1 /* 2 --------------------------------------------------------------------------- 3 Copyright (c) 1998-2008, Brian Gladman, Worcester, UK. All rights reserved. 4 5 LICENSE TERMS 6 7 The redistribution and use of this software (with or without changes) 8 is allowed without the payment of fees or royalties provided that: 9 10 1. source code distributions include the above copyright notice, this 11 list of conditions and the following disclaimer; 12 13 2. binary distributions include the above copyright notice, this list 14 of conditions and the following disclaimer in their documentation; 15 16 3. the name of the copyright holder is not used to endorse products 17 built using this software without specific written permission. 18 19 DISCLAIMER 20 21 This software is provided 'as is' with no explicit or implied warranties 22 in respect of its properties, including, but not limited to, correctness 23 and/or fitness for purpose. 24 --------------------------------------------------------------------------- 25 Issue 09/09/2006 26 27 This is an AES implementation that uses only 8-bit byte operations on the 28 cipher state (there are options to use 32-bit types if available). 29 30 The combination of mix columns and byte substitution used here is based on 31 that developed by Karl Malbrain. His contribution is acknowledged. 32 */ 33 34 /* define if you have a fast memcpy function on your system */ 35 #if 1 36 # define HAVE_MEMCPY 37 # include <string.h> 38 #if 0 39 # if defined( _MSC_VER ) 40 # include <intrin.h> 41 # pragma intrinsic( memcpy ) 42 # endif 43 #endif 44 #endif 45 46 #include <stdlib.h> 47 48 /* define if you have fast 32-bit types on your system */ 49 #if 1 50 # define HAVE_UINT_32T 51 #endif 52 53 /* define if you don't want any tables */ 54 #if 1 55 # define USE_TABLES 56 #endif 57 58 /* On Intel Core 2 duo VERSION_1 is faster */ 59 60 /* alternative versions (test for performance on your system) */ 61 #if 1 62 # define VERSION_1 63 #endif 64 65 #include "aes.h" 66 67 #if defined( HAVE_UINT_32T ) 68 typedef unsigned long uint_32t; 69 #endif 70 71 /* functions for finite field multiplication in the AES Galois field */ 72 73 #define WPOLY 0x011b 74 #define BPOLY 0x1b 75 #define DPOLY 0x008d 76 77 #define f1(x) (x) 78 #define f2(x) ((x << 1) ^ (((x >> 7) & 1) * WPOLY)) 79 #define f4(x) ((x << 2) ^ (((x >> 6) & 1) * WPOLY) ^ (((x >> 6) & 2) * WPOLY)) 80 #define f8(x) ((x << 3) ^ (((x >> 5) & 1) * WPOLY) ^ (((x >> 5) & 2) * WPOLY) \ 81 ^ (((x >> 5) & 4) * WPOLY)) 82 #define d2(x) (((x) >> 1) ^ ((x) & 1 ? DPOLY : 0)) 83 84 #define f3(x) (f2(x) ^ x) 85 #define f9(x) (f8(x) ^ x) 86 #define fb(x) (f8(x) ^ f2(x) ^ x) 87 #define fd(x) (f8(x) ^ f4(x) ^ x) 88 #define fe(x) (f8(x) ^ f4(x) ^ f2(x)) 89 90 #if defined( USE_TABLES ) 91 92 #define sb_data(w) { /* S Box data values */ \ 93 w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), w(0xc5),\ 94 w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), w(0xab), w(0x76),\ 95 w(0xca), w(0x82), w(0xc9), w(0x7d), w(0xfa), w(0x59), w(0x47), w(0xf0),\ 96 w(0xad), w(0xd4), w(0xa2), w(0xaf), w(0x9c), w(0xa4), w(0x72), w(0xc0),\ 97 w(0xb7), w(0xfd), w(0x93), w(0x26), w(0x36), w(0x3f), w(0xf7), w(0xcc),\ 98 w(0x34), w(0xa5), w(0xe5), w(0xf1), w(0x71), w(0xd8), w(0x31), w(0x15),\ 99 w(0x04), w(0xc7), w(0x23), w(0xc3), w(0x18), w(0x96), w(0x05), w(0x9a),\ 100 w(0x07), w(0x12), w(0x80), w(0xe2), w(0xeb), w(0x27), w(0xb2), w(0x75),\ 101 w(0x09), w(0x83), w(0x2c), w(0x1a), w(0x1b), w(0x6e), w(0x5a), w(0xa0),\ 102 w(0x52), w(0x3b), w(0xd6), w(0xb3), w(0x29), w(0xe3), w(0x2f), w(0x84),\ 103 w(0x53), w(0xd1), w(0x00), w(0xed), w(0x20), w(0xfc), w(0xb1), w(0x5b),\ 104 w(0x6a), w(0xcb), w(0xbe), w(0x39), w(0x4a), w(0x4c), w(0x58), w(0xcf),\ 105 w(0xd0), w(0xef), w(0xaa), w(0xfb), w(0x43), w(0x4d), w(0x33), w(0x85),\ 106 w(0x45), w(0xf9), w(0x02), w(0x7f), w(0x50), w(0x3c), w(0x9f), w(0xa8),\ 107 w(0x51), w(0xa3), w(0x40), w(0x8f), w(0x92), w(0x9d), w(0x38), w(0xf5),\ 