Home | History | Annotate | Download | only in AST
      1 //===--- ExprClassification.cpp - Expression AST Node Implementation ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements Expr::classify.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/AST/Expr.h"
     15 #include "clang/AST/ASTContext.h"
     16 #include "clang/AST/DeclCXX.h"
     17 #include "clang/AST/DeclObjC.h"
     18 #include "clang/AST/DeclTemplate.h"
     19 #include "clang/AST/ExprCXX.h"
     20 #include "clang/AST/ExprObjC.h"
     21 #include "llvm/Support/ErrorHandling.h"
     22 using namespace clang;
     23 
     24 typedef Expr::Classification Cl;
     25 
     26 static Cl::Kinds ClassifyInternal(ASTContext &Ctx, const Expr *E);
     27 static Cl::Kinds ClassifyDecl(ASTContext &Ctx, const Decl *D);
     28 static Cl::Kinds ClassifyUnnamed(ASTContext &Ctx, QualType T);
     29 static Cl::Kinds ClassifyMemberExpr(ASTContext &Ctx, const MemberExpr *E);
     30 static Cl::Kinds ClassifyBinaryOp(ASTContext &Ctx, const BinaryOperator *E);
     31 static Cl::Kinds ClassifyConditional(ASTContext &Ctx,
     32                                      const Expr *trueExpr,
     33                                      const Expr *falseExpr);
     34 static Cl::ModifiableType IsModifiable(ASTContext &Ctx, const Expr *E,
     35                                        Cl::Kinds Kind, SourceLocation &Loc);
     36 
     37 Cl Expr::ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const {
     38   assert(!TR->isReferenceType() && "Expressions can't have reference type.");
     39 
     40   Cl::Kinds kind = ClassifyInternal(Ctx, this);
     41   // C99 6.3.2.1: An lvalue is an expression with an object type or an
     42   //   incomplete type other than void.
     43   if (!Ctx.getLangOpts().CPlusPlus) {
     44     // Thus, no functions.
     45     if (TR->isFunctionType() || TR == Ctx.OverloadTy)
     46       kind = Cl::CL_Function;
     47     // No void either, but qualified void is OK because it is "other than void".
     48     // Void "lvalues" are classified as addressable void values, which are void
     49     // expressions whose address can be taken.
     50     else if (TR->isVoidType() && !TR.hasQualifiers())
     51       kind = (kind == Cl::CL_LValue ? Cl::CL_AddressableVoid : Cl::CL_Void);
     52   }
     53 
     54   // Enable this assertion for testing.
     55   switch (kind) {
     56   case Cl::CL_LValue: assert(getValueKind() == VK_LValue); break;
     57   case Cl::CL_XValue: assert(getValueKind() == VK_XValue); break;
     58   case Cl::CL_Function:
     59   case Cl::CL_Void:
     60   case Cl::CL_AddressableVoid:
     61   case Cl::CL_DuplicateVectorComponents:
     62   case Cl::CL_MemberFunction:
     63   case Cl::CL_SubObjCPropertySetting:
     64   case Cl::CL_ClassTemporary:
     65   case Cl::CL_ArrayTemporary:
     66   case Cl::CL_ObjCMessageRValue:
     67   case Cl::CL_PRValue: assert(getValueKind() == VK_RValue); break;
     68   }
     69 
     70   Cl::ModifiableType modifiable = Cl::CM_Untested;
     71   if (Loc)
     72     modifiable = IsModifiable(Ctx, this, kind, *Loc);
     73   return Classification(kind, modifiable);
     74 }
     75 
     76 /// Classify an expression which creates a temporary, based on its type.
     77 static Cl::Kinds ClassifyTemporary(QualType T) {
     78   if (T->isRecordType())
     79     return Cl::CL_ClassTemporary;
     80   if (T->isArrayType())
     81     return Cl::CL_ArrayTemporary;
     82 
     83   // No special classification: these don't behave differently from normal
     84   // prvalues.
