1 ===================== 2 YAML I/O 3 ===================== 4 5 .. contents:: 6 :local: 7 8 Introduction to YAML 9 ==================== 10 11 YAML is a human readable data serialization language. The full YAML language 12 spec can be read at `yaml.org 13 <http://www.yaml.org/spec/1.2/spec.html#Introduction>`_. The simplest form of 14 yaml is just "scalars", "mappings", and "sequences". A scalar is any number 15 or string. The pound/hash symbol (#) begins a comment line. A mapping is 16 a set of key-value pairs where the key ends with a colon. For example: 17 18 .. code-block:: yaml 19 20 # a mapping 21 name: Tom 22 hat-size: 7 23 24 A sequence is a list of items where each item starts with a leading dash ('-'). 25 For example: 26 27 .. code-block:: yaml 28 29 # a sequence 30 - x86 31 - x86_64 32 - PowerPC 33 34 You can combine mappings and sequences by indenting. For example a sequence 35 of mappings in which one of the mapping values is itself a sequence: 36 37 .. code-block:: yaml 38 39 # a sequence of mappings with one key's value being a sequence 40 - name: Tom 41 cpus: 42 - x86 43 - x86_64 44 - name: Bob 45 cpus: 46 - x86 47 - name: Dan 48 cpus: 49 - PowerPC 50 - x86 51 52 Sometime sequences are known to be short and the one entry per line is too 53 verbose, so YAML offers an alternate syntax for sequences called a "Flow 54 Sequence" in which you put comma separated sequence elements into square 55 brackets. The above example could then be simplified to : 56 57 58 .. code-block:: yaml 59 60 # a sequence of mappings with one key's value being a flow sequence 61 - name: Tom 62 cpus: [ x86, x86_64 ] 63 - name: Bob 64 cpus: [ x86 ] 65 - name: Dan 66 cpus: [ PowerPC, x86 ] 67 68 69 Introduction to YAML I/O 70 ======================== 71 72 The use of indenting makes the YAML easy for a human to read and understand, 73 but having a program read and write YAML involves a lot of tedious details. 74 The YAML I/O library structures and simplifies reading and writing YAML 75 documents. 76 77 YAML I/O assumes you have some "native" data structures which you want to be 78 able to dump as YAML and recreate from YAML. The first step is to try 79 writing example YAML for your data structures. You may find after looking at 80 possible YAML representations that a direct mapping of your data structures 81 to YAML is not very readable. Often the fields are not in the order that 82 a human would find readable. Or the same information is replicated in multiple 83 locations, making it hard for a human to write such YAML correctly. 84 85 In relational database theory there is a design step called normalization in 86 which you reorganize fields and tables. The same considerations need to 87 go into the design of your YAML encoding. But, you may not want to change 88 your existing native data structures. Therefore, when writing out YAML 89 there may be a normalization step, and when reading YAML there would be a 90 corresponding denormalization step. 91 92 YAML I/O uses a non-invasive, traits based design. YAML I/O defines some 93 abstract base templates. You specialize those templates on your data types. 94 For instance, if you have an enumerated type FooBar you could specialize 95 ScalarEnumerationTraits on that type and define the enumeration() method: 96 97 .. code-block:: c++ 98 99 using llvm::yaml::ScalarEnumerationTraits; 100 using llvm::yaml::IO; 101 102 template <> 103 struct ScalarEnumerationTraits<FooBar> { 104 static void enumeration(IO &io, FooBar &value) { 105 ... 106 } 107 }; 108 109 110 As with all YAML I/O template specializations, the ScalarEnumerationTraits is used for 111 both reading and writing YAML. That is, the mapping between in-memory enum 112 values and the YAML string representation is only in place. 113 This assures that the code for writing and parsing of YAML stays in sync. 114 115 To specify a YAML mappings, you define a specialization on 116 llvm::yaml::MappingTraits. 