108 w(0xbc), w(0xb6), w(0xda), w(0x21), w(0x10), w(0xff), w(0xf3), w(0xd2),\ 109 w(0xcd), w(0x0c), w(0x13), w(0xec), w(0x5f), w(0x97), w(0x44), w(0x17),\ 110 w(0xc4), w(0xa7), w(0x7e), w(0x3d), w(0x64), w(0x5d), w(0x19), w(0x73),\ 111 w(0x60), w(0x81), w(0x4f), w(0xdc), w(0x22), w(0x2a), w(0x90), w(0x88),\ 112 w(0x46), w(0xee), w(0xb8), w(0x14), w(0xde), w(0x5e), w(0x0b), w(0xdb),\ 113 w(0xe0), w(0x32), w(0x3a), w(0x0a), w(0x49), w(0x06), w(0x24), w(0x5c),\ 114 w(0xc2), w(0xd3), w(0xac), w(0x62), w(0x91), w(0x95), w(0xe4), w(0x79),\ 115 w(0xe7), w(0xc8), w(0x37), w(0x6d), w(0x8d), w(0xd5), w(0x4e), w(0xa9),\ 116 w(0x6c), w(0x56), w(0xf4), w(0xea), w(0x65), w(0x7a), w(0xae), w(0x08),\ 117 w(0xba), w(0x78), w(0x25), w(0x2e), w(0x1c), w(0xa6), w(0xb4), w(0xc6),\ 118 w(0xe8), w(0xdd), w(0x74), w(0x1f), w(0x4b), w(0xbd), w(0x8b), w(0x8a),\ 119 w(0x70), w(0x3e), w(0xb5), w(0x66), w(0x48), w(0x03), w(0xf6), w(0x0e),\ 120 w(0x61), w(0x35), w(0x57), w(0xb9), w(0x86), w(0xc1), w(0x1d), w(0x9e),\ 121 w(0xe1), w(0xf8), w(0x98), w(0x11), w(0x69), w(0xd9), w(0x8e), w(0x94),\ 122 w(0x9b), w(0x1e), w(0x87), w(0xe9), w(0xce), w(0x55), w(0x28), w(0xdf),\ 123 w(0x8c), w(0xa1), w(0x89), w(0x0d), w(0xbf), w(0xe6), w(0x42), w(0x68),\ 124 w(0x41), w(0x99), w(0x2d), w(0x0f), w(0xb0), w(0x54), w(0xbb), w(0x16) } 125 126 #define isb_data(w) { /* inverse S Box data values */ \ 127 w(0x52), w(0x09), w(0x6a), w(0xd5), w(0x30), w(0x36), w(0xa5), w(0x38),\ 128 w(0xbf), w(0x40), w(0xa3), w(0x9e), w(0x81), w(0xf3), w(0xd7), w(0xfb),\ 129 w(0x7c), w(0xe3), w(0x39), w(0x82), w(0x9b), w(0x2f), w(0xff), w(0x87),\ 130 w(0x34), w(0x8e), w(0x43), w(0x44), w(0xc4), w(0xde), w(0xe9), w(0xcb),\ 131 w(0x54), w(0x7b), w(0x94), w(0x32), w(0xa6), w(0xc2), w(0x23), w(0x3d),\ 132 w(0xee), w(0x4c), w(0x95), w(0x0b), w(0x42), w(0xfa), w(0xc3), w(0x4e),\ 133 w(0x08), w(0x2e), w(0xa1), w(0x66), w(0x28), w(0xd9), w(0x24), w(0xb2),\ 134 w(0x76), w(0x5b), w(0xa2), w(0x49), w(0x6d), w(0x8b), w(0xd1), w(0x25),\ 135 w(0x72), w(0xf8), w(0xf6), w(0x64), w(0x86), w(0x68), w(0x98), w(0x16),\ 136 w(0xd4), w(0xa4), w(0x5c), w(0xcc), w(0x5d), w(0x65), w(0xb6), w(0x92),\ 137 w(0x6c), w(0x70), w(0x48), w(0x50), w(0xfd), w(0xed), w(0xb9), w(0xda),\ 138 w(0x5e), w(0x15), w(0x46), w(0x57), w(0xa7), w(0x8d), w(0x9d), w(0x84),\ 139 w(0x90), w(0xd8), w(0xab), w(0x00), w(0x8c), w(0xbc), w(0xd3), w(0x0a),\ 140 w(0xf7), w(0xe4), w(0x58), w(0x05), w(0xb8), w(0xb3), w(0x45), w(0x06),\ 141 w(0xd0), w(0x2c), w(0x1e), w(0x8f), w(0xca), w(0x3f), w(0x0f), w(0x02),\ 142 w(0xc1), w(0xaf), w(0xbd), w(0x03), w(0x01), w(0x13), w(0x8a), w(0x6b),\ 143 w(0x3a), w(0x91), w(0x11), w(0x41), w(0x4f), w(0x67), w(0xdc), w(0xea),\ 144 w(0x97), w(0xf2), w(0xcf), w(0xce), w(0xf0), w(0xb4), w(0xe6), w(0x73),\ 145 w(0x96), w(0xac), w(0x74), w(0x22), w(0xe7), w(0xad), w(0x35), w(0x85),\ 146 w(0xe2), w(0xf9), w(0x37), w(0xe8), w(0x1c), w(0x75), w(0xdf), w(0x6e),\ 147 w(0x47), w(0xf1), w(0x1a), w(0x71), w(0x1d), w(0x29), w(0xc5), w(0x89),\ 148 w(0x6f), w(0xb7), w(0x62), w(0x0e), w(0xaa), w(0x18), w(0xbe), w(0x1b),\ 149 w(0xfc), w(0x56), w(0x3e), w(0x4b), w(0xc6), w(0xd2), w(0x79), w(0x20),\ 150 w(0x9a), w(0xdb), w(0xc0), w(0xfe), w(0x78), w(0xcd), w(0x5a), w(0xf4),\ 151 w(0x1f), w(0xdd), w(0xa8), w(0x33), w(0x88), w(0x07), w(0xc7), w(0x31),\ 152 w(0xb1), w(0x12), w(0x10), w(0x59), w(0x27), w(0x80), w(0xec), w(0x5f),\ 153 w(0x60), w(0x51), w(0x7f), w(0xa9), w(0x19), w(0xb5), w(0x4a), w(0x0d),\ 154 w(0x2d), w(0xe5), w(0x7a), w(0x9f), w(0x93), w(0xc9), w(0x9c), w(0xef),\ 155 w(0xa0), w(0xe0), w(0x3b), w(0x4d), w(0xae), w(0x2a), w(0xf5), w(0xb0),\ 156 w(0xc8), w(0xeb), w(0xbb), w(0x3c), w(0x83), w(0x53), w(0x99), w(0x61),\ 157 w(0x17), w(0x2b), w(0x04), w(0x7e), w(0xba), w(0x77), w(0xd6), w(0x26),\ 158 w(0xe1), w(0x69), w(0x14), w(0x63), w(0x55), w(0x21), w(0x0c), w(0x7d) } 159 160 #define mm_data(w) { /* basic data for forming finite field tables */ \ 161 w(0x00), w(0x01), w(0x02), w(0x03), w(0x04), w(0x05), w(0x06), w(0x07),\ 