     85   return Cl::CL_PRValue;
     86 }
     87 
     88 static Cl::Kinds ClassifyExprValueKind(const LangOptions &Lang,
     89                                        const Expr *E,
     90                                        ExprValueKind Kind) {
     91   switch (Kind) {
     92   case VK_RValue:
     93     return Lang.CPlusPlus ? ClassifyTemporary(E->getType()) : Cl::CL_PRValue;
     94   case VK_LValue:
     95     return Cl::CL_LValue;
     96   case VK_XValue:
     97     return Cl::CL_XValue;
     98   }
     99   llvm_unreachable("Invalid value category of implicit cast.");
    100 }
    101 
    102 static Cl::Kinds ClassifyInternal(ASTContext &Ctx, const Expr *E) {
    103   // This function takes the first stab at classifying expressions.
    104   const LangOptions &Lang = Ctx.getLangOpts();
    105 
    106   switch (E->getStmtClass()) {
    107   case Stmt::NoStmtClass:
    108 #define ABSTRACT_STMT(Kind)
    109 #define STMT(Kind, Base) case Expr::Kind##Class:
    110 #define EXPR(Kind, Base)
    111 #include "clang/AST/StmtNodes.inc"
    112     llvm_unreachable("cannot classify a statement");
    113 
    114     // First come the expressions that are always lvalues, unconditionally.
    115   case Expr::ObjCIsaExprClass:
    116     // C++ [expr.prim.general]p1: A string literal is an lvalue.
    117   case Expr::StringLiteralClass:
    118     // @encode is equivalent to its string
    119   case Expr::ObjCEncodeExprClass:
    120     // __func__ and friends are too.
    121   case Expr::PredefinedExprClass:
    122     // Property references are lvalues
    123   case Expr::ObjCSubscriptRefExprClass:
    124   case Expr::ObjCPropertyRefExprClass:
    125     // C++ [expr.typeid]p1: The result of a typeid expression is an lvalue of...
    126   case Expr::CXXTypeidExprClass:
    127     // Unresolved lookups get classified as lvalues.
    128     // FIXME: Is this wise? Should they get their own kind?
    129   case Expr::UnresolvedLookupExprClass:
    130   case Expr::UnresolvedMemberExprClass:
    131   case Expr::CXXDependentScopeMemberExprClass:
    132   case Expr::DependentScopeDeclRefExprClass:
    133     // ObjC instance variables are lvalues
    134     // FIXME: ObjC++0x might have different rules
    135   case Expr::ObjCIvarRefExprClass:
    136   case Expr::FunctionParmPackExprClass:
    137     return Cl::CL_LValue;
    138 
    139     // C99 6.5.2.5p5 says that compound literals are lvalues.
    140     // In C++, they're prvalue temporaries.
    141   case Expr::CompoundLiteralExprClass:
    142     return Ctx.getLangOpts().CPlusPlus ? ClassifyTemporary(E->getType())
    143                                        : Cl::CL_LValue;
    144 
    145     // Expressions that are prvalues.
    146   case Expr::CXXBoolLiteralExprClass:
    147   case Expr::CXXPseudoDestructorExprClass:
    148   case Expr::UnaryExprOrTypeTraitExprClass:
    149   case Expr::CXXNewExprClass:
    150   case Expr::CXXThisExprClass:
    151   case Expr::CXXNullPtrLiteralExprClass:
    152   case Expr::ImaginaryLiteralClass:
    153   case Expr::GNUNullExprClass:
    154   case Expr::OffsetOfExprClass:
    155   case Expr::CXXThrowExprClass:
    156   case Expr::ShuffleVectorExprClass:
    157   case Expr::IntegerLiteralClass:
    158   case Expr::CharacterLiteralClass:
    159   case Expr::AddrLabelExprClass:
    160   case Expr::CXXDeleteExprClass:
    161   case Expr::ImplicitValueInitExprClass:
    162   case Expr::BlockExprClass:
    163   case Expr::FloatingLiteralClass:
    164   case Expr::CXXNoexceptExprClass:
    165   case Expr::CXXScalarValueInitExprClass:
    166   case Expr::UnaryTypeTraitExprClass:
    167   case Expr::BinaryTypeTraitExprClass:
    168   case Expr::TypeTraitExprClass:
    169   case Expr::ArrayTypeTraitExprClass:
    170   case Expr::ExpressionTraitExprClass:
    171   case Expr::ObjCSelectorExprClass:
    172   case Expr::ObjCProtocolExprClass:
    173   case Expr::ObjCStringLiteralClass:
    174   case Expr::ObjCBoxedExprClass:
    175   case Expr::ObjCArrayLiteralClass:
    176   case Expr::ObjCDictionaryLiteralClass:
    177   case Expr::ObjCBoolLiteralExprClass:
    178   case Expr::ParenListExprClass:
    179   case Expr::SizeOfPackExprClass:
    180   case Expr::SubstNonTypeTemplateParmPackExprClass:
    181   case Expr::AsTypeExprClass:
    182   case Expr::ObjCIndirectCopyRestoreExprClass:
    183   case Expr::AtomicExprClass:
    184     return Cl::CL_PRValue;
    185 
    186     // Next come the complicated cases.
