Home | History | Annotate | Download | only in src
      1 
      2 /* -----------------------------------------------------------------------------------------------------------
      3 Software License for The Fraunhofer FDK AAC Codec Library for Android
      4 
      5  Copyright  1995 - 2012 Fraunhofer-Gesellschaft zur Frderung der angewandten Forschung e.V.
      6   All rights reserved.
      7 
      8  1.    INTRODUCTION
      9 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
     10 the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
     11 This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
     12 
     13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
     14 audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
     15 independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
     16 of the MPEG specifications.
     17 
     18 Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
     19 may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
     20 individually for the purpose of encoding or decoding bit streams in products that are compliant with
     21 the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
     22 these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
     23 software may already be covered under those patent licenses when it is used for those licensed purposes only.
     24 
     25 Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
     26 are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
     27 applications information and documentation.
     28 
     29 2.    COPYRIGHT LICENSE
     30 
     31 Redistribution and use in source and binary forms, with or without modification, are permitted without
     32 payment of copyright license fees provided that you satisfy the following conditions:
     33 
     34 You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
     35 your modifications thereto in source code form.
     36 
     37 You must retain the complete text of this software license in the documentation and/or other materials
     38 provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
     39 You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
     40 modifications thereto to recipients of copies in binary form.
     41 
     42 The name of Fraunhofer may not be used to endorse or promote products derived from this library without
     43 prior written permission.
     44 
     45 You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
     46 software or your modifications thereto.
     47 
     48 Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
     49 and the date of any change. For modified versions of the FDK AAC Codec, the term
     50 "Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
     51 "Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
     52 
     53 3.    NO PATENT LICENSE
     54 
     55 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
     56 ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
     57 respect to this software.
     58 
     59 You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
     60 by appropriate patent licenses.
     61 
     62 4.    DISCLAIMER
     63 
     64 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
     65 "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
     66 of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
     67 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
     68 including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
     69 or business interruption, however caused and on any theory of liability, whether in contract, strict
     70 liability, or tort (including negligence), arising in any way out of the use of this software, even if
     71 advised of the possibility of such damage.
     72 
     73 5.    CONTACT INFORMATION
     74 
     75 Fraunhofer Institute for Integrated Circuits IIS
     76 Attention: Audio and Multimedia Departments - FDK AAC LL
     77 Am Wolfsmantel 33
     78 91058 Erlangen, Germany
     79 
     80 www.iis.fraunhofer.de/amm
     81 amm-info (at) iis.fraunhofer.de
     82 ----------------------------------------------------------------------------------------------------------- */
     83 
     84 /***************************  Fraunhofer IIS FDK Tools  **********************
     85 
     86    Author(s):
     87    Description: Scaling operations
     88 
     89 ******************************************************************************/
     90 
     91 #include "common_fix.h"
     92 
     93 #include "genericStds.h"
     94 
     95 /**************************************************
     96  * Inline definitions
     97  **************************************************/
     98 
     99 #define SCALE_INLINE inline
    100 
    101 
    102 #if defined(__mips__)	/* cppp replaced: elif */
    103 #include "mips/scale.cpp"
    104 
    105 #elif defined(__arm__)
    106 #include "arm/scale_arm.cpp"
    107 
    108 #endif
    109 
    110 #ifndef FUNCTION_scaleValues_SGL
    111 /*!
    112  *
    113  *  \brief  Multiply input vector by \f$ 2^{scalefactor} \f$
    114  *  \param len    must be larger than 4
    115  *  \return void
    116  *
    117  */
    118 #define FUNCTION_scaleValues_SGL
    119 SCALE_INLINE
    120 void scaleValues(FIXP_SGL *vector,  /*!< Vector */
    121                  INT len,            /*!< Length */
    122                  INT scalefactor     /*!< Scalefactor */
    123                  )
    124 {
    125   INT i;
    126 
    127   /* Return if scalefactor is Zero */
    128   if (scalefactor==0) return;
    129 
    130   if(scalefactor > 0){
    131     scalefactor = fixmin_I(scalefactor,(INT)(DFRACT_BITS-1));
    132     for (i = len&3; i--; )
    133     {
    134       *(vector++) <<= scalefactor;
    135     }
    136     for (i = len>>2; i--; )
    137     {
    138       *(vector++) <<= scalefactor;
    139       *(vector++) <<= scalefactor;
    140       *(vector++) <<= scalefactor;
    141       *(vector++) <<= scalefactor;
    142     }
    143   } else {
    144     INT negScalefactor = fixmin_I(-scalefactor,(INT)DFRACT_BITS-1);
    145     for (i = len&3; i--; )
    146     {
    147       *(vector++) >>= negScalefactor;
    148     }
    149     for (i = len>>2; i--; )
    150     {
    151       *(vector++) >>= negScalefactor;
    152       *(vector++) >>= negScalefactor;
    153       *(vector++) >>= negScalefactor;
    154       *(vector++) >>= negScalefactor;
    155     }
    156   }
    157 }
    158 #endif
    159 
    160 #ifndef FUNCTION_scaleValues_DBL
    161 /*!