162 w(0x08), w(0x09), w(0x0a), w(0x0b), w(0x0c), w(0x0d), w(0x0e), w(0x0f),\ 163 w(0x10), w(0x11), w(0x12), w(0x13), w(0x14), w(0x15), w(0x16), w(0x17),\ 164 w(0x18), w(0x19), w(0x1a), w(0x1b), w(0x1c), w(0x1d), w(0x1e), w(0x1f),\ 165 w(0x20), w(0x21), w(0x22), w(0x23), w(0x24), w(0x25), w(0x26), w(0x27),\ 166 w(0x28), w(0x29), w(0x2a), w(0x2b), w(0x2c), w(0x2d), w(0x2e), w(0x2f),\ 167 w(0x30), w(0x31), w(0x32), w(0x33), w(0x34), w(0x35), w(0x36), w(0x37),\ 168 w(0x38), w(0x39), w(0x3a), w(0x3b), w(0x3c), w(0x3d), w(0x3e), w(0x3f),\ 169 w(0x40), w(0x41), w(0x42), w(0x43), w(0x44), w(0x45), w(0x46), w(0x47),\ 170 w(0x48), w(0x49), w(0x4a), w(0x4b), w(0x4c), w(0x4d), w(0x4e), w(0x4f),\ 171 w(0x50), w(0x51), w(0x52), w(0x53), w(0x54), w(0x55), w(0x56), w(0x57),\ 172 w(0x58), w(0x59), w(0x5a), w(0x5b), w(0x5c), w(0x5d), w(0x5e), w(0x5f),\ 173 w(0x60), w(0x61), w(0x62), w(0x63), w(0x64), w(0x65), w(0x66), w(0x67),\ 174 w(0x68), w(0x69), w(0x6a), w(0x6b), w(0x6c), w(0x6d), w(0x6e), w(0x6f),\ 175 w(0x70), w(0x71), w(0x72), w(0x73), w(0x74), w(0x75), w(0x76), w(0x77),\ 176 w(0x78), w(0x79), w(0x7a), w(0x7b), w(0x7c), w(0x7d), w(0x7e), w(0x7f),\ 177 w(0x80), w(0x81), w(0x82), w(0x83), w(0x84), w(0x85), w(0x86), w(0x87),\ 178 w(0x88), w(0x89), w(0x8a), w(0x8b), w(0x8c), w(0x8d), w(0x8e), w(0x8f),\ 179 w(0x90), w(0x91), w(0x92), w(0x93), w(0x94), w(0x95), w(0x96), w(0x97),\ 180 w(0x98), w(0x99), w(0x9a), w(0x9b), w(0x9c), w(0x9d), w(0x9e), w(0x9f),\ 181 w(0xa0), w(0xa1), w(0xa2), w(0xa3), w(0xa4), w(0xa5), w(0xa6), w(0xa7),\ 182 w(0xa8), w(0xa9), w(0xaa), w(0xab), w(0xac), w(0xad), w(0xae), w(0xaf),\ 183 w(0xb0), w(0xb1), w(0xb2), w(0xb3), w(0xb4), w(0xb5), w(0xb6), w(0xb7),\ 184 w(0xb8), w(0xb9), w(0xba), w(0xbb), w(0xbc), w(0xbd), w(0xbe), w(0xbf),\ 185 w(0xc0), w(0xc1), w(0xc2), w(0xc3), w(0xc4), w(0xc5), w(0xc6), w(0xc7),\ 186 w(0xc8), w(0xc9), w(0xca), w(0xcb), w(0xcc), w(0xcd), w(0xce), w(0xcf),\ 187 w(0xd0), w(0xd1), w(0xd2), w(0xd3), w(0xd4), w(0xd5), w(0xd6), w(0xd7),\ 188 w(0xd8), w(0xd9), w(0xda), w(0xdb), w(0xdc), w(0xdd), w(0xde), w(0xdf),\ 189 w(0xe0), w(0xe1), w(0xe2), w(0xe3), w(0xe4), w(0xe5), w(0xe6), w(0xe7),\ 190 w(0xe8), w(0xe9), w(0xea), w(0xeb), w(0xec), w(0xed), w(0xee), w(0xef),\ 191 w(0xf0), w(0xf1), w(0xf2), w(0xf3), w(0xf4), w(0xf5), w(0xf6), w(0xf7),\ 192 w(0xf8), w(0xf9), w(0xfa), w(0xfb), w(0xfc), w(0xfd), w(0xfe), w(0xff) } 193 194 static const uint_8t sbox[256] = sb_data(f1); 195 static const uint_8t isbox[256] = isb_data(f1); 196 197 static const uint_8t gfm2_sbox[256] = sb_data(f2); 198 static const uint_8t gfm3_sbox[256] = sb_data(f3); 199 200 static const uint_8t gfmul_9[256] = mm_data(f9); 201 static const uint_8t gfmul_b[256] = mm_data(fb); 202 static const uint_8t gfmul_d[256] = mm_data(fd); 203 static const uint_8t gfmul_e[256] = mm_data(fe); 204 205 #define s_box(x) sbox[(x)] 206 #define is_box(x) isbox[(x)] 207 #define gfm2_sb(x) gfm2_sbox[(x)] 208 #define gfm3_sb(x) gfm3_sbox[(x)] 209 #define gfm_9(x) gfmul_9[(x)] 210 #define gfm_b(x) gfmul_b[(x)] 211 #define gfm_d(x) gfmul_d[(x)] 212 #define gfm_e(x) gfmul_e[(x)] 213 214 #else 215 216 /* this is the high bit of x right shifted by 1 */ 217 /* position. Since the starting polynomial has */ 218 /* 9 bits (0x11b), this right shift keeps the */ 219 /* values of all top bits within a byte */ 220 221 static uint_8t hibit(const uint_8t x) 222 { uint_8t r = (uint_8t)((x >> 1) | (x >> 2)); 223 224 r |= (r >> 2); 225 r |= (r >> 4); 226 return (r + 1) >> 1; 227 } 228 229 /* return the inverse of the finite field element x */ 230 231 static uint_8t gf_inv(const uint_8t x) 232 { uint_8t p1 = x, p2 = BPOLY, n1 = hibit(x), n2 = 0x80, v1 = 1, v2 = 0; 233 234 if(x < 2) 235 return x; 236 237 for( ; ; ) 238 { 239 if(n1) 240 while(n2 >= n1) /* divide polynomial p2 by p1 */ 241 { 242 n2 /= n1; /* shift smaller polynomial left */ 243 p2 ^= (p1 * n2) & 0xff; /* and remove from larger one */ 244 v2 ^= (v1 * n2); /* shift accumulated value and */ 245 n2 = hibit(p2); /* add into result */ 246 } 247 else 248 return v1; 249 250 if(n2) /* repeat with values swapped */ 251 while(n1 >= n2) 252 { 253 n1 /= n2; 254 p1 ^= p2 * n1; 255 v1 ^= v2 * n1; 256 n1 = hibit(p1); 257 } 258 else 259 return v2; 260 } 261 } 262 263 /* The forward and inverse affine transformations used in the S-box */ 264 uint_8t fwd_affine(const uint_8t x) 265 { 266 #if defined( HAVE_UINT_32T ) 267 uint_32t w = x; 268 w ^= (w << 1) ^ (w << 2) ^ (w << 3) ^ (w << 4); 269 return 0x63 ^ ((w ^ (w >> 8)) & 0xff); 270 #else 271 return 0x63 ^ x ^ (x << 1) ^ (x << 2) ^ (x << 3) ^ (x << 4) 272 ^ (x >> 7) ^ (x >> 6) ^ (x >> 5) ^ (x >> 4); 273 #endif 274 } 275 276 uint_8t inv_affine(const uint_8t x) 277 { 278 #if defined( HAVE_UINT_32T ) 279 uint_32t w = x; 280 w = (w << 1) ^ (w << 3) ^ (w << 6); 281 return 0x05 ^ ((w ^ (w >> 8)) & 0xff); 282 #else 283 return 0x05 ^ (x << 1) ^ (x << 3) ^ (x << 6) 284 ^ (x >> 7) ^ (x >> 5) ^ (x >> 2); 285 #endif 286 } 287 288 #define s_box(x) fwd_affine(gf_inv(x)) 289 #define is_box(x) gf_inv(inv_affine(x)) 290 #define gfm2_sb(x) f2(s_box(x)) 291 #define gfm3_sb(x) f3(s_box(x)) 292 #define gfm_9(x) f9(x) 293 #define gfm_b(x) fb(x) 294 #define gfm_d(x) fd(x) 295 #define gfm_e(x) fe(x) 296 297 #endif 298 299 #if defined( HAVE_MEMCPY ) 300 # define block_copy_nn(d, s, l) memcpy(d, s, l) 301 # define block_copy(d, s) memcpy(d, s, N_BLOCK) 302 #else 303 # define block_copy_nn(d, s, l) copy_block_nn(d, s, l) 304 # define block_copy(d, s) copy_block(d, s) 305 #endif 306 307 #if !defined( HAVE_MEMCPY ) 308 static void copy_block( void *d, const void *s ) 309 { 310 #if defined( HAVE_UINT_32T ) 311 ((uint_32t*)d)[ 0] = ((uint_32t*)s)[ 0]; 312 ((uint_32t*)d)[ 1] = ((uint_32t*)s)[ 1]; 313 ((uint_32t*)d)[ 2] = ((uint_32t*)s)[ 2]; 314 ((uint_32t*)d)[ 3] = ((uint_32t*)s)[ 3]; 315 #else 316 ((uint_8t*)d)[ 0] = ((uint_8t*)s)[ 0]; 317 ((uint_8t*)d)[ 1] = ((uint_8t*)s)[ 1]; 318 ((uint_8t*)d)[ 2] = ((uint_8t*)s)[ 2]; 319 ((uint_8t*)d)[ 3] = ((uint_8t*)s)[ 3]; 320 ((uint_8t*)d)[ 4] = ((uint_8t*)s)[ 4]; 321 ((uint_8t*)d)[ 5] = ((uint_8t*)s)[ 5]; 322 ((uint_8t*)d)[ 6] = ((uint_8t*)s)[ 6]; 323 ((uint_8t*)d)[ 7] = ((uint_8t*)s)[ 7]; 324 ((uint_8t*)d)[ 8] = ((uint_8t*)s)[ 8]; 325 ((uint_8t*)d)[ 9] = ((uint_8t*)s)[ 9]; 326 ((uint_8t*)d)[10] = ((uint_8t*)s)[10]; 327 ((uint_8t*)d)[11] = ((uint_8t*)s)[11]; 328 ((uint_8t*)d)[12] = ((uint_8t*)s)[12]; 329 ((uint_8t*)d)[13] = ((uint_8t*)s)[13]; 330 ((uint_8t*)d)[14] = ((uint_8t*)s)[14]; 331 ((uint_8t*)d)[15] = ((uint_8t*)s)[15]; 332 #endif 333 } 334 335 static void copy_block_nn( void * d, const void *s, uint_8t nn ) 336 { 337 while( nn-- ) 338 *((uint_8t*)d)++ = *((uint_8t*)s)++; 339 } 340 #endif 341 342 static void xor_block( void *d, const void *s ) 343 { 344 #if defined( HAVE_UINT_32T ) 345 ((uint_32t*)d)[ 0] ^= ((uint_32t*)s)[ 0]; 346 ((uint_32t*)d)[ 1] ^= ((uint_32t*)s)[ 1]; 347 ((uint_32t*)d)[ 2] ^= ((uint_32t*)s)[ 2]; 348 ((uint_32t*)d)[ 3] ^= ((uint_32t*)s)[ 3]; 349 #else 350 ((uint_8t*)d)[ 0] ^= ((uint_8t*)s)[ 0]; 351 ((uint_8t*)d)[ 1] ^= ((uint_8t*)s)[ 1]; 352 ((uint_8t*)d)[ 2] ^= ((uint_8t*)s)[ 2]; 353 ((uint_8t*)d)[ 3] ^= ((uint_8t*)s)[ 3]; 354 ((uint_8t*)d)[ 4] ^= ((uint_8t*)s)[ 4]; 355 ((uint_8t*)d)[ 5] ^= ((uint_8t*)s)[ 5]; 356 ((uint_8t*)d)[ 6] ^= ((uint_8t*)s)[ 6]; 357 ((uint_8t*)d)[ 7] ^= ((uint_8t*)s)[ 7]; 358 ((uint_8t*)d)[ 8] ^= ((uint_8t*)s)[ 8]; 359 ((uint_8t*)d)[ 9] ^= ((uint_8t*)s)[ 9]; 360 ((uint_8t*)d)[10] ^= ((uint_8t*)s)[10]; 361 ((uint_8t*)d)[11] ^= ((uint_8t*)s)[11]; 362 ((uint_8t*)d)[12] ^= ((uint_8t*)s)[12]; 363 ((uint_8t*)d)[13] ^= ((uint_8t*)s)[13]; 364 ((uint_8t*)d)[14] ^= ((uint_8t*)s)[14]; 365 ((uint_8t*)d)[15] ^= ((uint_8t*)s)[15]; 366 #endif 367 } 368 369 static void copy_and_key( void *d, const void *s, const void *k ) 370 { 371 #if defined( HAVE_UINT_32T ) 372 ((uint_32t*)d)[ 0] = ((uint_32t*)s)[ 0] ^ ((uint_32t*)k)[ 0]; 373 ((uint_32t*)d)[ 