117 If your native data structure happens to be a struct that is already normalized, 118 then the specialization is simple. For example: 119 120 .. code-block:: c++ 121 122 using llvm::yaml::MappingTraits; 123 using llvm::yaml::IO; 124 125 template <> 126 struct MappingTraits<Person> { 127 static void mapping(IO &io, Person &info) { 128 io.mapRequired("name", info.name); 129 io.mapOptional("hat-size", info.hatSize); 130 } 131 }; 132 133 134 A YAML sequence is automatically inferred if you data type has begin()/end() 135 iterators and a push_back() method. Therefore any of the STL containers 136 (such as std::vector<>) will automatically translate to YAML sequences. 137 138 Once you have defined specializations for your data types, you can 139 programmatically use YAML I/O to write a YAML document: 140 141 .. code-block:: c++ 142 143 using llvm::yaml::Output; 144 145 Person tom; 146 tom.name = "Tom"; 147 tom.hatSize = 8; 148 Person dan; 149 dan.name = "Dan"; 150 dan.hatSize = 7; 151 std::vector<Person> persons; 152 persons.push_back(tom); 153 persons.push_back(dan); 154 155 Output yout(llvm::outs()); 156 yout << persons; 157 158 This would write the following: 159 160 .. code-block:: yaml 161 162 - name: Tom 163 hat-size: 8 164 - name: Dan 165 hat-size: 7 166 167 And you can also read such YAML documents with the following code: 168 169 .. code-block:: c++ 170 171 using llvm::yaml::Input; 172 173 typedef std::vector<Person> PersonList; 174 std::vector<PersonList> docs; 175 176 Input yin(document.getBuffer()); 177 yin >> docs; 178 179 if ( yin.error() ) 180 return; 181 182 // Process read document 183 for ( PersonList &pl : docs ) { 184 for ( Person &person : pl ) { 185 cout << "name=" << person.name; 186 } 187 } 188 189 One other feature of YAML is the ability to define multiple documents in a 190 single file. That is why reading YAML produces a vector of your document type. 191 192 193 194 Error Handling 195 ============== 196 197 When parsing a YAML document, if the input does not match your schema (as 198 expressed in your XxxTraits<> specializations). YAML I/O 199 will print out an error message and your Input object's error() method will 200 return true. For instance the following document: 201 202 .. code-block:: yaml 203 204 - name: Tom 205 shoe-size: 12 206 - name: Dan 207 hat-size: 7 208 209 Has a key (shoe-size) that is not defined in the schema. YAML I/O will 210 automatically generate this error: 211 212 .. code-block:: yaml 213 214 YAML:2:2: error: unknown key 'shoe-size' 215 shoe-size: 12 216 ^~~~~~~~~ 217 218 Similar errors are produced for other input not conforming to the schema. 219 220 221 Scalars 222 ======= 223 224 YAML scalars are just strings (i.e. not a sequence or mapping). The YAML I/O 225 library provides support for translating between YAML scalars and specific 226 C++ types. 227 228 229 Built-in types 230 -------------- 231 The following types have built-in support in YAML I/O: 232 233 * bool 234 * float 235 * double 236 * StringRef 237 * int64_t 238 * int32_t 239 * int16_t 240 * int8_t 241 * uint64_t 242 * uint32_t 243 * uint16_t 244 * uint8_t 245 246 That is, you can use those types in fields of MappingTraits or as element type 247 in sequence. When reading, YAML I/O will validate that the string found 248 is convertible to that type and error out if not. 249 250 251 Unique types 252 ------------ 253 Given that YAML I/O is trait based, the selection of how to convert your data 254 to YAML is based on the type of your data. But in C++ type matching, typedefs 255 do not generate unique type names. That means if you have two typedefs of 256 unsigned int, to YAML I/O both types look exactly like unsigned int. To 257 facilitate make unique type names, YAML I/O provides a macro which is used 258 like a typedef on built-in types, but expands to create a class with conversion 259 operators to and from the base type. For example: 260 261 .. code-block:: c++ 262 263 LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyFooFlags) 264 LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyBarFlags) 265 266 This generates two classes MyFooFlags and MyBarFlags which you can use in your 267 native data structures instead of uint32_t. They are implicitly 268 converted to and from uint32_t. The point of creating these unique types 269 is that you can now specify traits on them to get different YAML conversions. 