Home | History | Annotate | Download | only in intltest
      1 /*
      2  *******************************************************************************
      3  * Copyright (C) 1996-2012, International Business Machines Corporation and    *
      4  * others. All Rights Reserved.                                                *
      5  *******************************************************************************
      6  */
      7 
      8 #include "unicode/utypes.h"
      9 
     10 #if !UCONFIG_NO_FORMATTING
     11 
     12 #include "itrbnf.h"
     13 
     14 #include "unicode/umachine.h"
     15 
     16 #include "unicode/tblcoll.h"
     17 #include "unicode/coleitr.h"
     18 #include "unicode/ures.h"
     19 #include "unicode/ustring.h"
     20 #include "unicode/decimfmt.h"
     21 #include "unicode/udata.h"
     22 #include "testutil.h"
     23 
     24 //#include "llong.h"
     25 
     26 #include <string.h>
     27 
     28 // import com.ibm.text.RuleBasedNumberFormat;
     29 // import com.ibm.test.TestFmwk;
     30 
     31 // import java.util.Locale;
     32 // import java.text.NumberFormat;
     33 
     34 // current macro not in icu1.8.1
     35 #define TESTCASE(id,test)             \
     36     case id:                          \
     37         name = #test;                 \
     38         if (exec) {                   \
     39             logln(#test "---");       \
     40             logln();                  \
     41             test();                   \
     42         }                             \
     43         break
     44 
     45 void IntlTestRBNF::runIndexedTest(int32_t index, UBool exec, const char* &name, char* /*par*/)
     46 {
     47     if (exec) logln("TestSuite RuleBasedNumberFormat");
     48     switch (index) {
     49 #if U_HAVE_RBNF
     50         TESTCASE(0, TestEnglishSpellout);
     51         TESTCASE(1, TestOrdinalAbbreviations);
     52         TESTCASE(2, TestDurations);
     53         TESTCASE(3, TestSpanishSpellout);
     54         TESTCASE(4, TestFrenchSpellout);
     55         TESTCASE(5, TestSwissFrenchSpellout);
     56         TESTCASE(6, TestItalianSpellout);
     57         TESTCASE(7, TestGermanSpellout);
     58         TESTCASE(8, TestThaiSpellout);
     59         TESTCASE(9, TestAPI);
     60         TESTCASE(10, TestFractionalRuleSet);
     61         TESTCASE(11, TestSwedishSpellout);
     62         TESTCASE(12, TestBelgianFrenchSpellout);
     63         TESTCASE(13, TestSmallValues);
     64         TESTCASE(14, TestLocalizations);
     65         TESTCASE(15, TestAllLocales);
     66         TESTCASE(16, TestHebrewFraction);
     67         TESTCASE(17, TestPortugueseSpellout);
     68         TESTCASE(18, TestMultiplierSubstitution);
     69         TESTCASE(19, TestSetDecimalFormatSymbols);
     70 #else
     71         TESTCASE(0, TestRBNFDisabled);
     72 #endif
     73     default:
     74         name = "";
     75         break;
     76     }
     77 }
     78 
     79 #if U_HAVE_RBNF
     80 
     81 void IntlTestRBNF::TestHebrewFraction() {
     82 
     83     // this is the expected output for 123.45, with no '<' in it.
     84     UChar text1[] = {
     85         0x05de, 0x05d0, 0x05d4, 0x0020,
     86         0x05e2, 0x05e9, 0x05e8, 0x05d9, 0x05dd, 0x0020,
     87         0x05d5, 0x05e9, 0x05dc, 0x05d5, 0x05e9, 0x0020,
     88         0x05e0, 0x05e7, 0x05d5, 0x05d3, 0x05d4, 0x0020,
     89         0x05d0, 0x05e8, 0x05d1, 0x05e2, 0x0020,
     90         0x05d7, 0x05de, 0x05e9, 0x0000,
     91     };
     92     UChar text2[] = {
     93         0x05DE, 0x05D0, 0x05D4, 0x0020,
     94         0x05E2, 0x05E9, 0x05E8, 0x05D9, 0x05DD, 0x0020,
     95         0x05D5, 0x05E9, 0x05DC, 0x05D5, 0x05E9, 0x0020,
     96         0x05E0, 0x05E7, 0x05D5, 0x05D3, 0x05D4, 0x0020,
     97         0x05D0, 0x05E4, 0x05E1, 0x0020,
     98         0x05D0, 0x05E4, 0x05E1, 0x0020,
     99         0x05D0, 0x05E8, 0x05D1, 0x05E2, 0x0020,
    100         0x05D7, 0x05DE, 0x05E9, 0x0000,
    101     };
    102     UErrorCode status = U_ZERO_ERROR;
    103     RuleBasedNumberFormat* formatter = new RuleBasedNumberFormat(URBNF_SPELLOUT, "he_IL", status);
    104     if (status == U_MISSING_RESOURCE_ERROR || status == U_FILE_ACCESS_ERROR) {
    105         errcheckln(status, "Failed in constructing RuleBasedNumberFormat - %s", u_errorName(status));
    106         delete formatter;
    107         return;
    108     }
    109     UnicodeString result;
    110     Formattable parseResult;
    111     ParsePosition pp(0);
    112     {
    113         UnicodeString expected(text1);
    114         formatter->format(123.45, result);
    115         if (result != expected) {
    116             errln((UnicodeString)"expected '" + TestUtility::hex(expected) + "'\nbut got: '" + TestUtility::hex(result) + "'");
    117         } else {
    118 //            formatter->parse(result, parseResult, pp);
    119 //            if (parseResult.getDouble() != 123.45) {
    120 //                errln("expected 123.45 but got: %g", parseResult.getDouble());
    121 //            }
    122         }
    123     }
    124     {
    125         UnicodeString expected(text2);
    126         result.remove();
    127         formatter->format(123.0045, result);
    128         if (result != expected) {
    129             errln((UnicodeString)"expected '" + TestUtility::hex(expected) + "'\nbut got: '" + TestUtility::hex(result) + "'");
    130         } else {
    131             pp.setIndex(0);
    132 //            formatter->parse(result, parseResult, pp);
    133 //            if (parseResult.getDouble() != 123.0045) {
    134 //                errln("expected 123.0045 but got: %g", parseResult.getDouble());
    135 //            }
    136         }
    137     }
    138     delete formatter;
    139 }
    140 
    141 void
    142 IntlTestRBNF::TestAPI() {
    143   // This test goes through the APIs that were not tested before.
    144   // These tests are too small to have separate test classes/functions
    145 
    146   UErrorCode status = U_ZERO_ERROR;
    147   RuleBasedNumberFormat* formatter
    148       = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getUS(), status);
    149   if (status == U_MISSING_RESOURCE_ERROR || status == U_FILE_ACCESS_ERROR) {
    150     dataerrln("Unable to create formatter. - %s", u_errorName(status));
    151     delete formatter;
    152     return;
    153   }
    154 
    155   logln("RBNF API test starting");
    156   // test clone
    157   {
    158     logln("Testing Clone");
    159     RuleBasedNumberFormat* rbnfClone = (RuleBasedNumberFormat *)formatter->clone();
    160     if(rbnfClone != NULL) {
    161       if(!(*rbnfClone == *formatter)) {
    162         errln("Clone should be semantically equivalent to the original!");
    163       }
    164       delete rbnfClone;
    165     } else {
    166       errln("Cloning failed!");
    167     }
    168   }
    169 
    170   // test assignment
    171   {
    172     logln("Testing assignment operator");
    173     RuleBasedNumberFormat assignResult(URBNF_SPELLOUT, Locale("es", "ES", ""), status);
    174     assignResult = *formatter;
    175     if(!(assignResult == *formatter)) {
    176       errln("Assignment result should be semantically equivalent to the original!");
    177     }
    178   }
    179 
    180   // test rule constructor
    181   {
    182     logln("Testing rule constructor");
    183     LocalUResourceBundlePointer en(ures_open(U_ICUDATA_NAME U_TREE_SEPARATOR_STRING "rbnf", "en", &status));
    184     if(U_FAILURE(status)) {
    185       errln("Unable to access resource bundle with data!");
    186     } else {
    187       int32_t ruleLen = 0;
    188       int32_t len = 0;
    189       LocalUResourceBundlePointer rbnfRules(ures_getByKey(en.getAlias(), "RBNFRules", NULL, &status));
    190       LocalUResourceBundlePointer ruleSets(ures_getByKey(rbnfRules.getAlias(), "SpelloutRules", NULL, &status));
    191       UnicodeString desc;
    192       while (ures_hasNext(ruleSets.getAlias())) {
    193            const UChar* currentString = ures_getNextString(ruleSets.getAlias(), &len, NULL, &status);
    194            ruleLen += len;
    195            desc.append(currentString);
    196       }
    197 
    198       const UChar *spelloutRules = desc.getTerminatedBuffer();
    199 
    200       if(U_FAILURE(status) || ruleLen == 0 || spelloutRules == NULL) {
    201         errln("Unable to access the rules string!");
    202       } else {
    203         UParseError perror;
    204         RuleBasedNumberFormat ruleCtorResult(spelloutRules, Locale::getUS(), perror, status);
    205         if(!(ruleCtorResult == *formatter)) {
    206           errln("Formatter constructed from the original rules should be semantically equivalent to the original!");
    207         }
    208 
    209         // Jitterbug 4452, for coverage
    210         RuleBasedNumberFormat nf(spelloutRules, (UnicodeString)"", Locale::getUS(), perror, status);
    211         if(!(nf == *formatter)) {
    212           errln("Formatter constructed from the original rules should be semantically equivalent to the original!");
    213         }
    214       }
    215     }
    216   }
    217 
    218   // test getRules
    219   {
    220     logln("Testing getRules function");
    221     UnicodeString rules = formatter->getRules();
    222     UParseError perror;
    223     RuleBasedNumberFormat fromRulesResult(rules, Locale::getUS(), perror, status);
    224 
    225     if(!(fromRulesResult == *formatter)) {
    226       errln("Formatter constructed from rules obtained by getRules should be semantically equivalent to the original!");
    227     }
    228   }
    229 
    230 
    231   {
    232     logln("Testing copy constructor");
    233     RuleBasedNumberFormat copyCtorResult(*formatter);
    234     if(!(copyCtorResult == *formatter)) {
    235       errln("Copy constructor result result should be semantically equivalent to the original!");
    236     }
    237   }
    238 
    239 #if !UCONFIG_NO_COLLATION
    240   // test ruleset names
    241   {
    242     logln("Testing getNumberOfRuleSetNames, getRuleSetName and format using rule set names");
    243     int32_t noOfRuleSetNames = formatter->getNumberOfRuleSetNames();
    244     if(noOfRuleSetNames == 0) {
    245       errln("Number of rule set names should be more than zero");
    246     }
    247     UnicodeString ruleSetName;
    248     int32_t i = 0;
    249     int32_t intFormatNum = 34567;
    250     double doubleFormatNum = 893411.234;
    251     logln("number of rule set names is %i", noOfRuleSetNames);
    252     for(i = 0; i < noOfRuleSetNames; i++) {
    253       FieldPosition pos1, pos2;
    254       UnicodeString intFormatResult, doubleFormatResult;
    255       Formattable intParseResult, doubleParseResult;
    256 
    257       ruleSetName = formatter->getRuleSetName(i);
    258       log("Rule set name %i is ", i);
    259       log(ruleSetName);
    260       logln(". Format results are: ");
    261       intFormatResult = formatter->format(intFormatNum, ruleSetName, intFormatResult, pos1, status);
    262       doubleFormatResult = formatter->format(doubleFormatNum, ruleSetName, doubleFormatResult, pos2, status);
    263       if(U_FAILURE(status)) {
    264         errln("Format using a rule set failed");
    265         break;
    266       }
    267       logln(intFormatResult);
    268       logln(doubleFormatResult);
    269       formatter->setLenient(TRUE);
    270       formatter->parse(intFormatResult, intParseResult, status);
    271       formatter->parse(doubleFormatResult, doubleParseResult, status);
    272 
    273       logln("Parse results for lenient = TRUE, %i, %f", intParseResult.getLong(), doubleParseResult.getDouble());
    274 
    275       formatter->setLenient(FALSE);
    276       formatter->parse(intFormatResult, intParseResult, status);
    277       formatter->parse(doubleFormatResult, doubleParseResult, status);
    278 
    279       logln("Parse results for lenient = FALSE, %i, %f", intParseResult.getLong(), doubleParseResult.getDouble());
    280 
    281       if(U_FAILURE(status)) {
    282         errln("Error during parsing");
    283       }
    284 
    285       intFormatResult = formatter->format(intFormatNum, "BLABLA", intFormatResult, pos1, status);
    286       if(U_SUCCESS(status)) {
    287         errln("Using invalid rule set name should have failed");
    288         break;
    289       }
    290       status = U_ZERO_ERROR;
    291       doubleFormatResult = formatter->format(doubleFormatNum, "TRUC", doubleFormatResult, pos2, status);
    292       if(U_SUCCESS(status)) {
    293         errln("Using invalid rule set name should have failed");
    294         break;
    295       }
    296       status = U_ZERO_ERROR;
    297     }
    298     status = U_ZERO_ERROR;
    299   }
    300 #endif
    301 
    302   // test API
    303   UnicodeString expected("four point five","");
    304   logln("Testing format(double)");
    305   UnicodeString result;
    306   formatter->format(4.5,result);
    307   if(result != expected) {
    308       errln("Formatted 4.5, expected " + expected + " got " + result);
    309   } else {
    310       logln("Formatted 4.5, expected " + expected + " got " + result);
    311   }
    312   result.remove();
    313   expected = "four";
    314   formatter->format((int32_t)4,result);
    315   if(result != expected) {
    316       errln("Formatted 4, expected " + expected + " got " + result);
    317   } else {
    318       logln("Formatted 4, expected " + expected + " got " + result);
    319   }
    320 
    321   result.remove();
    322   FieldPosition pos;
    323   formatter->format((int64_t)4, result, pos, status = U_ZERO_ERROR);
    324   if(result != expected) {
    325       errln("Formatted 4 int64_t, expected " + expected + " got " + result);
    326   } else {
    327       logln("Formatted 4 int64_t, expected " + expected + " got " + result);
    328   }
    329 
    330   //Jitterbug 4452, for coverage
    331   result.remove();
    332   FieldPosition pos2;
    333   formatter->format((int64_t)4, formatter->getRuleSetName(0), result, pos2, status = U_ZERO_ERROR);
    334   if(result != expected) {
    335       errln("Formatted 4 int64_t, expected " + expected + " got " + result);
    336   } else {
    337       logln("Formatted 4 int64_t, expected " + expected + " got " + result);
    338   }
    339 
    340   // clean up
    341   logln("Cleaning up");
    342   delete formatter;
    343 }
    344 
    345 void IntlTestRBNF::TestFractionalRuleSet()
    346 {
    347     UnicodeString fracRules(
    348         "%main:\n"
    349                // this rule formats the number if it's 1 or more.  It formats
    350                // the integral part using a DecimalFormat ("#,##0" puts
    351                // thousands separators in the right places) and the fractional
    352                // part using %%frac.  If there is no fractional part, it
    353                // just shows the integral part.