    162  *
    163  *  \brief  Multiply input vector by \f$ 2^{scalefactor} \f$
    164  *  \param len must be larger than 4
    165  *  \return void
    166  *
    167  */
    168 #define FUNCTION_scaleValues_DBL
    169 SCALE_INLINE
    170 void scaleValues(FIXP_DBL *vector,    /*!< Vector */
    171                  INT len,             /*!< Length */
    172                  INT scalefactor      /*!< Scalefactor */
    173                 )
    174 {
    175   INT i;
    176 
    177   /* Return if scalefactor is Zero */
    178   if (scalefactor==0) return;
    179 
    180   if(scalefactor > 0){
    181     scalefactor = fixmin_I(scalefactor,(INT)DFRACT_BITS-1);
    182     for (i = len&3; i--; )
    183     {
    184       *(vector++) <<= scalefactor;
    185     }
    186     for (i = len>>2; i--; )
    187     {
    188       *(vector++) <<= scalefactor;
    189       *(vector++) <<= scalefactor;
    190       *(vector++) <<= scalefactor;
    191       *(vector++) <<= scalefactor;
    192     }
    193   } else {
    194     INT negScalefactor = fixmin_I(-scalefactor,(INT)DFRACT_BITS-1);
    195     for (i = len&3; i--; )
    196     {
    197       *(vector++) >>= negScalefactor;
    198     }
    199     for (i = len>>2; i--; )
    200     {
    201       *(vector++) >>= negScalefactor;
    202       *(vector++) >>= negScalefactor;
    203       *(vector++) >>= negScalefactor;
    204       *(vector++) >>= negScalefactor;
    205     }
    206   }
    207 }
    208 #endif
    209 
    210 #ifndef FUNCTION_scaleValues_DBLDBL
    211 /*!
    212  *
    213  *  \brief  Multiply input vector src by \f$ 2^{scalefactor} \f$
    214  *          and place result into dst
    215  *  \param dst detination buffer
    216  *  \param src source buffer
    217  *  \param len must be larger than 4
    218  *  \param scalefactor amount of left shifts to be applied
    219  *  \return void
    220  *
    221  */
    222 #define FUNCTION_scaleValues_DBLDBL
    223 SCALE_INLINE
    224 void scaleValues(FIXP_DBL *dst,       /*!< dst Vector */
    225                  const FIXP_DBL *src, /*!< src Vector */
    226                  INT len,             /*!< Length */
    227                  INT scalefactor      /*!< Scalefactor */
    228                 )
    229 {
    230   INT i;
    231 
    232   /* Return if scalefactor is Zero */
    233   if (scalefactor==0) {
    234 	if (dst != src)
    235       FDKmemmove(dst, src, len*sizeof(FIXP_DBL));
    236   }
    237   else {
    238 
    239     if(scalefactor > 0){
    240       scalefactor = fixmin_I(scalefactor,(INT)DFRACT_BITS-1);
    241       for (i = len&3; i--; )
    242       {
    243         *(dst++) = *(src++) << scalefactor;
    244       }
    245       for (i = len>>2; i--; )
    246       {
    247         *(dst++) = *(src++) << scalefactor;
    248         *(dst++) = *(src++) << scalefactor;
    249         *(dst++) = *(src++) << scalefactor;
    250         *(dst++) = *(src++) << scalefactor;
    251       }
    252     } else {
    253       INT negScalefactor = fixmin_I(-scalefactor,(INT)DFRACT_BITS-1);
    254       for (i = len&3; i--; )
    255       {
    256         *(dst++) = *(src++) >> negScalefactor;
    257       }
    258       for (i = len>>2; i--; )
    259       {
    260         *(dst++) = *(src++) >> negScalefactor;
    261         *(dst++) = *(src++) >> negScalefactor;
    262         *(dst++) = *(src++) >> negScalefactor;
    263         *(dst++) = *(src++) >> negScalefactor;
    264       }
    265     }
    266   }
    267 }
    268 #endif
    269 
    270 #ifndef FUNCTION_scaleValuesWithFactor_DBL
    271 /*!
