1 /* $NetBSD: sha2.c,v 1.4 2006/09/09 16:22:36 manu Exp $ */ 2 3 /* Id: sha2.c,v 1.6 2004/09/21 14:35:25 ludvigm Exp */ 4 5 /* 6 * sha2.c 7 * 8 * Version 1.0.0beta1 9 * 10 * Written by Aaron D. Gifford <me (at) aarongifford.com> 11 * 12 * Copyright 2000 Aaron D. Gifford. All rights reserved. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. Neither the name of the copyright holder nor the names of contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 */ 39 40 #include "config.h" 41 42 #include <sys/types.h> 43 #include <sys/time.h> 44 #ifndef __linux__ 45 #include <machine/endian.h> 46 #endif 47 #include <crypto/sha2/sha2.h> 48 #include <openssl/evp.h> 49 50 /* get openssl/ssleay version number */ 51 #include <openssl/opensslv.h> 52 53 #include <err.h> 54 #include <string.h> 55 #define bcopy(a, b, c) memcpy((b), (a), (c)) 56 #define bzero(a, b) memset((a), 0, (b)) 57 #define panic(a) err(1, (a)) 58 59 #if OPENSSL_VERSION_NUMBER >= 0x00907000L 60 #define HAVE_EVP_097 61 #endif 62 63 /* 64 * ASSERT NOTE: 65 * Some sanity checking code is included using assert(). On my FreeBSD 66 * system, this additional code can be removed by compiling with NDEBUG 67 * defined. Check your own systems manpage on assert() to see how to 68 * compile WITHOUT the sanity checking code on your system. 69 * 70 * UNROLLED TRANSFORM LOOP NOTE: 71 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform 72 * loop version for the hash transform rounds (defined using macros 73 * later in this file). Either define on the command line, for example: 74 * 75 * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c 76 * 77 * or define below: 78 * 79 * #define SHA2_UNROLL_TRANSFORM 80 * 81 */ 82 83 #define assert(x) 84 85 86 /*** SHA-256/384/512 Machine Architecture Definitions *****************/ 87 /* 88 * BYTE_ORDER NOTE: 89 * 90 * Please make sure that your system defines BYTE_ORDER. If your 91 * architecture is little-endian, make sure it also defines 92 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are 93 * equivilent. 94 * 95 * If your system does not define the above, then you can do so by 96 * hand like this: 97 * 98 * #define LITTLE_ENDIAN 1234 99 * #define BIG_ENDIAN 4321 100 * 101 * And for little-endian machines, add: 102 * 103 * #define BYTE_ORDER LITTLE_ENDIAN 104 * 105 * Or for big-endian machines: 106 * 107 * #define BYTE_ORDER BIG_ENDIAN 108 * 109 * The FreeBSD machine this was written on defines BYTE_ORDER 110 * appropriately by including <sys/types.h> (which in turn includes 111 * <machine/endian.h> where the appropriate definitions are actually 112 * made). 113 */ 114 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN) 115 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN 116 #endif 117 118 /* 119 * Define the followingsha2_* types to types of the correct length on 120 * the native archtecture. Most BSD systems and Linux define u_intXX_t 121 * types. Machines with very recent ANSI C headers, can use the 122 * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H 123 * during compile or in the sha.h header file. 124 * 125 * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t 126 * will need to define these three typedefs below (and the appropriate 127 * ones in sha.h too) by hand according to their system architecture. 128 * 129 * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t 130 * types and pointing out recent ANSI C support for uintXX_t in inttypes.h. 131 */ 132 #if 0 /*def SHA2_USE_INTTYPES_H*/ 133 134 typedef uint8_t sha2_byte; /* Exactly 1 byte */ 135 typedef uint32_t sha2_word32; /* Exactly 4 bytes */ 136 typedef uint64_t sha2_word64; /* Exactly 8 bytes */ 137 138 #else /* SHA2_USE_INTTYPES_H */ 139 140 typedef u_int8_t sha2_byte; /* Exactly 1 byte */ 141 typedef u_int32_t sha2_word32; /* Exactly 4 bytes */ 142 typedef u_int64_t sha2_word64; /* Exactly 8 bytes */ 143 144 #endif /* SHA2_USE_INTTYPES_H */ 145 146 147 /*** SHA-256/384/512 Various Length Definitions ***********************/ 148 /* NOTE: Most of these are in sha2.h */ 149 #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8) 150 #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16) 151 #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16) 152 153 154 /*** ENDIAN REVERSAL MACROS *******************************************/ 155 #if BYTE_ORDER == LITTLE_ENDIAN 156 #define REVERSE32(w,x) { \ 157 sha2_word32 tmp = (w); \ 158 tmp = (tmp >> 16) | (tmp << 16); \ 159 (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \ 160 } 161 #define REVERSE64(w,x) { \ 162 sha2_word64 tmp = (w); \ 163 tmp = (tmp >> 32) | (tmp << 32); \ 164 tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \ 165 ((tmp & 0x00ff00ff00ff00ffULL) << 8); \ 166 (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \ 167 ((tmp & 0x0000ffff0000ffffULL) << 16); \ 168 } 169 #endif /* BYTE_ORDER == LITTLE_ENDIAN */ 170 171 /* 172 * Macro for incrementally adding the unsigned 64-bit integer n to the 173 * unsigned 128-bit integer (represented using a two-element array of 174 * 64-bit words): 175 */ 176 #define ADDINC128(w,n) { \ 177 (w)[0] += (sha2_word64)(n); \ 178 if ((w)[0] < (n)) { \ 179 (w)[1]++; \ 180 } \ 181 } 182 183 /*** THE SIX LOGICAL FUNCTIONS ****************************************/ 184 /* 185 * Bit shifting and rotation (used by the six SHA-XYZ logical functions: 186 * 187 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and 188 * S is a ROTATION) because the SHA-256/384/512 description document 189 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this 190 * same "backwards" definition. 191 */ 192 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ 193 #define R(b,x) ((x) >> (b)) 194 /* 32-bit Rotate-right (used in SHA-256): */ 195 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) 196 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ 197 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) 198 199 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */ 200 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) 201 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) 202 203 /* Four of six logical functions used in SHA-256: */ 204 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) 205 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) 206 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) 207 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) 208 209 /* Four of six logical functions used in SHA-384 and SHA-512: */ 210 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) 211 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) 212 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) 213 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) 214 215 /*** INTERNAL FUNCTION PROTOTYPES *************************************/ 216 /* NOTE: These should not be accessed directly from outside this 217 * library -- they are intended for private internal visibility/use 218 * only. 219 */ 220 void SHA512_Last(SHA512_CTX*); 221 void SHA256_Transform(SHA256_CTX*, const sha2_word32*); 222 void SHA512_Transform(SHA512_CTX*, const sha2_word64*); 223 224 225 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ 226 /* Hash constant words K for SHA-256: */ 227 const static sha2_word32 K256[64] = { 228 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 229 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 230 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, 231 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, 232 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, 233 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 234 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 235 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, 236 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, 237 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, 238 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 239 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 240 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, 241 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, 242 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, 243 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL 244 }; 245 246 /* Initial hash value H for SHA-256: */ 247 const static sha2_word32 sha256_initial_hash_value[8] = { 248 0x6a09e667UL, 249 0xbb67ae85UL, 250 0x3c6ef372UL, 251 0xa54ff53aUL, 252 0x510e527fUL, 253 0x9b05688cUL, 254 0x1f83d9abUL, 255 0x5be0cd19UL 256 }; 257 258 /* Hash constant words K for SHA-384 and SHA-512: */ 259 const static sha2_word64 K512[80] = { 260 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 261 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, 262 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 263 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 264 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 265 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 266 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 267 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, 