Home | History | Annotate | Download | only in Analysis
      1 //===- LazyValueInfo.cpp - Value constraint analysis ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interface for lazy computation of value constraint
     11 // information.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "lazy-value-info"
     16 #include "llvm/Analysis/LazyValueInfo.h"
     17 #include "llvm/ADT/DenseSet.h"
     18 #include "llvm/ADT/STLExtras.h"
     19 #include "llvm/Analysis/ConstantFolding.h"
     20 #include "llvm/Analysis/ValueTracking.h"
     21 #include "llvm/IR/Constants.h"
     22 #include "llvm/IR/DataLayout.h"
     23 #include "llvm/IR/Instructions.h"
     24 #include "llvm/IR/IntrinsicInst.h"
     25 #include "llvm/Support/CFG.h"
     26 #include "llvm/Support/ConstantRange.h"
     27 #include "llvm/Support/Debug.h"
     28 #include "llvm/Support/PatternMatch.h"
     29 #include "llvm/Support/ValueHandle.h"
     30 #include "llvm/Support/raw_ostream.h"
     31 #include "llvm/Target/TargetLibraryInfo.h"
     32 #include <map>
     33 #include <stack>
     34 using namespace llvm;
     35 using namespace PatternMatch;
     36 
     37 char LazyValueInfo::ID = 0;
     38 INITIALIZE_PASS_BEGIN(LazyValueInfo, "lazy-value-info",
     39                 "Lazy Value Information Analysis", false, true)
     40 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
     41 INITIALIZE_PASS_END(LazyValueInfo, "lazy-value-info",
     42                 "Lazy Value Information Analysis", false, true)
     43 
     44 namespace llvm {
     45   FunctionPass *createLazyValueInfoPass() { return new LazyValueInfo(); }
     46 }
     47 
     48 
     49 //===----------------------------------------------------------------------===//
     50 //                               LVILatticeVal
     51 //===----------------------------------------------------------------------===//
     52 
     53 /// LVILatticeVal - This is the information tracked by LazyValueInfo for each
     54 /// value.
     55 ///
     56 /// FIXME: This is basically just for bringup, this can be made a lot more rich
     57 /// in the future.
     58 ///
     59 namespace {
     60 class LVILatticeVal {
     61   enum LatticeValueTy {
     62     /// undefined - This Value has no known value yet.
     63     undefined,
     64 
     65     /// constant - This Value has a specific constant value.
     66     constant,
     67     /// notconstant - This Value is known to not have the specified value.
     68     notconstant,
     69 
     70     /// constantrange - The Value falls within this range.
     71     constantrange,
     72 
     73     /// overdefined - This value is not known to be constant, and we know that
     74     /// it has a value.
     75     overdefined
     76   };
     77 
     78   /// Val: This stores the current lattice value along with the Constant* for
     79   /// the constant if this is a 'constant' or 'notconstant' value.
     80   LatticeValueTy Tag;
     81   Constant *Val;
     82   ConstantRange Range;
     83 
     84 public:
     85   LVILatticeVal() : Tag(undefined), Val(0), Range(1, true) {}
     86 
     87   static LVILatticeVal get(Constant *C) {
     88     LVILatticeVal Res;
     89     if (!isa<UndefValue>(C))
     90       Res.markConstant(C);
     91     return Res;
     92   }
     93   static LVILatticeVal getNot(Constant *C) {
     94     LVILatticeVal Res;
     95     if (!isa<UndefValue>(C))
     96       Res.markNotConstant(C);
     97     return Res;
     98   }
     99   static LVILatticeVal getRange(ConstantRange CR) {
    100     LVILatticeVal Res;
    101     Res.markConstantRange(CR);
    102     return Res;
    103   }
    104 
    105   bool isUndefined() const     { return Tag == undefined; }
    106   bool isConstant() const      { return Tag == constant; }
    107   bool isNotConstant() const   { return Tag == notconstant; }
    108   bool isConstantRange() const { return Tag == constantrange; }
    109   bool isOverdefined() const   { return Tag == overdefined; }
    110 
    111   Constant *getConstant() const {
    112     assert(isConstant() && "Cannot get the constant of a non-constant!");
    113     return Val;
    114   }
    115 
    116   Constant *getNotConstant() const {
    117     assert(isNotConstant() && "Cannot get the constant of a non-notconstant!");
    118     return Val;
    119   }
    120 
    121   ConstantRange getConstantRange() const {
    122     assert(isConstantRange() &&
    123            "Cannot get the constant-range of a non-constant-range!");
    124     return Range;
    125   }
    126 
    127   /// markOverdefined - Return true if this is a change in status.
    128   bool markOverdefined() {
    129     if (isOverdefined())
    130       return false;
    131     Tag = overdefined;
    132     return true;
    133   }
    134 
    135   /// markConstant - Return true if this is a change in status.
    136   bool markConstant(Constant *V) {
    137     assert(V && "Marking constant with NULL");
    138     if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
    139       return markConstantRange(ConstantRange(CI->getValue()));
    140     if (isa<UndefValue>(V))
    141       return false;
    142 
    143     assert((!isConstant() || getConstant() == V) &&
    144            "Marking constant with different value");
    145     assert(isUndefined());
    146     Tag = constant;
    147     Val = V;
    148     return true;
    149   }
    150 
    151   /// markNotConstant - Return true if this is a change in status.
    152   bool markNotConstant(Constant *V) {
    153     assert(V && "Marking constant with NULL");
    154     if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
    155       return markConstantRange(ConstantRange(CI->getValue()+1, CI->getValue()));
    156     if (isa<UndefValue>(V))
    157       return false;
    158 
    159     assert((!isConstant() || getConstant() != V) &&
    160            "Marking constant !constant with same value");
    161     assert((!isNotConstant() || getNotConstant() == V) &&
    162            "Marking !constant with different value");
    163     assert(isUndefined() || isConstant());
    164     Tag = notconstant;
    165     Val = V;
    166     return true;
    167   }
    168 
    169   /// markConstantRange - Return true if this is a change in status.