    354         "    x.0: <#,##0<[ >%%frac>];\n"
    355                // this rule formats the number if it's between 0 and 1.  It
    356                // shows only the fractional part (0.5 shows up as "1/2," not
    357                // "0 1/2")
    358         "    0.x: >%%frac>;\n"
    359         // the fraction rule set.  This works the same way as the one in the
    360         // preceding example: We multiply the fractional part of the number
    361         // being formatted by each rule's base value and use the rule that
    362         // produces the result closest to 0 (or the first rule that produces 0).
    363         // Since we only provide rules for the numbers from 2 to 10, we know
    364         // we'll get a fraction with a denominator between 2 and 10.
    365         // "<0<" causes the numerator of the fraction to be formatted
    366         // using numerals
    367         "%%frac:\n"
    368         "    2: 1/2;\n"
    369         "    3: <0</3;\n"
    370         "    4: <0</4;\n"
    371         "    5: <0</5;\n"
    372         "    6: <0</6;\n"
    373         "    7: <0</7;\n"
    374         "    8: <0</8;\n"
    375         "    9: <0</9;\n"
    376         "   10: <0</10;\n");
    377 
    378     // mondo hack
    379     int len = fracRules.length();
    380     int change = 2;
    381     for (int i = 0; i < len; ++i) {
    382         UChar ch = fracRules.charAt(i);
    383         if (ch == '\n') {
    384             change = 2; // change ok
    385         } else if (ch == ':') {
    386             change = 1; // change, but once we hit a non-space char, don't change
    387         } else if (ch == ' ') {
    388             if (change != 0) {
    389                 fracRules.setCharAt(i, (UChar)0x200e);
    390             }
    391         } else {
    392             if (change == 1) {
    393                 change = 0;
    394             }
    395         }
    396     }
    397 
    398     UErrorCode status = U_ZERO_ERROR;
    399     UParseError perror;
    400     RuleBasedNumberFormat formatter(fracRules, Locale::getEnglish(), perror, status);
    401     if (U_FAILURE(status)) {
    402         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
    403     } else {
    404         static const char* const testData[][2] = {
    405             { "0", "0" },
    406             { ".1", "1/10" },
    407             { ".11", "1/9" },
    408             { ".125", "1/8" },
    409             { ".1428", "1/7" },
    410             { ".1667", "1/6" },
    411             { ".2", "1/5" },
    412             { ".25", "1/4" },
    413             { ".333", "1/3" },
    414             { ".5", "1/2" },
    415             { "1.1", "1 1/10" },
    416             { "2.11", "2 1/9" },
    417             { "3.125", "3 1/8" },
    418             { "4.1428", "4 1/7" },
    419             { "5.1667", "5 1/6" },
    420             { "6.2", "6 1/5" },
    421             { "7.25", "7 1/4" },
    422             { "8.333", "8 1/3" },
    423             { "9.5", "9 1/2" },
    424             { ".2222", "2/9" },
    425             { ".4444", "4/9" },
    426             { ".5555", "5/9" },
    427             { "1.2856", "1 2/7" },
    428             { NULL, NULL }
    429         };
    430        doTest(&formatter, testData, FALSE); // exact values aren't parsable from fractions
    431     }
    432 }
    433 
    434 #if 0
    435 #define LLAssert(a) \
    436   if (!(a)) errln("FAIL: " #a)
    437 
    438 void IntlTestRBNF::TestLLongConstructors()
    439 {
    440     logln("Testing constructors");
    441 
    442     // constant (shouldn't really be public)
    443     LLAssert(llong(llong::kD32).asDouble() == llong::kD32);
    444 
    445     // internal constructor (shouldn't really be public)
    446     LLAssert(llong(0, 1).asDouble() == 1);
    447     LLAssert(llong(1, 0).asDouble() == llong::kD32);
    448     LLAssert(llong((uint32_t)-1, (uint32_t)-1).asDouble() == -1);
    449 
    450     // public empty constructor
    451     LLAssert(llong().asDouble() == 0);
    452 
    453     // public int32_t constructor
    454     LLAssert(llong((int32_t)0).asInt() == (int32_t)0);
    455     LLAssert(llong((int32_t)1).asInt() == (int32_t)1);
    456     LLAssert(llong((int32_t)-1).asInt() == (int32_t)-1);
    457     LLAssert(llong((int32_t)0x7fffffff).asInt() == (int32_t)0x7fffffff);
    458     LLAssert(llong((int32_t)0xffffffff).asInt() == (int32_t)-1);
    459     LLAssert(llong((int32_t)0x80000000).asInt() == (int32_t)0x80000000);
    460 
    461     // public int16_t constructor
    462     LLAssert(llong((int16_t)0).asInt() == (int16_t)0);
    463     LLAssert(llong((int16_t)1).asInt() == (int16_t)1);
    464     LLAssert(llong((int16_t)-1).asInt() == (int16_t)-1);
    465     LLAssert(llong((int16_t)0x7fff).asInt() == (int16_t)0x7fff);
    466     LLAssert(llong((int16_t)0xffff).asInt() == (int16_t)0xffff);
    467     LLAssert(llong((int16_t)0x8000).asInt() == (int16_t)0x8000);
    468 
    469     // public int8_t constructor
    470     LLAssert(llong((int8_t)0).asInt() == (int8_t)0);
    471     LLAssert(llong((int8_t)1).asInt() == (int8_t)1);
    472     LLAssert(llong((int8_t)-1).asInt() == (int8_t)-1);
    473     LLAssert(llong((int8_t)0x7f).asInt() == (int8_t)0x7f);
    474     LLAssert(llong((int8_t)0xff).asInt() == (int8_t)0xff);
    475     LLAssert(llong((int8_t)0x80).asInt() == (int8_t)0x80);
    476 
    477     // public uint16_t constructor
    478     LLAssert(llong((uint16_t)0).asUInt() == (uint16_t)0);
    479     LLAssert(llong((uint16_t)1).asUInt() == (uint16_t)1);
    480     LLAssert(llong((uint16_t)-1).asUInt() == (uint16_t)-1);
    481     LLAssert(llong((uint16_t)0x7fff).asUInt() == (uint16_t)0x7fff);
    482     LLAssert(llong((uint16_t)0xffff).asUInt() == (uint16_t)0xffff);
    483     LLAssert(llong((uint16_t)0x8000).asUInt() == (uint16_t)0x8000);
    484 
    485     // public uint32_t constructor
    486     LLAssert(llong((uint32_t)0).asUInt() == (uint32_t)0);
    487     LLAssert(llong((uint32_t)1).asUInt() == (uint32_t)1);
    488     LLAssert(llong((uint32_t)-1).asUInt() == (uint32_t)-1);
    489     LLAssert(llong((uint32_t)0x7fffffff).asUInt() == (uint32_t)0x7fffffff);
    490     LLAssert(llong((uint32_t)0xffffffff).asUInt() == (uint32_t)-1);
    491     LLAssert(llong((uint32_t)0x80000000).asUInt() == (uint32_t)0x80000000);
    492 
    493     // public double constructor
    494     LLAssert(llong((double)0).asDouble() == (double)0);
    495     LLAssert(llong((double)1).asDouble() == (double)1);
    496     LLAssert(llong((double)0x7fffffff).asDouble() == (double)0x7fffffff);
    497     LLAssert(llong((double)0x80000000).asDouble() == (double)0x80000000);
    498     LLAssert(llong((double)0x80000001).asDouble() == (double)0x80000001);
    499 
    500     // can't access uprv_maxmantissa, so fake it
    501     double maxmantissa = (llong((int32_t)1) << 40).asDouble();
    502     LLAssert(llong(maxmantissa).asDouble() == maxmantissa);
    503     LLAssert(llong(-maxmantissa).asDouble() == -maxmantissa);
    504 
    505     // copy constructor
    506     LLAssert(llong(llong(0, 1)).asDouble() == 1);
    507     LLAssert(llong(llong(1, 0)).asDouble() == llong::kD32);
    508     LLAssert(llong(llong(-1, (uint32_t)-1)).asDouble() == -1);
    509 
    510     // asInt - test unsigned to signed narrowing conversion
    511     LLAssert(llong((uint32_t)-1).asInt() == (int32_t)0x7fffffff);
    512     LLAssert(llong(-1, 0).asInt() == (int32_t)0x80000000);
    513 
    514     // asUInt - test signed to unsigned narrowing conversion
    515     LLAssert(llong((int32_t)-1).asUInt() == (uint32_t)-1);
    516     LLAssert(llong((int32_t)0x80000000).asUInt() == (uint32_t)0x80000000);
    517 
    518     // asDouble already tested
    519 
    520 }
    521 
    522 void IntlTestRBNF::TestLLongSimpleOperators()
    523 {
    524     logln("Testing simple operators");
    525 
    526     // operator==
    527     LLAssert(llong() == llong(0, 0));
    528     LLAssert(llong(1,0) == llong(1, 0));
    529     LLAssert(llong(0,1) == llong(0, 1));
    530 
    531     // operator!=
    532     LLAssert(llong(1,0) != llong(1,1));
    533     LLAssert(llong(0,1) != llong(1,1));
    534     LLAssert(llong(0xffffffff,0xffffffff) != llong(0x7fffffff, 0xffffffff));
    535 
    536     // unsigned >
    537     LLAssert(llong((int32_t)-1).ugt(llong(0x7fffffff, 0xffffffff)));
    538 
    539     // unsigned <
    540     LLAssert(llong(0x7fffffff, 0xffffffff).ult(llong((int32_t)-1)));
    541 
    542     // unsigned >=
    543     LLAssert(llong((int32_t)-1).uge(llong(0x7fffffff, 0xffffffff)));
    544     LLAssert(llong((int32_t)-1).uge(llong((int32_t)-1)));
    545 
    546     // unsigned <=
    547     LLAssert(llong(0x7fffffff, 0xffffffff).ule(llong((int32_t)-1)));
    548     LLAssert(llong((int32_t)-1).ule(llong((int32_t)-1)));
    549 
    550     // operator>
    551     LLAssert(llong(1, 1) > llong(1, 0));
    552     LLAssert(llong(0, 0x80000000) > llong(0, 0x7fffffff));
    553     LLAssert(llong(0x80000000, 1) > llong(0x80000000, 0));
    554     LLAssert(llong(1, 0) > llong(0, 0x7fffffff));
    555     LLAssert(llong(1, 0) > llong(0, 0xffffffff));
    556     LLAssert(llong(0, 0) > llong(0x80000000, 1));
    557 
    558     // operator<
    559     LLAssert(llong(1, 0) < llong(1, 1));
    560     LLAssert(llong(0, 0x7fffffff) < llong(0, 0x80000000));
    561     LLAssert(llong(0x80000000, 0) < llong(0x80000000, 1));
    562     LLAssert(llong(0, 0x7fffffff) < llong(1, 0));
    563     LLAssert(llong(0, 0xffffffff) < llong(1, 0));
    564     LLAssert(llong(0x80000000, 1) < llong(0, 0));
    565 
    566     // operator>=
    567     LLAssert(llong(1, 1) >= llong(1, 0));
    568     LLAssert(llong(0, 0x80000000) >= llong(0, 0x7fffffff));
    569     LLAssert(llong(0x80000000, 1) >= llong(0x80000000, 0));
    570     LLAssert(llong(1, 0) >= llong(0, 0x7fffffff));
    571     LLAssert(llong(1, 0) >= llong(0, 0xffffffff));
    572     LLAssert(llong(0, 0) >= llong(0x80000000, 1));
    573     LLAssert(llong() >= llong(0, 0));
    574     LLAssert(llong(1,0) >= llong(1, 0));
    575     LLAssert(llong(0,1) >= llong(0, 1));
    576 
    577     // operator<=
    578     LLAssert(llong(1, 0) <= llong(1, 1));
    579     LLAssert(llong(0, 0x7fffffff) <= llong(0, 0x80000000));
    580     LLAssert(llong(0x80000000, 0) <= llong(0x80000000, 1));
    581     LLAssert(llong(0, 0x7fffffff) <= llong(1, 0));
    582     LLAssert(llong(0, 0xffffffff) <= llong(1, 0));
    583     LLAssert(llong(0x80000000, 1) <= llong(0, 0));
    584     LLAssert(llong() <= llong(0, 0));
    585     LLAssert(llong(1,0) <= llong(1, 0));
    586     LLAssert(llong(0,1) <= llong(0, 1));
    587 
    588     // operator==(int32)
    589     LLAssert(llong() == (int32_t)0);
    590     LLAssert(llong(0,1) == (int32_t)1);
    591 
    592     // operator!=(int32)
    593     LLAssert(llong(1,0) != (int32_t)0);
    594     LLAssert(llong(0,1) != (int32_t)2);
    595     LLAssert(llong(0,0xffffffff) != (int32_t)-1);
    596 
    597     llong negOne(0xffffffff, 0xffffffff);
    598 
    599     // operator>(int32)
    600     LLAssert(llong(0, 0x80000000) > (int32_t)0x7fffffff);
    601     LLAssert(negOne > (int32_t)-2);