268 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 269 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 270 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 271 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, 272 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 273 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, 274 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 275 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 276 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 277 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 278 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 279 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, 280 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 281 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 282 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 283 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, 284 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 285 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, 286 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 287 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 288 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 289 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 290 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 291 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, 292 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 293 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 294 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 295 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, 296 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 297 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, 298 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 299 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL 300 }; 301 302 /* Initial hash value H for SHA-384 */ 303 const static sha2_word64 sha384_initial_hash_value[8] = { 304 0xcbbb9d5dc1059ed8ULL, 305 0x629a292a367cd507ULL, 306 0x9159015a3070dd17ULL, 307 0x152fecd8f70e5939ULL, 308 0x67332667ffc00b31ULL, 309 0x8eb44a8768581511ULL, 310 0xdb0c2e0d64f98fa7ULL, 311 0x47b5481dbefa4fa4ULL 312 }; 313 314 /* Initial hash value H for SHA-512 */ 315 const static sha2_word64 sha512_initial_hash_value[8] = { 316 0x6a09e667f3bcc908ULL, 317 0xbb67ae8584caa73bULL, 318 0x3c6ef372fe94f82bULL, 319 0xa54ff53a5f1d36f1ULL, 320 0x510e527fade682d1ULL, 321 0x9b05688c2b3e6c1fULL, 322 0x1f83d9abfb41bd6bULL, 323 0x5be0cd19137e2179ULL 324 }; 325 326 /* 327 * Constant used by SHA256/384/512_End() functions for converting the 328 * digest to a readable hexadecimal character string: 329 */ 330 static const char *sha2_hex_digits = "0123456789abcdef"; 331 332 333 /*** SHA-256: *********************************************************/ 334 void SHA256_Init(SHA256_CTX* context) { 335 if (context == (SHA256_CTX*)0) { 336 return; 337 } 338 bcopy(sha256_initial_hash_value, context->state, SHA256_DIGEST_LENGTH); 339 bzero(context->buffer, SHA256_BLOCK_LENGTH); 340 context->bitcount = 0; 341 } 342 343 #ifdef SHA2_UNROLL_TRANSFORM 344 345 /* Unrolled SHA-256 round macros: */ 346 347 #if BYTE_ORDER == LITTLE_ENDIAN 348 349 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ 350 REVERSE32(*data++, W256[j]); \ 351 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ 352 K256[j] + W256[j]; \ 353 (d) += T1; \ 354 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ 355 j++ 356 357 358 #else /* BYTE_ORDER == LITTLE_ENDIAN */ 359 360 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ 361 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ 362 K256[j] + (W256[j] = *data++); \ 363 (d) += T1; \ 364 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ 365 j++ 366 367 #endif /* BYTE_ORDER == LITTLE_ENDIAN */ 368 369 #define ROUND256(a,b,c,d,e,f,g,h) \ 370 s0 = W256[(j+1)&0x0f]; \ 371 s0 = sigma0_256(s0); \ 372 s1 = W256[(j+14)&0x0f]; \ 373 s1 = sigma1_256(s1); \ 374 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \ 375 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ 376 (d) += T1; \ 377 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ 378 j++ 379 380 void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) { 381 sha2_word32 a, b, c, d, e, f, g, h, s0, s1; 382 sha2_word32 T1, *W256; 383 int j; 384 385 W256 = (sha2_word32*)context->buffer; 386 387 /* Initialize registers with the prev. intermediate value */ 388 a = context->state[0]; 389 b = context->state[1]; 390 c = context->state[2]; 391 d = context->state[3]; 392 e = context->state[4]; 393 f = context->state[5]; 394 g = context->state[6]; 395 h = context->state[7]; 396 397 j = 0; 398 do { 399 /* Rounds 0 to 15 (unrolled): */ 400 ROUND256_0_TO_15(a,b,c,d,e,f,g,h); 401 ROUND256_0_TO_15(h,a,b,c,d,e,f,g); 402 ROUND256_0_TO_15(g,h,a,b,c,d,e,f); 403 ROUND256_0_TO_15(f,g,h,a,b,c,d,e); 404 ROUND256_0_TO_15(e,f,g,h,a,b,c,d); 405 ROUND256_0_TO_15(d,e,f,g,h,a,b,c); 406 ROUND256_0_TO_15(c,d,e,f,g,h,a,b); 407 ROUND256_0_TO_15(b,c,d,e,f,g,h,a); 408 } while (j < 16); 409 410 /* Now for the remaining rounds to 64: */ 411 do { 412 ROUND256(a,b,c,d,e,f,g,h); 413 ROUND256(h,a,b,c,d,e,f,g); 414 ROUND256(g,h,a,b,c,d,e,f); 415 ROUND256(f,g,h,a,b,c,d,e); 416 ROUND256(e,f,g,h,a,b,c,d); 417 ROUND256(d,e,f,g,h,a,b,c); 418 ROUND256(c,d,e,f,g,h,a,b); 419 ROUND256(b,c,d,e,f,g,h,a); 420 } while (j < 64); 421 422 /* Compute the current intermediate hash value */ 423 context->state[0] += a; 424 context->state[1] += b; 425 context->state[2] += c; 426 context->state[3] += d; 427 context->state[4] += e; 428 context->state[5] += f; 429 context->state[6] += g; 430 context->state[7] += h; 431 432 /* Clean up */ 433 a = b = c = d = e = f = g = h = T1 = 0; 434 } 435 436 #else /* SHA2_UNROLL_TRANSFORM */ 437 438 void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) { 439 sha2_word32 a, b, c, d, e, f, g, h, s0, s1; 440 sha2_word32 T1, T2, *W256; 441 int j; 442 443 W256 = (sha2_word32*)context->buffer; 444 445 /* Initialize registers with the prev. intermediate value */ 446 a = context->state[0]; 447 b = context->state[1]; 448 c = context->state[2]; 449 d = context->state[3]; 450 e = context->state[4]; 451 f = context->state[5]; 452 g = context->state[6]; 453 h = context->state[7]; 454 455 j = 0; 456 do { 457 #if BYTE_ORDER == LITTLE_ENDIAN 458 /* Copy data while converting to host byte order */ 459 REVERSE32(*data++,W256[j]); 460 /* Apply the SHA-256 compression function to update a..h */ 461 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; 462 #else /* BYTE_ORDER == LITTLE_ENDIAN */ 463 /* Apply the SHA-256 compression function to update a..h with copy */ 464 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++); 465 #endif /* BYTE_ORDER == LITTLE_ENDIAN */ 466 T2 = Sigma0_256(a) + Maj(a, b, c); 467 h = g; 468 g = f; 469 f = e; 470 e = d + T1; 471 d = c; 472 c = b; 473 b = a; 474 a = T1 + T2; 475 476 j++; 477 } while (j < 16); 478 479 do { 480 /* Part of the message block expansion: */ 481 s0 = W256[(j+1)&0x0f]; 482 s0 = sigma0_256(s0); 483 s1 = W256[(j+14)&0x0f]; 484 s1 = sigma1_256(s1); 485 486 /* Apply the SHA-256 compression function to update a..h */ 487 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + 488 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); 489 T2 = Sigma0_256(a) + Maj(a, b, c); 490 h = g; 491 g = f; 492 f = e; 493 e = d + T1; 494 d = c; 495 c = b; 496 b = a; 497 a = T1 + T2; 498 499 j++; 500 } while (j < 64); 501 502 /* Compute the current intermediate hash value */ 503 context->state[0] += a; 504 context->state[1] += b; 505 context->state[2] += c; 506 context->state[3] += d; 507 context->state[4] += e; 508 context->state[5] += f; 509 context->state[6] += g; 510 context->state[7] += h; 511 512 /* Clean up */ 513 a = b = c = d = e = f = g = h = T1 = T2 = 0; 514 } 515 516 #endif /* SHA2_UNROLL_TRANSFORM */ 517 518 void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) { 519 unsigned int freespace, usedspace; 520 521 if (len == 0) { 522 /* Calling with no data is valid - we do nothing */ 523 return; 524 } 525 526 /* Sanity check: */ 527 assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0); 528 529 usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH; 530 if (usedspace > 0) { 531 /* Calculate how much free space is available in the buffer */ 532 freespace = SHA256_BLOCK_LENGTH - usedspace; 533 534 if (len >= freespace) { 535 /* Fill the buffer completely and process it */ 536 bcopy(data, &context->buffer[usedspace], freespace); 537 context->bitcount += freespace << 3; 538 len -= freespace; 539 data += freespace; 540 SHA256_Transform(context, (sha2_word32*)context->buffer); 541 } else { 542 /* The buffer is not yet full */ 543 bcopy(data, &context->buffer[usedspace], len); 544 context->bitcount += len << 3; 545 /* Clean up: */ 546 usedspace = freespace = 0; 547 return; 548 } 549 } 550 while (len >= SHA256_BLOCK_LENGTH) { 551 /* Process as many complete blocks as we can */ 552 