1] = ((uint_32t*)s)[ 1] ^ ((uint_32t*)k)[ 1]; 374 ((uint_32t*)d)[ 2] = ((uint_32t*)s)[ 2] ^ ((uint_32t*)k)[ 2]; 375 ((uint_32t*)d)[ 3] = ((uint_32t*)s)[ 3] ^ ((uint_32t*)k)[ 3]; 376 #elif 1 377 ((uint_8t*)d)[ 0] = ((uint_8t*)s)[ 0] ^ ((uint_8t*)k)[ 0]; 378 ((uint_8t*)d)[ 1] = ((uint_8t*)s)[ 1] ^ ((uint_8t*)k)[ 1]; 379 ((uint_8t*)d)[ 2] = ((uint_8t*)s)[ 2] ^ ((uint_8t*)k)[ 2]; 380 ((uint_8t*)d)[ 3] = ((uint_8t*)s)[ 3] ^ ((uint_8t*)k)[ 3]; 381 ((uint_8t*)d)[ 4] = ((uint_8t*)s)[ 4] ^ ((uint_8t*)k)[ 4]; 382 ((uint_8t*)d)[ 5] = ((uint_8t*)s)[ 5] ^ ((uint_8t*)k)[ 5]; 383 ((uint_8t*)d)[ 6] = ((uint_8t*)s)[ 6] ^ ((uint_8t*)k)[ 6]; 384 ((uint_8t*)d)[ 7] = ((uint_8t*)s)[ 7] ^ ((uint_8t*)k)[ 7]; 385 ((uint_8t*)d)[ 8] = ((uint_8t*)s)[ 8] ^ ((uint_8t*)k)[ 8]; 386 ((uint_8t*)d)[ 9] = ((uint_8t*)s)[ 9] ^ ((uint_8t*)k)[ 9]; 387 ((uint_8t*)d)[10] = ((uint_8t*)s)[10] ^ ((uint_8t*)k)[10]; 388 ((uint_8t*)d)[11] = ((uint_8t*)s)[11] ^ ((uint_8t*)k)[11]; 389 ((uint_8t*)d)[12] = ((uint_8t*)s)[12] ^ ((uint_8t*)k)[12]; 390 ((uint_8t*)d)[13] = ((uint_8t*)s)[13] ^ ((uint_8t*)k)[13]; 391 ((uint_8t*)d)[14] = ((uint_8t*)s)[14] ^ ((uint_8t*)k)[14]; 392 ((uint_8t*)d)[15] = ((uint_8t*)s)[15] ^ ((uint_8t*)k)[15]; 393 #else 394 block_copy(d, s); 395 xor_block(d, k); 396 #endif 397 } 398 399 static void add_round_key( uint_8t d[N_BLOCK], const uint_8t k[N_BLOCK] ) 400 { 401 xor_block(d, k); 402 } 403 404 static void shift_sub_rows( uint_8t st[N_BLOCK] ) 405 { uint_8t tt; 406 407 st[ 0] = s_box(st[ 0]); st[ 4] = s_box(st[ 4]); 408 st[ 8] = s_box(st[ 8]); st[12] = s_box(st[12]); 409 410 tt = st[1]; st[ 1] = s_box(st[ 5]); st[ 5] = s_box(st[ 9]); 411 st[ 9] = s_box(st[13]); st[13] = s_box( tt ); 412 413 tt = st[2]; st[ 2] = s_box(st[10]); st[10] = s_box( tt ); 414 tt = st[6]; st[ 6] = s_box(st[14]); st[14] = s_box( tt ); 415 416 tt = st[15]; st[15] = s_box(st[11]); st[11] = s_box(st[ 7]); 417 st[ 7] = s_box(st[ 3]); st[ 3] = s_box( tt ); 418 } 419 420 static void inv_shift_sub_rows( uint_8t st[N_BLOCK] ) 421 { uint_8t tt; 422 423 st[ 0] = is_box(st[ 0]); st[ 4] = is_box(st[ 4]); 424 st[ 8] = is_box(st[ 8]); st[12] = is_box(st[12]); 425 426 tt = st[13]; st[13] = is_box(st[9]); st[ 9] = is_box(st[5]); 427 st[ 5] = is_box(st[1]); st[ 1] = is_box( tt ); 428 429 tt = st[2]; st[ 2] = is_box(st[10]); st[10] = is_box( tt ); 430 tt = st[6]; st[ 6] = is_box(st[14]); st[14] = is_box( tt ); 431 432 tt = st[3]; st[ 3] = is_box(st[ 7]); st[ 7] = is_box(st[11]); 433 st[11] = is_box(st[15]); st[15] = is_box( tt ); 434 } 435 436 #if defined( VERSION_1 ) 437 static void mix_sub_columns( uint_8t dt[N_BLOCK] ) 438 { uint_8t st[N_BLOCK]; 439 block_copy(st, dt); 440 #else 441 static void mix_sub_columns( uint_8t dt[N_BLOCK], uint_8t st[N_BLOCK] ) 442 { 443 #endif 444 dt[ 0] = gfm2_sb(st[0]) ^ gfm3_sb(st[5]) ^ s_box(st[10]) ^ s_box(st[15]); 445 dt[ 1] = s_box(st[0]) ^ gfm2_sb(st[5]) ^ gfm3_sb(st[10]) ^ s_box(st[15]); 446 dt[ 2] = s_box(st[0]) ^ s_box(st[5]) ^ gfm2_sb(st[10]) ^ gfm3_sb(st[15]); 447 dt[ 3] = gfm3_sb(st[0]) ^ s_box(st[5]) ^ s_box(st[10]) ^ gfm2_sb(st[15]); 448 449 dt[ 4] = gfm2_sb(st[4]) ^ gfm3_sb(st[9]) ^ s_box(st[14]) ^ s_box(st[3]); 450 dt[ 5] = s_box(st[4]) ^ gfm2_sb(st[9]) ^ gfm3_sb(st[14]) ^ s_box(st[3]); 451 dt[ 6] = s_box(st[4]) ^ s_box(st[9]) ^ gfm2_sb(st[14]) ^ gfm3_sb(st[3]); 452 dt[ 7] = gfm3_sb(st[4]) ^ s_box(st[9]) ^ s_box(st[14]) ^ gfm2_sb(st[3]); 453 454 dt[ 8] = gfm2_sb(st[8]) ^ gfm3_sb(st[13]) ^ s_box(st[2]) ^ s_box(st[7]); 455 dt[ 9] = s_box(st[8]) ^ gfm2_sb(st[13]) ^ gfm3_sb(st[2]) ^ s_box(st[7]); 456 dt[10] = s_box(st[8]) ^ s_box(st[13]) ^ gfm2_sb(st[2]) ^ gfm3_sb(st[7]); 457 dt[11] = gfm3_sb(st[8]) ^ s_box(st[13]) ^ s_box(st[2]) ^ gfm2_sb(st[7]); 458 459 dt[12] = gfm2_sb(st[12]) ^ gfm3_sb(st[1]) ^ s_box(st[6]) ^ s_box(st[11]); 460 dt[13] = s_box(st[12]) ^ gfm2_sb(st[1]) ^ gfm3_sb(st[6]) ^ s_box(st[11]); 461 dt[14] = s_box(st[12]) ^ s_box(st[1]) ^ gfm2_sb(st[6]) ^ gfm3_sb(st[11]); 462 dt[15] = gfm3_sb(st[12]) ^ s_box(st[1]) ^ s_box(st[6]) ^ gfm2_sb(st[11]); 463 } 464 465 #if defined( VERSION_1 ) 466 static void inv_mix_sub_columns( uint_8t dt[N_BLOCK] ) 467 { uint_8t st[N_BLOCK]; 468 block_copy(st, dt); 469 #else 470 static void inv_mix_sub_columns( uint_8t dt[N_BLOCK], uint_8t st[N_BLOCK] ) 471 { 472 #endif 473 dt[ 0] = is_box(gfm_e(st[ 0]) ^ gfm_b(st[ 1]) ^ gfm_d(st[ 2]) ^ gfm_9(st[ 3])); 474 dt[ 5] = is_box(gfm_9(st[ 0]) ^ gfm_e(st[ 1]) ^ gfm_b(st[ 2]) ^ gfm_d(st[ 3])); 475 dt[10] = is_box(gfm_d(st[ 0]) ^ gfm_9(st[ 1]) ^ gfm_e(st[ 2]) ^ gfm_b(st[ 3])); 476 dt[15] = is_box(gfm_b(st[ 0]) ^ gfm_d(st[ 1]) ^ gfm_9(st[ 2]) ^ gfm_e(st[ 3])); 477 478 dt[ 4] = is_box(gfm_e(st[ 4]) ^ gfm_b(st[ 5]) ^ gfm_d(st[ 6]) ^ gfm_9(st[ 7])); 479 dt[ 9] = is_box(gfm_9(st[ 4]) ^ gfm_e(st[ 5]) ^ gfm_b(st[ 6]) ^ gfm_d(st[ 7])); 480 dt[14] = is_box(gfm_d(st[ 4]) ^ gfm_9(st[ 5]) ^ gfm_e(st[ 6]) ^ gfm_b(st[ 7])); 481 dt[ 3] = is_box(gfm_b(st[ 4]) ^ gfm_d(st[ 5]) ^ gfm_9(st[ 6]) ^ gfm_e(st[ 7])); 482 483 dt[ 8] = is_box(gfm_e(st[ 8]) ^ gfm_b(st[ 9]) ^ gfm_d(st[10]) ^ gfm_9(st[11])); 484 dt[13] = is_box(gfm_9(st[ 8]) ^ gfm_e(st[ 9]) ^ gfm_b(st[10]) ^ gfm_d(st[11])); 485 dt[ 2] = is_box(gfm_d(st[ 8]) ^ gfm_9(st[ 9]) ^ gfm_e(st[10]) ^ gfm_b(st[11])); 486 dt[ 7] = is_box(gfm_b(st[ 8]) ^ gfm_d(st[ 9]) ^ gfm_9(st[10]) ^ gfm_e(st[11])); 487 488 dt[12] = is_box(gfm_e(st[12]) ^ gfm_b(st[13]) ^ gfm_d(st[14]) ^ gfm_9(st[15])); 489 dt[ 1] = is_box(gfm_9(st[12]) ^ gfm_e(st[13]) ^ gfm_b(st[14]) ^ gfm_d(st[15])); 490 dt[ 6] = is_box(gfm_d(st[12]) ^ gfm_9(st[13]) ^ gfm_e(st[14]) ^ gfm_b(st[15])); 491 dt[11] = is_box(gfm_b(st[12]) ^ gfm_d(st[13]) ^ gfm_9(st[14]) ^ gfm_e(st[15])); 492 } 493 494 #if defined( AES_ENC_PREKEYED ) || defined( AES_DEC_PREKEYED ) 495 496 /* Set the cipher key for the pre-keyed version */ 497 498 return_type aes_set_key( const unsigned char key[], length_type keylen, aes_context ctx[1] ) 499 { 500 uint_8t cc, rc, hi; 501 502 switch( keylen ) 503 { 504 case 16: 505 case 128: 506 keylen = 16; 507 break; 508 case 24: 509 case 192: 510 keylen = 24; 511 break; 512 case 32: 513 case 256: 514 keylen = 32; 515 break; 516 default: 517 ctx->rnd = 0; 518 return (return_type)-1; 519 } 520 block_copy_nn(ctx->ksch, key, keylen); 521 hi = (keylen + 28) << 2; 522 ctx->rnd = (hi >> 4) - 1; 523 for( cc = keylen, rc = 1; cc < hi; cc += 4 ) 524 { uint_8t tt, t0, t1, t2, t3; 525 526 t0 = ctx->ksch[cc - 4]; 527 t1 = ctx->ksch[cc - 3]; 528 t2 = ctx->ksch[cc - 2]; 529 t3 = ctx->ksch[cc - 1]; 530 if( cc % keylen == 0 ) 531 { 532 tt = t0; 533 t0 = s_box(t1) ^ rc; 534 t1 = s_box(t2); 535 t2 = s_box(t3); 536 t3 = s_box(tt); 537 rc = f2(rc); 538 } 539 else if( keylen > 24 && cc % keylen == 16 ) 540 { 541 t0 = s_box(t0); 542 t1 = s_box(t1); 543 t2 = s_box(t2); 544 t3 = s_box(t3); 545 } 546 tt = cc - keylen; 547 ctx->ksch[cc + 0] = ctx->ksch[tt + 0] ^ t0; 548 ctx->ksch[cc + 1] = ctx->ksch[tt + 1] ^ t1; 549 ctx->ksch[cc + 2] = ctx->ksch[tt + 2] ^ t2; 550 ctx->ksch[cc + 3] = ctx->ksch[tt + 3] ^ t3; 551 } 552 return 0; 553 } 554 555 #endif 556 557 #if defined( AES_ENC_PREKEYED ) 558 559 /* Encrypt a single block of 16 bytes */ 560 561 return_type aes_encrypt( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK], const aes_context ctx[1] ) 562 { 563 if( ctx->rnd ) 564 { 565 uint_8t s1[N_BLOCK], r; 566 copy_and_key( s1, in, ctx->ksch ); 567 568 for( r = 1 ; r < ctx->rnd ; ++r ) 569 #if defined( VERSION_1 ) 570 { 571 mix_sub_columns( s1 ); 572 add_round_key( s1, ctx->ksch + r * N_BLOCK); 573 } 574 #else 575 { uint_8t s2[N_BLOCK]; 576 mix_sub_columns( s2, s1 ); 577 copy_and_key( s1, s2, ctx->ksch + r * N_BLOCK); 578 } 579 #endif 580 shift_sub_rows( s1 ); 581 copy_and_key( out, s1, ctx->ksch + r * N_BLOCK ); 582 } 583 else 584 return (return_type)-1; 585 return 0; 586 } 587 588 /* CBC encrypt a number of blocks (input and return an IV) */ 589 590 return_type aes_cbc_encrypt( const unsigned char *in, unsigned char *out, 591 int n_block, unsigned char iv[N_BLOCK], const