    187   case Expr::SubstNonTypeTemplateParmExprClass:
    188     return ClassifyInternal(Ctx,
    189                  cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
    190 
    191     // C++ [expr.sub]p1: The result is an lvalue of type "T".
    192     // However, subscripting vector types is more like member access.
    193   case Expr::ArraySubscriptExprClass:
    194     if (cast<ArraySubscriptExpr>(E)->getBase()->getType()->isVectorType())
    195       return ClassifyInternal(Ctx, cast<ArraySubscriptExpr>(E)->getBase());
    196     return Cl::CL_LValue;
    197 
    198     // C++ [expr.prim.general]p3: The result is an lvalue if the entity is a
    199     //   function or variable and a prvalue otherwise.
    200   case Expr::DeclRefExprClass:
    201     if (E->getType() == Ctx.UnknownAnyTy)
    202       return isa<FunctionDecl>(cast<DeclRefExpr>(E)->getDecl())
    203                ? Cl::CL_PRValue : Cl::CL_LValue;
    204     return ClassifyDecl(Ctx, cast<DeclRefExpr>(E)->getDecl());
    205 
    206     // Member access is complex.
    207   case Expr::MemberExprClass:
    208     return ClassifyMemberExpr(Ctx, cast<MemberExpr>(E));
    209 
    210   case Expr::UnaryOperatorClass:
    211     switch (cast<UnaryOperator>(E)->getOpcode()) {
    212       // C++ [expr.unary.op]p1: The unary * operator performs indirection:
    213       //   [...] the result is an lvalue referring to the object or function
    214       //   to which the expression points.
    215     case UO_Deref:
    216       return Cl::CL_LValue;
    217 
    218       // GNU extensions, simply look through them.
    219     case UO_Extension:
    220       return ClassifyInternal(Ctx, cast<UnaryOperator>(E)->getSubExpr());
    221 
    222     // Treat _Real and _Imag basically as if they were member
    223     // expressions:  l-value only if the operand is a true l-value.
    224     case UO_Real:
    225     case UO_Imag: {
    226       const Expr *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
    227       Cl::Kinds K = ClassifyInternal(Ctx, Op);
    228       if (K != Cl::CL_LValue) return K;
    229 
    230       if (isa<ObjCPropertyRefExpr>(Op))
    231         return Cl::CL_SubObjCPropertySetting;
    232       return Cl::CL_LValue;
    233     }
    234 
    235       // C++ [expr.pre.incr]p1: The result is the updated operand; it is an
    236       //   lvalue, [...]
    237       // Not so in C.
    238     case UO_PreInc:
    239     case UO_PreDec:
    240       return Lang.CPlusPlus ? Cl::CL_LValue : Cl::CL_PRValue;
    241 
    242     default:
    243       return Cl::CL_PRValue;
    244     }
    245 
    246   case Expr::OpaqueValueExprClass:
    247     return ClassifyExprValueKind(Lang, E, E->getValueKind());
    248 
    249     // Pseudo-object expressions can produce l-values with reference magic.
    250   case Expr::PseudoObjectExprClass:
    251     return ClassifyExprValueKind(Lang, E,
    252                                  cast<PseudoObjectExpr>(E)->getValueKind());
    253 
    254     // Implicit casts are lvalues if they're lvalue casts. Other than that, we
    255     // only specifically record class temporaries.
    256   case Expr::ImplicitCastExprClass:
    257     return ClassifyExprValueKind(Lang, E, E->getValueKind());
    258 
    259     // C++ [expr.prim.general]p4: The presence of parentheses does not affect
    260     //   whether the expression is an lvalue.