    602     LLAssert(llong(1, 0) > (int32_t)0x7fffffff);
    603     LLAssert(llong(0, 0) > (int32_t)-1);
    604 
    605     // operator<(int32)
    606     LLAssert(llong(0, 0x7ffffffe) < (int32_t)0x7fffffff);
    607     LLAssert(llong(0xffffffff, 0xfffffffe) < (int32_t)-1);
    608 
    609     // operator>=(int32)
    610     LLAssert(llong(0, 0x80000000) >= (int32_t)0x7fffffff);
    611     LLAssert(negOne >= (int32_t)-2);
    612     LLAssert(llong(1, 0) >= (int32_t)0x7fffffff);
    613     LLAssert(llong(0, 0) >= (int32_t)-1);
    614     LLAssert(llong() >= (int32_t)0);
    615     LLAssert(llong(0,1) >= (int32_t)1);
    616 
    617     // operator<=(int32)
    618     LLAssert(llong(0, 0x7ffffffe) <= (int32_t)0x7fffffff);
    619     LLAssert(llong(0xffffffff, 0xfffffffe) <= (int32_t)-1);
    620     LLAssert(llong() <= (int32_t)0);
    621     LLAssert(llong(0,1) <= (int32_t)1);
    622 
    623     // operator=
    624     LLAssert((llong(2,3) = llong((uint32_t)-1)).asUInt() == (uint32_t)-1);
    625 
    626     // operator <<=
    627     LLAssert((llong(1, 1) <<= 0) ==  llong(1, 1));
    628     LLAssert((llong(1, 1) <<= 31) == llong(0x80000000, 0x80000000));
    629     LLAssert((llong(1, 1) <<= 32) == llong(1, 0));
    630     LLAssert((llong(1, 1) <<= 63) == llong(0x80000000, 0));
    631     LLAssert((llong(1, 1) <<= 64) == llong(1, 1)); // only lower 6 bits are used
    632     LLAssert((llong(1, 1) <<= -1) == llong(0x80000000, 0)); // only lower 6 bits are used
    633 
    634     // operator <<
    635     LLAssert((llong((int32_t)1) << 5).asUInt() == 32);
    636 
    637     // operator >>= (sign extended)
    638     LLAssert((llong(0x7fffa0a0, 0xbcbcdfdf) >>= 16) == llong(0x7fff,0xa0a0bcbc));
    639     LLAssert((llong(0x8000789a, 0xbcde0000) >>= 16) == llong(0xffff8000,0x789abcde));
    640     LLAssert((llong(0x80000000, 0) >>= 63) == llong(0xffffffff, 0xffffffff));
    641     LLAssert((llong(0x80000000, 0) >>= 47) == llong(0xffffffff, 0xffff0000));
    642     LLAssert((llong(0x80000000, 0x80000000) >> 64) == llong(0x80000000, 0x80000000)); // only lower 6 bits are used
    643     LLAssert((llong(0x80000000, 0) >>= -1) == llong(0xffffffff, 0xffffffff)); // only lower 6 bits are used
    644 
    645     // operator >> sign extended)
    646     LLAssert((llong(0x8000789a, 0xbcde0000) >> 16) == llong(0xffff8000,0x789abcde));
    647 
    648     // ushr (right shift without sign extension)
    649     LLAssert(llong(0x7fffa0a0, 0xbcbcdfdf).ushr(16) == llong(0x7fff,0xa0a0bcbc));
    650     LLAssert(llong(0x8000789a, 0xbcde0000).ushr(16) == llong(0x00008000,0x789abcde));
    651     LLAssert(llong(0x80000000, 0).ushr(63) == llong(0, 1));
    652     LLAssert(llong(0x80000000, 0).ushr(47) == llong(0, 0x10000));
    653     LLAssert(llong(0x80000000, 0x80000000).ushr(64) == llong(0x80000000, 0x80000000)); // only lower 6 bits are used
    654     LLAssert(llong(0x80000000, 0).ushr(-1) == llong(0, 1)); // only lower 6 bits are used
    655 
    656     // operator&(llong)
    657     LLAssert((llong(0x55555555, 0x55555555) & llong(0xaaaaffff, 0xffffaaaa)) == llong(0x00005555, 0x55550000));
    658 
    659     // operator|(llong)
    660     LLAssert((llong(0x55555555, 0x55555555) | llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffffff, 0xffffffff));
    661 
    662     // operator^(llong)
    663     LLAssert((llong(0x55555555, 0x55555555) ^ llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffaaaa, 0xaaaaffff));
    664 
    665     // operator&(uint32)
    666     LLAssert((llong(0x55555555, 0x55555555) & (uint32_t)0xffffaaaa) == llong(0, 0x55550000));
    667 
    668     // operator|(uint32)
    669     LLAssert((llong(0x55555555, 0x55555555) | (uint32_t)0xffffaaaa) == llong(0x55555555, 0xffffffff));
    670 
    671     // operator^(uint32)
    672     LLAssert((llong(0x55555555, 0x55555555) ^ (uint32_t)0xffffaaaa) == llong(0x55555555, 0xaaaaffff));
    673 
    674     // operator~
    675     LLAssert(~llong(0x55555555, 0x55555555) == llong(0xaaaaaaaa, 0xaaaaaaaa));
    676 
    677     // operator&=(llong)
    678     LLAssert((llong(0x55555555, 0x55555555) &= llong(0xaaaaffff, 0xffffaaaa)) == llong(0x00005555, 0x55550000));
    679 
    680     // operator|=(llong)
    681     LLAssert((llong(0x55555555, 0x55555555) |= llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffffff, 0xffffffff));
    682 
    683     // operator^=(llong)
    684     LLAssert((llong(0x55555555, 0x55555555) ^= llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffaaaa, 0xaaaaffff));
    685 
    686     // operator&=(uint32)
    687     LLAssert((llong(0x55555555, 0x55555555) &= (uint32_t)0xffffaaaa) == llong(0, 0x55550000));
    688 
    689     // operator|=(uint32)
    690     LLAssert((llong(0x55555555, 0x55555555) |= (uint32_t)0xffffaaaa) == llong(0x55555555, 0xffffffff));
    691 
    692     // operator^=(uint32)
    693     LLAssert((llong(0x55555555, 0x55555555) ^= (uint32_t)0xffffaaaa) == llong(0x55555555, 0xaaaaffff));
    694 
    695     // prefix inc
    696     LLAssert(llong(1, 0) == ++llong(0,0xffffffff));
    697 
    698     // prefix dec
    699     LLAssert(llong(0,0xffffffff) == --llong(1, 0));
    700 
    701     // postfix inc
    702     {
    703         llong n(0, 0xffffffff);
    704         LLAssert(llong(0, 0xffffffff) == n++);
    705         LLAssert(llong(1, 0) == n);
    706     }
    707 
    708     // postfix dec
    709     {
    710         llong n(1, 0);
    711         LLAssert(llong(1, 0) == n--);
    712         LLAssert(llong(0, 0xffffffff) == n);
    713     }
    714 
    715     // unary minus
    716     LLAssert(llong(0, 0) == -llong(0, 0));
    717     LLAssert(llong(0xffffffff, 0xffffffff) == -llong(0, 1));
    718     LLAssert(llong(0, 1) == -llong(0xffffffff, 0xffffffff));
    719     LLAssert(llong(0x7fffffff, 0xffffffff) == -llong(0x80000000, 1));
    720     LLAssert(llong(0x80000000, 0) == -llong(0x80000000, 0)); // !!! we don't handle overflow
    721 
    722     // operator-=
    723     {
    724         llong n;
    725         LLAssert((n -= llong(0, 1)) == llong(0xffffffff, 0xffffffff));
    726         LLAssert(n == llong(0xffffffff, 0xffffffff));
    727 
    728         n = llong(1, 0);
    729         LLAssert((n -= llong(0, 1)) == llong(0, 0xffffffff));
    730         LLAssert(n == llong(0, 0xffffffff));
    731     }
    732 
    733     // operator-
    734     {
    735         llong n;
    736         LLAssert((n - llong(0, 1)) == llong(0xffffffff, 0xffffffff));
    737         LLAssert(n == llong(0, 0));
    738 
    739         n = llong(1, 0);
    740         LLAssert((n - llong(0, 1)) == llong(0, 0xffffffff));
    741         LLAssert(n == llong(1, 0));
    742     }
    743 
    744     // operator+=
    745     {
    746         llong n(0xffffffff, 0xffffffff);
    747         LLAssert((n += llong(0, 1)) == llong(0, 0));
    748         LLAssert(n == llong(0, 0));
    749 
    750         n = llong(0, 0xffffffff);
    751         LLAssert((n += llong(0, 1)) == llong(1, 0));
    752         LLAssert(n == llong(1, 0));
    753     }
    754 
    755     // operator+
    756     {
    757         llong n(0xffffffff, 0xffffffff);
    758         LLAssert((n + llong(0, 1)) == llong(0, 0));
    759         LLAssert(n == llong(0xffffffff, 0xffffffff));
    760 
    761         n = llong(0, 0xffffffff);
    762         LLAssert((n + llong(0, 1)) == llong(1, 0));
    763         LLAssert(n == llong(0, 0xffffffff));
    764     }
    765 
    766 }
    767 
    768 void IntlTestRBNF::TestLLong()
    769 {
    770     logln("Starting TestLLong");
    771 
    772     TestLLongConstructors();
    773 
    774     TestLLongSimpleOperators();
    775 
    776     logln("Testing operator*=, operator*");
    777 
    778     // operator*=, operator*
    779     // small and large values, positive, &NEGative, zero
    780     // also test commutivity
    781     {
    782         const llong ZERO;
    783         const llong ONE(0, 1);
    784         const llong NEG_ONE((int32_t)-1);
    785         const llong THREE(0, 3);
    786         const llong NEG_THREE((int32_t)-3);
    787         const llong TWO_TO_16(0, 0x10000);
    788         const llong NEG_TWO_TO_16 = -TWO_TO_16;
    789         const llong TWO_TO_32(1, 0);
    790         const llong NEG_TWO_TO_32 = -TWO_TO_32;
    791 
    792         const llong NINE(0, 9);
    793         const llong NEG_NINE = -NINE;
    794 
    795         const llong TWO_TO_16X3(0, 0x00030000);
    796         const llong NEG_TWO_TO_16X3 = -TWO_TO_16X3;
    797 
    798         const llong TWO_TO_32X3(3, 0);
    799         const llong NEG_TWO_TO_32X3 = -TWO_TO_32X3;
    800 
    801         const llong TWO_TO_48(0x10000, 0);
    802         const llong NEG_TWO_TO_48 = -TWO_TO_48;
    803 
    804         const int32_t VALUE_WIDTH = 9;
    805         const llong* values[VALUE_WIDTH] = {
    806             &ZERO, &ONE, &NEG_ONE, &THREE, &NEG_THREE, &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_32, &NEG_TWO_TO_32
    807         };
    808 
    809         const llong* answers[VALUE_WIDTH*VALUE_WIDTH] = {
    810             &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO,
    811             &ZERO, &ONE,  &NEG_ONE, &THREE, &NEG_THREE,  &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_32, &NEG_TWO_TO_32,
    812             &ZERO, &NEG_ONE, &ONE, &NEG_THREE, &THREE, &NEG_TWO_TO_16, &TWO_TO_16, &NEG_TWO_TO_32, &TWO_TO_32,
    813             &ZERO, &THREE, &NEG_THREE, &NINE, &NEG_NINE, &TWO_TO_16X3, &NEG_TWO_TO_16X3, &TWO_TO_32X3, &NEG_TWO_TO_32X3,
    814             &ZERO, &NEG_THREE, &THREE, &NEG_NINE, &NINE, &NEG_TWO_TO_16X3, &TWO_TO_16X3, &NEG_TWO_TO_32X3, &TWO_TO_32X3,
    815             &ZERO, &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_16X3, &NEG_TWO_TO_16X3, &TWO_TO_32, &NEG_TWO_TO_32, &TWO_TO_48, &NEG_TWO_TO_48,
    816             &ZERO, &NEG_TWO_TO_16, &TWO_TO_16, &NEG_TWO_TO_16X3, &TWO_TO_16X3, &NEG_TWO_TO_32, &TWO_TO_32, &NEG_TWO_TO_48, &TWO_TO_48,
    817             &ZERO, &TWO_TO_32, &NEG_TWO_TO_32, &TWO_TO_32X3, &NEG_TWO_TO_32X3, &TWO_TO_48, &NEG_TWO_TO_48, &ZERO, &ZERO,
    818             &ZERO, &NEG_TWO_TO_32, &TWO_TO_32, &NEG_TWO_TO_32X3, &TWO_TO_32X3, &NEG_TWO_TO_48, &TWO_TO_48, &ZERO, &ZERO
    819         };
    820 
    821         for (int i = 0; i < VALUE_WIDTH; ++i) {
    822             for (int j = 0; j < VALUE_WIDTH; ++j) {
    823                 llong lhs = *values[i];
    824                 llong rhs = *values[j];
    825                 llong ans = *answers[i*VALUE_WIDTH + j];
    826 
    827                 llong n = lhs;
    828 
    829                 LLAssert((n *= rhs) == ans);
    830                 LLAssert(n == ans);
    831 
    832                 n = lhs;
    833                 LLAssert((n * rhs) == ans);
    834                 LLAssert(n == lhs);
    835             }
    836         }
    837     }
    838 
    839     logln("Testing operator/=, operator/");
    840     // operator/=, operator/
    841     // test num = 0, div = 0, pos/neg, > 2^32, div > num
    842     {
    843         const llong ZERO;
    844         const llong ONE(0, 1);
    845         const llong NEG_ONE = -ONE;
    846         const llong MAX(0x7fffffff, 0xffffffff);
    847         const llong MIN(0x80000000, 0);