    170   bool markConstantRange(const ConstantRange NewR) {
    171     if (isConstantRange()) {
    172       if (NewR.isEmptySet())
    173         return markOverdefined();
    174 
    175       bool changed = Range != NewR;
    176       Range = NewR;
    177       return changed;
    178     }
    179 
    180     assert(isUndefined());
    181     if (NewR.isEmptySet())
    182       return markOverdefined();
    183 
    184     Tag = constantrange;
    185     Range = NewR;
    186     return true;
    187   }
    188 
    189   /// mergeIn - Merge the specified lattice value into this one, updating this
    190   /// one and returning true if anything changed.
    191   bool mergeIn(const LVILatticeVal &RHS) {
    192     if (RHS.isUndefined() || isOverdefined()) return false;
    193     if (RHS.isOverdefined()) return markOverdefined();
    194 
    195     if (isUndefined()) {
    196       Tag = RHS.Tag;
    197       Val = RHS.Val;
    198       Range = RHS.Range;
    199       return true;
    200     }
    201 
    202     if (isConstant()) {
    203       if (RHS.isConstant()) {
    204         if (Val == RHS.Val)
    205           return false;
    206         return markOverdefined();
    207       }
    208 
    209       if (RHS.isNotConstant()) {
    210         if (Val == RHS.Val)
    211           return markOverdefined();
    212 
    213         // Unless we can prove that the two Constants are different, we must
    214         // move to overdefined.
    215         // FIXME: use DataLayout/TargetLibraryInfo for smarter constant folding.
    216         if (ConstantInt *Res = dyn_cast<ConstantInt>(
    217                 ConstantFoldCompareInstOperands(CmpInst::ICMP_NE,
    218                                                 getConstant(),
    219                                                 RHS.getNotConstant())))
    220           if (Res->isOne())
    221             return markNotConstant(RHS.getNotConstant());
    222 
    223         return markOverdefined();
    224       }
    225 
    226       // RHS is a ConstantRange, LHS is a non-integer Constant.
    227 
    228       // FIXME: consider the case where RHS is a range [1, 0) and LHS is
    229       // a function. The correct result is to pick up RHS.
    230 
    231       return markOverdefined();
    232     }
    233 
    234     if (isNotConstant()) {
    235       if (RHS.isConstant()) {
    236         if (Val == RHS.Val)
    237           return markOverdefined();
    238 
    239         // Unless we can prove that the two Constants are different, we must
    240         // move to overdefined.
    241         // FIXME: use DataLayout/TargetLibraryInfo for smarter constant folding.
    242         if (ConstantInt *Res = dyn_cast<ConstantInt>(
    243                 ConstantFoldCompareInstOperands(CmpInst::ICMP_NE,
    244                                                 getNotConstant(),
    245                                                 RHS.getConstant())))
    246           if (Res->isOne())
    247             return false;
    248 
    249         return markOverdefined();
    250       }
    251 
    252       if (RHS.isNotConstant()) {
    253         if (Val == RHS.Val)
    254           return false;
    255         return markOverdefined();
    256       }
    257 
    258       return markOverdefined();
    259     }
    260 
    261     assert(isConstantRange() && "New LVILattice type?");
    262     if (!RHS.isConstantRange())
    263       return markOverdefined();
    264 
    265     ConstantRange NewR = Range.unionWith(RHS.getConstantRange());
    266     if (NewR.isFullSet())
    267       return markOverdefined();
    268     return markConstantRange(NewR);
    269   }
    270 };
    271 
    272 } // end anonymous namespace.
    273 
    274 namespace llvm {
    275 raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val)
    276     LLVM_ATTRIBUTE_USED;
    277 raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) {
    278   if (Val.isUndefined())
    279     return OS << "undefined";
    280   if (Val.isOverdefined())
    281     return OS << "overdefined";
    282 
    283   if (Val.isNotConstant())
    284     return OS << "notconstant<" << *Val.getNotConstant() << '>';
    285   else if (Val.isConstantRange())
    286     return OS << "constantrange<" << Val.getConstantRange().getLower() << ", "
    287               << Val.getConstantRange().getUpper() << '>';
    288   return OS << "constant<" << *Val.getConstant() << '>';
    289 }
    290 }
    291 
    292 //===----------------------------------------------------------------------===//
    293 //                          LazyValueInfoCache Decl
    294 //===----------------------------------------------------------------------===//
    295 
    296 namespace {
    297   /// LVIValueHandle - A callback value handle updates the cache when
    298   /// values are erased.
    299   class LazyValueInfoCache;
    300   struct LVIValueHandle : public CallbackVH {
    301     LazyValueInfoCache *Parent;
    302 
    303     LVIValueHandle(Value *V, LazyValueInfoCache *P)
    304       : CallbackVH(V), Parent(P) { }
    305 
    306     void deleted();
    307     void allUsesReplacedWith(Value *V) {
    308       deleted();
    309     }
    310   };
    311 }
    312 
    313 namespace {
    314   /// LazyValueInfoCache - This is the cache kept by LazyValueInfo which
    315   /// maintains information about queries across the clients' queries.
    316   class LazyValueInfoCache {
    317     /// ValueCacheEntryTy - This is all of the cached block information for
    318     /// exactly one Value*.  The entries are sorted by the BasicBlock* of the
    319     /// entries, allowing us to do a lookup with a binary search.
    320     typedef std::map<AssertingVH<BasicBlock>, LVILatticeVal> ValueCacheEntryTy;
    321 
    322     /// ValueCache - This is all of the cached information for all values,
    323     /// mapped from Value* to key information.