    261   case Expr::ParenExprClass:
    262     return ClassifyInternal(Ctx, cast<ParenExpr>(E)->getSubExpr());
    263 
    264     // C11 6.5.1.1p4: [A generic selection] is an lvalue, a function designator,
    265     // or a void expression if its result expression is, respectively, an
    266     // lvalue, a function designator, or a void expression.
    267   case Expr::GenericSelectionExprClass:
    268     if (cast<GenericSelectionExpr>(E)->isResultDependent())
    269       return Cl::CL_PRValue;
    270     return ClassifyInternal(Ctx,cast<GenericSelectionExpr>(E)->getResultExpr());
    271 
    272   case Expr::BinaryOperatorClass:
    273   case Expr::CompoundAssignOperatorClass:
    274     // C doesn't have any binary expressions that are lvalues.
    275     if (Lang.CPlusPlus)
    276       return ClassifyBinaryOp(Ctx, cast<BinaryOperator>(E));
    277     return Cl::CL_PRValue;
    278 
    279   case Expr::CallExprClass:
    280   case Expr::CXXOperatorCallExprClass:
    281   case Expr::CXXMemberCallExprClass:
    282   case Expr::UserDefinedLiteralClass:
    283   case Expr::CUDAKernelCallExprClass:
    284     return ClassifyUnnamed(Ctx, cast<CallExpr>(E)->getCallReturnType());
    285 
    286     // __builtin_choose_expr is equivalent to the chosen expression.
    287   case Expr::ChooseExprClass:
    288     return ClassifyInternal(Ctx, cast<ChooseExpr>(E)->getChosenSubExpr(Ctx));
    289 
    290     // Extended vector element access is an lvalue unless there are duplicates
    291     // in the shuffle expression.
    292   case Expr::ExtVectorElementExprClass:
    293     return cast<ExtVectorElementExpr>(E)->containsDuplicateElements() ?
    294       Cl::CL_DuplicateVectorComponents : Cl::CL_LValue;
    295 
    296     // Simply look at the actual default argument.
    297   case Expr::CXXDefaultArgExprClass:
    298     return ClassifyInternal(Ctx, cast<CXXDefaultArgExpr>(E)->getExpr());
    299 
    300     // Same idea for temporary binding.
    301   case Expr::CXXBindTemporaryExprClass:
    302     return ClassifyInternal(Ctx, cast<CXXBindTemporaryExpr>(E)->getSubExpr());
    303 
    304     // And the cleanups guard.
    305   case Expr::ExprWithCleanupsClass:
    306     return ClassifyInternal(Ctx, cast<ExprWithCleanups>(E)->getSubExpr());
    307 
    308     // Casts depend completely on the target type. All casts work the same.
    309   case Expr::CStyleCastExprClass:
    310   case Expr::CXXFunctionalCastExprClass:
    311   case Expr::CXXStaticCastExprClass:
    312   case Expr::CXXDynamicCastExprClass:
    313   case Expr::CXXReinterpretCastExprClass:
    314   case Expr::CXXConstCastExprClass:
    315   case Expr::ObjCBridgedCastExprClass:
    316     // Only in C++ can casts be interesting at all.
    317     if (!Lang.CPlusPlus) return Cl::CL_PRValue;
    318     return ClassifyUnnamed(Ctx, cast<ExplicitCastExpr>(E)->getTypeAsWritten());
    319 
    320   case Expr::CXXUnresolvedConstructExprClass:
    321     return ClassifyUnnamed(Ctx,
    322                       cast<CXXUnresolvedConstructExpr>(E)->getTypeAsWritten());
    323 
    324   case Expr::BinaryConditionalOperatorClass: {
    325     if (!Lang.CPlusPlus) return Cl::CL_PRValue;
    326     const BinaryConditionalOperator *co = cast<BinaryConditionalOperator>(E);
    327     return ClassifyConditional(Ctx, co->getTrueExpr(), co->getFalseExpr());
    328   }
    329 
    330   case Expr::ConditionalOperatorClass: {
    331     // Once again, only C++ is interesting.
    332     if (!Lang.CPlusPlus) return Cl::CL_PRValue;
    333     const ConditionalOperator *co = cast<ConditionalOperator>(E);
    334     return ClassifyConditional(Ctx, co->getTrueExpr(), co->getFalseExpr());
    335   }
    336 
    337     // ObjC message sends are effectively function calls, if the target function
    338     // is known.