    848         const llong TWO(0, 2);
    849         const llong NEG_TWO = -TWO;
    850         const llong FIVE(0, 5);
    851         const llong NEG_FIVE = -FIVE;
    852         const llong TWO_TO_32(1, 0);
    853         const llong NEG_TWO_TO_32 = -TWO_TO_32;
    854         const llong TWO_TO_32d5 = llong(TWO_TO_32.asDouble()/5.0);
    855         const llong NEG_TWO_TO_32d5 = -TWO_TO_32d5;
    856         const llong TWO_TO_32X5 = TWO_TO_32 * FIVE;
    857         const llong NEG_TWO_TO_32X5 = -TWO_TO_32X5;
    858 
    859         const llong* tuples[] = { // lhs, rhs, ans
    860             &ZERO, &ZERO, &ZERO,
    861             &ONE, &ZERO,&MAX,
    862             &NEG_ONE, &ZERO, &MIN,
    863             &ONE, &ONE, &ONE,
    864             &ONE, &NEG_ONE, &NEG_ONE,
    865             &NEG_ONE, &ONE, &NEG_ONE,
    866             &NEG_ONE, &NEG_ONE, &ONE,
    867             &FIVE, &TWO, &TWO,
    868             &FIVE, &NEG_TWO, &NEG_TWO,
    869             &NEG_FIVE, &TWO, &NEG_TWO,
    870             &NEG_FIVE, &NEG_TWO, &TWO,
    871             &TWO, &FIVE, &ZERO,
    872             &TWO, &NEG_FIVE, &ZERO,
    873             &NEG_TWO, &FIVE, &ZERO,
    874             &NEG_TWO, &NEG_FIVE, &ZERO,
    875             &TWO_TO_32, &TWO_TO_32, &ONE,
    876             &TWO_TO_32, &NEG_TWO_TO_32, &NEG_ONE,
    877             &NEG_TWO_TO_32, &TWO_TO_32, &NEG_ONE,
    878             &NEG_TWO_TO_32, &NEG_TWO_TO_32, &ONE,
    879             &TWO_TO_32, &FIVE, &TWO_TO_32d5,
    880             &TWO_TO_32, &NEG_FIVE, &NEG_TWO_TO_32d5,
    881             &NEG_TWO_TO_32, &FIVE, &NEG_TWO_TO_32d5,
    882             &NEG_TWO_TO_32, &NEG_FIVE, &TWO_TO_32d5,
    883             &TWO_TO_32X5, &FIVE, &TWO_TO_32,
    884             &TWO_TO_32X5, &NEG_FIVE, &NEG_TWO_TO_32,
    885             &NEG_TWO_TO_32X5, &FIVE, &NEG_TWO_TO_32,
    886             &NEG_TWO_TO_32X5, &NEG_FIVE, &TWO_TO_32,
    887             &TWO_TO_32X5, &TWO_TO_32, &FIVE,
    888             &TWO_TO_32X5, &NEG_TWO_TO_32, &NEG_FIVE,
    889             &NEG_TWO_TO_32X5, &NEG_TWO_TO_32, &FIVE,
    890             &NEG_TWO_TO_32X5, &TWO_TO_32, &NEG_FIVE
    891         };
    892         const int TUPLE_WIDTH = 3;
    893         const int TUPLE_COUNT = (int)(sizeof(tuples)/sizeof(tuples[0]))/TUPLE_WIDTH;
    894         for (int i = 0; i < TUPLE_COUNT; ++i) {
    895             const llong lhs = *tuples[i*TUPLE_WIDTH+0];
    896             const llong rhs = *tuples[i*TUPLE_WIDTH+1];
    897             const llong ans = *tuples[i*TUPLE_WIDTH+2];
    898 
    899             llong n = lhs;
    900             if (!((n /= rhs) == ans)) {
    901                 errln("fail: (n /= rhs) == ans");
    902             }
    903             LLAssert(n == ans);
    904 
    905             n = lhs;
    906             LLAssert((n / rhs) == ans);
    907             LLAssert(n == lhs);
    908         }
    909     }
    910 
    911     logln("Testing operator%%=, operator%%");
    912     //operator%=, operator%
    913     {
    914         const llong ZERO;
    915         const llong ONE(0, 1);
    916         const llong TWO(0, 2);
    917         const llong THREE(0,3);
    918         const llong FOUR(0, 4);
    919         const llong FIVE(0, 5);
    920         const llong SIX(0, 6);
    921 
    922         const llong NEG_ONE = -ONE;
    923         const llong NEG_TWO = -TWO;
    924         const llong NEG_THREE = -THREE;
    925         const llong NEG_FOUR = -FOUR;
    926         const llong NEG_FIVE = -FIVE;
    927         const llong NEG_SIX = -SIX;
    928 
    929         const llong NINETY_NINE(0, 99);
    930         const llong HUNDRED(0, 100);
    931         const llong HUNDRED_ONE(0, 101);
    932 
    933         const llong BIG(0x12345678, 0x9abcdef0);
    934         const llong BIG_FIVE(BIG * FIVE);
    935         const llong BIG_FIVEm1 = BIG_FIVE - ONE;
    936         const llong BIG_FIVEp1 = BIG_FIVE + ONE;
    937 
    938         const llong* tuples[] = {
    939             &ZERO, &FIVE, &ZERO,
    940             &ONE, &FIVE, &ONE,
    941             &TWO, &FIVE, &TWO,
    942             &THREE, &FIVE, &THREE,
    943             &FOUR, &FIVE, &FOUR,
    944             &FIVE, &FIVE, &ZERO,
    945             &SIX, &FIVE, &ONE,
    946             &ZERO, &NEG_FIVE, &ZERO,
    947             &ONE, &NEG_FIVE, &ONE,
    948             &TWO, &NEG_FIVE, &TWO,
    949             &THREE, &NEG_FIVE, &THREE,
    950             &FOUR, &NEG_FIVE, &FOUR,
    951             &FIVE, &NEG_FIVE, &ZERO,
    952             &SIX, &NEG_FIVE, &ONE,
    953             &NEG_ONE, &FIVE, &NEG_ONE,
    954             &NEG_TWO, &FIVE, &NEG_TWO,
    955             &NEG_THREE, &FIVE, &NEG_THREE,
    956             &NEG_FOUR, &FIVE, &NEG_FOUR,
    957             &NEG_FIVE, &FIVE, &ZERO,
    958             &NEG_SIX, &FIVE, &NEG_ONE,
    959             &NEG_ONE, &NEG_FIVE, &NEG_ONE,
    960             &NEG_TWO, &NEG_FIVE, &NEG_TWO,
    961             &NEG_THREE, &NEG_FIVE, &NEG_THREE,
    962             &NEG_FOUR, &NEG_FIVE, &NEG_FOUR,
    963             &NEG_FIVE, &NEG_FIVE, &ZERO,
    964             &NEG_SIX, &NEG_FIVE, &NEG_ONE,
    965             &NINETY_NINE, &FIVE, &FOUR,
    966             &HUNDRED, &FIVE, &ZERO,
    967             &HUNDRED_ONE, &FIVE, &ONE,
    968             &BIG_FIVEm1, &FIVE, &FOUR,
    969             &BIG_FIVE, &FIVE, &ZERO,
    970             &BIG_FIVEp1, &FIVE, &ONE
    971         };
    972         const int TUPLE_WIDTH = 3;
    973         const int TUPLE_COUNT = (int)(sizeof(tuples)/sizeof(tuples[0]))/TUPLE_WIDTH;
    974         for (int i = 0; i < TUPLE_COUNT; ++i) {
    975             const llong lhs = *tuples[i*TUPLE_WIDTH+0];
    976             const llong rhs = *tuples[i*TUPLE_WIDTH+1];
    977             const llong ans = *tuples[i*TUPLE_WIDTH+2];
    978 
    979             llong n = lhs;
    980             if (!((n %= rhs) == ans)) {
    981                 errln("fail: (n %= rhs) == ans");
    982             }
    983             LLAssert(n == ans);
    984 
    985             n = lhs;
    986             LLAssert((n % rhs) == ans);
    987             LLAssert(n == lhs);
    988         }
    989     }
    990 
    991     logln("Testing pow");
    992     // pow
    993     LLAssert(llong(0, 0).pow(0) == llong(0, 0));
    994     LLAssert(llong(0, 0).pow(2) == llong(0, 0));
    995     LLAssert(llong(0, 2).pow(0) == llong(0, 1));
    996     LLAssert(llong(0, 2).pow(2) == llong(0, 4));
    997     LLAssert(llong(0, 2).pow(32) == llong(1, 0));
    998     LLAssert(llong(0, 5).pow(10) == llong((double)5.0 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5));
    999 
   1000     // absolute value
   1001     {
   1002         const llong n(0xffffffff,0xffffffff);
   1003         LLAssert(n.abs() == llong(0, 1));
   1004     }
   1005 
   1006 #ifdef RBNF_DEBUG
   1007     logln("Testing atoll");
   1008     // atoll
   1009     const char empty[] = "";
   1010     const char zero[] = "0";
   1011     const char neg_one[] = "-1";
   1012     const char neg_12345[] = "-12345";
   1013     const char big1[] = "123456789abcdef0";
   1014     const char big2[] = "fFfFfFfFfFfFfFfF";
   1015     LLAssert(llong::atoll(empty) == llong(0, 0));
   1016     LLAssert(llong::atoll(zero) == llong(0, 0));
   1017     LLAssert(llong::atoll(neg_one) == llong(0xffffffff, 0xffffffff));
   1018     LLAssert(llong::atoll(neg_12345) == -llong(0, 12345));
   1019     LLAssert(llong::atoll(big1, 16) == llong(0x12345678, 0x9abcdef0));
   1020     LLAssert(llong::atoll(big2, 16) == llong(0xffffffff, 0xffffffff));
   1021 #endif
   1022 
   1023     // u_atoll
   1024     const UChar uempty[] = { 0 };
   1025     const UChar uzero[] = { 0x30, 0 };
   1026     const UChar uneg_one[] = { 0x2d, 0x31, 0 };
   1027     const UChar uneg_12345[] = { 0x2d, 0x31, 0x32, 0x33, 0x34, 0x35, 0 };
   1028     const UChar ubig1[] = { 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x30, 0 };
   1029     const UChar ubig2[] = { 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0 };
   1030     LLAssert(llong::utoll(uempty) == llong(0, 0));
   1031     LLAssert(llong::utoll(uzero) == llong(0, 0));
   1032     LLAssert(llong::utoll(uneg_one) == llong(0xffffffff, 0xffffffff));
   1033     LLAssert(llong::utoll(uneg_12345) == -llong(0, 12345));
   1034     LLAssert(llong::utoll(ubig1, 16) == llong(0x12345678, 0x9abcdef0));
   1035     LLAssert(llong::utoll(ubig2, 16) == llong(0xffffffff, 0xffffffff));
   1036 
   1037 #ifdef RBNF_DEBUG
   1038     logln("Testing lltoa");
   1039     // lltoa
   1040     {
   1041         char buf[64]; // ascii
   1042         LLAssert((llong(0, 0).lltoa(buf, (uint32_t)sizeof(buf)) == 1) && (strcmp(buf, zero) == 0));
   1043         LLAssert((llong(0xffffffff, 0xffffffff).lltoa(buf, (uint32_t)sizeof(buf)) == 2) && (strcmp(buf, neg_one) == 0));
   1044         LLAssert(((-llong(0, 12345)).lltoa(buf, (uint32_t)sizeof(buf)) == 6) && (strcmp(buf, neg_12345) == 0));
   1045         LLAssert((llong(0x12345678, 0x9abcdef0).lltoa(buf, (uint32_t)sizeof(buf), 16) == 16) && (strcmp(buf, big1) == 0));
   1046     }
   1047 #endif
   1048 
   1049     logln("Testing u_lltoa");
   1050     // u_lltoa
   1051     {
   1052         UChar buf[64];
   1053         LLAssert((llong(0, 0).lltou(buf, (uint32_t)sizeof(buf)) == 1) && (u_strcmp(buf, uzero) == 0));
   1054         LLAssert((llong(0xffffffff, 0xffffffff).lltou(buf, (uint32_t)sizeof(buf)) == 2) && (u_strcmp(buf, uneg_one) == 0));
   1055         LLAssert(((-llong(0, 12345)).lltou(buf, (uint32_t)sizeof(buf)) == 6) && (u_strcmp(buf, uneg_12345) == 0));
   1056         LLAssert((llong(0x12345678, 0x9abcdef0).lltou(buf, (uint32_t)sizeof(buf), 16) == 16) && (u_strcmp(buf, ubig1) == 0));
   1057     }
   1058 }
   1059 
   1060 /* if 0 */
   1061 #endif
   1062 
   1063 void
   1064 IntlTestRBNF::TestEnglishSpellout()
   1065 {
   1066     UErrorCode status = U_ZERO_ERROR;
   1067     RuleBasedNumberFormat* formatter
   1068         = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getUS(), status);
   1069     if (U_FAILURE(status)) {
   1070         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
   1071     } else {
   1072         static const char* const testData[][2] = {
   1073             { "1", "one" },
   1074             { "2", "two" },
   1075             { "15", "fifteen" },
   1076             { "20", "twenty" },
   1077             { "23", "twenty-three" },
   1078             { "73", "seventy-three" },
   1079             { "88", "eighty-eight" },
   1080             { "100", "one hundred" },
   1081             { "106", "one hundred six" },
   1082             { "127", "one hundred twenty-seven" },
   1083             { "200", "two hundred" },
   1084             { "579", "five hundred seventy-nine" },
   1085             { "1,000", "one thousand" },
   1086             { "2,000", "two thousand" },
   1087             { "3,004", "three thousand four" },
   1088             { "4,567", "four thousand five hundred sixty-seven" },
   1089             { "15,943", "fifteen thousand nine hundred forty-three" },
   1090             { "2,345,678", "two million three hundred forty-five thousand six hundred seventy-eight" },
   1091             { "-36", "minus thirty-six" },