    324     std::map<LVIValueHandle, ValueCacheEntryTy> ValueCache;
    325 
    326     /// OverDefinedCache - This tracks, on a per-block basis, the set of
    327     /// values that are over-defined at the end of that block.  This is required
    328     /// for cache updating.
    329     typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy;
    330     DenseSet<OverDefinedPairTy> OverDefinedCache;
    331 
    332     /// SeenBlocks - Keep track of all blocks that we have ever seen, so we
    333     /// don't spend time removing unused blocks from our caches.
    334     DenseSet<AssertingVH<BasicBlock> > SeenBlocks;
    335 
    336     /// BlockValueStack - This stack holds the state of the value solver
    337     /// during a query.  It basically emulates the callstack of the naive
    338     /// recursive value lookup process.
    339     std::stack<std::pair<BasicBlock*, Value*> > BlockValueStack;
    340 
    341     friend struct LVIValueHandle;
    342 
    343     /// OverDefinedCacheUpdater - A helper object that ensures that the
    344     /// OverDefinedCache is updated whenever solveBlockValue returns.
    345     struct OverDefinedCacheUpdater {
    346       LazyValueInfoCache *Parent;
    347       Value *Val;
    348       BasicBlock *BB;
    349       LVILatticeVal &BBLV;
    350 
    351       OverDefinedCacheUpdater(Value *V, BasicBlock *B, LVILatticeVal &LV,
    352                        LazyValueInfoCache *P)
    353         : Parent(P), Val(V), BB(B), BBLV(LV) { }
    354 
    355       bool markResult(bool changed) {
    356         if (changed && BBLV.isOverdefined())
    357           Parent->OverDefinedCache.insert(std::make_pair(BB, Val));
    358         return changed;
    359       }
    360     };
    361 
    362 
    363 
    364     LVILatticeVal getBlockValue(Value *Val, BasicBlock *BB);
    365     bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T,
    366                       LVILatticeVal &Result);
    367     bool hasBlockValue(Value *Val, BasicBlock *BB);
    368 
    369     // These methods process one work item and may add more. A false value
    370     // returned means that the work item was not completely processed and must
    371     // be revisited after going through the new items.
    372     bool solveBlockValue(Value *Val, BasicBlock *BB);
    373     bool solveBlockValueNonLocal(LVILatticeVal &BBLV,
    374                                  Value *Val, BasicBlock *BB);
    375     bool solveBlockValuePHINode(LVILatticeVal &BBLV,
    376                                 PHINode *PN, BasicBlock *BB);
    377     bool solveBlockValueConstantRange(LVILatticeVal &BBLV,
    378                                       Instruction *BBI, BasicBlock *BB);
    379 
    380     void solve();
    381 
    382     ValueCacheEntryTy &lookup(Value *V) {
    383       return ValueCache[LVIValueHandle(V, this)];
    384     }
    385 
    386   public:
    387     /// getValueInBlock - This is the query interface to determine the lattice
    388     /// value for the specified Value* at the end of the specified block.
    389     LVILatticeVal getValueInBlock(Value *V, BasicBlock *BB);
    390 
    391     /// getValueOnEdge - This is the query interface to determine the lattice
    392     /// value for the specified Value* that is true on the specified edge.
    393     LVILatticeVal getValueOnEdge(Value *V, BasicBlock *FromBB,BasicBlock *ToBB);
    394 
    395     /// threadEdge - This is the update interface to inform the cache that an
    396     /// edge from PredBB to OldSucc has been threaded to be from PredBB to
    397     /// NewSucc.
    398     void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc);
    399 
    400     /// eraseBlock - This is part of the update interface to inform the cache
    401     /// that a block has been deleted.
    402     void eraseBlock(BasicBlock *BB);
    403 
    404     /// clear - Empty the cache.
    405     void clear() {
    406       SeenBlocks.clear();
    407       ValueCache.clear();
    408       OverDefinedCache.clear();
    409     }
    410   };
    411 } // end anonymous namespace
    412 
    413 void LVIValueHandle::deleted() {
    414   typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy;
    415 
    416   SmallVector<OverDefinedPairTy, 4> ToErase;
    417   for (DenseSet<OverDefinedPairTy>::iterator
    418        I = Parent->OverDefinedCache.begin(),
    419        E = Parent->OverDefinedCache.end();
    420        I != E; ++I) {
    421     if (I->second == getValPtr())
    422       ToErase.push_back(*I);
    423   }
    424 
    425   for (SmallVector<OverDefinedPairTy, 4>::iterator I = ToErase.begin(),
    426        E = ToErase.end(); I != E; ++I)
    427     Parent->OverDefinedCache.erase(*I);
    428 
    429   // This erasure deallocates *this, so it MUST happen after we're done
    430   // using any and all members of *this.
    431   Parent->ValueCache.erase(*this);
    432 }
    433 
    434 void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
    435   // Shortcut if we have never seen this block.
    436   DenseSet<AssertingVH<BasicBlock> >::iterator I = SeenBlocks.find(BB);
    437   if (I == SeenBlocks.end())
    438     return;
    439   SeenBlocks.erase(I);
    440 
    441   SmallVector<OverDefinedPairTy, 4> ToErase;
    442   for (DenseSet<OverDefinedPairTy>::iterator  I = OverDefinedCache.begin(),
    443        E = OverDefinedCache.end(); I != E; ++I) {
    444     if (I->first == BB)
    445       ToErase.push_back(*I);
    446   }
    447 
    448   for (SmallVector<OverDefinedPairTy, 4>::iterator I = ToErase.begin(),
    449        E = ToErase.end(); I != E; ++I)
    450     OverDefinedCache.erase(*I);
    451 
    452   for (std::map<LVIValueHandle, ValueCacheEntryTy>::iterator
    453        I = ValueCache.begin(), E = ValueCache.end(); I != E; ++I)
    454     I->second.erase(BB);
    455 }
    456 
    457 void LazyValueInfoCache::solve() {
    458   while (!BlockValueStack.empty()) {
    459     std::pair<BasicBlock*, Value*> &e = BlockValueStack.top();
    460     if (solveBlockValue(e.second, e.first)) {
    461       assert(BlockValueStack.top() == e);
    462       BlockValueStack.pop();
    463     }
    464   }
    465 }
    466 
    467 bool LazyValueInfoCache::hasBlockValue(Value *Val, BasicBlock *BB) {
    468   // If already a constant, there is nothing to compute.