aes_context ctx[1] ) 592 { 593 594 while(n_block--) 595 { 596 xor_block(iv, in); 597 if(aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS) 598 return EXIT_FAILURE; 599 memcpy(out, iv, N_BLOCK); 600 in += N_BLOCK; 601 out += N_BLOCK; 602 } 603 return EXIT_SUCCESS; 604 } 605 606 #endif 607 608 #if defined( AES_DEC_PREKEYED ) 609 610 /* Decrypt a single block of 16 bytes */ 611 612 return_type aes_decrypt( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK], const aes_context ctx[1] ) 613 { 614 if( ctx->rnd ) 615 { 616 uint_8t s1[N_BLOCK], r; 617 copy_and_key( s1, in, ctx->ksch + ctx->rnd * N_BLOCK ); 618 inv_shift_sub_rows( s1 ); 619 620 for( r = ctx->rnd ; --r ; ) 621 #if defined( VERSION_1 ) 622 { 623 add_round_key( s1, ctx->ksch + r * N_BLOCK ); 624 inv_mix_sub_columns( s1 ); 625 } 626 #else 627 { uint_8t s2[N_BLOCK]; 628 copy_and_key( s2, s1, ctx->ksch + r * N_BLOCK ); 629 inv_mix_sub_columns( s1, s2 ); 630 } 631 #endif 632 copy_and_key( out, s1, ctx->ksch ); 633 } 634 else 635 return (return_type)-1; 636 return 0; 637 } 638 639 /* CBC decrypt a number of blocks (input and return an IV) */ 640 641 return_type aes_cbc_decrypt( const unsigned char *in, unsigned char *out, 642 int n_block, unsigned char iv[N_BLOCK], const aes_context ctx[1] ) 643 { 644 while(n_block--) 645 { uint_8t tmp[N_BLOCK]; 646 647 memcpy(tmp, in, N_BLOCK); 648 if(aes_decrypt(in, out, ctx) != EXIT_SUCCESS) 649 return EXIT_FAILURE; 650 xor_block(out, iv); 651 memcpy(iv, tmp, N_BLOCK); 652 in += N_BLOCK; 653 out += N_BLOCK; 654 } 655 return EXIT_SUCCESS; 656 } 657 658 #endif 659 660 #if defined( AES_ENC_128_OTFK ) 661 662 /* The 'on the fly' encryption key update for for 128 bit keys */ 663 664 static void update_encrypt_key_128( uint_8t k[N_BLOCK], uint_8t *rc ) 665 { uint_8t cc; 666 667 k[0] ^= s_box(k[13]) ^ *rc; 668 k[1] ^= s_box(k[14]); 669 k[2] ^= s_box(k[15]); 670 k[3] ^= s_box(k[12]); 671 *rc = f2( *rc ); 672 673 for(cc = 4; cc < 16; cc += 4 ) 674 { 675 k[cc + 0] ^= k[cc - 4]; 676 k[cc + 1] ^= k[cc - 3]; 677 k[cc + 2] ^= k[cc - 2]; 678 k[cc + 3] ^= k[cc - 1]; 679 } 680 } 681 682 /* Encrypt a single block of 16 bytes with 'on the fly' 128 bit keying */ 683 684 void aes_encrypt_128( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK], 685 const unsigned char key[N_BLOCK], unsigned char o_key[N_BLOCK] ) 686 { uint_8t s1[N_BLOCK], r, rc = 1; 687 688 if(o_key != key) 689 block_copy( o_key, key ); 690 copy_and_key( s1, in, o_key ); 691 692 for( r = 1 ; r < 10 ; ++r ) 693 #if defined( VERSION_1 ) 694 { 695 mix_sub_columns( s1 ); 696 update_encrypt_key_128( o_key, &rc ); 697 add_round_key( s1, o_key ); 698 } 699 #else 700 { uint_8t s2[N_BLOCK]; 701 mix_sub_columns( s2, s1 ); 702 update_encrypt_key_128( o_key, &rc ); 703 copy_and_key( s1, s2, o_key ); 704 } 705 #endif 706 707 shift_sub_rows( s1 ); 708 update_encrypt_key_128( o_key, &rc ); 709 copy_and_key( out, s1, o_key ); 710 } 711 712 #endif 713 714 #if defined( AES_DEC_128_OTFK ) 715 716 /* The 'on the fly' decryption key update for for 128 bit keys */ 717 718 static void update_decrypt_key_128( uint_8t k[N_BLOCK], uint_8t *rc ) 719 { uint_8t cc; 720 721 for( cc = 12; cc > 0; cc -= 4 ) 722 { 723 k[cc + 0] ^= k[cc - 4]; 724 k[cc + 1] ^= k[cc - 3]; 725 k[cc + 2] ^= k[cc - 2]; 726 k[cc + 3] ^= k[cc - 1]; 727 } 728 *rc = d2(*rc); 729 k[0] ^= s_box(k[13]) ^ *rc; 730 k[1] ^= s_box(k[14]); 731 k[2] ^= s_box(k[15]); 732 k[3] ^= s_box(k[12]); 733 } 734 735 /* Decrypt a single block of 16 bytes with 'on the fly' 128 bit keying */ 736 737 void aes_decrypt_128( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK], 738 const unsigned char key[N_BLOCK], unsigned char o_key[N_BLOCK] ) 739 { 740 uint_8t s1[N_BLOCK], r, rc = 0x6c; 741 if(o_key != key) 742 block_copy( o_key, key ); 743 744 copy_and_key( s1, in, o_key ); 745 inv_shift_sub_rows( s1 ); 746 747 for( r = 10 ; --r ; ) 748 #if defined( VERSION_1 ) 749 { 750 update_decrypt_key_128( o_key, &rc ); 751 add_round_key( s1, o_key ); 752 inv_mix_sub_columns( s1 ); 753 } 754 #else 755 { uint_8t s2[N_BLOCK]; 756 update_decrypt_key_128( o_key, &rc ); 757 copy_and_key( s2, s1, o_key ); 758 inv_mix_sub_columns( s1, s2 ); 759 } 760 #endif 761 update_decrypt_key_128( o_key, &rc ); 762 copy_and_key( out, s1, o_key ); 763 } 764 765 #endif 766 767 #if defined( AES_ENC_256_OTFK ) 768 769 /* The 'on the fly' encryption key update for for 256 bit keys */ 770 771 static void update_encrypt_key_256( uint_8t k[2 * N_BLOCK], uint_8t *rc ) 772 { uint_8t cc; 773 774 k[0] ^= s_box(k[29]) ^ *rc; 775 k[1] ^= s_box(k[30]); 776 k[2] ^= s_box(k[31]); 777 k[3] ^= s_box(k[28]); 778 *rc = f2( *rc ); 779 780 for(cc = 4; cc < 16; cc += 4) 781 { 782 k[cc + 0] ^= k[cc - 4]; 783 k[cc + 1] ^= k[cc - 3]; 784 k[cc + 2] ^= k[cc - 2]; 785 k[cc + 3] ^= k[cc - 1]; 786 } 787 788 k[16] ^= s_box(k[12]); 789 k[17] ^= s_box(k[13]); 790 k[18] ^= s_box(k[14]); 791 k[19] ^= s_box(k[15]); 792 793 for( cc = 20; cc < 32; cc += 4 ) 794 { 795 k[cc + 0] ^= k[cc - 4]; 796 k[cc + 1] ^= k[cc - 3]; 797 k[cc + 2] ^= k[cc - 2]; 798 k[cc + 3] ^= k[cc - 1]; 799 } 800 } 801 802 /* Encrypt a single block of 16 bytes with 'on the fly' 256 bit keying */ 803 804 void aes_encrypt_256( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK], 805 const unsigned char key[2 * N_BLOCK], unsigned char o_key[2 * N_BLOCK] ) 806 { 807 uint_8t s1[N_BLOCK], r, rc = 1; 808 if(o_key != key) 809 { 810 block_copy( o_key, key ); 811 block_copy( o_key + 16, key + 16 ); 812 } 813 copy_and_key( s1, in, o_key ); 814 815 for( r = 1 ; r < 14 ; ++r ) 816 #if defined( VERSION_1 ) 817 { 818 mix_sub_columns(s1); 819 if( r & 1 ) 820 add_round_key( s1, o_key + 16 ); 821 else 822 { 823 update_encrypt_key_256( o_key, &rc ); 824 add_round_key( s1, o_key ); 825 } 826 } 827 #else 828 { uint_8t s2[N_BLOCK]; 829 mix_sub_columns( s2, s1 ); 830 if( r & 1 ) 831 copy_and_key( s1, s2, o_key + 16 ); 832 else 833 { 834 update_encrypt_key_256( o_key, &rc ); 835 copy_and_key( s1, s2, o_key ); 836 } 837 } 838 #endif 839 840 shift_sub_rows( s1 ); 841 update_encrypt_key_256( o_key, &rc ); 842 copy_and_key( out, s1, o_key ); 843 } 844 845 #endif 846 847 #if defined( AES_DEC_256_OTFK ) 848 849 /* The 'on the fly' encryption key update for for 256 bit keys */ 850 851 static void update_decrypt_key_256( uint_8t k[2 * N_BLOCK], uint_8t *rc ) 852 { uint_8t cc; 853 854 for(cc = 28; cc > 16; cc -= 4) 855 { 856 k[cc + 0] ^= k[cc - 4]; 857 k[cc + 1] ^= k[cc - 3]; 858 k[cc + 2] ^= k[cc - 2]; 859 k[cc + 3] ^= k[cc - 1]; 860 } 861 862 k[16] ^= s_box(k[12]); 863 k[17] ^= s_box(k[13]); 864 k[18] ^= s_box(k[14]); 865 k[19] ^= s_box(k[15]); 866 867 for(cc = 12; cc > 0; cc -= 4) 868 { 869 k[cc + 0] ^= k[cc - 4]; 870 k[cc + 1] ^= k[cc - 3]; 871 k[cc + 2] ^= k[cc - 2]; 872 k[cc + 3] ^= k[cc - 1]; 873 } 874 875 *rc = d2(*rc); 876 k[0] ^= s_box(k[29]) ^ *rc; 877 k[1] ^= s_box(k[30]); 878 k[2] ^= s_box(k[31]); 879 k[3] ^= s_box(k[28]); 880 } 881 882 /* Decrypt a single block of 16 bytes with 'on the fly' 883 256 bit keying 884 */ 885 void aes_decrypt_256( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK], 886 const unsigned char key[2 * N_BLOCK], unsigned char o_key[2 * N_BLOCK] ) 887 { 888 uint_8t s1[N_BLOCK], r, rc = 0x80; 889 890 if(o_key != key) 891 { 892 block_copy( o_key, key ); 893 block_copy( o_key + 16, key + 16 ); 894 } 895 896 copy_and_key( s1, in, o_key ); 897 inv_shift_sub_rows( s1 ); 898 899 for( r = 14 ; --r ; ) 900 #if defined( VERSION_1 ) 901 { 902 if( ( r & 1 ) ) 903 { 904 update_decrypt_key_256( o_key, &rc ); 905 add_round_key( s1, o_key + 16 ); 906 } 907 else 908 add_round_key( s1, o_key ); 909 inv_mix_sub_columns( s1 ); 910 } 911 #else 912 { uint_8t s2[N_BLOCK]; 913 if( ( r & 1 ) ) 914 { 915 update_decrypt_key_256( o_key, &rc ); 916 copy_and_key( s2, s1, o_key + 16 ); 917 } 918 else 919 copy_and_key( s2, s1, o_key ); 920 inv_mix_sub_columns( s1, s2 ); 921 } 922 #endif 923 copy_and_key( out, s1, o_key ); 924 } 925 926 #endif 927