   1092             { "234.567", "two hundred thirty-four point five six seven" },
   1093             { NULL, NULL}
   1094         };
   1095 
   1096         doTest(formatter, testData, TRUE);
   1097 
   1098 #if !UCONFIG_NO_COLLATION
   1099         formatter->setLenient(TRUE);
   1100         static const char* lpTestData[][2] = {
   1101             { "fifty-7", "57" },
   1102             { " fifty-7", "57" },
   1103             { "  fifty-7", "57" },
   1104             { "2 thousand six    HUNDRED fifty-7", "2,657" },
   1105             { "fifteen hundred and zero", "1,500" },
   1106             { "FOurhundred     thiRTY six", "436" },
   1107             { NULL, NULL}
   1108         };
   1109         doLenientParseTest(formatter, lpTestData);
   1110 #endif
   1111     }
   1112     delete formatter;
   1113 }
   1114 
   1115 void
   1116 IntlTestRBNF::TestOrdinalAbbreviations()
   1117 {
   1118     UErrorCode status = U_ZERO_ERROR;
   1119     RuleBasedNumberFormat* formatter
   1120         = new RuleBasedNumberFormat(URBNF_ORDINAL, Locale::getUS(), status);
   1121 
   1122     if (U_FAILURE(status)) {
   1123         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
   1124     } else {
   1125         static const char* const testData[][2] = {
   1126             { "1", "1st" },
   1127             { "2", "2nd" },
   1128             { "3", "3rd" },
   1129             { "4", "4th" },
   1130             { "7", "7th" },
   1131             { "10", "10th" },
   1132             { "11", "11th" },
   1133             { "13", "13th" },
   1134             { "20", "20th" },
   1135             { "21", "21st" },
   1136             { "22", "22nd" },
   1137             { "23", "23rd" },
   1138             { "24", "24th" },
   1139             { "33", "33rd" },
   1140             { "102", "102nd" },
   1141             { "312", "312th" },
   1142             { "12,345", "12,345th" },
   1143             { NULL, NULL}
   1144         };
   1145 
   1146         doTest(formatter, testData, FALSE);
   1147     }
   1148     delete formatter;
   1149 }
   1150 
   1151 void
   1152 IntlTestRBNF::TestDurations()
   1153 {
   1154     UErrorCode status = U_ZERO_ERROR;
   1155     RuleBasedNumberFormat* formatter
   1156         = new RuleBasedNumberFormat(URBNF_DURATION, Locale::getUS(), status);
   1157 
   1158     if (U_FAILURE(status)) {
   1159         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
   1160     } else {
   1161         static const char* const testData[][2] = {
   1162             { "3,600", "1:00:00" },     //move me and I fail
   1163             { "0", "0 sec." },
   1164             { "1", "1 sec." },
   1165             { "24", "24 sec." },
   1166             { "60", "1:00" },
   1167             { "73", "1:13" },
   1168             { "145", "2:25" },
   1169             { "666", "11:06" },
   1170             //            { "3,600", "1:00:00" },
   1171             { "3,740", "1:02:20" },
   1172             { "10,293", "2:51:33" },
   1173             { NULL, NULL}
   1174         };
   1175 
   1176         doTest(formatter, testData, TRUE);
   1177 
   1178 #if !UCONFIG_NO_COLLATION
   1179         formatter->setLenient(TRUE);
   1180         static const char* lpTestData[][2] = {
   1181             { "2-51-33", "10,293" },
   1182             { NULL, NULL}
   1183         };
   1184         doLenientParseTest(formatter, lpTestData);
   1185 #endif
   1186     }
   1187     delete formatter;
   1188 }
   1189 
   1190 void
   1191 IntlTestRBNF::TestSpanishSpellout()
   1192 {
   1193     UErrorCode status = U_ZERO_ERROR;
   1194     RuleBasedNumberFormat* formatter
   1195         = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("es", "ES", ""), status);
   1196 
   1197     if (U_FAILURE(status)) {
   1198         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
   1199     } else {
   1200         static const char* const testData[][2] = {
   1201             { "1", "uno" },
   1202             { "6", "seis" },
   1203             { "16", "diecis\\u00e9is" },
   1204             { "20", "veinte" },
   1205             { "24", "veinticuatro" },
   1206             { "26", "veintis\\u00e9is" },
   1207             { "73", "setenta y tres" },
   1208             { "88", "ochenta y ocho" },
   1209             { "100", "cien" },
   1210             { "106", "ciento seis" },
   1211             { "127", "ciento veintisiete" },
   1212             { "200", "doscientos" },
   1213             { "579", "quinientos setenta y nueve" },
   1214             { "1,000", "mil" },
   1215             { "2,000", "dos mil" },
   1216             { "3,004", "tres mil cuatro" },
   1217             { "4,567", "cuatro mil quinientos sesenta y siete" },
   1218             { "15,943", "quince mil novecientos cuarenta y tres" },
   1219             { "2,345,678", "dos millones trescientos cuarenta y cinco mil seiscientos setenta y ocho"},
   1220             { "-36", "menos treinta y seis" },
   1221             { "234.567", "doscientos treinta y cuatro coma cinco seis siete" },
   1222             { NULL, NULL}
   1223         };
   1224 
   1225         doTest(formatter, testData, TRUE);
   1226     }
   1227     delete formatter;
   1228 }
   1229 
   1230 void
   1231 IntlTestRBNF::TestFrenchSpellout()
   1232 {
   1233     UErrorCode status = U_ZERO_ERROR;
   1234     RuleBasedNumberFormat* formatter
   1235         = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getFrance(), status);
   1236 
   1237     if (U_FAILURE(status)) {
   1238         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
   1239     } else {
   1240         static const char* const testData[][2] = {
   1241             { "1", "un" },
   1242             { "15", "quinze" },
   1243             { "20", "vingt" },
   1244             { "21", "vingt-et-un" },
   1245             { "23", "vingt-trois" },
   1246             { "62", "soixante-deux" },
   1247             { "70", "soixante-dix" },
   1248             { "71", "soixante-et-onze" },
   1249             { "73", "soixante-treize" },
   1250             { "80", "quatre-vingts" },
   1251             { "88", "quatre-vingt-huit" },
   1252             { "100", "cent" },
   1253             { "106", "cent-six" },
   1254             { "127", "cent-vingt-sept" },
   1255             { "200", "deux-cents" },
   1256             { "579", "cinq-cent-soixante-dix-neuf" },
   1257             { "1,000", "mille" },
   1258             { "1,123", "mille-cent-vingt-trois" },
   1259             { "1,594", "mille-cinq-cent-quatre-vingt-quatorze" },
   1260             { "2,000", "deux-mille" },
   1261             { "3,004", "trois-mille-quatre" },
   1262             { "4,567", "quatre-mille-cinq-cent-soixante-sept" },
   1263             { "15,943", "quinze-mille-neuf-cent-quarante-trois" },
   1264             { "2,345,678", "deux millions trois-cent-quarante-cinq-mille-six-cent-soixante-dix-huit" },
   1265             { "-36", "moins trente-six" },
   1266             { "234.567", "deux-cent-trente-quatre virgule cinq six sept" },
   1267             { NULL, NULL}
   1268         };
   1269 
   1270         doTest(formatter, testData, TRUE);
   1271 
   1272 #if !UCONFIG_NO_COLLATION
   1273         formatter->setLenient(TRUE);
   1274         static const char* lpTestData[][2] = {
   1275             { "trente-et-un", "31" },
   1276             { "un cent quatre vingt dix huit", "198" },
   1277             { NULL, NULL}
   1278         };
   1279         doLenientParseTest(formatter, lpTestData);
   1280 #endif
   1281     }
   1282     delete formatter;
   1283 }
   1284 
   1285 static const char* const swissFrenchTestData[][2] = {
   1286     { "1", "un" },
   1287     { "15", "quinze" },
   1288     { "20", "vingt" },
   1289     { "21", "vingt-et-un" },
   1290     { "23", "vingt-trois" },
   1291     { "62", "soixante-deux" },
   1292     { "70", "septante" },
   1293     { "71", "septante-et-un" },
   1294     { "73", "septante-trois" },
   1295     { "80", "huitante" },
   1296     { "88", "huitante-huit" },
   1297     { "100", "cent" },
   1298     { "106", "cent-six" },
   1299     { "127", "cent-vingt-sept" },
   1300     { "200", "deux-cents" },
   1301     { "579", "cinq-cent-septante-neuf" },
   1302     { "1,000", "mille" },
   1303     { "1,123", "mille-cent-vingt-trois" },
   1304     { "1,594", "mille-cinq-cent-nonante-quatre" },
   1305     { "2,000", "deux-mille" },
   1306     { "3,004", "trois-mille-quatre" },
   1307     { "4,567", "quatre-mille-cinq-cent-soixante-sept" },
   1308     { "15,943", "quinze-mille-neuf-cent-quarante-trois" },
   1309     { "2,345,678", "deux millions trois-cent-quarante-cinq-mille-six-cent-septante-huit" },
   1310     { "-36", "moins trente-six" },
   1311     { "234.567", "deux-cent-trente-quatre virgule cinq six sept" },
   1312     { NULL, NULL}
   1313 };
   1314 
   1315 void
   1316 IntlTestRBNF::TestSwissFrenchSpellout()
   1317 {
   1318     UErrorCode status = U_ZERO_ERROR;
   1319     RuleBasedNumberFormat* formatter
   1320         = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("fr", "CH", ""), status);
   1321 
   1322     if (U_FAILURE(status)) {
   1323         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
   1324     } else {
   1325         doTest(formatter, swissFrenchTestData, TRUE);
   1326     }
   1327     delete formatter;
   1328 }
   1329 
   1330 static const char* const belgianFrenchTestData[][2] = {
   1331     { "1", "un" },
   1332     { "15", "quinze" },
   1333     { "20", "vingt" },
   1334     { "21", "vingt-et-un" },
   1335     { "23", "vingt-trois" },
   1336     { "62", "soixante-deux" },
   1337     { "70", "septante" },
   1338     { "71", "septante-et-un" },
   1339     { "73", "septante-trois" },
   1340     { "80", "quatre-vingts" },
   1341     { "88", "quatre-vingt-huit" },
   1342     { "90", "nonante" },
   1343     { "91", "nonante-et-un" },
   1344     { "95", "nonante-cinq" },
   1345     { "100", "cent" },
   1346     { "106", "cent-six" },
   1347     { "127", "cent-vingt-sept" },
   1348     { "200", "deux-cents" },
   1349     { "579", "cinq-cent-septante-neuf" },
   1350     { "1,000", "mille" },
   1351     { "1,123", "mille-cent-vingt-trois" },
   1352     { "1,594", "mille-cinq-cent-nonante-quatre" },
   1353     { "2,000", "deux-mille" },
   1354     { "3,004", "trois-mille-quatre" },
   1355     { "4,567", "quatre-mille-cinq-cent-soixante-sept" },
   1356     { "15,943", "quinze-mille-neuf-cent-quarante-trois" },
   1357     { "2,345,678", "deux millions trois-cent-quarante-cinq-mille-six-cent-septante-huit" },
   1358     { "-36", "moins trente-six" },
   1359     { "234.567", "deux-cent-trente-quatre virgule cinq six sept" },
   1360     { NULL, NULL}
   1361 };
   1362 
   1363 
   1364 void
   1365 IntlTestRBNF::TestBelgianFrenchSpellout()
   1366 {
   1367     UErrorCode status = U_ZERO_ERROR;
   1368     RuleBasedNumberFormat* formatter
   1369         = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("fr", "BE", ""), status);
   1370 
   1371     if (U_FAILURE(status)) {
   1372         errcheckln(status, "rbnf status: 0x%x (%s)\n", status, u_errorName(status));
   1373         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
   1374     } else {
   1375         // Belgian french should match Swiss french.