    469   if (isa<Constant>(Val))
    470     return true;
    471 
    472   LVIValueHandle ValHandle(Val, this);
    473   std::map<LVIValueHandle, ValueCacheEntryTy>::iterator I =
    474     ValueCache.find(ValHandle);
    475   if (I == ValueCache.end()) return false;
    476   return I->second.count(BB);
    477 }
    478 
    479 LVILatticeVal LazyValueInfoCache::getBlockValue(Value *Val, BasicBlock *BB) {
    480   // If already a constant, there is nothing to compute.
    481   if (Constant *VC = dyn_cast<Constant>(Val))
    482     return LVILatticeVal::get(VC);
    483 
    484   SeenBlocks.insert(BB);
    485   return lookup(Val)[BB];
    486 }
    487 
    488 bool LazyValueInfoCache::solveBlockValue(Value *Val, BasicBlock *BB) {
    489   if (isa<Constant>(Val))
    490     return true;
    491 
    492   ValueCacheEntryTy &Cache = lookup(Val);
    493   SeenBlocks.insert(BB);
    494   LVILatticeVal &BBLV = Cache[BB];
    495 
    496   // OverDefinedCacheUpdater is a helper object that will update
    497   // the OverDefinedCache for us when this method exits.  Make sure to
    498   // call markResult on it as we exist, passing a bool to indicate if the
    499   // cache needs updating, i.e. if we have solve a new value or not.
    500   OverDefinedCacheUpdater ODCacheUpdater(Val, BB, BBLV, this);
    501 
    502   // If we've already computed this block's value, return it.
    503   if (!BBLV.isUndefined()) {
    504     DEBUG(dbgs() << "  reuse BB '" << BB->getName() << "' val=" << BBLV <<'\n');
    505 
    506     // Since we're reusing a cached value here, we don't need to update the
    507     // OverDefinedCahce.  The cache will have been properly updated
    508     // whenever the cached value was inserted.
    509     ODCacheUpdater.markResult(false);
    510     return true;
    511   }
    512 
    513   // Otherwise, this is the first time we're seeing this block.  Reset the
    514   // lattice value to overdefined, so that cycles will terminate and be
    515   // conservatively correct.
    516   BBLV.markOverdefined();
    517 
    518   Instruction *BBI = dyn_cast<Instruction>(Val);
    519   if (BBI == 0 || BBI->getParent() != BB) {
    520     return ODCacheUpdater.markResult(solveBlockValueNonLocal(BBLV, Val, BB));
    521   }
    522 
    523   if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
    524     return ODCacheUpdater.markResult(solveBlockValuePHINode(BBLV, PN, BB));
    525   }
    526 
    527   if (AllocaInst *AI = dyn_cast<AllocaInst>(BBI)) {
    528     BBLV = LVILatticeVal::getNot(ConstantPointerNull::get(AI->getType()));
    529     return ODCacheUpdater.markResult(true);
    530   }
    531 
    532   // We can only analyze the definitions of certain classes of instructions
    533   // (integral binops and casts at the moment), so bail if this isn't one.
    534   LVILatticeVal Result;
    535   if ((!isa<BinaryOperator>(BBI) && !isa<CastInst>(BBI)) ||
    536      !BBI->getType()->isIntegerTy()) {
    537     DEBUG(dbgs() << " compute BB '" << BB->getName()
    538                  << "' - overdefined because inst def found.\n");
    539     BBLV.markOverdefined();
    540     return ODCacheUpdater.markResult(true);
    541   }
    542 
    543   // FIXME: We're currently limited to binops with a constant RHS.  This should
    544   // be improved.
    545   BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI);
    546   if (BO && !isa<ConstantInt>(BO->getOperand(1))) {
    547     DEBUG(dbgs() << " compute BB '" << BB->getName()
    548                  << "' - overdefined because inst def found.\n");
    549 
    550     BBLV.markOverdefined();
    551     return ODCacheUpdater.markResult(true);
    552   }
    553 
    554   return ODCacheUpdater.markResult(solveBlockValueConstantRange(BBLV, BBI, BB));
    555 }
    556 
    557 static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) {
    558   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
    559     return L->getPointerAddressSpace() == 0 &&
    560         GetUnderlyingObject(L->getPointerOperand()) == Ptr;
    561   }
    562   if (StoreInst *S = dyn_cast<StoreInst>(I)) {
    563     return S->getPointerAddressSpace() == 0 &&
    564         GetUnderlyingObject(S->getPointerOperand()) == Ptr;
    565   }
    566   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
    567     if (MI->isVolatile()) return false;
    568 
    569     // FIXME: check whether it has a valuerange that excludes zero?
    570     ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength());
    571     if (!Len || Len->isZero()) return false;
    572 
    573     if (MI->getDestAddressSpace() == 0)
    574       if (GetUnderlyingObject(MI->getRawDest()) == Ptr)
    575         return true;
    576     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
    577       if (MTI->getSourceAddressSpace() == 0)
    578         if (GetUnderlyingObject(MTI->getRawSource()) == Ptr)
    579           return true;
    580   }
    581   return false;
    582 }
    583 
    584 bool LazyValueInfoCache::solveBlockValueNonLocal(LVILatticeVal &BBLV,
    585                                                  Value *Val, BasicBlock *BB) {
    586   LVILatticeVal Result;  // Start Undefined.
    587 
    588   // If this is a pointer, and there's a load from that pointer in this BB,
    589   // then we know that the pointer can't be NULL.