    339   case Expr::ObjCMessageExprClass:
    340     if (const ObjCMethodDecl *Method =
    341           cast<ObjCMessageExpr>(E)->getMethodDecl()) {
    342       Cl::Kinds kind = ClassifyUnnamed(Ctx, Method->getResultType());
    343       return (kind == Cl::CL_PRValue) ? Cl::CL_ObjCMessageRValue : kind;
    344     }
    345     return Cl::CL_PRValue;
    346 
    347     // Some C++ expressions are always class temporaries.
    348   case Expr::CXXConstructExprClass:
    349   case Expr::CXXTemporaryObjectExprClass:
    350   case Expr::LambdaExprClass:
    351     return Cl::CL_ClassTemporary;
    352 
    353   case Expr::VAArgExprClass:
    354     return ClassifyUnnamed(Ctx, E->getType());
    355 
    356   case Expr::DesignatedInitExprClass:
    357     return ClassifyInternal(Ctx, cast<DesignatedInitExpr>(E)->getInit());
    358 
    359   case Expr::StmtExprClass: {
    360     const CompoundStmt *S = cast<StmtExpr>(E)->getSubStmt();
    361     if (const Expr *LastExpr = dyn_cast_or_null<Expr>(S->body_back()))
    362       return ClassifyUnnamed(Ctx, LastExpr->getType());
    363     return Cl::CL_PRValue;
    364   }
    365 
    366   case Expr::CXXUuidofExprClass:
    367     return Cl::CL_LValue;
    368 
    369   case Expr::PackExpansionExprClass:
    370     return ClassifyInternal(Ctx, cast<PackExpansionExpr>(E)->getPattern());
    371 
    372   case Expr::MaterializeTemporaryExprClass:
    373     return cast<MaterializeTemporaryExpr>(E)->isBoundToLvalueReference()
    374               ? Cl::CL_LValue
    375               : Cl::CL_XValue;
    376 
    377   case Expr::InitListExprClass:
    378     // An init list can be an lvalue if it is bound to a reference and
    379     // contains only one element. In that case, we look at that element
    380     // for an exact classification. Init list creation takes care of the
    381     // value kind for us, so we only need to fine-tune.
    382     if (E->isRValue())
    383       return ClassifyExprValueKind(Lang, E, E->getValueKind());
    384     assert(cast<InitListExpr>(E)->getNumInits() == 1 &&
    385            "Only 1-element init lists can be glvalues.");
    386     return ClassifyInternal(Ctx, cast<InitListExpr>(E)->getInit(0));
    387   }
    388 
    389   llvm_unreachable("unhandled expression kind in classification");
    390 }
    391 
    392 /// ClassifyDecl - Return the classification of an expression referencing the
    393 /// given declaration.
    394 static Cl::Kinds ClassifyDecl(ASTContext &Ctx, const Decl *D) {
    395   // C++ [expr.prim.general]p6: The result is an lvalue if the entity is a
    396   //   function, variable, or data member and a prvalue otherwise.
    397   // In C, functions are not lvalues.
    398   // In addition, NonTypeTemplateParmDecl derives from VarDecl but isn't an
    399   // lvalue unless it's a reference type (C++ [temp.param]p6), so we need to
    400   // special-case this.
    401 
    402   if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance())
    403     return Cl::CL_MemberFunction;
    404 
    405   bool islvalue;
    406   if (const NonTypeTemplateParmDecl *NTTParm =
    407         dyn_cast<NonTypeTemplateParmDecl>(D))
    408     islvalue = NTTParm->getType()->isReferenceType();
    409   else
    410     islvalue = isa<VarDecl>(D) || isa<FieldDecl>(D) ||
    411 	  isa<IndirectFieldDecl>(D) ||
    412       (Ctx.getLangOpts().CPlusPlus &&
    413         (isa<FunctionDecl>(D) || isa<FunctionTemplateDecl>(D)));
    414 
    415   return islvalue ? Cl::CL_LValue : Cl::CL_PRValue;
    416 }
    417 
    418 /// ClassifyUnnamed - Return the classification of an expression yielding an
    419 /// unnamed value of the given type. This applies in particular to function
    420 /// calls and casts.
    421 static Cl::Kinds ClassifyUnnamed(ASTContext &Ctx, QualType T) {
    422   // In C, function calls are always rvalues.