   1376         doTest(formatter, belgianFrenchTestData, TRUE);
   1377     }
   1378     delete formatter;
   1379 }
   1380 
   1381 void
   1382 IntlTestRBNF::TestItalianSpellout()
   1383 {
   1384     UErrorCode status = U_ZERO_ERROR;
   1385     RuleBasedNumberFormat* formatter
   1386         = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getItalian(), status);
   1387 
   1388     if (U_FAILURE(status)) {
   1389         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
   1390     } else {
   1391         static const char* const testData[][2] = {
   1392             { "1", "uno" },
   1393             { "15", "quindici" },
   1394             { "20", "venti" },
   1395             { "23", "venti\\u00ADtr\\u00E9" },
   1396             { "73", "settanta\\u00ADtr\\u00E9" },
   1397             { "88", "ottant\\u00ADotto" },
   1398             { "100", "cento" },
   1399             { "101", "cento\\u00ADuno" },
   1400             { "103", "cento\\u00ADtr\\u00E9" },
   1401             { "106", "cento\\u00ADsei" },
   1402             { "108", "cent\\u00ADotto" },
   1403             { "127", "cento\\u00ADventi\\u00ADsette" },
   1404             { "181", "cent\\u00ADottant\\u00ADuno" },
   1405             { "200", "due\\u00ADcento" },
   1406             { "579", "cinque\\u00ADcento\\u00ADsettanta\\u00ADnove" },
   1407             { "1,000", "mille" },
   1408             { "2,000", "due\\u00ADmila" },
   1409             { "3,004", "tre\\u00ADmila\\u00ADquattro" },
   1410             { "4,567", "quattro\\u00ADmila\\u00ADcinque\\u00ADcento\\u00ADsessanta\\u00ADsette" },
   1411             { "15,943", "quindici\\u00ADmila\\u00ADnove\\u00ADcento\\u00ADquaranta\\u00ADtr\\u00E9" },
   1412             { "-36", "meno trenta\\u00ADsei" },
   1413             { "234.567", "due\\u00ADcento\\u00ADtrenta\\u00ADquattro virgola cinque sei sette" },
   1414             { NULL, NULL}
   1415         };
   1416 
   1417         doTest(formatter, testData, TRUE);
   1418     }
   1419     delete formatter;
   1420 }
   1421 
   1422 void
   1423 IntlTestRBNF::TestPortugueseSpellout()
   1424 {
   1425     UErrorCode status = U_ZERO_ERROR;
   1426     RuleBasedNumberFormat* formatter
   1427         = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("pt","BR",""), status);
   1428 
   1429     if (U_FAILURE(status)) {
   1430         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
   1431     } else {
   1432         static const char* const testData[][2] = {
   1433             { "1", "um" },
   1434             { "15", "quinze" },
   1435             { "20", "vinte" },
   1436             { "23", "vinte e tr\\u00EAs" },
   1437             { "73", "setenta e tr\\u00EAs" },
   1438             { "88", "oitenta e oito" },
   1439             { "100", "cem" },
   1440             { "106", "cento e seis" },
   1441             { "108", "cento e oito" },
   1442             { "127", "cento e vinte e sete" },
   1443             { "181", "cento e oitenta e um" },
   1444             { "200", "duzentos" },
   1445             { "579", "quinhentos e setenta e nove" },
   1446             { "1,000", "mil" },
   1447             { "2,000", "dois mil" },
   1448             { "3,004", "tr\\u00EAs mil e quatro" },
   1449             { "4,567", "quatro mil e quinhentos e sessenta e sete" },
   1450             { "15,943", "quinze mil e novecentos e quarenta e tr\\u00EAs" },
   1451             { "-36", "menos trinta e seis" },
   1452             { "234.567", "duzentos e trinta e quatro v\\u00EDrgula cinco seis sete" },
   1453             { NULL, NULL}
   1454         };
   1455 
   1456         doTest(formatter, testData, TRUE);
   1457     }
   1458     delete formatter;
   1459 }
   1460 void
   1461 IntlTestRBNF::TestGermanSpellout()
   1462 {
   1463     UErrorCode status = U_ZERO_ERROR;
   1464     RuleBasedNumberFormat* formatter
   1465         = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getGermany(), status);
   1466 
   1467     if (U_FAILURE(status)) {
   1468         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
   1469     } else {
   1470         static const char* const testData[][2] = {
   1471             { "1", "eins" },
   1472             { "15", "f\\u00fcnfzehn" },
   1473             { "20", "zwanzig" },
   1474             { "23", "drei\\u00ADund\\u00ADzwanzig" },
   1475             { "73", "drei\\u00ADund\\u00ADsiebzig" },
   1476             { "88", "acht\\u00ADund\\u00ADachtzig" },
   1477             { "100", "ein\\u00ADhundert" },
   1478             { "106", "ein\\u00ADhundert\\u00ADsechs" },
   1479             { "127", "ein\\u00ADhundert\\u00ADsieben\\u00ADund\\u00ADzwanzig" },
   1480             { "200", "zwei\\u00ADhundert" },
   1481             { "579", "f\\u00fcnf\\u00ADhundert\\u00ADneun\\u00ADund\\u00ADsiebzig" },
   1482             { "1,000", "ein\\u00ADtausend" },
   1483             { "2,000", "zwei\\u00ADtausend" },
   1484             { "3,004", "drei\\u00ADtausend\\u00ADvier" },
   1485             { "4,567", "vier\\u00ADtausend\\u00ADf\\u00fcnf\\u00ADhundert\\u00ADsieben\\u00ADund\\u00ADsechzig" },
   1486             { "15,943", "f\\u00fcnfzehn\\u00ADtausend\\u00ADneun\\u00ADhundert\\u00ADdrei\\u00ADund\\u00ADvierzig" },
   1487             { "2,345,678", "zwei Millionen drei\\u00ADhundert\\u00ADf\\u00fcnf\\u00ADund\\u00ADvierzig\\u00ADtausend\\u00ADsechs\\u00ADhundert\\u00ADacht\\u00ADund\\u00ADsiebzig" },
   1488             { NULL, NULL}
   1489         };
   1490 
   1491         doTest(formatter, testData, TRUE);
   1492 
   1493 #if !UCONFIG_NO_COLLATION
   1494         formatter->setLenient(TRUE);
   1495         static const char* lpTestData[][2] = {
   1496             { "ein Tausend sechs Hundert fuenfunddreissig", "1,635" },
   1497             { NULL, NULL}
   1498         };
   1499         doLenientParseTest(formatter, lpTestData);
   1500 #endif
   1501     }
   1502     delete formatter;
   1503 }
   1504 
   1505 void
   1506 IntlTestRBNF::TestThaiSpellout()
   1507 {
   1508     UErrorCode status = U_ZERO_ERROR;
   1509     RuleBasedNumberFormat* formatter
   1510         = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("th"), status);
   1511 
   1512     if (U_FAILURE(status)) {
   1513         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
   1514     } else {
   1515         static const char* const testData[][2] = {
   1516             { "0", "\\u0e28\\u0e39\\u0e19\\u0e22\\u0e4c" },
   1517             { "1", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07" },
   1518             { "10", "\\u0e2a\\u0e34\\u0e1a" },
   1519             { "11", "\\u0e2a\\u0e34\\u0e1a\\u200b\\u0e40\\u0e2d\\u0e47\\u0e14" },
   1520             { "21", "\\u0e22\\u0e35\\u0e48\\u200b\\u0e2a\\u0e34\\u0e1a\\u200b\\u0e40\\u0e2d\\u0e47\\u0e14" },
   1521             { "101", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07\\u200b\\u0e23\\u0e49\\u0e2d\\u0e22\\u200b\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07" },
   1522             { "1.234", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07\\u200b\\u0e08\\u0e38\\u0e14\\u200b\\u0e2a\\u0e2d\\u0e07\\u0e2a\\u0e32\\u0e21\\u0e2a\\u0e35\\u0e48" },
   1523             { NULL, NULL}
   1524         };
   1525 
   1526         doTest(formatter, testData, TRUE);
   1527     }
   1528     delete formatter;
   1529 }
   1530 
   1531 void
   1532 IntlTestRBNF::TestSwedishSpellout()
   1533 {
   1534     UErrorCode status = U_ZERO_ERROR;
   1535     RuleBasedNumberFormat* formatter
   1536         = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("sv"), status);
   1537 
   1538     if (U_FAILURE(status)) {
   1539         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
   1540     } else {
   1541         static const char* testDataDefault[][2] = {
   1542             { "101", "ett\\u00adhundra\\u00adett" },
   1543             { "123", "ett\\u00adhundra\\u00adtjugo\\u00adtre" },
   1544             { "1,001", "et\\u00adtusen ett" },
   1545             { "1,100", "et\\u00adtusen ett\\u00adhundra" },
   1546             { "1,101", "et\\u00adtusen ett\\u00adhundra\\u00adett" },
   1547             { "1,234", "et\\u00adtusen tv\\u00e5\\u00adhundra\\u00adtrettio\\u00adfyra" },
   1548             { "10,001", "tio\\u00adtusen ett" },
   1549             { "11,000", "elva\\u00adtusen" },
   1550             { "12,000", "tolv\\u00adtusen" },
   1551             { "20,000", "tjugo\\u00adtusen" },
   1552             { "21,000", "tjugo\\u00adet\\u00adtusen" },
   1553             { "21,001", "tjugo\\u00adet\\u00adtusen ett" },
   1554             { "200,000", "tv\\u00e5\\u00adhundra\\u00adtusen" },
   1555             { "201,000", "tv\\u00e5\\u00adhundra\\u00adet\\u00adtusen" },
   1556             { "200,200", "tv\\u00e5\\u00adhundra\\u00adtusen tv\\u00e5\\u00adhundra" },
   1557             { "2,002,000", "tv\\u00e5 miljoner tv\\u00e5\\u00adtusen" },
   1558             { "12,345,678", "tolv miljoner tre\\u00adhundra\\u00adfyrtio\\u00adfem\\u00adtusen sex\\u00adhundra\\u00adsjuttio\\u00ad\\u00e5tta" },
   1559             { "123,456.789", "ett\\u00adhundra\\u00adtjugo\\u00adtre\\u00adtusen fyra\\u00adhundra\\u00adfemtio\\u00adsex komma sju \\u00e5tta nio" },
   1560             { "-12,345.678", "minus tolv\\u00adtusen tre\\u00adhundra\\u00adfyrtio\\u00adfem komma sex sju \\u00e5tta" },
   1561             { NULL, NULL }
   1562         };
   1563         doTest(formatter, testDataDefault, TRUE);
   1564 
   1565           static const char* testDataNeutrum[][2] = {
   1566               { "101", "ett\\u00adhundra\\u00adett" },
   1567               { "1,001", "et\\u00adtusen ett" },
   1568               { "1,101", "et\\u00adtusen ett\\u00adhundra\\u00adett" },
   1569               { "10,001", "tio\\u00adtusen ett" },
   1570               { "21,001", "tjugo\\u00adet\\u00adtusen ett" },
   1571               { NULL, NULL }
   1572           };
   1573 
   1574           formatter->setDefaultRuleSet("%spellout-cardinal-neuter", status);
   1575           if (U_SUCCESS(status)) {
   1576           logln("        testing spellout-cardinal-neuter rules");
   1577           doTest(formatter, testDataNeutrum, TRUE);
   1578           }
   1579           else {
   1580           errln("Can't test spellout-cardinal-neuter rules");
   1581           }
   1582 
   1583         static const char* testDataYear[][2] = {
   1584             { "101", "ett\\u00adhundra\\u00adett" },
   1585             { "900", "nio\\u00adhundra" },
   1586             { "1,001", "et\\u00adtusen ett" },
   1587             { "1,100", "elva\\u00adhundra" },
   1588             { "1,101", "elva\\u00adhundra\\u00adett" },
   1589             { "1,234", "tolv\\u00adhundra\\u00adtrettio\\u00adfyra" },
   1590             { "2,001", "tjugo\\u00adhundra\\u00adett" },
   1591             { "10,001", "tio\\u00adtusen ett" },
   1592             { NULL, NULL }
   1593         };
   1594 
   1595         status = U_ZERO_ERROR;
   1596         formatter->setDefaultRuleSet("%spellout-numbering-year", status);
   1597         if (U_SUCCESS(status)) {
   1598             logln("testing year rules");
   1599             doTest(formatter, testDataYear, TRUE);
   1600         }
   1601         else {
   1602             errln("Can't test year rules");
   1603         }
   1604 
   1605     }
   1606     delete formatter;
   1607 }
   1608 
   1609 void
   1610 IntlTestRBNF::TestSmallValues()