    590   bool NotNull = false;
    591   if (Val->getType()->isPointerTy()) {
    592     if (isKnownNonNull(Val)) {
    593       NotNull = true;
    594     } else {
    595       Value *UnderlyingVal = GetUnderlyingObject(Val);
    596       // If 'GetUnderlyingObject' didn't converge, skip it. It won't converge
    597       // inside InstructionDereferencesPointer either.
    598       if (UnderlyingVal == GetUnderlyingObject(UnderlyingVal, NULL, 1)) {
    599         for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
    600              BI != BE; ++BI) {
    601           if (InstructionDereferencesPointer(BI, UnderlyingVal)) {
    602             NotNull = true;
    603             break;
    604           }
    605         }
    606       }
    607     }
    608   }
    609 
    610   // If this is the entry block, we must be asking about an argument.  The
    611   // value is overdefined.
    612   if (BB == &BB->getParent()->getEntryBlock()) {
    613     assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
    614     if (NotNull) {
    615       PointerType *PTy = cast<PointerType>(Val->getType());
    616       Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
    617     } else {
    618       Result.markOverdefined();
    619     }
    620     BBLV = Result;
    621     return true;
    622   }
    623 
    624   // Loop over all of our predecessors, merging what we know from them into
    625   // result.
    626   bool EdgesMissing = false;
    627   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    628     LVILatticeVal EdgeResult;
    629     EdgesMissing |= !getEdgeValue(Val, *PI, BB, EdgeResult);
    630     if (EdgesMissing)
    631       continue;
    632 
    633     Result.mergeIn(EdgeResult);
    634 
    635     // If we hit overdefined, exit early.  The BlockVals entry is already set
    636     // to overdefined.
    637     if (Result.isOverdefined()) {
    638       DEBUG(dbgs() << " compute BB '" << BB->getName()
    639             << "' - overdefined because of pred.\n");
    640       // If we previously determined that this is a pointer that can't be null
    641       // then return that rather than giving up entirely.
    642       if (NotNull) {
    643         PointerType *PTy = cast<PointerType>(Val->getType());
    644         Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
    645       }
    646 
    647       BBLV = Result;
    648       return true;
    649     }
    650   }
    651   if (EdgesMissing)
    652     return false;
    653 
    654   // Return the merged value, which is more precise than 'overdefined'.
    655   assert(!Result.isOverdefined());
    656   BBLV = Result;
    657   return true;
    658 }
    659 
    660 bool LazyValueInfoCache::solveBlockValuePHINode(LVILatticeVal &BBLV,
    661                                                 PHINode *PN, BasicBlock *BB) {
    662   LVILatticeVal Result;  // Start Undefined.
    663 
    664   // Loop over all of our predecessors, merging what we know from them into
    665   // result.
    666   bool EdgesMissing = false;
    667   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    668     BasicBlock *PhiBB = PN->getIncomingBlock(i);
    669     Value *PhiVal = PN->getIncomingValue(i);
    670     LVILatticeVal EdgeResult;
    671     EdgesMissing |= !getEdgeValue(PhiVal, PhiBB, BB, EdgeResult);
    672     if (EdgesMissing)
    673       continue;
    674 
    675     Result.mergeIn(EdgeResult);
    676 
    677     // If we hit overdefined, exit early.  The BlockVals entry is already set
    678     // to overdefined.
    679     if (Result.isOverdefined()) {
    680       DEBUG(dbgs() << " compute BB '" << BB->getName()
    681             << "' - overdefined because of pred.\n");
    682 
    683       BBLV = Result;
    684       return true;
    685     }
    686   }
    687   if (EdgesMissing)
    688     return false;
    689 
    690   // Return the merged value, which is more precise than 'overdefined'.
    691   assert(!Result.isOverdefined() && "Possible PHI in entry block?");
    692   BBLV = Result;
    693   return true;
    694 }
    695 
    696 bool LazyValueInfoCache::solveBlockValueConstantRange(LVILatticeVal &BBLV,
    697                                                       Instruction *BBI,
    698                                                       BasicBlock *BB) {
    699   // Figure out the range of the LHS.  If that fails, bail.
    700   if (!hasBlockValue(BBI->getOperand(0), BB)) {
    701     BlockValueStack.push(std::make_pair(BB, BBI->getOperand(0)));
    702     return false;
    703   }
    704 
    705   LVILatticeVal LHSVal = getBlockValue(BBI->getOperand(0), BB);
    706   if (!LHSVal.isConstantRange()) {
    707     BBLV.markOverdefined();
    708     return true;
    709   }
    710 
    711   ConstantRange LHSRange = LHSVal.getConstantRange();
    712   ConstantRange RHSRange(1);
    713   IntegerType *ResultTy = cast<IntegerType>(BBI->getType());
    714   if (isa<BinaryOperator>(BBI)) {
    715     if (ConstantInt *RHS = dyn_cast<ConstantInt>(BBI->getOperand(1))) {
    716       RHSRange = ConstantRange(RHS->getValue());
    717     } else {
    718       BBLV.markOverdefined();
    719       return true;
    720     }
    721   }
    722 
    723   // NOTE: We're currently limited by the set of operations that ConstantRange
    724   // can evaluate symbolically.  Enhancing that set will allows us to analyze
    725   // more definitions.