270 271 Hex types 272 --------- 273 An example use of a unique type is that YAML I/O provides fixed sized unsigned 274 integers that are written with YAML I/O as hexadecimal instead of the decimal 275 format used by the built-in integer types: 276 277 * Hex64 278 * Hex32 279 * Hex16 280 * Hex8 281 282 You can use llvm::yaml::Hex32 instead of uint32_t and the only different will 283 be that when YAML I/O writes out that type it will be formatted in hexadecimal. 284 285 286 ScalarEnumerationTraits 287 ----------------------- 288 YAML I/O supports translating between in-memory enumerations and a set of string 289 values in YAML documents. This is done by specializing ScalarEnumerationTraits<> 290 on your enumeration type and define a enumeration() method. 291 For instance, suppose you had an enumeration of CPUs and a struct with it as 292 a field: 293 294 .. code-block:: c++ 295 296 enum CPUs { 297 cpu_x86_64 = 5, 298 cpu_x86 = 7, 299 cpu_PowerPC = 8 300 }; 301 302 struct Info { 303 CPUs cpu; 304 uint32_t flags; 305 }; 306 307 To support reading and writing of this enumeration, you can define a 308 ScalarEnumerationTraits specialization on CPUs, which can then be used 309 as a field type: 310 311 .. code-block:: c++ 312 313 using llvm::yaml::ScalarEnumerationTraits; 314 using llvm::yaml::MappingTraits; 315 using llvm::yaml::IO; 316 317 template <> 318 struct ScalarEnumerationTraits<CPUs> { 319 static void enumeration(IO &io, CPUs &value) { 320 io.enumCase(value, "x86_64", cpu_x86_64); 321 io.enumCase(value, "x86", cpu_x86); 322 io.enumCase(value, "PowerPC", cpu_PowerPC); 323 } 324 }; 325 326 template <> 327 struct MappingTraits<Info> { 328 static void mapping(IO &io, Info &info) { 329 io.mapRequired("cpu", info.cpu); 330 io.mapOptional("flags", info.flags, 0); 331 } 332 }; 333 334 When reading YAML, if the string found does not match any of the the strings 335 specified by enumCase() methods, an error is automatically generated. 336 When writing YAML, if the value being written does not match any of the values 337 specified by the enumCase() methods, a runtime assertion is triggered. 338 339 340 BitValue 341 -------- 342 Another common data structure in C++ is a field where each bit has a unique 343 meaning. This is often used in a "flags" field. YAML I/O has support for 344 converting such fields to a flow sequence. For instance suppose you 345 had the following bit flags defined: 346 347 .. code-block:: c++ 348 349 enum { 350 flagsPointy = 1 351 flagsHollow = 2 352 flagsFlat = 4 353 flagsRound = 8 354 }; 355 356 LLVM_YAML_UNIQUE_TYPE(MyFlags, uint32_t) 357 358 To support reading and writing of MyFlags, you specialize ScalarBitSetTraits<> 359 on MyFlags and provide the bit values and their names. 360 361 .. code-block:: c++ 362 363 using llvm::yaml::ScalarBitSetTraits; 364 using llvm::yaml::MappingTraits; 365 using llvm::yaml::IO; 366 367 template <> 368 struct ScalarBitSetTraits<MyFlags> { 369 static void bitset(IO &io, MyFlags &value) { 370 io.bitSetCase(value, "hollow", flagHollow); 371 io.bitSetCase(value, "flat", flagFlat); 372 io.bitSetCase(value, "round", flagRound); 373 io.bitSetCase(value, "pointy", flagPointy); 374 } 375 }; 376 377 struct Info { 378 StringRef name; 379 MyFlags flags; 380 }; 381 382 template <> 383 struct MappingTraits<Info> { 384 static void mapping(IO &io, Info& info) { 385 io.mapRequired("name", info.name); 386 io.mapRequired("flags", info.flags); 387 } 388 }; 389 390 With the above, YAML I/O (when writing) will test mask each value in the 391 bitset trait against the flags field, and each that matches will 392 cause the corresponding string to be added to the flow sequence. The opposite 393 is done when reading and any unknown string values will result in a error. With 394 the above schema, a same valid YAML document is: 395 396 .. code-block:: yaml 