   1611 {
   1612     UErrorCode status = U_ZERO_ERROR;
   1613     RuleBasedNumberFormat* formatter
   1614         = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("en_US"), status);
   1615 
   1616     if (U_FAILURE(status)) {
   1617         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
   1618     } else {
   1619         static const char* const testDataDefault[][2] = {
   1620         { "0.001", "zero point zero zero one" },
   1621         { "0.0001", "zero point zero zero zero one" },
   1622         { "0.00001", "zero point zero zero zero zero one" },
   1623         { "0.000001", "zero point zero zero zero zero zero one" },
   1624         { "0.0000001", "zero point zero zero zero zero zero zero one" },
   1625         { "0.00000001", "zero point zero zero zero zero zero zero zero one" },
   1626         { "0.000000001", "zero point zero zero zero zero zero zero zero zero one" },
   1627         { "0.0000000001", "zero point zero zero zero zero zero zero zero zero zero one" },
   1628         { "0.00000000001", "zero point zero zero zero zero zero zero zero zero zero zero one" },
   1629         { "0.000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero one" },
   1630         { "0.0000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero zero one" },
   1631         { "0.00000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero zero zero one" },
   1632         { "0.000000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero zero zero zero one" },
   1633         { "10,000,000.001", "ten million point zero zero one" },
   1634         { "10,000,000.0001", "ten million point zero zero zero one" },
   1635         { "10,000,000.00001", "ten million point zero zero zero zero one" },
   1636         { "10,000,000.000001", "ten million point zero zero zero zero zero one" },
   1637         { "10,000,000.0000001", "ten million point zero zero zero zero zero zero one" },
   1638 //        { "10,000,000.00000001", "ten million point zero zero zero zero zero zero zero one" },
   1639 //        { "10,000,000.000000002", "ten million point zero zero zero zero zero zero zero zero two" },
   1640         { "10,000,000", "ten million" },
   1641 //        { "1,234,567,890.0987654", "one billion, two hundred and thirty-four million, five hundred and sixty-seven thousand, eight hundred and ninety point zero nine eight seven six five four" },
   1642 //        { "123,456,789.9876543", "one hundred and twenty-three million, four hundred and fifty-six thousand, seven hundred and eighty-nine point nine eight seven six five four three" },
   1643 //        { "12,345,678.87654321", "twelve million, three hundred and forty-five thousand, six hundred and seventy-eight point eight seven six five four three two one" },
   1644         { "1,234,567.7654321", "one million two hundred thirty-four thousand five hundred sixty-seven point seven six five four three two one" },
   1645         { "123,456.654321", "one hundred twenty-three thousand four hundred fifty-six point six five four three two one" },
   1646         { "12,345.54321", "twelve thousand three hundred forty-five point five four three two one" },
   1647         { "1,234.4321", "one thousand two hundred thirty-four point four three two one" },
   1648         { "123.321", "one hundred twenty-three point three two one" },
   1649         { "0.0000000011754944", "zero point zero zero zero zero zero zero zero zero one one seven five four nine four four" },
   1650         { "0.000001175494351", "zero point zero zero zero zero zero one one seven five four nine four three five one" },
   1651         { NULL, NULL }
   1652         };
   1653 
   1654         doTest(formatter, testDataDefault, TRUE);
   1655 
   1656         delete formatter;
   1657     }
   1658 }
   1659 
   1660 void
   1661 IntlTestRBNF::TestLocalizations(void)
   1662 {
   1663     int i;
   1664     UnicodeString rules("%main:0:no;1:some;100:a lot;1000:tons;\n"
   1665         "%other:0:nada;1:yah, some;100:plenty;1000:more'n you'll ever need");
   1666 
   1667     UErrorCode status = U_ZERO_ERROR;
   1668     UParseError perror;
   1669     RuleBasedNumberFormat formatter(rules, perror, status);
   1670     if (U_FAILURE(status)) {
   1671         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
   1672     } else {
   1673         {
   1674             static const char* const testData[][2] = {
   1675                 { "0", "nada" },
   1676                 { "5", "yah, some" },
   1677                 { "423", "plenty" },
   1678                 { "12345", "more'n you'll ever need" },
   1679                 { NULL, NULL }
   1680             };
   1681             doTest(&formatter, testData, FALSE);
   1682         }
   1683 
   1684         {
   1685             UnicodeString loc("<<%main, %other>,<en, Main, Other>,<fr, leMain, leOther>,<de, 'das Main', 'etwas anderes'>>");
   1686             static const char* const testData[][2] = {
   1687                 { "0", "no" },
   1688                 { "5", "some" },
   1689                 { "423", "a lot" },
   1690                 { "12345", "tons" },
   1691                 { NULL, NULL }
   1692             };
   1693             RuleBasedNumberFormat formatter0(rules, loc, perror, status);
   1694             if (U_FAILURE(status)) {
   1695                 errln("failed to build second formatter");
   1696             } else {
   1697                 doTest(&formatter0, testData, FALSE);
   1698 
   1699                 {
   1700                 // exercise localization info
   1701                     Locale locale0("en__VALLEY@turkey=gobblegobble");
   1702                     Locale locale1("de_DE_FOO");
   1703                     Locale locale2("ja_JP");
   1704                     UnicodeString name = formatter0.getRuleSetName(0);
   1705                     if ( formatter0.getRuleSetDisplayName(0, locale0) == "Main"
   1706                       && formatter0.getRuleSetDisplayName(0, locale1) == "das Main"
   1707                       && formatter0.getRuleSetDisplayName(0, locale2) == "%main"
   1708                       && formatter0.getRuleSetDisplayName(name, locale0) == "Main"
   1709                       && formatter0.getRuleSetDisplayName(name, locale1) == "das Main"
   1710                       && formatter0.getRuleSetDisplayName(name, locale2) == "%main"){
   1711                           logln("getRuleSetDisplayName tested");
   1712                     }else {
   1713                         errln("failed to getRuleSetDisplayName");
   1714                     }
   1715                 }
   1716 
   1717                 for (i = 0; i < formatter0.getNumberOfRuleSetDisplayNameLocales(); ++i) {
   1718                     Locale locale = formatter0.getRuleSetDisplayNameLocale(i, status);
   1719                     if (U_SUCCESS(status)) {
   1720                         for (int j = 0; j < formatter0.getNumberOfRuleSetNames(); ++j) {
   1721                             UnicodeString name = formatter0.getRuleSetName(j);
   1722                             UnicodeString lname = formatter0.getRuleSetDisplayName(j, locale);
   1723                             UnicodeString msg = locale.getName();
   1724                             msg.append(": ");
   1725                             msg.append(name);
   1726                             msg.append(" = ");
   1727                             msg.append(lname);
   1728                             logln(msg);
   1729                         }
   1730                     }
   1731                 }
   1732             }
   1733         }
   1734 
   1735         {
   1736             static const char* goodLocs[] = {
   1737                 "", // zero-length ok, same as providing no localization data
   1738                 "<<>>", // no public rule sets ok
   1739                 "<<%main>>", // no localizations ok
   1740                 "<<%main,>,<en, Main,>>", // comma before close angle ok
   1741                 "<<%main>,<en, ',<>\" '>>", // quotes everything until next quote
   1742                 "<<%main>,<'en', \"it's ok\">>", // double quotes work too
   1743                 "  \n <\n  <\n  %main\n  >\n  , \t <\t   en\t  ,  \tfoo \t\t > \n\n >  \n ", // Pattern_White_Space ok
   1744            };
   1745             int32_t goodLocsLen = sizeof(goodLocs)/sizeof(goodLocs[0]);
   1746 
   1747             static const char* badLocs[] = {
   1748                 " ", // non-zero length
   1749                 "<>", // empty array
   1750                 "<", // unclosed outer array
   1751                 "<<", // unclosed inner array
   1752                 "<<,>>", // unexpected comma
   1753                 "<<''>>", // empty string
   1754                 "  x<<%main>>", // first non space char not open angle bracket
   1755                 "<%main>", // missing inner array
   1756                 "<<%main %other>>", // elements missing separating commma (spaces must be quoted)
   1757                 "<<%main><en, Main>>", // arrays missing separating comma
   1758                 "<<%main>,<en, main, foo>>", // too many elements in locale data
   1759                 "<<%main>,<en>>", // too few elements in locale data
   1760                 "<<<%main>>>", // unexpected open angle
   1761                 "<<%main<>>>", // unexpected open angle
   1762                 "<<%main, %other>,<en,,>>", // implicit empty strings
   1763                 "<<%main>,<en,''>>", // empty string
   1764                 "<<%main>, < en, '>>", // unterminated quote
   1765                 "<<%main>, < en, \"<>>", // unterminated quote
   1766                 "<<%main\">>", // quote in string
   1767                 "<<%main'>>", // quote in string
   1768                 "<<%main<>>", // open angle in string
   1769                 "<<%main>> x", // extra non-space text at end
   1770 
   1771             };
   1772             int32_t badLocsLen = sizeof(badLocs)/sizeof(badLocs[0]);
   1773 
   1774             for (i = 0; i < goodLocsLen; ++i) {
   1775                 logln("[%d] '%s'", i, goodLocs[i]);
   1776                 UErrorCode status = U_ZERO_ERROR;
   1777                 UnicodeString loc(goodLocs[i]);
   1778                 RuleBasedNumberFormat fmt(rules, loc, perror, status);
   1779                 if (U_FAILURE(status)) {
   1780                     errln("Failed parse of good localization string: '%s'", goodLocs[i]);
   1781                 }
   1782             }
   1783 
   1784             for (i = 0; i < badLocsLen; ++i) {
   1785                 logln("[%d] '%s'", i, badLocs[i]);
   1786                 UErrorCode status = U_ZERO_ERROR;
   1787                 UnicodeString loc(badLocs[i]);
   1788                 RuleBasedNumberFormat fmt(rules, loc, perror, status);
   1789                 if (U_SUCCESS(status)) {
   1790                     errln("Successful parse of bad localization string: '%s'", badLocs[i]);
   1791                 }
   1792             }
   1793         }
   1794     }
   1795 }
   1796 
   1797 void
   1798 IntlTestRBNF::TestAllLocales()
   1799 {
   1800     const char* names[] = {
   1801         " (spellout) ",
   1802         " (ordinal)  ",
   1803         " (duration) "
   1804     };
   1805     double numbers[] = {45.678, 1, 2, 10, 11, 100, 110, 200, 1000, 1111, -1111};
   1806 
   1807     // RBNF parse is extremely slow when lenient option is enabled.
