Home | History | Annotate | Download | only in lib
      1 //===-- lib/addsf3.c - Single-precision addition ------------------*- C -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is dual licensed under the MIT and the University of Illinois Open
      6 // Source Licenses. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements single-precision soft-float addition with the IEEE-754
     11 // default rounding (to nearest, ties to even).
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define SINGLE_PRECISION
     16 #include "fp_lib.h"
     17 
     18 ARM_EABI_FNALIAS(fadd, addsf3)
     19 
     20 fp_t __addsf3(fp_t a, fp_t b) {
     21 
     22     rep_t aRep = toRep(a);
     23     rep_t bRep = toRep(b);
     24     const rep_t aAbs = aRep & absMask;
     25     const rep_t bAbs = bRep & absMask;
     26 
     27     // Detect if a or b is zero, infinity, or NaN.
     28     if (aAbs - 1U >= infRep - 1U || bAbs - 1U >= infRep - 1U) {
     29 
     30         // NaN + anything = qNaN
     31         if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
     32         // anything + NaN = qNaN
     33         if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
     34 
     35         if (aAbs == infRep) {
     36             // +/-infinity + -/+infinity = qNaN
     37             if ((toRep(a) ^ toRep(b)) == signBit) return fromRep(qnanRep);
     38             // +/-infinity + anything remaining = +/- infinity
     39             else return a;
     40         }
     41 
     42         // anything remaining + +/-infinity = +/-infinity
     43         if (bAbs == infRep) return b;
     44 
     45         // zero + anything = anything
     46         if (!aAbs) {
     47             // but we need to get the sign right for zero + zero
     48             if (!bAbs) return fromRep(toRep(a) & toRep(b));
     49             else return b;
     50         }
     51 
     52         // anything + zero = anything
     53         if (!bAbs) return a;
     54     }
     55 
     56     // Swap a and b if necessary so that a has the larger absolute value.
     57     if (bAbs > aAbs) {
     58         const rep_t temp = aRep;
     59         aRep = bRep;
     60         bRep = temp;
     61     }
     62 
     63     // Extract the exponent and significand from the (possibly swapped) a and b.
     64     int aExponent = aRep >> significandBits & maxExponent;
     65     int bExponent = bRep >> significandBits & maxExponent;
     66     rep_t aSignificand = aRep & significandMask;
     67     rep_t bSignificand = bRep & significandMask;
     68 
     69     // Normalize any denormals, and adjust the exponent accordingly.
     70     if (aExponent == 0) aExponent = normalize(&aSignificand);
     71     if (bExponent == 0) bExponent = normalize(&bSignificand);
     72 
     73     // The sign of the result is the sign of the larger operand, a.  If they
     74     // have opposite signs, we are performing a subtraction; otherwise addition.
     75     const rep_t resultSign = aRep & signBit;
     76     const bool subtraction = (aRep ^ bRep) & signBit;
     77 
     78     // Shift the significands to give us round, guard and sticky, and or in the
     79     // implicit significand bit.  (If we fell through from the denormal path it
     80     // was already set by normalize( ), but setting it twice won't hurt
     81     // anything.)
     82     aSignificand = (aSignificand | implicitBit) << 3;
     83     bSignificand = (bSignificand | implicitBit) << 3;
     84 
     85     // Shift the significand of b by the difference in exponents, with a sticky
     86     // bottom bit to get rounding correct.
     87     const unsigned int align = aExponent - bExponent;
     88     if (align) {
     89         if (align < typeWidth) {
     90             const bool sticky = bSignificand << (typeWidth - align);
     91             bSignificand = bSignificand >> align | sticky;
     92         } else {
     93             bSignificand = 1; // sticky; b is known to be non-zero.
     94         }
     95     }
     96 
     97     if (subtraction) {
     98         aSignificand -= bSignificand;
     99 
    100         // If a == -b, return +zero.
    101         if (aSignificand == 0) return fromRep(0);
    102 
    103         // If partial cancellation occured, we need to left-shift the result
    104         // and adjust the exponent:
    105         if (aSignificand < implicitBit << 3) {
    106             const int shift = rep_clz(aSignificand) - rep_clz(implicitBit << 3);
    107             aSignificand <<= shift;
    108             aExponent -= shift;
    109         }
    110     }
    111 
    112     else /* addition */ {
    113         aSignificand += bSignificand;
    114 
    115         // If the addition carried up, we need to right-shift the result and
    116         // adjust the exponent:
    117         if (aSignificand & implicitBit << 4) {
    118             const bool sticky = aSignificand & 1;
    119             aSignificand = aSignificand >> 1 | sticky;
    120             aExponent += 1;
    121         }
    122     }
    123 
    124     // If we have overflowed the type, return +/- infinity:
    125     if (aExponent >= maxExponent) return fromRep(infRep | resultSign);
    126 
    127     if (aExponent <= 0) {
    128         // Result is denormal before rounding; the exponent is zero and we
    129         // need to shift the significand.
    130         const int shift = 1 - aExponent;
    131         const bool sticky = aSignificand << (typeWidth - shift);
    132         aSignificand = aSignificand >> shift | sticky;
    133         aExponent = 0;
    134     }
    135 
    136     // Low three bits are round, guard, and sticky.
    137     const int roundGuardSticky = aSignificand & 0x7;
    138 
    139     // Shift the significand into place, and mask off the implicit bit.
    140     rep_t result = aSignificand >> 3 & significandMask;
    141 
    142     // Insert the exponent and sign.
    143     result |= (rep_t)aExponent << significandBits;
    144     result |= resultSign;
    145 
    146     // Final rounding.  The result may overflow to infinity, but that is the
    147     // correct result in that case.
    148     if (roundGuardSticky > 0x4) result++;
    149     if (roundGuardSticky == 0x4) result += result & 1;
    150     return fromRep(result);
    151 }
    152