397 398 name: Tom 399 flags: [ pointy, flat ] 400 401 402 Custom Scalar 403 ------------- 404 Sometimes for readability a scalar needs to be formatted in a custom way. For 405 instance your internal data structure may use a integer for time (seconds since 406 some epoch), but in YAML it would be much nicer to express that integer in 407 some time format (e.g. 4-May-2012 10:30pm). YAML I/O has a way to support 408 custom formatting and parsing of scalar types by specializing ScalarTraits<> on 409 your data type. When writing, YAML I/O will provide the native type and 410 your specialization must create a temporary llvm::StringRef. When reading, 411 YAML I/O will provide a llvm::StringRef of scalar and your specialization 412 must convert that to your native data type. An outline of a custom scalar type 413 looks like: 414 415 .. code-block:: c++ 416 417 using llvm::yaml::ScalarTraits; 418 using llvm::yaml::IO; 419 420 template <> 421 struct ScalarTraits<MyCustomType> { 422 static void output(const T &value, llvm::raw_ostream &out) { 423 out << value; // do custom formatting here 424 } 425 static StringRef input(StringRef scalar, T &value) { 426 // do custom parsing here. Return the empty string on success, 427 // or an error message on failure. 428 return StringRef(); 429 } 430 }; 431 432 433 Mappings 434 ======== 435 436 To be translated to or from a YAML mapping for your type T you must specialize 437 llvm::yaml::MappingTraits on T and implement the "void mapping(IO &io, T&)" 438 method. If your native data structures use pointers to a class everywhere, 439 you can specialize on the class pointer. Examples: 440 441 .. code-block:: c++ 442 443 using llvm::yaml::MappingTraits; 444 using llvm::yaml::IO; 445 446 // Example of struct Foo which is used by value 447 template <> 448 struct MappingTraits<Foo> { 449 static void mapping(IO &io, Foo &foo) { 450 io.mapOptional("size", foo.size); 451 ... 452 } 453 }; 454 455 // Example of struct Bar which is natively always a pointer 456 template <> 457 struct MappingTraits<Bar*> { 458 static void mapping(IO &io, Bar *&bar) { 459 io.mapOptional("size", bar->size); 460 ... 461 } 462 }; 463 464 465 No Normalization 466 ---------------- 467 468 The mapping() method is responsible, if needed, for normalizing and 469 denormalizing. In a simple case where the native data structure requires no 470 normalization, the mapping method just uses mapOptional() or mapRequired() to 471 bind the struct's fields to YAML key names. For example: 472 473 .. code-block:: c++ 474 475 using llvm::yaml::MappingTraits; 476 using llvm::yaml::IO; 477 478 template <> 479 struct MappingTraits<Person> { 480 static void mapping(IO &io, Person &info) { 481 io.mapRequired("name", info.name); 482 io.mapOptional("hat-size", info.hatSize); 483 } 484 }; 485 486 487 Normalization 488 ---------------- 489 490 When [de]normalization is required, the mapping() method needs a way to access 491 normalized values as fields. To help with this, there is 492 a template MappingNormalization<> which you can then use to automatically 493 do the normalization and denormalization. The template is used to create 494 a local variable in your mapping() method which contains the normalized keys. 495 496 Suppose you have native data type 497 Polar which specifies a position in polar coordinates (distance, angle): 498 499 .. code-block:: c++ 500 501 struct Polar { 502 float distance; 503 float angle; 504 }; 505 506 but you've decided the normalized YAML for should be in x,y coordinates. That 507 is, you want the yaml to look like: 508 509 .. code-block:: yaml 510 511 x: 10.3 512 y: -4.7 513 514 You can support this by defining a MappingTraits that normalizes the polar 515 coordinates to x,y coordinates when writing YAML and denormalizes x,y 516 coordinates into polar when reading YAML. 517 518 .. code-block:: c++ 519 520 using llvm::yaml::MappingTraits; 521 using llvm::yaml::IO; 522 523 template <> 524 struct MappingTraits<Polar> { 525 526 class NormalizedPolar { 527 public: 528 NormalizedPolar(IO &io) 529 : x(0.0), y(0.0) { 530 } 531 NormalizedPolar(IO &, Polar &polar) 532 : x(polar.distance * cos(polar.angle)), 533 y(polar.distance * sin(polar.angle)) { 534 } 535 Polar denormalize(IO &) { 536 return Polar(sqrt(x*x+y*y, arctan(x,y)); 537 } 538 539 float x; 540 float y; 541 }; 542 543 static void mapping(IO &io, Polar &polar) { 544 MappingNormalization<NormalizedPolar, Polar> keys(io, polar); 545 546 io.mapRequired("x", keys->x); 547 io.mapRequired("y", keys->y); 548 } 549 }; 550 551 When writing YAML, the local variable "keys" will be a stack allocated 552 instance of NormalizedPolar, constructed from the suppled polar object which 553 initializes it x and y fields. The mapRequired() methods then write out the x 554 and y values as key/value pairs. 555 556 When reading YAML, the local variable "keys" will be a stack allocated instance 557 of NormalizedPolar, constructed by the empty constructor. The mapRequired 558 methods will find the matching key in the YAML document and fill in the x and y 559 fields of the NormalizedPolar object keys. At the end of the mapping() method 560 when the local keys variable goes out of scope, the denormalize() method will 561 automatically be called to convert the read values back to polar coordinates, 562 and then assigned back to the second parameter to mapping(). 563 564 In some cases, the normalized class may be a subclass of the native type and 565 could be returned by the denormalize() method, except that the temporary 566 normalized instance is stack allocated. In these cases, the utility template 567 MappingNormalizationHeap<> can be used instead. It just like 568 MappingNormalization<> except that it heap allocates the normalized object 569 when reading YAML. It never destroys the normalized object. The denormalize() 570 method can this return "this". 571 572 573 Default values 574 -------------- 575 Within a mapping() method, calls to io.mapRequired() mean that that key is 576 required to exist when parsing YAML documents, otherwise YAML I/O will issue an 577 error. 578 579 On the other hand, keys registered with io.mapOptional() are allowed to not 580 exist in the YAML document being read. So what value is put in the field 581 for those optional keys? 582 There are two steps to how those optional fields are filled in. First, the 583 second parameter to the mapping() method is a reference to a native class. That 584 native class must have a default constructor. Whatever value the default 585 constructor initially sets for an optional field will be that field's value. 586 Second, the mapOptional() method has an optional third parameter. If provided 587 it is the value that mapOptional() should set that field to if the YAML document 588 does not have that key. 589 590 There is one important difference between those two ways (default constructor 591 and third parameter to mapOptional). When YAML I/O generates a YAML document, 592 if the mapOptional() third parameter is used, if the actual value being written 593 is the same as (using ==) the default value, then that key/value is not written. 594 595 596 Order of Keys 597 -------------- 598 599 When writing out a YAML document, the keys are written in the order that the 600 calls to mapRequired()/mapOptional() are made in the mapping() method. This 601 gives you a chance to write the fields in an order that a human reader of 602 the YAML document would find natural. This may be different that the order 603 of the fields in the native class. 