   1808     // For non-exhaustive mode, we only test a few locales.
   1809     const char* parseLocales[] = {"en_US", "nl_NL", "be", NULL};
   1810 
   1811 
   1812     int32_t count = 0;
   1813     const Locale* locales = Locale::getAvailableLocales(count);
   1814     for (int i = 0; i < count; ++i) {
   1815         const Locale* loc = &locales[i];
   1816         UBool testParse = TRUE;
   1817         if (quick) {
   1818             testParse = FALSE;
   1819             for (int k = 0; parseLocales[k] != NULL; k++) {
   1820                 if (strcmp(loc->getLanguage(), parseLocales[k]) == 0) {
   1821                     testParse = TRUE;
   1822                     break;
   1823                 }
   1824             }
   1825         }
   1826 
   1827         for (int j = 0; j < 3; ++j) {
   1828             UErrorCode status = U_ZERO_ERROR;
   1829             RuleBasedNumberFormat* f = new RuleBasedNumberFormat((URBNFRuleSetTag)j, *loc, status);
   1830             if (U_FAILURE(status)) {
   1831                 errln(UnicodeString(loc->getName()) + names[j]
   1832                     + "ERROR could not instantiate -> " + u_errorName(status));
   1833                 continue;
   1834             }
   1835 #if !UCONFIG_NO_COLLATION
   1836             for (unsigned int numidx = 0; numidx < sizeof(numbers)/sizeof(double); numidx++) {
   1837                 double n = numbers[numidx];
   1838                 UnicodeString str;
   1839                 f->format(n, str);
   1840 
   1841                 logln(UnicodeString(loc->getName()) + names[j]
   1842                     + "success: " + n + " -> " + str);
   1843 
   1844                 if (testParse) {
   1845                     // We do not validate the result in this test case,
   1846                     // because there are cases which do not round trip by design.
   1847                     Formattable num;
   1848 
   1849                     // regular parse
   1850                     status = U_ZERO_ERROR;
   1851                     f->setLenient(FALSE);
   1852                     f->parse(str, num, status);
   1853                     if (U_FAILURE(status)) {
   1854                         //TODO: We need to fix parse problems - see #6895 / #6896
   1855                         if (status == U_INVALID_FORMAT_ERROR) {
   1856                             logln(UnicodeString(loc->getName()) + names[j]
   1857                                 + "WARNING could not parse '" + str + "' -> " + u_errorName(status));
   1858                         } else {
   1859                              errln(UnicodeString(loc->getName()) + names[j]
   1860                                 + "ERROR could not parse '" + str + "' -> " + u_errorName(status));
   1861                        }
   1862                     }
   1863                     // lenient parse
   1864                     status = U_ZERO_ERROR;
   1865                     f->setLenient(TRUE);
   1866                     f->parse(str, num, status);
   1867                     if (U_FAILURE(status)) {
   1868                         //TODO: We need to fix parse problems - see #6895 / #6896
   1869                         if (status == U_INVALID_FORMAT_ERROR) {
   1870                             logln(UnicodeString(loc->getName()) + names[j]
   1871                                 + "WARNING could not parse(lenient) '" + str + "' -> " + u_errorName(status));
   1872                         } else {
   1873                             errln(UnicodeString(loc->getName()) + names[j]
   1874                                 + "ERROR could not parse(lenient) '" + str + "' -> " + u_errorName(status));
   1875                         }
   1876                     }
   1877                 }
   1878             }
   1879 #endif
   1880             delete f;
   1881         }
   1882     }
   1883 }
   1884 
   1885 void
   1886 IntlTestRBNF::TestMultiplierSubstitution(void) {
   1887   UnicodeString rules("=#,##0=;1,000,000: <##0.###< million;");
   1888   UErrorCode status = U_ZERO_ERROR;
   1889   UParseError parse_error;
   1890   RuleBasedNumberFormat *rbnf =
   1891     new RuleBasedNumberFormat(rules, Locale::getUS(), parse_error, status);
   1892   if (U_SUCCESS(status)) {
   1893     UnicodeString res;
   1894     FieldPosition pos;
   1895     double n = 1234000.0;
   1896     rbnf->format(n, res, pos);
   1897     delete rbnf;
   1898 
   1899     UnicodeString expected = UNICODE_STRING_SIMPLE("1.234 million");
   1900     if (expected != res) {
   1901       UnicodeString msg = "Expected: ";
   1902       msg.append(expected);
   1903       msg.append(" but got ");
   1904       msg.append(res);
   1905       errln(msg);
   1906     }
   1907   }
   1908 }
   1909 
   1910 void
   1911 IntlTestRBNF::TestSetDecimalFormatSymbols() {
   1912     UErrorCode status = U_ZERO_ERROR;
   1913 
   1914     RuleBasedNumberFormat rbnf(URBNF_ORDINAL, Locale::getEnglish(), status);
   1915     if (U_FAILURE(status)) {
   1916         dataerrln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status)));
   1917         return;
   1918     }
   1919 
   1920     DecimalFormatSymbols dfs(Locale::getEnglish(), status);
   1921     if (U_FAILURE(status)) {
   1922         errln("Unable to create DecimalFormatSymbols - " + UnicodeString(u_errorName(status)));
   1923         return;
   1924     }
   1925 
   1926     UnicodeString expected[] = {
   1927             UnicodeString("1,001st"),
   1928             UnicodeString("1&001st")
   1929     };
   1930 
   1931     double number = 1001;
   1932 
   1933     UnicodeString result;
   1934 
   1935     rbnf.format(number, result);
   1936     if (result != expected[0]) {
   1937         errln("Format Error - Got: " + result + " Expected: " + expected[0]);
   1938     }
   1939 
   1940     result.remove();
   1941 
   1942     /* Set new symbol for testing */
   1943     dfs.setSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol, UnicodeString("&"), TRUE);
   1944     rbnf.setDecimalFormatSymbols(dfs);
   1945 
   1946     rbnf.format(number, result);
   1947     if (result != expected[1]) {
   1948         errln("Format Error - Got: " + result + " Expected: " + expected[1]);
   1949     }
   1950 }
   1951 
   1952 
   1953 void
   1954 IntlTestRBNF::doTest(RuleBasedNumberFormat* formatter, const char* const testData[][2], UBool testParsing)
   1955 {
   1956   // man, error reporting would be easier with printf-style syntax for unicode string and formattable
   1957 
   1958     UErrorCode status = U_ZERO_ERROR;
   1959     DecimalFormatSymbols dfs("en", status);
   1960     // NumberFormat* decFmt = NumberFormat::createInstance(Locale::getUS(), status);
   1961     DecimalFormat decFmt("#,###.################", dfs, status);
   1962     if (U_FAILURE(status)) {
   1963         errcheckln(status, "FAIL: could not create NumberFormat - %s", u_errorName(status));
   1964     } else {
   1965         for (int i = 0; testData[i][0]; ++i) {
   1966             const char* numString = testData[i][0];
   1967             const char* expectedWords = testData[i][1];
   1968 
   1969             log("[%i] %s = ", i, numString);
   1970             Formattable expectedNumber;
   1971             decFmt.parse(numString, expectedNumber, status);
   1972             if (U_FAILURE(status)) {
   1973                 errln("FAIL: decFmt could not parse %s", numString);
   1974                 break;
   1975             } else {
   1976                 UnicodeString actualString;
   1977                 FieldPosition pos;
   1978                 formatter->format(expectedNumber, actualString/* , pos*/, status);
   1979                 if (U_FAILURE(status)) {
   1980                     UnicodeString msg = "Fail: formatter could not format ";
   1981                     decFmt.format(expectedNumber, msg, status);
   1982                     errln(msg);
   1983                     break;
   1984                 } else {
   1985                     UnicodeString expectedString = UnicodeString(expectedWords, -1, US_INV).unescape();
   1986                     if (actualString != expectedString) {
   1987                         UnicodeString msg = "FAIL: check failed for ";
   1988                         decFmt.format(expectedNumber, msg, status);
   1989                         msg.append(", expected ");
   1990                         msg.append(expectedString);
   1991                         msg.append(" but got ");
   1992                         msg.append(actualString);
   1993                         errln(msg);
   1994                         break;
   1995                     } else {
   1996                         logln(actualString);
   1997                         if (testParsing) {
   1998                             Formattable parsedNumber;
   1999                             formatter->parse(actualString, parsedNumber, status);
   2000                             if (U_FAILURE(status)) {
   2001                                 UnicodeString msg = "FAIL: formatter could not parse ";
   2002                                 msg.append(actualString);
   2003                                 msg.append(" status code: " );
   2004                                 msg.append(u_errorName(status));
   2005                                 errln(msg);
   2006                                 break;
   2007                             } else {
   2008                                 if (parsedNumber != expectedNumber) {
   2009                                     UnicodeString msg = "FAIL: parse failed for ";
   2010                                     msg.append(actualString);
   2011                                     msg.append(", expected ");
   2012                                     decFmt.format(expectedNumber, msg, status);
   2013                                     msg.append(", but got ");
   2014                                     decFmt.format(parsedNumber, msg, status);
   2015                                     errln(msg);
   2016                                     break;
   2017                                 }
   2018                             }
   2019                         }
   2020                     }
   2021                 }
   2022             }
   2023         }
   2024     }
   2025 }
   2026 
   2027 void
   2028 IntlTestRBNF::doLenientParseTest(RuleBasedNumberFormat* formatter, const char* testData[][2])
   2029 {
   2030     UErrorCode status = U_ZERO_ERROR;
   2031     NumberFormat* decFmt = NumberFormat::createInstance(Locale::getUS(), status);
   2032     if (U_FAILURE(status)) {
   2033         errcheckln(status, "FAIL: could not create NumberFormat - %s", u_errorName(status));
   2034     } else {
   2035         for (int i = 0; testData[i][0]; ++i) {
   2036             const char* spelledNumber = testData[i][0]; // spelled-out number
   2037             const char* asciiUSNumber = testData[i][1]; // number as ascii digits formatted for US locale
   2038 
   2039             UnicodeString spelledNumberString = UnicodeString(spelledNumber).unescape();
   2040             Formattable actualNumber;
   2041             formatter->parse(spelledNumberString, actualNumber, status);
   2042             if (U_FAILURE(status)) {
   2043                 UnicodeString msg = "FAIL: formatter could not parse ";
   2044                 msg.append(spelledNumberString);
   2045                 errln(msg);
   2046                 break;
   2047             } else {
   2048                 // I changed the logic of this test somewhat from Java-- instead of comparing the
   2049                 // strings, I compare the Formattables.  Hmmm, but the Formattables don't compare,
   2050                 // so change it back.
   2051 
   2052                 UnicodeString asciiUSNumberString = asciiUSNumber;
   2053                 Formattable expectedNumber;
   2054                 decFmt->parse(asciiUSNumberString, expectedNumber, status);
   2055                 if (U_FAILURE(status)) {
   2056                     UnicodeString msg = "FAIL: decFmt could not parse ";
   2057                     msg.append(asciiUSNumberString);
   2058                     errln(msg);
   2059                     break;
   2060                 } else {
   2061                     UnicodeString actualNumberString;
   2062                     UnicodeString expectedNumberString;
   2063                     decFmt->format(actualNumber, actualNumberString, status);
   2064                     decFmt->format(expectedNumber, expectedNumberString, status);
   2065                     if (actualNumberString != expectedNumberString) {
   2066                         UnicodeString msg = "FAIL: parsing";
   2067                         msg.append(asciiUSNumberString);
   2068                         msg.append("\n");
   2069                         msg.append("  lenient parse failed for ");
   2070                         msg.append(spelledNumberString);
   2071                         msg.append(", expected ");
   2072                         msg.append(expectedNumberString);
   2073                         msg.append(", but got ");
   2074                         msg.append(actualNumberString);
   2075                         errln(msg);
   2076                         break;
   2077                     }
   2078                 }
   2079             }
   2080         }
   2081         delete decFmt;
   2082     }
   2083 }
   2084 
   2085 /* U_HAVE_RBNF */
   2086 #else
   2087 
   2088 void
   2089 IntlTestRBNF::TestRBNFDisabled() {
   2090     errln("*** RBNF currently disabled on this platform ***\n");
   2091 }
   2092 
   2093 /* U_HAVE_RBNF */
   2094 #endif
   2095 
   2096 #endif /* #if !UCONFIG_NO_FORMATTING */
   2097