    726   LVILatticeVal Result;
    727   switch (BBI->getOpcode()) {
    728   case Instruction::Add:
    729     Result.markConstantRange(LHSRange.add(RHSRange));
    730     break;
    731   case Instruction::Sub:
    732     Result.markConstantRange(LHSRange.sub(RHSRange));
    733     break;
    734   case Instruction::Mul:
    735     Result.markConstantRange(LHSRange.multiply(RHSRange));
    736     break;
    737   case Instruction::UDiv:
    738     Result.markConstantRange(LHSRange.udiv(RHSRange));
    739     break;
    740   case Instruction::Shl:
    741     Result.markConstantRange(LHSRange.shl(RHSRange));
    742     break;
    743   case Instruction::LShr:
    744     Result.markConstantRange(LHSRange.lshr(RHSRange));
    745     break;
    746   case Instruction::Trunc:
    747     Result.markConstantRange(LHSRange.truncate(ResultTy->getBitWidth()));
    748     break;
    749   case Instruction::SExt:
    750     Result.markConstantRange(LHSRange.signExtend(ResultTy->getBitWidth()));
    751     break;
    752   case Instruction::ZExt:
    753     Result.markConstantRange(LHSRange.zeroExtend(ResultTy->getBitWidth()));
    754     break;
    755   case Instruction::BitCast:
    756     Result.markConstantRange(LHSRange);
    757     break;
    758   case Instruction::And:
    759     Result.markConstantRange(LHSRange.binaryAnd(RHSRange));
    760     break;
    761   case Instruction::Or:
    762     Result.markConstantRange(LHSRange.binaryOr(RHSRange));
    763     break;
    764 
    765   // Unhandled instructions are overdefined.
    766   default:
    767     DEBUG(dbgs() << " compute BB '" << BB->getName()
    768                  << "' - overdefined because inst def found.\n");
    769     Result.markOverdefined();
    770     break;
    771   }
    772 
    773   BBLV = Result;
    774   return true;
    775 }
    776 
    777 /// \brief Compute the value of Val on the edge BBFrom -> BBTo. Returns false if
    778 /// Val is not constrained on the edge.
    779 static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom,
    780                               BasicBlock *BBTo, LVILatticeVal &Result) {
    781   // TODO: Handle more complex conditionals.  If (v == 0 || v2 < 1) is false, we
    782   // know that v != 0.
    783   if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
    784     // If this is a conditional branch and only one successor goes to BBTo, then
    785     // we maybe able to infer something from the condition.
    786     if (BI->isConditional() &&
    787         BI->getSuccessor(0) != BI->getSuccessor(1)) {
    788       bool isTrueDest = BI->getSuccessor(0) == BBTo;
    789       assert(BI->getSuccessor(!isTrueDest) == BBTo &&
    790              "BBTo isn't a successor of BBFrom");
    791 
    792       // If V is the condition of the branch itself, then we know exactly what
    793       // it is.
    794       if (BI->getCondition() == Val) {
    795         Result = LVILatticeVal::get(ConstantInt::get(
    796                               Type::getInt1Ty(Val->getContext()), isTrueDest));
    797         return true;
    798       }
    799 
    800       // If the condition of the branch is an equality comparison, we may be
    801       // able to infer the value.
    802       ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition());
    803       if (ICI && isa<Constant>(ICI->getOperand(1))) {
    804         if (ICI->isEquality() && ICI->getOperand(0) == Val) {
    805           // We know that V has the RHS constant if this is a true SETEQ or
    806           // false SETNE.
    807           if (isTrueDest == (ICI->getPredicate() == ICmpInst::ICMP_EQ))
    808             Result = LVILatticeVal::get(cast<Constant>(ICI->getOperand(1)));
    809           else
    810             Result = LVILatticeVal::getNot(cast<Constant>(ICI->getOperand(1)));
    811           return true;
    812         }
    813 
    814         // Recognize the range checking idiom that InstCombine produces.
    815         // (X-C1) u< C2 --> [C1, C1+C2)
    816         ConstantInt *NegOffset = 0;
    817         if (ICI->getPredicate() == ICmpInst::ICMP_ULT)
    818           match(ICI->getOperand(0), m_Add(m_Specific(Val),
    819                                           m_ConstantInt(NegOffset)));
    820 
    821         ConstantInt *CI = dyn_cast<ConstantInt>(ICI->getOperand(1));
    822         if (CI && (ICI->getOperand(0) == Val || NegOffset)) {
    823           // Calculate the range of values that would satisfy the comparison.
    824           ConstantRange CmpRange(CI->getValue());
    825           ConstantRange TrueValues =
    826             ConstantRange::makeICmpRegion(ICI->getPredicate(), CmpRange);
    827 
    828           if (NegOffset) // Apply the offset from above.
    829             TrueValues = TrueValues.subtract(NegOffset->getValue());
    830 
    831           // If we're interested in the false dest, invert the condition.
    832           if (!isTrueDest) TrueValues = TrueValues.inverse();
    833 
    834           Result = LVILatticeVal::getRange(TrueValues);
    835           return true;
    836         }
    837       }
    838     }
    839   }
    840 
    841   // If the edge was formed by a switch on the value, then we may know exactly
    842   // what it is.
    843   if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
    844     if (SI->getCondition() != Val)
    845       return false;
    846 
    847     bool DefaultCase = SI->getDefaultDest() == BBTo;
    848     unsigned BitWidth = Val->getType()->getIntegerBitWidth();
    849     ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/);
    850 
    851     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
    852          i != e; ++i) {
    853       ConstantRange EdgeVal(i.getCaseValue()->getValue());
    854       if (DefaultCase) {
    855         // It is possible that the default destination is the destination of
    856         // some cases. There is no need to perform difference for those cases.