    272  *
    273  *  \brief  Multiply input vector by \f$ 2^{scalefactor} \f$
    274  *  \param len must be larger than 4
    275  *  \return void
    276  *
    277  */
    278 #define FUNCTION_scaleValuesWithFactor_DBL
    279 SCALE_INLINE
    280 void scaleValuesWithFactor(
    281         FIXP_DBL *vector,
    282         FIXP_DBL factor,
    283         INT len,
    284         INT scalefactor
    285         )
    286 {
    287   INT i;
    288 
    289   /* Compensate fMultDiv2 */
    290   scalefactor++;
    291 
    292   if(scalefactor > 0){
    293     scalefactor = fixmin_I(scalefactor,(INT)DFRACT_BITS-1);
    294     for (i = len&3; i--; )
    295     {
    296       *vector = fMultDiv2(*vector, factor) << scalefactor;
    297       vector++;
    298     }
    299     for (i = len>>2; i--; )
    300     {
    301       *vector = fMultDiv2(*vector, factor) << scalefactor; vector++;
    302       *vector = fMultDiv2(*vector, factor) << scalefactor; vector++;
    303       *vector = fMultDiv2(*vector, factor) << scalefactor; vector++;
    304       *vector = fMultDiv2(*vector, factor) << scalefactor; vector++;
    305     }
    306   } else {
    307     INT negScalefactor = fixmin_I(-scalefactor,(INT)DFRACT_BITS-1);
    308     for (i = len&3; i--; )
    309     {
    310       *vector = fMultDiv2(*vector, factor) >> negScalefactor;
    311       vector++;
    312     }
    313     for (i = len>>2; i--; )
    314     {
    315       *vector = fMultDiv2(*vector, factor) >> negScalefactor; vector++;
    316       *vector = fMultDiv2(*vector, factor) >> negScalefactor; vector++;
    317       *vector = fMultDiv2(*vector, factor) >> negScalefactor; vector++;
    318       *vector = fMultDiv2(*vector, factor) >> negScalefactor; vector++;
    319     }
    320   }
    321 }
    322 #endif /* FUNCTION_scaleValuesWithFactor_DBL */
    323 
    324 
    325 /*******************************************
    326 
    327 IMPORTANT NOTE for usage of getScalefactor()
    328 
    329 If the input array contains negative values too, then these functions may sometimes return
    330 the actual maximum value minus 1, due to the nature of the applied algorithm.
    331 So be careful with possible fractional -1 values that may lead to overflows when being fPow2()'ed.
    332 
    333 ********************************************/
    334 
    335 
    336 
    337 #ifndef FUNCTION_getScalefactorShort
    338 /*!
    339  *
    340  *  \brief Calculate max possible scale factor for input vector of shorts
    341  *
    342  *  \return Maximum scale factor / possible left shift
    343  *
    344  */
    345 #define FUNCTION_getScalefactorShort
    346 SCALE_INLINE
    347 INT getScalefactorShort(const SHORT *vector, /*!< Pointer to input vector */
    348                         INT len              /*!< Length of input vector */
    349                        )
    350 {
    351   INT i;
    352   SHORT temp, maxVal = 0;
    353 
    354   for(i=len;i!=0;i--){
    355     temp = (SHORT)(*vector++);
    356     maxVal |= (temp^(temp>>(SHORT_BITS-1)));
    357   }
    358 
    359   return fixmax_I((INT)0,(INT)(fixnormz_D((INT)maxVal) - (INT)1 - (INT)(DFRACT_BITS - SHORT_BITS)));
    360 }
    361 #endif
    362 
    363 #ifndef FUNCTION_getScalefactorPCM
    364 /*!