SHA256_Transform(context, (const sha2_word32*)data); 553 context->bitcount += SHA256_BLOCK_LENGTH << 3; 554 len -= SHA256_BLOCK_LENGTH; 555 data += SHA256_BLOCK_LENGTH; 556 } 557 if (len > 0) { 558 /* There's left-overs, so save 'em */ 559 bcopy(data, context->buffer, len); 560 context->bitcount += len << 3; 561 } 562 /* Clean up: */ 563 usedspace = freespace = 0; 564 } 565 566 void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) { 567 sha2_word32 *d = (sha2_word32*)digest; 568 unsigned int usedspace; 569 570 /* Sanity check: */ 571 assert(context != (SHA256_CTX*)0); 572 573 /* If no digest buffer is passed, we don't bother doing this: */ 574 if (digest != (sha2_byte*)0) { 575 usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH; 576 #if BYTE_ORDER == LITTLE_ENDIAN 577 /* Convert FROM host byte order */ 578 REVERSE64(context->bitcount,context->bitcount); 579 #endif 580 if (usedspace > 0) { 581 /* Begin padding with a 1 bit: */ 582 context->buffer[usedspace++] = 0x80; 583 584 if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) { 585 /* Set-up for the last transform: */ 586 bzero(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace); 587 } else { 588 if (usedspace < SHA256_BLOCK_LENGTH) { 589 bzero(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace); 590 } 591 /* Do second-to-last transform: */ 592 SHA256_Transform(context, (sha2_word32*)context->buffer); 593 594 /* And set-up for the last transform: */ 595 bzero(context->buffer, SHA256_SHORT_BLOCK_LENGTH); 596 } 597 } else { 598 /* Set-up for the last transform: */ 599 bzero(context->buffer, SHA256_SHORT_BLOCK_LENGTH); 600 601 /* Begin padding with a 1 bit: */ 602 *context->buffer = 0x80; 603 } 604 /* Set the bit count: */ 605 *(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount; 606 607 /* Final transform: */ 608 SHA256_Transform(context, (sha2_word32*)context->buffer); 609 610 #if BYTE_ORDER == LITTLE_ENDIAN 611 { 612 /* Convert TO host byte order */ 613 int j; 614 for (j = 0; j < 8; j++) { 615 REVERSE32(context->state[j],context->state[j]); 616 *d++ = context->state[j]; 617 } 618 } 619 #else 620 bcopy(context->state, d, SHA256_DIGEST_LENGTH); 621 #endif 622 } 623 624 /* Clean up state data: */ 625 bzero(context, sizeof(*context)); 626 usedspace = 0; 627 } 628 629 char *SHA256_End(SHA256_CTX* context, char buffer[]) { 630 sha2_byte digest[SHA256_DIGEST_LENGTH], *d = digest; 631 int i; 632 633 /* Sanity check: */ 634 assert(context != (SHA256_CTX*)0); 635 636 if (buffer != (char*)0) { 637 SHA256_Final(digest, context); 638 639 for (i = 0; i < SHA256_DIGEST_LENGTH; i++) { 640 *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4]; 641 *buffer++ = sha2_hex_digits[*d & 0x0f]; 642 d++; 643 } 644 *buffer = (char)0; 645 } else { 646 bzero(context, sizeof(*context)); 647 } 648 bzero(digest, SHA256_DIGEST_LENGTH); 649 return buffer; 650 } 651 652 char* SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) { 653 SHA256_CTX context; 654 655 SHA256_Init(&context); 656 SHA256_Update(&context, data, len); 657 return SHA256_End(&context, digest); 658 } 659 660 661 /*** SHA-512: *********************************************************/ 662 void SHA512_Init(SHA512_CTX* context) { 663 if (context == (SHA512_CTX*)0) { 664 return; 665 } 666 bcopy(sha512_initial_hash_value, context->state, SHA512_DIGEST_LENGTH); 667 bzero(context->buffer, SHA512_BLOCK_LENGTH); 668 context->bitcount[0] = context->bitcount[1] = 0; 669 } 670 671 #ifdef SHA2_UNROLL_TRANSFORM 672 673 /* Unrolled SHA-512 round macros: */ 674 #if BYTE_ORDER == LITTLE_ENDIAN 675 676 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ 677 REVERSE64(*data++, W512[j]); \ 678 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \ 679 K512[j] + W512[j]; \ 680 (d) += T1, \ 681 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \ 682 j++ 683 684 685 #else /* BYTE_ORDER == LITTLE_ENDIAN */ 686 687 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ 688 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \ 689 K512[j] + (W512[j] = *data++); \ 690 (d) += T1; \ 691 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \ 692 j++ 693 694 #endif /* BYTE_ORDER == LITTLE_ENDIAN */ 695 696 #define ROUND512(a,b,c,d,e,f,g,h) \ 697 s0 = W512[(j+1)&0x0f]; \ 698 s0 = sigma0_512(s0); \ 699 s1 = W512[(j+14)&0x0f]; \ 700 s1 = sigma1_512(s1); \ 701 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \ 702 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ 703 (d) += T1; \ 704 