    857         if (i.getCaseSuccessor() != BBTo)
    858           EdgesVals = EdgesVals.difference(EdgeVal);
    859       } else if (i.getCaseSuccessor() == BBTo)
    860         EdgesVals = EdgesVals.unionWith(EdgeVal);
    861     }
    862     Result = LVILatticeVal::getRange(EdgesVals);
    863     return true;
    864   }
    865   return false;
    866 }
    867 
    868 /// \brief Compute the value of Val on the edge BBFrom -> BBTo, or the value at
    869 /// the basic block if the edge does not constraint Val.
    870 bool LazyValueInfoCache::getEdgeValue(Value *Val, BasicBlock *BBFrom,
    871                                       BasicBlock *BBTo, LVILatticeVal &Result) {
    872   // If already a constant, there is nothing to compute.
    873   if (Constant *VC = dyn_cast<Constant>(Val)) {
    874     Result = LVILatticeVal::get(VC);
    875     return true;
    876   }
    877 
    878   if (getEdgeValueLocal(Val, BBFrom, BBTo, Result)) {
    879     if (!Result.isConstantRange() ||
    880       Result.getConstantRange().getSingleElement())
    881       return true;
    882 
    883     // FIXME: this check should be moved to the beginning of the function when
    884     // LVI better supports recursive values. Even for the single value case, we
    885     // can intersect to detect dead code (an empty range).
    886     if (!hasBlockValue(Val, BBFrom)) {
    887       BlockValueStack.push(std::make_pair(BBFrom, Val));
    888       return false;
    889     }
    890 
    891     // Try to intersect ranges of the BB and the constraint on the edge.
    892     LVILatticeVal InBlock = getBlockValue(Val, BBFrom);
    893     if (!InBlock.isConstantRange())
    894       return true;
    895 
    896     ConstantRange Range =
    897       Result.getConstantRange().intersectWith(InBlock.getConstantRange());
    898     Result = LVILatticeVal::getRange(Range);
    899     return true;
    900   }
    901 
    902   if (!hasBlockValue(Val, BBFrom)) {
    903     BlockValueStack.push(std::make_pair(BBFrom, Val));
    904     return false;
    905   }
    906 
    907   // if we couldn't compute the value on the edge, use the value from the BB
    908   Result = getBlockValue(Val, BBFrom);
    909   return true;
    910 }
    911 
    912 LVILatticeVal LazyValueInfoCache::getValueInBlock(Value *V, BasicBlock *BB) {
    913   DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
    914         << BB->getName() << "'\n");
    915 
    916   BlockValueStack.push(std::make_pair(BB, V));
    917   solve();
    918   LVILatticeVal Result = getBlockValue(V, BB);
    919 
    920   DEBUG(dbgs() << "  Result = " << Result << "\n");
    921   return Result;
    922 }
    923 
    924 LVILatticeVal LazyValueInfoCache::
    925 getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB) {
    926   DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
    927         << FromBB->getName() << "' to '" << ToBB->getName() << "'\n");
    928 
    929   LVILatticeVal Result;
    930   if (!getEdgeValue(V, FromBB, ToBB, Result)) {
    931     solve();
    932     bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result);
    933     (void)WasFastQuery;
    934     assert(WasFastQuery && "More work to do after problem solved?");
    935   }
    936 
    937   DEBUG(dbgs() << "  Result = " << Result << "\n");
    938   return Result;
    939 }
    940 
    941 void LazyValueInfoCache::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
    942                                     BasicBlock *NewSucc) {
    943   // When an edge in the graph has been threaded, values that we could not
    944   // determine a value for before (i.e. were marked overdefined) may be possible
    945   // to solve now.  We do NOT try to proactively update these values.  Instead,
    946   // we clear their entries from the cache, and allow lazy updating to recompute
    947   // them when needed.
    948 
    949   // The updating process is fairly simple: we need to dropped cached info
    950   // for all values that were marked overdefined in OldSucc, and for those same
    951   // values in any successor of OldSucc (except NewSucc) in which they were
    952   // also marked overdefined.
    953   std::vector<BasicBlock*> worklist;
    954   worklist.push_back(OldSucc);
    955 
    956   DenseSet<Value*> ClearSet;
    957   for (DenseSet<OverDefinedPairTy>::iterator I = OverDefinedCache.begin(),
    958        E = OverDefinedCache.end(); I != E; ++I) {
    959     if (I->first == OldSucc)
    960       ClearSet.insert(I->second);
    961   }
    962 
    963   // Use a worklist to perform a depth-first search of OldSucc's successors.
    964   // NOTE: We do not need a visited list since any blocks we have already
    965   // visited will have had their overdefined markers cleared already, and we
    966   // thus won't loop to their successors.
    967   while (!worklist.empty()) {
    968     BasicBlock *ToUpdate = worklist.back();
    969     worklist.pop_back();
    970 
    971     // Skip blocks only accessible through NewSucc.
    972     if (ToUpdate == NewSucc) continue;
    973 
    974     bool changed = false;
    975     for (DenseSet<Value*>::iterator I = ClearSet.begin(), E = ClearSet.end();
    976          I != E; ++I) {
    977       // If a value was marked overdefined in OldSucc, and is here too...
    978       DenseSet<OverDefinedPairTy>::iterator OI =
    979         OverDefinedCache.find(std::make_pair(ToUpdate, *I));
    980       if (OI == OverDefinedCache.end()) continue;
    981 
    982       // Remove it from the caches.
    983       ValueCacheEntryTy &Entry = ValueCache[LVIValueHandle(*I, this)];
    984       ValueCacheEntryTy::iterator CI = Entry.find(ToUpdate);
    985 
    986       assert(CI != Entry.end() && "Couldn't find entry to update?");
    987       Entry.erase(CI);
    988       OverDefinedCache.erase(OI);
    989 
    990       // If we removed anything, then we potentially need to update
    991       // blocks successors too.