    423   if (!Ctx.getLangOpts().CPlusPlus) return Cl::CL_PRValue;
    424 
    425   // C++ [expr.call]p10: A function call is an lvalue if the result type is an
    426   //   lvalue reference type or an rvalue reference to function type, an xvalue
    427   //   if the result type is an rvalue reference to object type, and a prvalue
    428   //   otherwise.
    429   if (T->isLValueReferenceType())
    430     return Cl::CL_LValue;
    431   const RValueReferenceType *RV = T->getAs<RValueReferenceType>();
    432   if (!RV) // Could still be a class temporary, though.
    433     return ClassifyTemporary(T);
    434 
    435   return RV->getPointeeType()->isFunctionType() ? Cl::CL_LValue : Cl::CL_XValue;
    436 }
    437 
    438 static Cl::Kinds ClassifyMemberExpr(ASTContext &Ctx, const MemberExpr *E) {
    439   if (E->getType() == Ctx.UnknownAnyTy)
    440     return (isa<FunctionDecl>(E->getMemberDecl())
    441               ? Cl::CL_PRValue : Cl::CL_LValue);
    442 
    443   // Handle C first, it's easier.
    444   if (!Ctx.getLangOpts().CPlusPlus) {
    445     // C99 6.5.2.3p3
    446     // For dot access, the expression is an lvalue if the first part is. For
    447     // arrow access, it always is an lvalue.
    448     if (E->isArrow())
    449       return Cl::CL_LValue;
    450     // ObjC property accesses are not lvalues, but get special treatment.
    451     Expr *Base = E->getBase()->IgnoreParens();
    452     if (isa<ObjCPropertyRefExpr>(Base))
    453       return Cl::CL_SubObjCPropertySetting;
    454     return ClassifyInternal(Ctx, Base);
    455   }
    456 
    457   NamedDecl *Member = E->getMemberDecl();
    458   // C++ [expr.ref]p3: E1->E2 is converted to the equivalent form (*(E1)).E2.
    459   // C++ [expr.ref]p4: If E2 is declared to have type "reference to T", then
    460   //   E1.E2 is an lvalue.
    461   if (ValueDecl *Value = dyn_cast<ValueDecl>(Member))
    462     if (Value->getType()->isReferenceType())
    463       return Cl::CL_LValue;
    464 
    465   //   Otherwise, one of the following rules applies.
    466   //   -- If E2 is a static member [...] then E1.E2 is an lvalue.
    467   if (isa<VarDecl>(Member) && Member->getDeclContext()->isRecord())
    468     return Cl::CL_LValue;
    469 
    470   //   -- If E2 is a non-static data member [...]. If E1 is an lvalue, then
    471   //      E1.E2 is an lvalue; if E1 is an xvalue, then E1.E2 is an xvalue;
    472   //      otherwise, it is a prvalue.
    473   if (isa<FieldDecl>(Member)) {
    474     // *E1 is an lvalue
    475     if (E->isArrow())
    476       return Cl::CL_LValue;
    477     Expr *Base = E->getBase()->IgnoreParenImpCasts();
    478     if (isa<ObjCPropertyRefExpr>(Base))
    479       return Cl::CL_SubObjCPropertySetting;
    480     return ClassifyInternal(Ctx, E->getBase());
    481   }
    482 
    483   //   -- If E2 is a [...] member function, [...]
    484   //      -- If it refers to a static member function [...], then E1.E2 is an
    485   //         lvalue; [...]
    486   //      -- Otherwise [...] E1.E2 is a prvalue.
    487   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member))
    488     return Method->isStatic() ? Cl::CL_LValue : Cl::CL_MemberFunction;
    489 
    490   //   -- If E2 is a member enumerator [...], the expression E1.E2 is a prvalue.
    491   // So is everything else we haven't handled yet.
    492   return Cl::CL_PRValue;
    493 }
    494 
    495 static Cl::Kinds ClassifyBinaryOp(ASTContext &Ctx, const BinaryOperator *E) {
    496   assert(Ctx.getLangOpts().CPlusPlus &&
    497          "This is only relevant for C++.");
    498   // C++ [expr.ass]p1: All [...] return an lvalue referring to the left operand.
    499   // Except we override this for writes to ObjC properties.
