { 497 s->mem[addr] = val; 498 } 499 } 500 501 static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr, 502 uint32_t val) 503 { 504 addr &= ~1; /* XXX: check exact behaviour if not even */ 505 if (addr < 32 || 506 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) { 507 *(uint16_t *)(s->mem + addr) = cpu_to_le16(val); 508 } 509 } 510 511 static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr, 512 uint32_t val) 513 { 514 addr &= ~1; /* XXX: check exact behaviour if not even */ 515 if (addr < 32 || 516 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) { 517 cpu_to_le32wu((uint32_t *)(s->mem + addr), val); 518 } 519 } 520 521 static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr) 522 { 523 if (addr < 32 || 524 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) { 525 return s->mem[addr]; 526 } else { 527 return 0xff; 528 } 529 } 530 531 static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr) 532 { 533 addr &= ~1; /* XXX: check exact behaviour if not even */ 534 if (addr < 32 || 535 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) { 536 return le16_to_cpu(*(uint16_t *)(s->mem + addr)); 537 } else { 538 return 0xffff; 539 } 540 } 541 542 static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr) 543 { 544 addr &= ~1; /* XXX: check exact behaviour if not even */ 545 if (addr < 32 || 546 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) { 547 return le32_to_cpupu((uint32_t *)(s->mem + addr)); 548 } else { 549 return 0xffffffff; 550 } 551 } 552 553 static inline void ne2000_dma_update(NE2000State *s, int len) 554 { 555 s->rsar += len; 556 /* wrap */ 557 /* XXX: check what to do if rsar > stop */ 558 if (s->rsar == s->stop) 559 s->rsar = s->start; 560 561 if (s->rcnt <= len) { 562 s->rcnt = 0; 563 /* signal end of transfer */ 564 s->isr |= ENISR_RDC; 565 ne2000_update_irq(s); 566 } else { 567 s->rcnt -= len; 568 } 569 } 570 571 static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val) 572 { 573 NE2000State *s = opaque; 574 575 #ifdef DEBUG_NE2000 576 printf("NE2000: asic write val=0x%04x\n", val); 577 #endif 578 if (s->rcnt == 0) 579 return; 580 if (s->dcfg & 0x01) { 581 /* 16 bit access */ 582 ne2000_mem_writew(s, s->rsar, val); 583 ne2000_dma_update(s, 2); 584 } else { 585 /* 8 bit access */ 586 ne2000_mem_writeb(s, s->rsar, val); 587 ne2000_dma_update(s, 1); 588 } 589 } 590 591 static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr) 592 { 593 NE2000State *s = opaque; 594 int ret; 595 596 if (s->dcfg & 0x01) { 597 /* 16 bit access */ 598 ret = ne2000_mem_readw(s, s->rsar); 599 ne2000_dma_update(s, 2); 600 } else { 601 /* 8 bit access */ 602 ret = ne2000_mem_readb(s, s->rsar); 603 ne2000_dma_update(s, 1); 604 } 605 #ifdef DEBUG_NE2000 606 printf("NE2000: asic read val=0x%04x\n", ret); 607 #endif 608 return ret; 609 } 610 611 static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val) 612 { 613 NE2000State *s = opaque; 614 615 #ifdef DEBUG_NE2000 616 printf("NE2000: asic writel val=0x%04x\n", val); 617 #endif 618 if (s->rcnt == 0) 619 return; 620 /* 32 bit access */ 621 ne2000_mem_writel(s, s->rsar, val); 622 ne2000_dma_update(s, 4); 623 } 624 625 static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr) 