    992       changed = true;
    993     }
    994 
    995     if (!changed) continue;
    996 
    997     worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate));
    998   }
    999 }
   1000 
   1001 //===----------------------------------------------------------------------===//
   1002 //                            LazyValueInfo Impl
   1003 //===----------------------------------------------------------------------===//
   1004 
   1005 /// getCache - This lazily constructs the LazyValueInfoCache.
   1006 static LazyValueInfoCache &getCache(void *&PImpl) {
   1007   if (!PImpl)
   1008     PImpl = new LazyValueInfoCache();
   1009   return *static_cast<LazyValueInfoCache*>(PImpl);
   1010 }
   1011 
   1012 bool LazyValueInfo::runOnFunction(Function &F) {
   1013   if (PImpl)
   1014     getCache(PImpl).clear();
   1015 
   1016   TD = getAnalysisIfAvailable<DataLayout>();
   1017   TLI = &getAnalysis<TargetLibraryInfo>();
   1018 
   1019   // Fully lazy.
   1020   return false;
   1021 }
   1022 
   1023 void LazyValueInfo::getAnalysisUsage(AnalysisUsage &AU) const {
   1024   AU.setPreservesAll();
   1025   AU.addRequired<TargetLibraryInfo>();
   1026 }
   1027 
   1028 void LazyValueInfo::releaseMemory() {
   1029   // If the cache was allocated, free it.
   1030   if (PImpl) {
   1031     delete &getCache(PImpl);
   1032     PImpl = 0;
   1033   }
   1034 }
   1035 
   1036 Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB) {
   1037   LVILatticeVal Result = getCache(PImpl).getValueInBlock(V, BB);
   1038 
   1039   if (Result.isConstant())
   1040     return Result.getConstant();
   1041   if (Result.isConstantRange()) {
   1042     ConstantRange CR = Result.getConstantRange();
   1043     if (const APInt *SingleVal = CR.getSingleElement())
   1044       return ConstantInt::get(V->getContext(), *SingleVal);
   1045   }
   1046   return 0;
   1047 }
   1048 
   1049 /// getConstantOnEdge - Determine whether the specified value is known to be a
   1050 /// constant on the specified edge.  Return null if not.
   1051 Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
   1052                                            BasicBlock *ToBB) {
   1053   LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB);
   1054 
   1055   if (Result.isConstant())
   1056     return Result.getConstant();
   1057   if (Result.isConstantRange()) {
   1058     ConstantRange CR = Result.getConstantRange();
   1059     if (const APInt *SingleVal = CR.getSingleElement())
   1060       return ConstantInt::get(V->getContext(), *SingleVal);
   1061   }
   1062   return 0;
   1063 }
   1064 
   1065 /// getPredicateOnEdge - Determine whether the specified value comparison
   1066 /// with a constant is known to be true or false on the specified CFG edge.
   1067 /// Pred is a CmpInst predicate.
   1068 LazyValueInfo::Tristate
   1069 LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
   1070                                   BasicBlock *FromBB, BasicBlock *ToBB) {
   1071   LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB);
   1072 
   1073   // If we know the value is a constant, evaluate the conditional.
   1074   Constant *Res = 0;
   1075   if (Result.isConstant()) {
   1076     Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, TD,
   1077                                           TLI);
   1078     if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res))
   1079       return ResCI->isZero() ? False : True;
   1080     return Unknown;
   1081   }
   1082 
   1083   if (Result.isConstantRange()) {
   1084     ConstantInt *CI = dyn_cast<ConstantInt>(C);
   1085     if (!CI) return Unknown;
   1086 
   1087     ConstantRange CR = Result.getConstantRange();
   1088     if (Pred == ICmpInst::ICMP_EQ) {
   1089       if (!CR.contains(CI->getValue()))
   1090         return False;
   1091 
   1092       if (CR.isSingleElement() && CR.contains(CI->getValue()))
   1093         return True;
   1094     } else if (Pred == ICmpInst::ICMP_NE) {
   1095       if (!CR.contains(CI->getValue()))
   1096         return True;
   1097 
   1098       if (CR.isSingleElement() && CR.contains(CI->getValue()))
   1099         return False;
   1100     }
   1101 
   1102     // Handle more complex predicates.
   1103     ConstantRange TrueValues =
   1104         ICmpInst::makeConstantRange((ICmpInst::Predicate)Pred, CI->getValue());
   1105     if (TrueValues.contains(CR))
   1106       return True;
   1107     if (TrueValues.inverse().contains(CR))
   1108       return False;
   1109     return Unknown;
   1110   }
   1111 
   1112   if (Result.isNotConstant()) {
   1113     // If this is an equality comparison, we can try to fold it knowing that
   1114     // "V != C1".
   1115     if (Pred == ICmpInst::ICMP_EQ) {
   1116       // !C1 == C -> false iff C1 == C.
   1117       Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
   1118                                             Result.getNotConstant(), C, TD,
   1119                                             TLI);
   1120       if (Res->isNullValue())
   1121         return False;
   1122     } else if (Pred == ICmpInst::ICMP_NE) {
   1123       // !C1 != C -> true iff C1 == C.
   1124       Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
   1125                                             Result.getNotConstant(), C, TD,
   1126                                             TLI);
   1127       if (Res->isNullValue())
   1128         return True;
   1129     }
   1130     return Unknown;
   1131   }
   1132 
   1133   return Unknown;
   1134 }
   1135 
   1136 void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
   1137                                BasicBlock *NewSucc) {
   1138   if (PImpl) getCache(PImpl).threadEdge(PredBB, OldSucc, NewSucc);
   1139 }
   1140 
   1141 void LazyValueInfo::eraseBlock(BasicBlock *BB) {
   1142   if (PImpl) getCache(PImpl).eraseBlock(BB);
   1143 }
   1144