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \ 705 j++ 706 707 void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) { 708 sha2_word64 a, b, c, d, e, f, g, h, s0, s1; 709 sha2_word64 T1, *W512 = (sha2_word64*)context->buffer; 710 int j; 711 712 /* Initialize registers with the prev. intermediate value */ 713 a = context->state[0]; 714 b = context->state[1]; 715 c = context->state[2]; 716 d = context->state[3]; 717 e = context->state[4]; 718 f = context->state[5]; 719 g = context->state[6]; 720 h = context->state[7]; 721 722 j = 0; 723 do { 724 ROUND512_0_TO_15(a,b,c,d,e,f,g,h); 725 ROUND512_0_TO_15(h,a,b,c,d,e,f,g); 726 ROUND512_0_TO_15(g,h,a,b,c,d,e,f); 727 ROUND512_0_TO_15(f,g,h,a,b,c,d,e); 728 ROUND512_0_TO_15(e,f,g,h,a,b,c,d); 729 ROUND512_0_TO_15(d,e,f,g,h,a,b,c); 730 ROUND512_0_TO_15(c,d,e,f,g,h,a,b); 731 ROUND512_0_TO_15(b,c,d,e,f,g,h,a); 732 } while (j < 16); 733 734 /* Now for the remaining rounds up to 79: */ 735 do { 736 ROUND512(a,b,c,d,e,f,g,h); 737 ROUND512(h,a,b,c,d,e,f,g); 738 ROUND512(g,h,a,b,c,d,e,f); 739 ROUND512(f,g,h,a,b,c,d,e); 740 ROUND512(e,f,g,h,a,b,c,d); 741 ROUND512(d,e,f,g,h,a,b,c); 742 ROUND512(c,d,e,f,g,h,a,b); 743 ROUND512(b,c,d,e,f,g,h,a); 744 } while (j < 80); 745 746 /* Compute the current intermediate hash value */ 747 context->state[0] += a; 748 context->state[1] += b; 749 context->state[2] += c; 750 context->state[3] += d; 751 context->state[4] += e; 752 context->state[5] += f; 753 context->state[6] += g; 754 context->state[7] += h; 755 756 /* Clean up */ 757 a = b = c = d = e = f = g = h = T1 = 0; 758 } 759 760 #else /* SHA2_UNROLL_TRANSFORM */ 761 762 void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) { 763 sha2_word64 a, b, c, d, e, f, g, h, s0, s1; 764 sha2_word64 T1, T2, *W512 = (sha2_word64*)context->buffer; 765 int j; 766 767 /* Initialize registers with the prev. intermediate value */ 768 a = context->state[0]; 769 b = context->state[1]; 770 c = context->state[2]; 771 d = context->state[3]; 772 e = context->state[4]; 773 f = context->state[5]; 774 g = context->state[6]; 775 h = context->state[7]; 776 777 j = 0; 778 do { 779 #if BYTE_ORDER == LITTLE_ENDIAN 780 /* Convert TO host byte order */ 781 REVERSE64(*data++, W512[j]); 782 /* Apply the SHA-512 compression function to update a..h */ 783 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; 784 #else /* BYTE_ORDER == LITTLE_ENDIAN */ 785 /* Apply the SHA-512 compression function to update a..h with copy */ 786 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++); 787 #endif /* BYTE_ORDER == LITTLE_ENDIAN */ 788 T2 = Sigma0_512(a) + Maj(a, b, c); 789 h = g; 790 g = f; 791 f = e; 792 e = d + T1; 793 d = c; 794 c = b; 795 b = a; 796 a = T1 + T2; 797 798 j++; 799 } while (j < 16); 800 801 do { 802 /* Part of the message block expansion: */ 803 s0 = W512[(j+1)&0x0f]; 804 s0 = sigma0_512(s0); 805 s1 = W512[(j+14)&0x0f]; 806 s1 = sigma1_512(s1); 807 808 /* Apply the SHA-512 compression function to update a..h */ 809 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + 810 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); 811 T2 = Sigma0_512(a) + Maj(a, b, c); 812 h = g; 813 g = f; 814 f = e; 815 e = d + T1; 816 d = c; 817 c = b; 818 b = a; 819 a = T1 + T2; 820 821 j++; 822 } while (j < 80); 823 824 /* Compute the current intermediate hash value */ 825 context->state[0] += a; 826 context->state[1] += b; 827 context->state[2] += c; 828 context->state[3] += d; 829 context->state[4] += e; 830 context->state[5] += f; 831 context->state[6] += g; 832 context->state[7] += h; 833 834 /* Clean up */ 835 a = b = c = d = e = f = g = h = T1 = T2 = 0; 836 } 837 838 #endif /* SHA2_UNROLL_TRANSFORM */ 839 840 void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) { 841 unsigned int freespace, usedspace; 842 843 if (len == 0) { 844 /* Calling with no data is valid - we do nothing */ 845 return; 846 } 847 848 /* Sanity check: */ 849 assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0); 850 851 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; 852 if (usedspace > 0) { 853 /* Calculate how much free space is available in the buffer */ 854 freespace = SHA512_BLOCK_LENGTH - usedspace; 855 856 if (len >= freespace) { 857 /* Fill the buffer completely and process it */ 858 bcopy(data, &context->buffer[usedspace], freespace); 859 ADDINC128(context->bitcount, freespace << 3); 860 len -= freespace; 861 data += freespace; 862 SHA512_Transform(context, (sha2_word64*)context->buffer); 863 } else { 864 /* The buffer is