604 605 When reading in a YAML document, the keys in the document can be in any order, 606 but they are processed in the order that the calls to mapRequired()/mapOptional() 607 are made in the mapping() method. That enables some interesting 608 functionality. For instance, if the first field bound is the cpu and the second 609 field bound is flags, and the flags are cpu specific, you can programmatically 610 switch how the flags are converted to and from YAML based on the cpu. 611 This works for both reading and writing. For example: 612 613 .. code-block:: c++ 614 615 using llvm::yaml::MappingTraits; 616 using llvm::yaml::IO; 617 618 struct Info { 619 CPUs cpu; 620 uint32_t flags; 621 }; 622 623 template <> 624 struct MappingTraits<Info> { 625 static void mapping(IO &io, Info &info) { 626 io.mapRequired("cpu", info.cpu); 627 // flags must come after cpu for this to work when reading yaml 628 if ( info.cpu == cpu_x86_64 ) 629 io.mapRequired("flags", *(My86_64Flags*)info.flags); 630 else 631 io.mapRequired("flags", *(My86Flags*)info.flags); 632 } 633 }; 634 635 636 Sequence 637 ======== 638 639 To be translated to or from a YAML sequence for your type T you must specialize 640 llvm::yaml::SequenceTraits on T and implement two methods: 641 ``size_t size(IO &io, T&)`` and 642 ``T::value_type& element(IO &io, T&, size_t indx)``. For example: 643 644 .. code-block:: c++ 645 646 template <> 647 struct SequenceTraits<MySeq> { 648 static size_t size(IO &io, MySeq &list) { ... } 649 static MySeqEl element(IO &io, MySeq &list, size_t index) { ... } 650 }; 651 652 The size() method returns how many elements are currently in your sequence. 653 The element() method returns a reference to the i'th element in the sequence. 654 When parsing YAML, the element() method may be called with an index one bigger 655 than the current size. Your element() method should allocate space for one 656 more element (using default constructor if element is a C++ object) and returns 657 a reference to that new allocated space. 658 659 660 Flow Sequence 661 ------------- 662 A YAML "flow sequence" is a sequence that when written to YAML it uses the 663 inline notation (e.g [ foo, bar ] ). To specify that a sequence type should 664 be written in YAML as a flow sequence, your SequenceTraits specialization should 665 add "static const bool flow = true;". For instance: 666 667 .. code-block:: c++ 668 669 template <> 670 struct SequenceTraits<MyList> { 671 static size_t size(IO &io, MyList &list) { ... } 672 static MyListEl element(IO &io, MyList &list, size_t index) { ... } 673 674 // The existence of this member causes YAML I/O to use a flow sequence 675 static const bool flow = true; 676 }; 677 678 With the above, if you used MyList as the data type in your native data 679 structures, then then when converted to YAML, a flow sequence of integers 680 will be used (e.g. [ 10, -3, 4 ]). 681 682 683 Utility Macros 684 -------------- 685 Since a common source of sequences is std::vector<>, YAML I/O provides macros: 686 LLVM_YAML_IS_SEQUENCE_VECTOR() and LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR() which 687 can be used to easily specify SequenceTraits<> on a std::vector type. YAML 688 I/O does not partial specialize SequenceTraits on std::vector<> because that 689 would force all vectors to be sequences. An example use of the macros: 690 691 .. code-block:: c++ 692 693 std::vector<MyType1>; 694 std::vector<MyType2>; 695 LLVM_YAML_IS_SEQUENCE_VECTOR(MyType1) 696 LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(MyType2) 697 698 699 700 Document List 701 ============= 702 703 YAML allows you to define multiple "documents" in a single YAML file. Each 704 new document starts with a left aligned "---" token. The end of all documents 705 is denoted with a left aligned "..." token. Many users of YAML will never 706 have need for multiple documents. The top level node in their YAML schema 707 will be a mapping or sequence. For those cases, the following is not needed. 708 But for cases where you do want multiple documents, you can specify a 709 trait for you document list type. The trait has the same methods as 710 SequenceTraits but is named DocumentListTraits. For example: 711 712 .. code-block:: c++ 713 714 template <> 715 struct DocumentListTraits<MyDocList> { 716 static size_t size(IO &io, MyDocList &list) { ... } 717 static MyDocType element(IO &io, MyDocList &list, size_t index) { ... } 718 }; 719 720 721 User Context Data 722 ================= 723 When an llvm::yaml::Input or llvm::yaml::Output object is created their 724 constructors take an optional "context" parameter. This is a pointer to 725 whatever state information you might need. 726 727 For instance, in a previous example we showed how the conversion type for a 728 flags field could be determined at runtime based on the value of another field 729 in the mapping. But what if an inner mapping needs to know some field value 730 of an outer mapping? That is where the "context" parameter comes in. You 731 can set values in the context in the outer map's mapping() method and 732 retrieve those values in the inner map's mapping() method. 