    500   if (E->isAssignmentOp())
    501     return (E->getLHS()->getObjectKind() == OK_ObjCProperty
    502               ? Cl::CL_PRValue : Cl::CL_LValue);
    503 
    504   // C++ [expr.comma]p1: the result is of the same value category as its right
    505   //   operand, [...].
    506   if (E->getOpcode() == BO_Comma)
    507     return ClassifyInternal(Ctx, E->getRHS());
    508 
    509   // C++ [expr.mptr.oper]p6: The result of a .* expression whose second operand
    510   //   is a pointer to a data member is of the same value category as its first
    511   //   operand.
    512   if (E->getOpcode() == BO_PtrMemD)
    513     return (E->getType()->isFunctionType() ||
    514             E->hasPlaceholderType(BuiltinType::BoundMember))
    515              ? Cl::CL_MemberFunction
    516              : ClassifyInternal(Ctx, E->getLHS());
    517 
    518   // C++ [expr.mptr.oper]p6: The result of an ->* expression is an lvalue if its
    519   //   second operand is a pointer to data member and a prvalue otherwise.
    520   if (E->getOpcode() == BO_PtrMemI)
    521     return (E->getType()->isFunctionType() ||
    522             E->hasPlaceholderType(BuiltinType::BoundMember))
    523              ? Cl::CL_MemberFunction
    524              : Cl::CL_LValue;
    525 
    526   // All other binary operations are prvalues.
    527   return Cl::CL_PRValue;
    528 }
    529 
    530 static Cl::Kinds ClassifyConditional(ASTContext &Ctx, const Expr *True,
    531                                      const Expr *False) {
    532   assert(Ctx.getLangOpts().CPlusPlus &&
    533          "This is only relevant for C++.");
    534 
    535   // C++ [expr.cond]p2
    536   //   If either the second or the third operand has type (cv) void, [...]
    537   //   the result [...] is a prvalue.
    538   if (True->getType()->isVoidType() || False->getType()->isVoidType())
    539     return Cl::CL_PRValue;
    540 
    541   // Note that at this point, we have already performed all conversions
    542   // according to [expr.cond]p3.
    543   // C++ [expr.cond]p4: If the second and third operands are glvalues of the
    544   //   same value category [...], the result is of that [...] value category.
    545   // C++ [expr.cond]p5: Otherwise, the result is a prvalue.
    546   Cl::Kinds LCl = ClassifyInternal(Ctx, True),
    547             RCl = ClassifyInternal(Ctx, False);
    548   return LCl == RCl ? LCl : Cl::CL_PRValue;
    549 }
    550 
    551 static Cl::ModifiableType IsModifiable(ASTContext &Ctx, const Expr *E,
    552                                        Cl::Kinds Kind, SourceLocation &Loc) {
    553   // As a general rule, we only care about lvalues. But there are some rvalues
    554   // for which we want to generate special results.
    555   if (Kind == Cl::CL_PRValue) {
    556     // For the sake of better diagnostics, we want to specifically recognize
    557     // use of the GCC cast-as-lvalue extension.
    558     if (const ExplicitCastExpr *CE =
    559           dyn_cast<ExplicitCastExpr>(E->IgnoreParens())) {
    560       if (CE->getSubExpr()->IgnoreParenImpCasts()->isLValue()) {
    561         Loc = CE->getExprLoc();
    562         return Cl::CM_LValueCast;
    563       }
    564     }
    565   }
    566   if (Kind != Cl::CL_LValue)
    567     return Cl::CM_RValue;
    568 
    569   // This is the lvalue case.
    570   // Functions are lvalues in C++, but not modifiable. (C++ [basic.lval]p6)
    571   if (Ctx.getLangOpts().CPlusPlus && E->getType()->isFunctionType())
    572     return Cl::CM_Function;
    573 
    574   // Assignment to a property in ObjC is an implicit setter access. But a
    575   // setter might not exist.
    576   if (const ObjCPropertyRefExpr *Expr = dyn_cast<ObjCPropertyRefExpr>(E)) {
    577     if (Expr->isImplicitProperty() && Expr->getImplicitPropertySetter() == 0)
    578       return Cl::CM_NoSetterProperty;
    579   }
    580 
    581   CanQualType CT = Ctx.getCanonicalType(E->getType());
    582   // Const stuff is obviously not modifiable.
    583   if (CT.isConstQualified())
    584     return Cl::CM_ConstQualified;
    585 
    586   // Arrays are not modifiable, only their elements are.