not yet full */ 865 bcopy(data, &context->buffer[usedspace], len); 866 ADDINC128(context->bitcount, len << 3); 867 /* Clean up: */ 868 usedspace = freespace = 0; 869 return; 870 } 871 } 872 while (len >= SHA512_BLOCK_LENGTH) { 873 /* Process as many complete blocks as we can */ 874 SHA512_Transform(context, (const sha2_word64*)data); 875 ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3); 876 len -= SHA512_BLOCK_LENGTH; 877 data += SHA512_BLOCK_LENGTH; 878 } 879 if (len > 0) { 880 /* There's left-overs, so save 'em */ 881 bcopy(data, context->buffer, len); 882 ADDINC128(context->bitcount, len << 3); 883 } 884 /* Clean up: */ 885 usedspace = freespace = 0; 886 } 887 888 void SHA512_Last(SHA512_CTX* context) { 889 unsigned int usedspace; 890 891 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; 892 #if BYTE_ORDER == LITTLE_ENDIAN 893 /* Convert FROM host byte order */ 894 REVERSE64(context->bitcount[0],context->bitcount[0]); 895 REVERSE64(context->bitcount[1],context->bitcount[1]); 896 #endif 897 if (usedspace > 0) { 898 /* Begin padding with a 1 bit: */ 899 context->buffer[usedspace++] = 0x80; 900 901 if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) { 902 /* Set-up for the last transform: */ 903 bzero(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace); 904 } else { 905 if (usedspace < SHA512_BLOCK_LENGTH) { 906 bzero(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace); 907 } 908 /* Do second-to-last transform: */ 909 SHA512_Transform(context, (sha2_word64*)context->buffer); 910 911 /* And set-up for the last transform: */ 912 bzero(context->buffer, SHA512_BLOCK_LENGTH - 2); 913 } 914 } else { 915 /* Prepare for final transform: */ 916 bzero(context->buffer, SHA512_SHORT_BLOCK_LENGTH); 917 918 /* Begin padding with a 1 bit: */ 919 *context->buffer = 0x80; 920 } 921 /* Store the length of input data (in bits): */ 922 *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1]; 923 *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0]; 924 925 /* Final transform: */ 926 SHA512_Transform(context, (sha2_word64*)context->buffer); 927 } 928 929 void SHA512_Final(sha2_byte digest[], SHA512_CTX* context) { 930 sha2_word64 *d = (sha2_word64*)digest; 931 932 /* Sanity check: */ 933 assert(context != (SHA512_CTX*)0); 934 935 /* If no digest buffer is passed, we don't bother doing this: */ 936 if (digest != (sha2_byte*)0) { 937 SHA512_Last(context); 938 939 /* Save the hash data for output: */ 940 #if BYTE_ORDER == LITTLE_ENDIAN 941 { 942 /* Convert TO host byte order */ 943 int j; 944 for (j = 0; j < 8; j++) { 945 REVERSE64(context->state[j],context->state[j]); 946 *d++ = context->state[j]; 947 } 948 } 949 #else 950 bcopy(context->state, d, SHA512_DIGEST_LENGTH); 951 #endif 952 } 953 954 /* Zero out state data */ 955 bzero(context, sizeof(*context)); 956 } 957 958 char *SHA512_End(SHA512_CTX* context, char buffer[]) { 959 sha2_byte digest[SHA512_DIGEST_LENGTH], *d = digest; 960 int i; 961 962 /* Sanity check: */ 963 assert(context != (SHA512_CTX*)0); 964 965 if (buffer != (char*)0) { 966 SHA512_Final(digest, context); 967 968 for (i = 0; i < SHA512_DIGEST_LENGTH; i++) { 969 *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4]; 970 *buffer++ = sha2_hex_digits[*d & 0x0f]; 971 d++; 972 } 973 *buffer = (char)0; 974 } else { 975 bzero(context, sizeof(*context)); 976 } 977 bzero(digest, SHA512_DIGEST_LENGTH); 978 return buffer; 979 } 980 981 char* SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) { 982 SHA512_CTX context; 983 984 SHA512_Init(&context); 985 SHA512_Update(&context, data, len); 986 return SHA512_End(&context, digest); 987 } 988 989 990 /*** SHA-384: *********************************************************/ 991 void SHA384_Init(SHA384_CTX* context) { 992 if (context == (SHA384_CTX*)0) { 993 return; 994 } 995 bcopy(sha384_initial_hash_value, context->state, SHA512_DIGEST_LENGTH); 996 bzero(context->buffer, SHA384_BLOCK_LENGTH); 997 context->bitcount[0] = context->bitcount[1] = 0; 998 } 999 1000 void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) { 1001 SHA512_Update((SHA512_CTX*)context, data, len); 1002 } 1003 1004 void SHA384_Final(sha2_byte digest[], SHA384_CTX* context) { 1005 sha2_word64 *d = (sha2_word64*)digest; 1006 1007 /* Sanity check: */ 1008 assert(context != (SHA384_CTX*)0); 1009 1010 /* If no digest buffer is passed, we don't bother doing this: */ 1011 if (digest != (sha2_byte*)0) { 1012 SHA512_Last((SHA512_CTX*)context); 1013 1014 /* Save the hash