626 { 627 NE2000State *s = opaque; 628 int ret; 629 630 /* 32 bit access */ 631 ret = ne2000_mem_readl(s, s->rsar); 632 ne2000_dma_update(s, 4); 633 #ifdef DEBUG_NE2000 634 printf("NE2000: asic readl val=0x%04x\n", ret); 635 #endif 636 return ret; 637 } 638 639 static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val) 640 { 641 /* nothing to do (end of reset pulse) */ 642 } 643 644 static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr) 645 { 646 NE2000State *s = opaque; 647 ne2000_reset(s); 648 return 0; 649 } 650 651 static void ne2000_save(QEMUFile* f,void* opaque) 652 { 653 NE2000State* s=(NE2000State*)opaque; 654 uint32_t tmp; 655 656 if (s->pci_dev) 657 pci_device_save(s->pci_dev, f); 658 659 qemu_put_8s(f, &s->rxcr); 660 661 qemu_put_8s(f, &s->cmd); 662 qemu_put_be32s(f, &s->start); 663 qemu_put_be32s(f, &s->stop); 664 qemu_put_8s(f, &s->boundary); 665 qemu_put_8s(f, &s->tsr); 666 qemu_put_8s(f, &s->tpsr); 667 qemu_put_be16s(f, &s->tcnt); 668 qemu_put_be16s(f, &s->rcnt); 669 qemu_put_be32s(f, &s->rsar); 670 qemu_put_8s(f, &s->rsr); 671 qemu_put_8s(f, &s->isr); 672 qemu_put_8s(f, &s->dcfg); 673 qemu_put_8s(f, &s->imr); 674 qemu_put_buffer(f, s->phys, 6); 675 qemu_put_8s(f, &s->curpag); 676 qemu_put_buffer(f, s->mult, 8); 677 tmp = 0; 678 qemu_put_be32s(f, &tmp); /* ignored, was irq */ 679 qemu_put_buffer(f, s->mem, NE2000_MEM_SIZE); 680 } 681 682 static int ne2000_load(QEMUFile* f,void* opaque,int version_id) 683 { 684 NE2000State* s=(NE2000State*)opaque; 685 int ret; 686 uint32_t tmp; 687 688 if (version_id > 3) 689 return -EINVAL; 690 691 if (s->pci_dev && version_id >= 3) { 692 ret = pci_device_load(s->pci_dev, f); 693 if (ret < 0) 694 return ret; 695 } 696 697 if (version_id >= 2) { 698 qemu_get_8s(f, &s->rxcr); 699 } else { 700 s->rxcr = 0x0c; 701 } 702 703 qemu_get_8s(f, &s->cmd); 704 qemu_get_be32s(f, &s->start); 705 qemu_get_be32s(f, &s->stop); 706 qemu_get_8s(f, &s->boundary); 707 qemu_get_8s(f, &s->tsr); 708 qemu_get_8s(f, &s->tpsr); 709 qemu_get_be16s(f, &s->tcnt); 710 qemu_get_be16s(f, &s->rcnt); 711 qemu_get_be32s(f, &s->rsar); 712 qemu_get_8s(f, &s->rsr); 713 qemu_get_8s(f, &s->isr); 714 qemu_get_8s(f, &s->dcfg); 715 qemu_get_8s(f, &s->imr); 716 qemu_get_buffer(f, s->phys, 6); 717 qemu_get_8s(f, &s->curpag); 718 qemu_get_buffer(f, s->mult, 8); 719 qemu_get_be32s(f, &tmp); /* ignored */ 720 qemu_get_buffer(f, s->mem, NE2000_MEM_SIZE); 721 722 return 0; 723 } 724 725 static void isa_ne2000_cleanup(VLANClientState *vc) 726 { 727 NE2000State *s = vc->opaque; 728 729 unregister_savevm("ne2000", s); 730 731 isa_unassign_ioport(s->isa_io_base, 16); 732 isa_unassign_ioport(s->isa_io_base + 0x10, 2); 733 isa_unassign_ioport(s->isa_io_base + 0x1f, 1); 734 735 qemu_free(s); 736 } 737 738 void isa_ne2000_init(int base, qemu_irq irq, NICInfo *nd) 739 { 740 NE2000State *s; 741 742 qemu_check_nic_model(nd, "ne2k_isa"); 743 744 s = qemu_mallocz(sizeof(NE2000State)); 745 746 register_ioport_write(base, 16, 1, ne2000_ioport_write, s); 747 register_ioport_read(base, 16, 1, ne2000_ioport_read, s); 748 749 register_ioport_write(base + 0x10, 1, 1, ne2000_asic_ioport_write, s); 750 register_ioport_read(base + 0x10, 1, 1, ne2000_asic_ioport_read, s); 751 register_ioport_write(base + 0x10, 2, 2, ne2000_asic_ioport_write, s); 752 register_ioport_read(base + 0x10, 2, 2, ne2000_asic_ioport_read, s); 753 754 register_ioport_write(base + 0x1f, 1, 1, ne2000_reset_ioport_write, s); 755 register_ioport_read(base + 0x1f, 1, 1, ne2000_reset_ioport_read, s); 756 s->isa_io_base = base; 757 s->irq = irq; 758 memcpy(s->macaddr, nd->macaddr, 6); 759 760 ne2000_reset(s); 761 762 s->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name, 763 ne2000_can_receive, ne2000_receive, NULL, 764 isa_ne2000_cleanup, s); 765 766 qemu_format_nic_info_str(s->vc, s->macaddr); 767 768 register_savevm("ne2000", -1, 2, ne2000_save, ne2000_load, s); 769 } 770 771 /***********************************************************/ 772 /* PCI NE2000 definitions */ 773 774 typedef struct PCINE2000State { 775 PCIDevice dev; 776 NE2000State ne2000; 777 } PCINE2000State; 778 779 static void ne2000_map(PCIDevice *pci_dev, int region_num, 780 uint32_t addr, uint32_t size, int type) 781 { 782 PCINE2000State *d = (PCINE2000State *)pci_dev; 783 NE2000State *s = &d->ne2000; 784 785 register_ioport_write(addr, 16, 1, ne2000_ioport_write, s); 786 register_ioport_read(addr, 16, 1, ne2000_ioport_read, s); 787 788 register_ioport_write(addr + 0x10, 1, 1, ne2000_asic_ioport_write, s); 789 register_ioport_read(addr + 0x10, 1, 1, ne2000_asic_ioport_read, s); 790 register_ioport_write(addr + 0x10, 2, 2, ne2000_asic_ioport_write, s); 791 register_ioport_read(addr + 0x10, 2, 2, ne2000_asic_ioport_read, s); 792 register_ioport_write(addr + 0x10, 4, 4, ne2000_asic_ioport_writel, s); 793 register_ioport_read(addr + 0x10, 4, 4, ne2000_asic_ioport_readl, s); 794 795 register_ioport_write(addr + 0x1f, 1, 1, ne2000_reset_ioport_write, s); 796 register_ioport_read(addr + 0x1f, 1, 1, ne2000_reset_ioport_read, s); 797 } 798 799 static void ne2000_cleanup(VLANClientState *vc) 800 { 801 NE2000State *s = vc->opaque; 802 803 unregister_savevm("ne2000", s); 804 } 805 806 static void pci_ne2000_init(PCIDevice *pci_dev) 807 { 808 PCINE2000State *d = (PCINE2000State *)pci_dev; 809 NE2000State *s; 810 uint8_t *pci_conf; 811 812 pci_conf = d->dev.config; 813 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REALTEK); 814 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REALTEK_8029); 815 pci_config_set_class(pci_conf, PCI_CLASS_NETWORK_ETHERNET); 816 pci_conf[PCI_HEADER_TYPE] = PCI_HEADER_TYPE_NORMAL; // header_type 817 pci_conf[0x3d] = 1; // interrupt pin 0 818 819 pci_register_bar(&d->dev, 0, 0x100, 820 PCI_ADDRESS_SPACE_IO, ne2000_map); 821 s = &d->ne2000; 822 s->irq = d->dev.irq[0]; 823 s->pci_dev = (PCIDevice *)d; 824 qdev_get_macaddr(&d->dev.qdev, s->macaddr); 825 ne2000_reset(s); 826 s->vc = qdev_get_vlan_client(&d->dev.qdev, 827 ne2000_can_receive, ne2000_receive, NULL, 828 ne2000_cleanup, s); 829 830 qemu_format_nic_info_str(s->vc, s->macaddr); 831 832 register_savevm("ne2000", -1, 3, ne2000_save, ne2000_load, s); 833 } 834 835 static void ne2000_register_devices(void) 836 { 837 pci_qdev_register("ne2k_pci", sizeof(PCINE2000State), pci_ne2000_init); 838 } 839 840 device_init(ne2000_register_devices) 841