    365  *
    366  *  \brief Calculate max possible scale factor for input vector of shorts
    367  *
    368  *  \return Maximum scale factor
    369  *
    370  */
    371 #define FUNCTION_getScalefactorPCM
    372 SCALE_INLINE
    373 INT getScalefactorPCM(const INT_PCM *vector, /*!< Pointer to input vector */
    374                       INT len,               /*!< Length of input vector */
    375                       INT stride
    376                       )
    377 {
    378   INT i;
    379   INT_PCM temp, maxVal = 0;
    380 
    381   for(i=len;i!=0;i--){
    382     temp = (INT_PCM)(*vector); vector+=stride;
    383     maxVal |= (temp^(temp>>((sizeof(INT_PCM)*8)-1)));
    384   }
    385   return fixmax_I((INT)0,(INT)(fixnormz_D((INT)maxVal) - (INT)1 - (INT)(DFRACT_BITS - SAMPLE_BITS)));
    386 }
    387 #endif
    388 
    389 #ifndef FUNCTION_getScalefactorShort
    390 /*!
    391  *
    392  *  \brief Calculate max possible scale factor for input vector of shorts
    393  *  \param stride, item increment between vector members.
    394  *  \return Maximum scale factor
    395  *
    396  */
    397 #define FUNCTION_getScalefactorShort
    398 SCALE_INLINE
    399 INT getScalefactorShort(const SHORT *vector, /*!< Pointer to input vector */
    400                         INT len,             /*!< Length of input vector */
    401                         INT stride
    402                        )
    403 {
    404   INT i;
    405   SHORT temp, maxVal = 0;
    406 
    407   for(i=len;i!=0;i--){
    408     temp = (SHORT)(*vector); vector+=stride;
    409     maxVal |= (temp^(temp>>(SHORT_BITS-1)));
    410   }
    411 
    412   return fixmax_I((INT)0,(INT)(fixnormz_D((INT)maxVal) - (INT)1 - (INT)(DFRACT_BITS - SHORT_BITS)));
    413 }
    414 #endif
    415 
    416 #ifndef FUNCTION_getScalefactor_DBL
    417 /*!
    418  *
    419  *  \brief Calculate max possible scale factor for input vector
    420  *
    421  *  \return Maximum scale factor
    422  *
    423  *  This function can constitute a significant amount of computational complexity - very much depending on the
    424  *  bitrate. Since it is a rather small function, effective assembler optimization might be possible.
    425  *
    426  */
    427 #define FUNCTION_getScalefactor_DBL
    428 SCALE_INLINE
    429 INT getScalefactor(const FIXP_DBL *vector, /*!< Pointer to input vector */
    430                    INT len)                /*!< Length of input vector */
    431 {
    432   INT i;
    433   FIXP_DBL temp, maxVal = (FIXP_DBL)0;
    434 
    435   for(i=len;i!=0;i--){
    436     temp = (LONG)(*vector++);
    437     maxVal |= (FIXP_DBL)((LONG)temp^(LONG)(temp>>(DFRACT_BITS-1)));
    438   }
    439 
    440   return fixmax_I((INT)0,(INT)(fixnormz_D(maxVal) - 1));
    441 }
    442 #endif
    443 
    444 #ifndef FUNCTION_getScalefactor_SGL
    445 #define FUNCTION_getScalefactor_SGL
    446 SCALE_INLINE
    447 INT getScalefactor(const FIXP_SGL *vector, /*!< Pointer to input vector */
    448                    INT len)                /*!< Length of input vector */
    449 {
    450   INT i;
    451   SHORT temp, maxVal = (FIXP_SGL)0;
    452 
    453   for(i=len;i!=0;i--){
    454     temp = (SHORT)(*vector++);
    455     maxVal |= (temp^(temp>>(FRACT_BITS-1)));
    456   }
    457 
    458   return fixmax_I((INT)0,(INT)(fixnormz_D(FX_SGL2FX_DBL((FIXP_SGL)maxVal)) - 1));
    459 }
    460 #endif
    461 
    462