    587   if (CT->isArrayType())
    588     return Cl::CM_ArrayType;
    589   // Incomplete types are not modifiable.
    590   if (CT->isIncompleteType())
    591     return Cl::CM_IncompleteType;
    592 
    593   // Records with any const fields (recursively) are not modifiable.
    594   if (const RecordType *R = CT->getAs<RecordType>()) {
    595     assert((E->getObjectKind() == OK_ObjCProperty ||
    596             !Ctx.getLangOpts().CPlusPlus) &&
    597            "C++ struct assignment should be resolved by the "
    598            "copy assignment operator.");
    599     if (R->hasConstFields())
    600       return Cl::CM_ConstQualified;
    601   }
    602 
    603   return Cl::CM_Modifiable;
    604 }
    605 
    606 Expr::LValueClassification Expr::ClassifyLValue(ASTContext &Ctx) const {
    607   Classification VC = Classify(Ctx);
    608   switch (VC.getKind()) {
    609   case Cl::CL_LValue: return LV_Valid;
    610   case Cl::CL_XValue: return LV_InvalidExpression;
    611   case Cl::CL_Function: return LV_NotObjectType;
    612   case Cl::CL_Void: return LV_InvalidExpression;
    613   case Cl::CL_AddressableVoid: return LV_IncompleteVoidType;
    614   case Cl::CL_DuplicateVectorComponents: return LV_DuplicateVectorComponents;
    615   case Cl::CL_MemberFunction: return LV_MemberFunction;
    616   case Cl::CL_SubObjCPropertySetting: return LV_SubObjCPropertySetting;
    617   case Cl::CL_ClassTemporary: return LV_ClassTemporary;
    618   case Cl::CL_ArrayTemporary: return LV_ArrayTemporary;
    619   case Cl::CL_ObjCMessageRValue: return LV_InvalidMessageExpression;
    620   case Cl::CL_PRValue: return LV_InvalidExpression;
    621   }
    622   llvm_unreachable("Unhandled kind");
    623 }
    624 
    625 Expr::isModifiableLvalueResult
    626 Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const {
    627   SourceLocation dummy;
    628   Classification VC = ClassifyModifiable(Ctx, Loc ? *Loc : dummy);
    629   switch (VC.getKind()) {
    630   case Cl::CL_LValue: break;
    631   case Cl::CL_XValue: return MLV_InvalidExpression;
    632   case Cl::CL_Function: return MLV_NotObjectType;
    633   case Cl::CL_Void: return MLV_InvalidExpression;
    634   case Cl::CL_AddressableVoid: return MLV_IncompleteVoidType;
    635   case Cl::CL_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
    636   case Cl::CL_MemberFunction: return MLV_MemberFunction;
    637   case Cl::CL_SubObjCPropertySetting: return MLV_SubObjCPropertySetting;
    638   case Cl::CL_ClassTemporary: return MLV_ClassTemporary;
    639   case Cl::CL_ArrayTemporary: return MLV_ArrayTemporary;
    640   case Cl::CL_ObjCMessageRValue: return MLV_InvalidMessageExpression;
    641   case Cl::CL_PRValue:
    642     return VC.getModifiable() == Cl::CM_LValueCast ?
    643       MLV_LValueCast : MLV_InvalidExpression;
    644   }
    645   assert(VC.getKind() == Cl::CL_LValue && "Unhandled kind");
    646   switch (VC.getModifiable()) {
    647   case Cl::CM_Untested: llvm_unreachable("Did not test modifiability");
    648   case Cl::CM_Modifiable: return MLV_Valid;
    649   case Cl::CM_RValue: llvm_unreachable("CM_RValue and CL_LValue don't match");
    650   case Cl::CM_Function: return MLV_NotObjectType;
    651   case Cl::CM_LValueCast:
    652     llvm_unreachable("CM_LValueCast and CL_LValue don't match");
    653   case Cl::CM_NoSetterProperty: return MLV_NoSetterProperty;
    654   case Cl::CM_ConstQualified: return MLV_ConstQualified;
    655   case Cl::CM_ArrayType: return MLV_ArrayType;
    656   case Cl::CM_IncompleteType: return MLV_IncompleteType;
    657   }
    658   llvm_unreachable("Unhandled modifiable type");
    659 }
    660