data for output: */ 1015 #if BYTE_ORDER == LITTLE_ENDIAN 1016 { 1017 /* Convert TO host byte order */ 1018 int j; 1019 for (j = 0; j < 6; j++) { 1020 REVERSE64(context->state[j],context->state[j]); 1021 *d++ = context->state[j]; 1022 } 1023 } 1024 #else 1025 bcopy(context->state, d, SHA384_DIGEST_LENGTH); 1026 #endif 1027 } 1028 1029 /* Zero out state data */ 1030 bzero(context, sizeof(*context)); 1031 } 1032 1033 char *SHA384_End(SHA384_CTX* context, char buffer[]) { 1034 sha2_byte digest[SHA384_DIGEST_LENGTH], *d = digest; 1035 int i; 1036 1037 /* Sanity check: */ 1038 assert(context != (SHA384_CTX*)0); 1039 1040 if (buffer != (char*)0) { 1041 SHA384_Final(digest, context); 1042 1043 for (i = 0; i < SHA384_DIGEST_LENGTH; i++) { 1044 *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4]; 1045 *buffer++ = sha2_hex_digits[*d & 0x0f]; 1046 d++; 1047 } 1048 *buffer = (char)0; 1049 } else { 1050 bzero(context, sizeof(*context)); 1051 } 1052 bzero(digest, SHA384_DIGEST_LENGTH); 1053 return buffer; 1054 } 1055 1056 char* SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) { 1057 SHA384_CTX context; 1058 1059 SHA384_Init(&context); 1060 SHA384_Update(&context, data, len); 1061 return SHA384_End(&context, digest); 1062 } 1063 1064 /*glue*/ 1065 #ifdef HAVE_EVP_097 1066 1067 /* SHA256 */ 1068 #define data(ctx) ((SHA256_CTX *)(ctx)->md_data) 1069 static int sha256_init(EVP_MD_CTX *ctx) 1070 { 1071 SHA256_Init(data(ctx)); 1072 return 1; 1073 } 1074 static int sha256_update(EVP_MD_CTX *ctx, const void *data, unsigned long count) 1075 { 1076 SHA256_Update(data(ctx), data, count); 1077 return 1; 1078 } 1079 static int sha256_final(EVP_MD_CTX *ctx, unsigned char *md) 1080 { 1081 SHA256_Final(md, data(ctx)); 1082 return 1; 1083 } 1084 #undef data 1085 1086 /* SHA384 */ 1087 #define data(ctx) ((SHA384_CTX *)(ctx)->md_data) 1088 static int sha384_init(EVP_MD_CTX *ctx) 1089 { 1090 SHA384_Init(data(ctx)); 1091 return 1; 1092 } 1093 static int sha384_update(EVP_MD_CTX *ctx, const void *data, unsigned long count) 1094 { 1095 SHA384_Update(data(ctx), data, count); 1096 return 1; 1097 } 1098 static int sha384_final(EVP_MD_CTX *ctx, unsigned char *md) 1099 { 1100 SHA384_Final(md, data(ctx)); 1101 return 1; 1102 } 1103 #undef data 1104 1105 /* SHA512 */ 1106 #define data(ctx) ((SHA512_CTX *)(ctx)->md_data) 1107 static int sha512_init(EVP_MD_CTX *ctx) 1108 { 1109 SHA512_Init(data(ctx)); 1110 return 1; 1111 } 1112 static int sha512_update(EVP_MD_CTX *ctx, const void *data, unsigned long count) 1113 { 1114 SHA512_Update(data(ctx), data, count); 1115 return 1; 1116 } 1117 static int sha512_final(EVP_MD_CTX *ctx, unsigned char *md) 1118 { 1119 SHA512_Final(md, data(ctx)); 1120 return 1; 1121 } 1122 #undef data 1123 #endif 1124 1125 static struct env_md_st sha2_256_md = { 1126 0, /*NID_sha1*/ 1127 0, /*NID_sha1WithRSAEncryption*/ 1128 SHA256_DIGEST_LENGTH, 1129 #ifdef HAVE_EVP_097 1130 0, /* flags */ 1131 sha256_init, 1132 sha256_update, 1133 sha256_final, 1134 NULL, /* copy */ 1135 NULL, /* cleanup */ 1136 #else 1137 SHA256_Init, 1138 SHA256_Update, 1139 SHA256_Final, 1140 #endif 1141 NULL, NULL, {0, 0, 0, 0}, 1142 SHA256_BLOCK_LENGTH, 1143 sizeof(struct env_md_st *) + sizeof(SHA256_CTX), 1144 }; 1145 1146 struct env_md_st *EVP_sha2_256(void) 1147 { 1148 return(&sha2_256_md); 1149 } 1150 1151 static struct env_md_st sha2_384_md = { 1152 0, /*NID_sha1*/ 1153 0, /*NID_sha1WithRSAEncryption*/ 1154 SHA384_DIGEST_LENGTH, 1155 #ifdef HAVE_EVP_097 1156 0, /* flags */ 1157 sha384_init, 1158 sha384_update, 1159 sha384_final, 1160 NULL, /* copy */ 1161 NULL, /* cleanup */ 1162 #else 1163 SHA384_Init, 1164 SHA384_Update, 1165 SHA384_Final, 1166 #endif 1167 NULL, NULL, {0, 0, 0, 0}, 1168 SHA384_BLOCK_LENGTH, 1169 sizeof(struct env_md_st *) + sizeof(SHA384_CTX), 1170 }; 1171 1172 struct env_md_st *EVP_sha2_384(void) 1173 { 1174 return(&sha2_384_md); 1175 } 1176 1177 static struct env_md_st sha2_512_md = { 1178 0, /*NID_sha1*/ 1179 0, /*NID_sha1WithRSAEncryption*/ 1180 SHA512_DIGEST_LENGTH, 1181 #ifdef HAVE_EVP_097 1182 0, /* flags */ 1183 sha512_init, 1184 sha512_update, 1185 sha512_final, 1186 NULL, /* copy */ 1187 NULL, /* cleanup */ 1188 #else 1189 SHA512_Init, 1190 SHA512_Update, 1191 SHA512_Final, 1192 #endif 1193 NULL, NULL, {0, 0, 0, 0}, /*EVP_PKEY_RSA_method*/ 1194 SHA512_BLOCK_LENGTH, 1195 sizeof(struct env_md_st *) + sizeof(SHA512_CTX), 1196 }; 1197 1198 struct env_md_st *EVP_sha2_512(void) 1199 { 1200 return(&sha2_512_md); 1201 } 1202