733 734 The context value is just a void*. All your traits which use the context 735 and operate on your native data types, need to agree what the context value 736 actually is. It could be a pointer to an object or struct which your various 737 traits use to shared context sensitive information. 738 739 740 Output 741 ====== 742 743 The llvm::yaml::Output class is used to generate a YAML document from your 744 in-memory data structures, using traits defined on your data types. 745 To instantiate an Output object you need an llvm::raw_ostream, and optionally 746 a context pointer: 747 748 .. code-block:: c++ 749 750 class Output : public IO { 751 public: 752 Output(llvm::raw_ostream &, void *context=NULL); 753 754 Once you have an Output object, you can use the C++ stream operator on it 755 to write your native data as YAML. One thing to recall is that a YAML file 756 can contain multiple "documents". If the top level data structure you are 757 streaming as YAML is a mapping, scalar, or sequence, then Output assumes you 758 are generating one document and wraps the mapping output 759 with "``---``" and trailing "``...``". 760 761 .. code-block:: c++ 762 763 using llvm::yaml::Output; 764 765 void dumpMyMapDoc(const MyMapType &info) { 766 Output yout(llvm::outs()); 767 yout << info; 768 } 769 770 The above could produce output like: 771 772 .. code-block:: yaml 773 774 --- 775 name: Tom 776 hat-size: 7 777 ... 778 779 On the other hand, if the top level data structure you are streaming as YAML 780 has a DocumentListTraits specialization, then Output walks through each element 781 of your DocumentList and generates a "---" before the start of each element 782 and ends with a "...". 783 784 .. code-block:: c++ 785 786 using llvm::yaml::Output; 787 788 void dumpMyMapDoc(const MyDocListType &docList) { 789 Output yout(llvm::outs()); 790 yout << docList; 791 } 792 793 The above could produce output like: 794 795 .. code-block:: yaml 796 797 --- 798 name: Tom 799 hat-size: 7 800 --- 801 name: Tom 802 shoe-size: 11 803 ... 804 805 Input 806 ===== 807 808 The llvm::yaml::Input class is used to parse YAML document(s) into your native 809 data structures. To instantiate an Input 810 object you need a StringRef to the entire YAML file, and optionally a context 811 pointer: 812 813 .. code-block:: c++ 814 815 class Input : public IO { 816 public: 817 Input(StringRef inputContent, void *context=NULL); 818 819 Once you have an Input object, you can use the C++ stream operator to read 820 the document(s). If you expect there might be multiple YAML documents in 821 one file, you'll need to specialize DocumentListTraits on a list of your 822 document type and stream in that document list type. Otherwise you can 823 just stream in the document type. Also, you can check if there was 824 any syntax errors in the YAML be calling the error() method on the Input 825 object. For example: 826 827 .. code-block:: c++ 828 829 // Reading a single document 830 using llvm::yaml::Input; 831 832 Input yin(mb.getBuffer()); 833 834 // Parse the YAML file 835 MyDocType theDoc; 836 yin >> theDoc; 837 838 // Check for error 839 if ( yin.error() ) 840 return; 841 842 843 .. code-block:: c++ 844 845 // Reading multiple documents in one file 846 using llvm::yaml::Input; 847 848 LLVM_YAML_IS_DOCUMENT_LIST_VECTOR(std::vector<MyDocType>) 849 850 Input yin(mb.getBuffer()); 851 852 // Parse the YAML file 853 std::vector<MyDocType> theDocList; 854 yin >> theDocList; 855 856 // Check for error 857 if ( yin.error() ) 858 return; 859 860 861